
CODEA - An Agent Based Multi-Objective Optimization
Framework

Juan Castro-Gutierrez Dario Landa-Silva José A. Moreno-Pérez
ASAP Research Group ASAP Research Group DEIOC

School of Computer Science School of Computer Science Facultad de Matemáticas

University of Nottingham University of Nottingham Universidad de La Laguna

jpc@cs.nott.ac.uk dario.landasilva@nottingham.ac.uk jamoreno@ull.es

Abstract

This work presents CODEA, a COopera-
tive DEcentralized Architecture for Multi-
objective Optimization. CODEA is an object-
oriented framework that aims at the creation
of groups of agents to tackle complex problems
by cooperative search. This cooperation is car-
ried out without any individual controlling the
cooperation nor the behaviour of the agents.
Each agent works on its own to improve itself
and collaborates to improve the performance
of the group by sharing information.

1 Introduction

Heuristic algorithms have become more elabo-
rate in recent years. This means that the time
required for the design, debugging and testing
of this kind of methods is considerable. Source
code re-utilisation emerges as a means to re-
use already coded algorithms to solve different
problems without starting a new development
from scratch [3].

In this work, we propose a new version of
CODEA (COoperative DEcentralized Archi-
tecture), first proposed in [6]. This frame-
work is designed to create flexible groups of
agents to tackle multi-objective optimisation
problems using the paradigm of cooperation.
CODEA consists of a number of classes de-
veloped in C++ that accelerate the develop-
ment of cooperative metaheuristics with no
centralised control mechanism. This new ver-
sion incorporates the following main features:

support for tackling multi-objective optimi-
sation problems, various ranking schemes to
discriminate solutions in multi-objective opti-
misation (aggregation approach, lexicographic
ordering and Pareto dominance), parallelisa-
tion supported by OpenMP, etc. We illustrate
the use of CODEA by implementing a Dis-
crete Particle Swarm Optimization (DPSO)
algorithm to tackle a set of instances of the bi-
objective Travelling Salesman Problem (TSP).
A number of experiments are conducted to test
different communication topologies within the
proposed framework.

A number of frameworks and libraries have
been proposed to facilitate the development of
heuristic algorithms in different programming
languages. In particular, for multi-objective
optimization some well known frameworks and
libraries are: Paradiseo [12], Open Beagle [5],
PISA [1], MOMHLib++ [13] and TEA [4]. All
these open-source tools are developed in C++
and include a number of features to work with
multi-objective problems.

Paradiseo is probably the most elaborated
framework. It comes with a number of im-
plemented metaheuristics (evolutionary algo-
rithms, local search, simulated annealing, etc.)
that are totally customisable. Moreover, it in-
cludes metrics to assess the quality of solu-
tions, methods for ranking solutions, paralleli-
sation mechanisms, etc. Paradiseo also pro-
vides with a number of tutorials and exam-
ples implementing different methods and prob-
lems. The drawback of working with such a
framework is its inherent complexity. For rel-



atively simple projects, the use of Paradiseo
could severely slow down the implementation
process (learning curve) and the performance
of the algorithm. This is due to the complex
class hierarchy it uses to model the system.

Open Beagle is a high-level evolution-
ary computation framework. Like Paradiseo,
Open Beagle is portable, flexible and robust.
It has a good documentation but its last up-
date was in 2007.

PISA (Platform and Programming Lan-
guage Independent Interface for Search Al-
gorithms) like Paradiseo, includes the imple-
mentation of various well-known algorithms
(SPEA2, NSGA-II) and problems (ZDT,
DTLZ), plus a number of metrics to assess
the quality of solutions. As a drawback, PISA
seems to be a black box that is not flexible to
be extended. As it merely provides a scripting
language for search algorithms and ready-to-
go modules as binary files.

MOMHLib++ (Multiple Objective Meta-
Heuristics Library in C++) is a library that
implements a number of multi-objective meta-
heuristics (PSA, MOGLS). It also provides
metrics to measure the quality of solutions and
seems to be easy to learn. However, it has not
been updated since 2005 and it does not have
documentation.

TEA (Toolbox for Evolutionary Algo-
rithms) is a library for the design of evolution-
ary algorithms (EA). It is a very flexible frame-
work with many features to build up EAs, en-
hancing the ease of use and avoiding unneces-
sary abstractions. Some of these features are:
use of complex genotypes, on-line exchange of
operators, multi-population, etc.

