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Abstract. There is a variety of methods for ranking objectives in multi-
objective optimization and some are difficult to define because they re-
quire information a priori (e.g. establishing weights in a weighted ap-
proach or setting the ordering in a lexicographic approach). In many-
objective optimization problems, those methods may exhibit poor di-
versification and intensification performance. We propose the Dynamic
Lexicographic Approach (DLA). In this ranking method, the priorities
are not fixed, but they change throughout the search process. As a re-
sult, the search process is less liable to get stuck in local optima and
therefore, DLA offers a wider exploration in the objective space. In this
work, DLA is compared to Pareto dominance and lexicographic order-
ing as ranking methods within a Discrete Particle Swarm Optimization
algorithm tackling the Vehicle Routing Problem with Time Windows.

Key words: Multi-objective Optimization, Swarm Optimization, Com-
binatorial Optimization, Vehicle Routing Problem.

1 Introduction and motivation

Multi-objective Optimization (MOO) problems have a number of objectives that
are usually in conflict, so improving one objective leads to worsen another. In par-
ticular, many-objective optimization problems involve the optimization of four or
more objectives, presenting a considerable challenge for some solutions methods.

Solution methods for multi-objective optimization differ mainly on the way
they rank solutions. Many successful approaches exist to address this issue
in problems with few objectives (i.e. less than four). However, these ranking
schemes have not exhibited the same performance in many-objective optimiza-
tion problems. Some classical ranking methods like Pareto dominance, use a
strict ranking scheme that sometimes fails to discriminate between solutions, as
it only accepts improvements in all objectives at the same time. On the other
hand, methods like the lexicographic approach impose a more static behavior,
as objectives are ranked according to a fixed relative importance.

In previous work [2] we introduced the Dynamic Lexicographic Approach
(DLA). This is an alternative dynamic multi-objective ranking approach for
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many-objective optimization. DLA offers an intuitive approach to establish a
dynamic ranking among objectives. Rather than establishing a fixed priority
among the objectives, the decision-maker establishes a preference. This prefer-
ence is then used with a probability mass function (pmf ) to generate a vector of
priorities that changes dynamically throughout the search process.

We used DLA in [2] as a an additional mechanism to rank the quality of
multi-objective solutions in a Particle Swarm Optimization approach applied
to tackle the Solomon’s instances of the Vehicle Routing Problem with Time
Windows (VRPTW) treated as a MOO problem. We use the DLA to select the
best leader in the neighborhood of each particle, while still using the traditional
Pareto dominance to decide whether to update solutions. This combined ap-
proach (Pareto + DLA) was compared against the alternative of using Pareto
dominance for both tasks (Pareto + Pareto): selection of the leader and update
of solutions. Results indicated that (Pareto + DLA) was better than (Pareto +
Pareto) in clustered problems (cxxx). But the (Pareto + DLA) approach showed
poor performance on random (rxxx) and random-clustered (rcxxx) instances.

This work investigates the role of the probability mass function (pmf ) and
the use of DLA to both select the leader and choose the solution to update. We
propose two versions of DLA, one using a greedier function to assign probabilities
to each preference and the other using two phases involving two probability
functions. For k iterations, one probability mass function is used to encourage
intensification. For the remaining iterations, another probability mass function
is used to encourage diversification. The two DLA versions are compared to
Lexicographic ordering and Pareto dominance on well-known instances of the
VRPTW using the hypervolume as performance metric. Our results indicate
that the DLA is a valuable ranking alternative method for MOO.

This paper is organized as follows. The basics of multi-objective optimization
are given in Section 2. The algorithm for the Dynamic Lexicographic Approach
is detailed and exemplified in Section 3 while Section 4 describes the Particle
Swarm Optimization method focusing on those elements important to our re-
search. A brief description of the Vehicle Routing Problem with Time Window
is given in Section 5. We describe our experiments in Section 6 and discuss re-
sults in Section 7. Finally, our contribution and proposed further research are
summarized in Section 8.

2 Multi-Objective Optimization (MOO)

In MOO, we aim to solve a problem of the type: minimize f(x) = f1(x),
f2(x),...,fk(x), subject to: gi(x) ≤ 0, i = 1, 2, ...,m and hi(x) = 0, i = 1, 2, ..., p.
Where the decision variable vector is x = [x1, x2, ..., xn]T , each objective func-
tion fi is defined in <n → <, i = 1, 2, ..., k and the constraint functions are gi

and hi, i = 1, 2, ...,m, j = 1, 2, ..., p which are defined in the same domain as fi.
Pareto Dominance is based on the concept of dominance. Without loss of

generality, we consider a minimization problem. A vector u is said to dominate
v (denoted by u ≺ v), iif ∀i ∈ (1, ..., k) : ui ≤ vi ∧ ∃i ∈ (1, ..., k) : ui < vi.
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Moreover, we say that a vector in the feasible region (u ∈ F) is Pareto Optimal,
if there is not any other vector in that region (u′ ∈ F), such that u′ dominates
u (u′ ≺ u). We define the Pareto Front as the set of vectors in <n, such that
all elements in the set are Pareto Optimal.