The above systems are a representative sam-
ple of existing frameworks that support the de-
velopment of multi-objective optimisation al-
gorithms. However, many other frameworks
exist to deal with single-objective problems.
For instance, SATenstein [11] is a highly con-
figurable framework to tackle SAT problems.
It consists of a mash-up of high performance
algorithms for SAT problems, combined with a
number of selection parameter to chose which
components are used in the optimization pro-
cess.

Moreover, an overview on optimization soft-
ware class libraries for a variety of problem+s
can be found in [14].

The reminder of this paper is organised as
follows. Section 2 provides some basic con-
cepts on the search techniques and subject
problem considered in this work. Section 3
gives a detailed description of CODEA and
each component in this framework. A test-
case of a DPSO for the bi-objective TSP is
detailed in Section 4. The experiments are de-
scribed in Section 5 while results are presented
and discussed in Section 6. Finally, some con-
clusions and future work are given in Section 7.

2 Background

In order to make this work self-contained, a
number of concepts are explained in this sec-
tion.

2.1 Multi-objective Optimization (MOO)

In MOO, we aim to solve a problem of the
type: minimize ~f(~x) = f1(~x), f2(~x),...,fk(~x),
subject to: gi(~x) ≤ 0, i = 1, 2, ..., m and
hj(~x) = 0, j = 1, 2, ..., p. Where the decision
variable vector is ~x = [x1, x2, ..., xn]T , each ob-
jective function fi is defined in <n → <, i =
1, 2, ..., k and the constraint functions are gi

and hi, i = 1, 2, ..., m, j = 1, 2, ..., p which are
defined in the same domain as fi.

Without loss of generality, we consider a
minimisation problem. A vector ~u is said to
dominate ~v (denoted by ~u ≺ ~v), iif ∀i ∈
(1, ..., k) : ui ≤ vi ∧ ∃i ∈ (1, ..., k) : ui < vi.
Moreover, we say that a vector in the feasible
region (~u ∈ F) is Pareto Optimal, if there is
not any other vector in that region (~u′ ∈ F),
such that ~u′ dominates ~u (~u′ ≺ ~u). Then, the
Pareto Front is the set of vectors in <n, such
that all elements in the set are Pareto Optimal.

2.2 Travelling Salesman Problem (TSP)

TSP is probably the most well-known combi-
natorial optimisation problem. Given a num-
ber of cities/costumers and their pairwise dis-
tances, the goal is to find the shortest tour that
visits all the costumers only once. Formally,



the problem consists of finding the permuta-
tion P = {c0, c1, ..., cN−1} such that dP =∑N−1

i=0
d[ci, ci+1mod(N)] is minimum. This is

an NP-complete problem particularly impor-
tant in the fields of planning and logistics.
Various formulations and solving methods for
the TSP can be found in [7].

2.3 Discrete Particle Swarm Optimization

Particle Swarm Optimization is a nature-
inspired algorithm proposed by Kennedy and
Eberhart [9]. This algorithm was motivated by
the social behaviour of bird flocking and fish
schooling. It was presented to tackle continu-
ous optimisation problems by using two equa-
tions, one to update the velocity and another
to update the position. In 1997, Kennedy and
Eberhart [10] presented the first discrete ver-
sion of this algorithm (DPSO). Since then, a
wide variety of versions for the DPSO have
been designed to deal with discrete search
spaces.

Here we test CODEA by implementing a
DPSO based on the work of Consoli et at. [2].
This approach drops the concept of velocity
in order to redefine how particles move in a
discrete search space. Thus, the movement of
particles is modelled using a follower-attractor
scheme. Each moving particle performs only
one type of move at each generation. The type
of move is randomly selected out of four pos-
sible types as in the original PSO: 1) move
respect to the previous position, 2) move to-
wards its best position achieved, 3) move to-
wards the best positioned neighbour and 4)
move towards the best position in the swarm
so far. Here, these moves are interpreted as
genetic operators applied on particles’ posi-
tions (solutions). In case of the first type of
move, a mutation operator is applied on the
current position (solution) of the particle. For
the other three types, a crossover operator is
triggered so that the moving particle imitates
part of the structure in the attractor’s solu-
tion.