Using Pareto dominance in many-objective optimization has an implicit pit-
fall derived from its manner to discriminate solutions. This method accepts so-
lutions in a linear fashion that inhibits the worsening of objectives, which some-
times provokes the search to get stuck. Recent approaches have extended this
ranking method using the concept of relaxed dominance or α-dominance. This
type of dominance, proposed by Kokolo et al. [9], tries to overcome the weak-
ness above explained by allowing the worsening in some objective if there are
improvements in others. However, it might be difficult to set the appropriate
bounds to get a desirable performance.

Lexicographic ordering is another widely used ranking method in which the
decision-maker establishes fixed preferences among objectives. Given a priority
order (a, b), the objective whose priority is a is compared in first place and
the one with b in second. This way, we can formally describe the lexicographic
comparison as: (a, b) ≤ (a′, b′) iif a < a′ or (a = a′ and b ≤ b′). The same
procedure can be easily extended to k priorities. This technique works well when
the number of objectives is small. When dealing with a large number of priorities,
objectives with low priority will not be likely to be compared and therefore,
could be ignored in practice. Moreover, the fixed order, in which the method
discriminates vectors, makes the search liable for premature convergence [3].

In addition to Pareto dominance and lexicographic ordering, there exist many
other ranking methods to discriminate solutions in multi-objective scenarios. A
review on these methods can be found in the work of Ehrgott and Gandibleux [7].

3 Dynamic Lexicographic Approach

The Dynamic Lexicographic Approach (DLA) offers an intuitive approach to
establish a dynamic ranking among objectives. The decision-maker establishes
preferences among objectives and a function to associate a probability to each
preference. These probabilities are used to create different vectors defining a
standard lexicographic ordering each time. This approach overcomes the limita-
tion in the number of objectives because DLA does not rule out any preference.
Even preferences with a low probability have a chance to appear in the first po-
sition of the vector of priorities. Additionally, the continuous change of priorities
makes it possible to avoid premature convergence as the exploration is broader.

To clarify how DLA works, we provide an example for N = 4 objectives. Lets
assume that objective i is assigned preference i, that is, pref(oi) = i for i =
0, . . . , N − 1, where N is the number of objectives. Suppose the decision-maker
provides the function p(i) = 0.8exp(−0.4i). Firstly, we evaluate this function for
i = 0, . . . , N−1. Since N = 4, we calculate the probabilities as p(0) = 0.8, p(1) =
0.54, p(2) = 0.36 and p(3) = 0.24. Secondly, these probabilities are normalized

as p′(i) = p(i)/
∑N−1

k=0
p(k), obtaining the values 0.41, 0.28, 0.19, 0.12. In a third
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step, we split the segment [0, 1] into sub-segments according to the accumulate
probability. Therefore, we obtain [0, 0.41, 0.69, 0.88, 1], such that each preference
has a sub-interval assigned. The first preference has interval [0, 0.41), the second
[0.41, 0.69), the third [0.68, 0.88) and the fourth [0.88, 1]. The algorithm goes
through the above steps only once. Regarding the generation of priority vectors,
roulette-wheel selection is applied using this segment. First, a random number
r is generated with uniform distribution in [0, 1]. Lets suppose that r = 0.70. As
r falls in the sub-interval [0.68, 0.88), the third objective will be pushed back in
the vector of priority v ← 3. After this operation, we remove the selected sub-
interval and the segment is re-scaled, and another random number is generated.
After N − 1 times repeating this process, we get a priority vector that can be
used in a lexicographic approach to discriminate solutions.

The probability mass function (pmf ) plays a key role in the performance of
the DLA. Depending on the shape of this function, different probability values
are assigned to each objective producing different lexicographic orderings. There-
fore, assuming that the decision-maker establishes decreasing preferences (as in
the example above), there are three main types of functions: linear, quadratic and
exponential. Linear functions assign probabilities with a constant step among
them. Quadratic functions assign a similar probability to those objectives with
the highest preferences and zero to those with the lowest. Finally, an exponential
function assigns high and distinct probabilities to objectives with high preference
and assigns low but non-zero probability to those with low preference.