This methodology aims to help the swarm to
evolve by copying pieces of structures from the
best positioned particles (solutions) at each

generation into the rest of the swarm.

3 CODEA

CODEA (COoperative DEcentralised Archi-
tecture) is a library of classes to build up sys-
tems of agents who cooperate to tackle com-
plex problems. Since the system is decen-
tralised, there is no entity controlling what
other agents do. That is, agents are free to
carry out different phases of the search with
no limitations. Each individual can perform
its own operations, to send whatever informa-
tion it wants, delivering this information to
any agent it considers appropriate.

CODEA was mainly developed at the Uni-
versity of La Laguna (Spain) by the Group of
Intelligent Computing (GCI). The core idea
of the project was to create a simple, flexible
and fast framework to enhance an agent-based
system to emerge an intelligent behaviour. To
this aim, we designed CODEA using a num-
ber of modules with abstract functionalities.
These functionalities can be easily extended
by the user without a deep knowledge on how
the core of CODEA works.

Figure 1 shows the basic scheme of CODEA.
Taking a closer look into this figure, we see
an element called System at the top of the
structure. This element contains a number
of agents and some properties. This class
stores the data structure that hosts the agents
and orchestrates the operations the agents per-
form. It is worth noting that even if System
holds the group of agents, it does not know
what the agents do (operations), nor the rela-
tion (neighbourhood) among them. System is
merely intended to store general properties like
up-time (elapsedTime) and the iteration (iter-
ation) at which the best solution was found,
the best solution found (bestSoluion) by the
agents, and the criterion used to stop the ex-
ecution of the main-loop in which agents run
operations (phases) in class agent.

The next element (agent) in the figure rep-
resents the agent as a general individual who
is able to communicate and operate on its
own. This cell shows the sub-elements: neigh-
borhood, core and phases. These components



Figure 1: Diagram of CODEA implementing a MOPSO



give agents special abilities to share informa-
tion (neighborhood), to hold the information
to solve problems (core), and the way to carry
out their operations (phase). An agent also
has a number of parameters to control its state
(isActive, id, etc.).

The neighborhood component manages the
list of population members that this agent
communicates with. In this way, neighbor-
hood is implemented as an interface so the
user can develop its own rules to establish new
neighborhoods. By default, CODEA allows to
use three types of neighborhoods: star topol-
ogy (all to all communication), ring topology
(each individual receives and sends from/to
two other individuals) and k-random (each in-
dividual shares its information with k random
individuals) topology. Although these topolo-
gies are static, CODEA does not limit the cre-
ation of dynamic systems of cooperation. It is
fairly easy to implement dynamic cooperation
schemes based on scores or rules.

The core element is in charge of manipulat-
ing the information of the problem, its solu-
tion and solution process. In order to re-utilise
the code as much as possible, the core has
three main components: Multiobjective prob-
lem, Multiobjective solution and solver, which
in figure 1 is represented by PSOAgent. By
using this methodology, changing the solution
or the problem does not affect the rest of
the structure. For example, we might want
to change the manner we evaluate solutions,
but without modifying the solutions them-
selves. Or just the opposite, keep the eval-
uators unchanged, while the solutions have a
different encoding. The same is designed to
happen with the solver. The way the solver is
implemented should not depend on the solu-
tion encoding nor on the data structure of the
problem. For this purpose, both multiObjec-
tiveProblem and multiObjectiveSolution have
an independent design. The former compo-
nent has two parts: an score criterion and a
number of function evaluators. These func-
tion evaluators are related to the problem, in
the figure there are three evaluators: num-
ber of vehicles, distance and travel time. The
score criterion is another interface that en-

ables the user to create criteria to rank solu-
tions in a multi-objective scenario. So far, we
have implemented: Pareto dominance, aggre-
gation and lexicographic ordering. The mul-
tiObjectiveProblem also holds the data of the
problem and the set of evaluation functions.