4 Particle Swarm Optimization (PSO)

PSO is a swarm-based stochastic algorithm proposed by Kennedy and Eberhart
[8]. A swarm is formed by a group of particles that moves on the search space.
Each particle knows its current position xi, its best position bi achieved so far
and the best position reached by the swarm so far g. Moreover, each particle
i shares its current position with its neighbors ni. Each particle possesses an
independent velocity which is updated taking into account the position of the
particle, that of its neighbors and that of the best positioned particles.

The PSO algorithm was originally proposed to tackle continuous optimization
problems. For discrete optimization, a number of alternatives have been proposed
re-interpreting how particles move. Here, we have adopted the approach proposed
by Consoli et al. [4]. This algorithm lacks the use of velocity conceiving the move
of particles by using the equation: xi,j ← xi ∨ gj ∗ xi ∨ bi,j ∗ xi ∨ xj ∗ gi,j . In
this proposal, each particle can accomplish four types of moves. Three involve
the action of another particle (cognitive) and in the other only the particle is
self-involved (inertial). Each particle randomly performs just one of these four
moves by evolution. This discrete PSO interprets cognitives moves as crossover
operations involving the solution of the moving particle and another solution
that acts as an attractor. On the other hand, the inertial move is translated into
a mutation operation that randomly changes components of the solution. More
information and other proposals for PSO can be found in [1].
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5 Vehicle Routing Problem with Time Windows

In the Vehicle Routing Problem (VRP) [5], the goal is to determine a least
cost route-plan using a fleet of vehicles to serve certain demand from a set of
costumers. The VRP can be formally described as follows. Let G(V,A) be a
graph where V and A are set of vertices and arcs respectively. The first vertex
v0 is the depot. A fleet of vehicles of identical capacity Q serve certain demand qi

from a number of costumers V −{1}. Each arc has a cost associated cij ≥ 0, such
that i 6= j. Moreover, a number of constraints are imposed: 1) each costumer
vi, i > 0 can be visited only once, 2) all routes must start and end at the depot
and 3) the sum of demands in each route cannot exceed the maximum capacity
of each delivery vehicle Q.

In the Vehicle Routing Problem with Time Window (VRPTW), both the
depot and the costumers have a time window (denoted as [ai, bi]) in which the
delivery must occur. While a late arrival is not usually permitted (hard con-
straint), arriving before the lower time window limit ai is allowed. It this case,
the delivery incurs in a waiting time until the customer can be served. The
VRPTW also takes into account the actual delivery time. This time is called
service time and is usually denoted as si. A survey with formulations and solu-
tion methods for VRP and VRPTW can be found in [10].

6 Experiments

In this section, we describe the settings used in our experiments. In our pre-
vious work [2], DLA was compared against Pareto and Lexicographic ranking
for selecting the leading particle in the neighborhood of each moving particle.
However, this time DLA is presented in two versions for selecting the leaders and
also updating the best personal position bi and the best position achieved by the
swarm so far g. The first version of DLA uses a greedier approach to establish
the probability for each preference using the pmf p(x) = 0.9 ∗ exp(−x) + 0.05.
The first coefficient (0.9) increases its curvature and the second moves it up by
0.05. We set these coefficients according to some preliminary tests. The second
version of the DLA (DLA2) splits the ranking process into two phases. If the
current number of iterations is less or equal than a given k, a probability mass
function is used to encourage intensification. Otherwise, a different probability
mass function is employed to encourage diversification. To this aim, the first
phase only takes into account the first two highest preferences using this pmf
p(x) = 0.6 ∗ cos(0.7x + 0.1) + 0.3 with x = {0, 1}. For values between x = 0 and
x = 1, this function (equivalent to a quadratic expression in the given range)
assigns high and similar probabilities to the two objectives with the highest
preference. The coefficients were set, as in the previous pmf, using preliminary
computational experiments. This intensification phase lasts k iterations. In our
experiments k is set to 500 which corresponds to 25% of the total number of iter-
ations that the algorithm runs. The diversification phase runs for the remaining
iterations using the function mentioned above p(x) = 0.9∗exp(−x)+0.05, work-
ing with the whole set of preferences.
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Our efforts focus on comparing different ranking approaches. For this pur-
pose, we implemented a canonical PSO inspired in the Discrete-PSO (DPSO)
proposed by Consoli et al. [4]. This approach, as explained in Section 4, allows
particles to move in four possible directions depending on which attractor each
particle follows. The probability of all attractors were set to 0.25. In our simu-
lations, the swarm was formed by 50 particles evolving for 2000 generations. We
used the 100 costumers Solomon’s [6] instances of the VRPTW. These instances
are divided in three classes: c1xx - costumers positioned in clusters, r1xx - cos-
tumers randomly spread and rc1xx - some costumers forming clusters and others
randomly positioned. Regarding the DPSO implementation, two operators were
used. The crossover operator copies a random route from an attractor to the
moving particle. The mutation operator exchanges costumers from one route to
another within the route-plan in the solution of the moving particle.