On the other hand, for each objective that
the agents are optimising, there is an asso-
ciated function to calculate its value. This
function is represented in the structure as a
simple file that specifies how to assess a cer-
tain objective. In the example shown in the
figure, there are three files: number of vehi-
cles, distance and travel time. In this way,
adding a new objective is as easy as creating a
new file describing how to compute that objec-
tive. Moreover, this philosophy provides the
means for enabling and disabling objectives on
line. Regarding the score criterion, one may
consider that, since the system compares two
solutions, this sub-component should be con-
tained within multiObjectiveSolution rather
than within multiObjectiveProblem. However,
it must be noted that many ranking schemes
require to know whether we are maximising or
minimising objectives. This characteristic is
inherent to the evaluation of objective function
and therefore, must be placed within multiOb-
jectiveProblem. Regarding multiObjectiveSo-
lution, this element has two basic units: a
vector of objective values and the subjacent
solution. The latter unit simply stores the
solution using the encoding provided accord-
ing the problem and the user preference. In
the case of the TSP, the subjacent solution
might be a class containing a vector with the
tour of cities. The evaluation of this solution
in the set of objectives described in multiOb-
jectiveProblem is always saved to the vector
of objectives. Thus, the system avoids to re-
evaluate all the objective functions every time
we want to compare two solutions. Both multi-
ObjectiveSolution and multiObjectiveProblem
are handled by the component solver. This
part of the core contains atomic operations
creating an abstraction of the behaviour of the
agent. For example, in order to develop the
Multi-objective Particle Swarm Optimisation
(MOPSO), we designed a class that coordi-



nates the operations without direct relation to
the problem or the solution being used. Be-
neath in the structure, is where we make the
connection to our problem and solution design.
In this way, the core of the solver does not de-
pend on the problem tackled by the system.

The atomic operations contained in the
core are orchestrated by the phase compo-
nent within the agent class. For the TSP,
these operations are for example: mutation
and crossover operators. This part of the agent
acts as an interface for the user to provide
a standard to implement his/her own phases.
The flow of CODEA starts with the system
invoking the agent’s phases. Then, the agents
take the control coordinating their operations
using the phases. There is not a limited num-
ber of phases and they do not have to be syn-
chronous (all agents doing the same task si-
multaneously). In addition, an agent is able
to delete, add or modify phases in real time.

4 Implementing PSO and MOTSP
in CODEA

For this test case, we implemented in CODEA
a DPSO based on the one outlined in Sec-
tion 2.3 to tackle the bi-objective travelling
salesman problem (TSP). In simple terms,
agents within CODEA have two phases:
a Resolutory Phase and a Communication
Phase. The first phase is in charge of speci-
fying how the DPSO agents should work, and
the second phase will merely run the deliv-
ery of messages (solutions) according to the
neighbourhood structure specified by the user.
However, this second phase is implemented in
CODEA by default, so we do not have to im-
plement anything here.

We should mention that for this test case,
we use simulated parallelism. That is, if n
agents perform m phases, the system first trig-
gers the loop for the phases (i = 0, ...n−1) and
then, the one for the agents (j = 0, ..., m− 1).

Since CODEA makes a distinction between
the problem and the solving method, we split
the explanation for each in two subsections:
Solving Method and Problem.

4.1 Solving Method

In other to implement the DPSO, we create
the following files:

• DPSOResolutorPhase (inherits from
phases). This class models the behavior
of the DPSO agent. It contains the
sequence of operations defined in a
problem-independent manner. Basically,
this class contains a method (core) that
randomly chooses an attractor. A virtual
method (defined in DPSOAgent) is then
invoked with the moving particle’s and
attractor’s positions (solutions).

• DPSOAgent (inherits from agent). This
class contains four data members that
hold the probability for each type of move
(see section 2.3) and four pure virtual
methods. These virtual methods must be
inherited for non-abstract classes in order
to connect the agents’ abstract behaviour
with the problem-dependent operators.

4.2 Problem

Regarding the implementation of the problem,
we develop the following files:

• TSPDataProblem. This class acts as the
container of data for each instance. In
our case, it contains a vector of matrices,
one per objective. That is, if we work
with two objectives, this class will hold
two matrices of costs.

• TSPOperatorsLib. In this library, we de-
velop a number of functions (operators) to
work with the travel-plans. For this test
case, we implement a mutation operator,
a crossover operator and a local search.
The former will swap pairs of randomly
selected costumers sqrt times the size of
the travel-plan. The crossover operator
will create an offspring (travel-plan) out
of the interchange of a random random
section of the parents. An finally, the lo-
cal search will explore the neighborhood
of each travel-plan by swapping pairs of
costumers iteratively.