In order to assess the performance of each ranking approach, a number of
objectives were considered: Travel Time (Ztt) or elapsed time of the route-plan,
Waiting Time (Zwt) or time the drivers need to wait in case of an early ar-
rival, Travel Distance (Ztd) or length of the whole route-plan, Time Window
Violation (Ztwv) or sum of lateness of all arrivals, Number of Time Window
Violations (Zntwv) or number of customers not served within the appropriate
time, Capacity Violation (Zcv) or amount of exceeding capacity on vehicles and
Number of Capacity Violations (Zncv) or number of vehicles whose capacity is
being exceeded. Reducing violations are considered as objectives in this study.
In this way, we entitle the decision-maker to decide on the convenience of serving
costumers out of their time windows or exceeding the capacity of some vehicles.

In a preliminary study, we tested a number of different combinations of ob-
jectives using Pareto dominance. These experiments showed that the best set-
ting for Pareto dominance is to discriminate solutions using (Ztd, Ztwv). For the
Lexicographic approach, a similar study was carried out finding that the best se-
quence is (Zntwv, Ztd, Zwt, Ztt, Ztwv, Zcv, Zncv). Both studies were based on the
results of the best extreme values achieved by each combination. To this aim, we
took those combinations that made the search process converge faster to feasible
regions, analyzing Ztwv and Zcv. With respect to the DLA and DLA2, they both
used the same sequence for preferences as the lexicographic for priorities. But,
for DLA2 this sequence was used after 500 generations as explained above.

7 Results

In order to analyse the performance of the proposed DLA variants, we present
the results in two modes. Firstly, we depict the approximated non-dominated
sets obtained by each strategy using two objectives. Secondly, we show a table
containing the normalized average S-metric [11] values for each instance family
and technique. Three pairs of plots are shown in Figure 1. Each pair shows
the approximated non-dominated sets obtained when using Pareto dominance,
Lexicographic ordering, DLA and DLA2 on instances c101, r101 and rc101 using
two pairs of objectives. Due to space limitations, for both the plot and the S-
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metric, we only show the most meaningful combinations of pairs of objectives.
That is, Time Window Violations (Ztwv) vs Travel Distance (Ztd) and Travel
Time (Ztt) vs Travel Distance (Ztd).

Respect to the Ztwv vs Ztd comparison, DLA2 is clearly superior in both
intensification and diversification. The approximation sets obtained by DLA2

on c101, r101 and rc101 have solutions with closer values to the origin, revealing
better intensification behavior. Additionally, these solutions, compared to those
of other ranking methods, seem to be more spread along both axis, showing
better diversification. Moreover, DLA2 seems to get better results as the difficulty
of the instances increases. Analyzing the properties of the Solomon’s instances,
it is observed that the time windows are much more restrictive on instance sets
r1xx and rc1xx. Moreover, the geographical location of costumers in these two
sets of instances make the problem grow in complexity. This complexity is due
to the fact that optimizing the distance does not guarantee to obtain a good
set of solutions. This improvement can be seen on the results for instances r101
and rc101 where the difference in performance between DLA2 and the other
ranking methods is much more noticeable. For this comparison, DLA gets a
slightly better performance than the Lexicographic approach. This is because
DLA uses a greedy function to assign probabilities to each preference. Therefore,
the priority vectors were generated within a short distance with the one used for
the Lexicographic ordering. Pareto shows a reasonable performance in instances
r101 and rc101, but it performs poorly on instance c101.

In the comparison of Ztt vs Ztd, we do not appreciate a good diversification
performance in any technique. This is because the Solomon’s instances were not
created to be used as a multi-objective test case. These instances have symmet-
rical and identical matrices for distances and times. The variability when com-
paring these two objectives arises mainly from the waiting and service times.
However, this comparison shows the intensification achieved by each ranking
technique. DLA2 is again the best technique obtaining much better results than
the others in these three instances. DLA produced approximation sets with more
intensification than Lexicographic in these plots as well. Pareto presented a sim-
ilar behavior to the one exposed for the other objectives comparison, providing
in general a poor performance.