• TSPSolution (inherits from solution).
This class holds the structure of the
travel-plan. In this case, a travel-plan is
encoded as a simple vector, in which each
position corresponds to a costumer id. It
also contains general purpose methods to
print, set and get the route-plan.

• matrixSumObjective. Since the TSPDat-
aProblem has a number of matrices with
the same structure, we implement just
one objective function that is re-used for
all objectives.

In order to connect the behavior of each
agent (methods in DPSOAgent) and the oper-
ators (functions in TSPOperatorsLib), we cre-
ate a class (TSPDPSOAgent). This class (in-
heriting from DPSOAgent) is in charge of cast-
ing solutions from mother classes. In this wya,
it receives solutions from upper classes, casts
them to get the travel-plan and sends them to
TSPOperatorsLib with the pertinent parame-
ters. Using this approach, only one class acts
as an interface connecting the solving method
and the problem. This makes it possible to
change the method without changing the solv-
ing method and viceversa.

5 Experiments

In order to test our implementation, we evalu-
ate the performance of three communication
topologies on a subset of Hui Li’s MOTSP
instance-set [8]. We used 20 bi-objective in-
stances, half of them have 50 customers and
the other half have 100.

The three communication topologies set are:
star (all to all communication), ring (each
agent sends and receives messages only from
two neighbours) and k-random (each agent
sends to k random neighbours). In order to
discriminate solutions when updating and se-
lecting the leader, CODEA was set to use
Pareto dominance. That is, a solution x is pre-
ferred over a solution y, if x Pareto dominates
solution y. For these experiments, we used a
swarm of 50 particles (agents) and let them
evolve for 2000 generations (iterations). For
each problem instance, we ran the algorithm

using three different seeds for each topology in
order to build the approximation set for each
topology. We assess the performance of each of
the three topologies proposed according to the
S-metric [15], a widely used performance mea-
sure that computes the hyper-volume covered
by the approximation set of non-dominated so-
lutions and a reference point.

6 Results

Table 1 depicts the results of our experiments.
This table is divided in two sections, the top
half shows results for instances with 50 cus-
tomers, and the second half for instances with
100 cities. For each row, the first column gives
the instance name. The other three columns
show the normalised value of the S-metric cal-
culated from the approximation sets obtained
for each topology.

It can be observed that the best perform-
ing communication structure is, on average,
the K-random topology. This communication
topology seems to work better with larger in-
stances, as it gets the best S-metric value in
almost all the 100 costumers instances. It
should also be noted that the worst perfor-
mance is that of the Ring topology, but with
a very small distance: 0.09 on average. Bear-
ing in mind that this is the least expensive
strategy, as only two messages must be sent
by each agent, its performance is quite accept-
able. Although the Star topology gets the sec-
ond best result, it does not seem to provide
a good trade-off between computational cost
and performance respect to the S-metric.

Wilcoxon signed-rank test is often used to
test the difference between scores of data col-
lected out of experiments. We use this test to
compare the significance in the performance
improvement observed in each method. We
obtain that K-random is better than Ring at
95.49% of confidence level (W sample value =
138), K-random is better that Star at 96.41%
of confidence level (W sample value = 97) and
that Ring is better than Star at 96.41% of con-
fidence level (W sample value = 97).



Table 1: Performance, measured with the
S-metric, of three communication topologies
used in a DPSO approach implemented in
CODEA when applied to some instances of the
bi-objective TSP.

Instance Star Ring K-Rand
krobc50 1.00 0.82 0.97
kroac50 1.00 0.95 0.98
krode50 0.93 0.92 1.00
krocd50 0.98 0.94 1.00
kroce50 0.92 1.00 0.84
kroab50 0.90 1.00 0.94
kroad50 1.00 0.94 0.98
kroae50 0.99 1.00 0.97
krobd50 1.00 0.87 0.97
krobe50 0.91 0.98 1.00
kroad100 0.80 0.65 1.00
kroae100 0.99 0.76 1.00
krobd100 1.00 0.79 0.73
krobe100 0.90 0.81 1.00
kroab100 0.76 0.88 1.00
krode100 0.94 0.91 1.00
kroac100 0.93 0.68 1.00
krobc100 0.92 1.00 0.96
krocd100 0.89 0.87 1.00
kroce100 0.82 0.74 1.00
Average 0.93 0.88 0.97

7 Conclusions

A new version of CODEA, a COoperative
DEcentralised Architecture for implementing
multi-agent systems, incorporating a num-
ber of new futures to support tackling multi-
objective optimisation problems has been pre-
sented in this work.