Table 1 shows the performance of each ranking approach on each instance
set, calculated with the S-metric [11] or hyper-volume. This metric computes
the hyper-volume of the space limited by the solutions in an approximation
set and a reference point. The larger the value of the S-metric, the higher the
quality of the approximation set. We calculated the S-metric using the same
pairs of comparisons used for the previous graphs. So, these results extend the
information conveyed by the plots. All the values were normalized to a value
between 0 and 1 according to the highest hyper-volume value obtained in each
case. Table 1 is divided in three columns. The first one identifies the instances
used. The second and third columns show the S-metric value comparing Ztwv

against Ztd and Ztt against Ztd respectively.
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Table 1. Performance of different ranking approaches on Solomon’s instances accord-
ing to the S-metric quality measure calculated over two comparisons: Time Window

Violations (Ztwv) vs Travel Distance (Ztd) - on the left, and Travel Time (Ztt) vs Travel

Distance (Ztd) on the right. Average values and their respective standard deviations
are shown for each family of Solomon’s instances (c1xx, r1xx and rc1xx).

Ztwv vs Ztd Ztt vs Ztd

Pareto Lex DLA DLA2 Pareto Lex DLA DLA2

c1xx .20(.17) .69(.08) .53(.18) 1(.0) .50(.14) .89(.06) .74(.21) 1(.0)

r1xx .21(.08) .28(.12) .27(.10) 1(.0) .72(.13) .72(.09) .71(.09) 1(.0)

rc1xx .11(.04) .25(.10) .2(.14) 1(.0) .57(.07) .65(.88) .67(.10) 1(.0)

For the first comparison, Time Window Violations (Ztwv) vs Travel Distance
(Ztd), DLA2 gets the best S-metric value for all instances. On average, it obtains
an improvement of 60% over Lexicographic ordering which is the second best
ranking method almost in a tie with the DLA. Pareto dominance gives the
worst performance with an average of 0.18 across all instances. In the second
comparison, Travel Time (Ztt) vs Travel Distance (Ztd), DLA2 is not the best
in only one instance: c108. However, it is very close to that value with a distance
of only 0.5%. In general, DLA2 presents an improvement of about 25% over
the Lexicographic ordering, which is again the second best ranking technique.
Very close to the Lexicographic approach, the DLA gets better results in some
instances and worse in others, but on average the former outperforms the later
on about 5%. Pareto dominance comes last with an overall performance of 0.60.

The Frieman test was used to analyse the global differences in the S-metric
values obtained for each method in both comparisons. There are significant dif-
ferences at 0.01 significance level. In order to find out where these differences
are, we carried out a number of pair-wise comparisons using the four ranking
approaches with the Wilcoxon test. According to this test, there is a significant
difference between DLA2 and Lexicographic ordering at 0.01 significance level.
The normalized values for the statistic were 4.70 and 4.68, respectively. So, we
can safely say that DLA2 is superior to Lexicographic ordering in this scenario.
Similarly, we compared DLA and Lexicographic ordering obtaining the two-way
p-values 0.1236 and 0.1285, respectively. This reveals that there is not significant
difference between these two ranking approaches at 0.10 significance level. Fi-
nally, DLA and Pareto dominance were compared obtaining the two way p-values
0.0007 and 0.0434, respectively. Thus, their results are significantly different at
0.05 significance level.

8 Conclusions

We presented an extended study of a novel approach to rank solutions in multi-
objective optimization problems. Our simulations show that Dynamic Lexico-
graphic Approach (DLA) is a valuable technique to discriminate solutions. Spe-
cially the variant with double pmf (DLA2) in which the combination of inten-
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sification and diversification exhibits much better performance than the other
ranking approaches such as Lexicographic ordering and Pareto dominance.

The success of the Dynamic Lexicographic Approach here indicates that it
is important to question standard ranking approaches and their suitability for
certain problems. This is specially important in those problems where we deal
with a large number of objectives. DLA is an alternative easy to implement and
intuitive for the decision-maker.

In future research, we will extend these experiments to other MOO problems
such as the multi-objective TSP. We are also developing a set of truly multi-
objective VRPTW instances based on real-world problems in which the time and
distance matrices are not symmetrical nor identical. Moreover, time windows for
costumers will be more relaxed than in many other instances in the literature.
Another issue that is worth of an in-depth study is the adaptability of the DLA
respect to the probability mass function (pmf ), including setting the parameter
k to switch between intensification and diversification.
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