As an illustrative test case, we explained
how to implement a DPSO (Discrete Parti-
cle Optimisation) approach to tackle a set of
instances of the bi-objective TSP. The imple-
mentation was tested comparing three com-
munication topologies within the DPSO. The
best strategy to send and receive information,
measured with respect to the S-metric, turned
out to be the K-random topology. However,
the winner with respect to a good compromise
between cost of sharing information and qual-

ity of solutions was the Ring topology, which
gets the second best results according to this
metric using the least expensive type of mes-
sage passing.

Currently, our main focus in the develop-
ment of CODEA is on the implementation
of multi-objective problems and algorithms to
solve them. In the short term, we also plan to
release a free beta version of CODEA for oth-
ers to test our algorithms/problems and con-
tribute to the implementation of new ones.

References

[1] S. Bleuler, M. Laumanns, L. Thiele, and
E. Zitzler, Pisa - a platform and program-
ming language independent interface for
search algorithms, Proceedings of the 2nd
international conference on evolutionary
multi-criterion optimization (EMO2003),
LNCS, vol. 2632, Springer, 2003, pp. 494–
508.

[2] S. Consoli, J.A. Moreno-Pérez, K. Darby-
Dowman, and N. Mladenović, Discrete
particle swarm optimization for the min-
imum labelling steiner tree problem, Nat-
ural Computing 9 (2010), no. 1, 29–46.

[3] I. García del Amo, F. García López,
M. García Torres, B. Melián Batista,
J. Moreno Pérez, and J. Moreno Vega,
From theory to implementation: Apply-
ing metaheuristics., ch. 11, pp. 311–351,
Springer, 2006.

[4] M. Emmerich and R. Hosenberg, TEA -
a toolbox for the design of parallel evolu-
tionary algorithms in c++, Tech. Report
CI-106/01, SFB 531, University of Dort-
mund, Germany, 2001.

[5] C. Gagné and M. Parizeau, Genericity in
evolutionary computation software tools:
Principles and case study, International
Journal on Artificial Intelligence Tools
(IJAIT) 15 (2006), no. 2, 173–194.

[6] Juan Gutiérrez, Belén Batista, José
Pérez, J. Vega, and Jonatan Bonilla,



CODEA: an architecture for design-
ing nature-inspired cooperative decentral-
ized heuristics, Nature Inspired Coopera-
tive Strategies for Optimization (NICSO
2007), Studies in Computational Intelli-
gence, vol. 129, Springer, 2008, pp. 189–
198.

[7] G. Gutin and A. Punnen, The travel-
ing salesman problem and its variations,
Springer, 2004.

[8] Hui Li, Hui’s TSP instance-set,
http://www.cs.nott.ac.uk/, 2010.

[9] J. Kennedy and R. Eberhart, Particle
swarm optimization, IEEE International
Conference on Neural Networks - Confer-
ence Proceedings, vol. 4, 1995, pp. 1942–
1948.

[10] , Discrete binary version of the
particle swarm algorithm, Proceedings of
the IEEE International Conference on
Systems, Man and Cybernetics, vol. 5,
1997, pp. 4104–4108.

[11] R. KhudaBukhsh, X. Lin, H. Holger,
and K. Leyton-Brown, Satenstein: auto-

matically building local search sat solvers
from components, Twenty-first Interna-
tional Joint Conference on Artificial In-
telligence (IJCAI-09), 2009, pp. 517–524.

[12] A. Liefooghe, L. Jourdan, T. Legrand,
J. Humeau, and E.-G. Talbi, ParadisEO-
MOEO: a software framework for evo-
lutionary multi-objective optimization,
Studies in Computational Intelligence,
vol. 272/2010, pp. 87–117, Springer, 2010.

[13] MOMH Team, MOMHLib++,
http://home.gna.org/momh/index.html,
2010.

[14] S. Voss and D. Woodruff (Eds.), Opti-
mization software class libraries, Kluwer
academic publishers, 2002.

[15] E. Zitzler, D. Brockhoff, and L. Thiele,
The hypervolume indicator revisited: On
the design of pareto-compliant indicators
via weighted integration, LNCS, vol. 4403,
pp. 862–876, Springer, 2007.


