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Abstract— Recently, the research on quantum-inspired evo- Currently, the mainstream state-of-the-art EMO algorghm
lutionary algorithms (QEA) has attracted some attention in  gre based on Pareto dominance (e.g. NSGA-Il [6] and
the area of evolutionary computation. QEA use a probabilistic SPEA-Il [7]) or on aggregating functions (e.g. MOGLS

representation, called Q-bit, to encode individuals in population. .
Unlike standard evolutionary algorithms, each Q-bit individual [8] and MOEA/D [9]). The research literature shows that

is a probability model, which can represent multiple solutions. Pareto-based EMO algorithms are very effective to tackle
Since probability models store global statistical information continuous multi-objective optimization problems. In eon
of good solutions found previously in the search, QEA have trast, for tackling multi-objective combinatorial optizaition
good potential to deal with hard optimization problems with problems, EMO algorithms based on aggregating functions

many local optimal solutions. So far, not much work has to b itable. Th . for this is that
been done on evolutionary multi-objective (EMO) algorithms seem 1o be more surtable. € main reason for this i1s tha

with probabilistic representation. In this paper, we investigate the later approaches directly use local search to intensify
the performance of two state-of-the-art EMO algorithms - the exploration of promising regions in the search space.
MOEA/D and NSGA-II, with probabilistic representation based  Moreover, these algorithms also have advantages in dealing
on pheromone trails, on the multi-objective travelling salesman with many-objective optimization problems

problem. Our experimental results show that MOEA/D and . . . .
NSGA-II with probabilistic presentation are very promising in In [10], a quantum-inspired evolutionary algorithm (QEA)

sampling high-quality offspring solutions and in diversifying was developed to solve combinatorial Optimization prolﬂem

the search along the Pareto fronts. Unlike other evolutionary algorithms, a QEA uses Q-bit rep-
resentation to encode individuals. Since each Q-bit iddii
I. INTRODUCTION encodes multiple solutions, a QEA has the ability to provide

. . ood diversity in the population. Essentially, each Q-bit
Evolutionary algorithms are a class of very popular op.9 y bop y Q

timizati h techni tor tackling hard optimigati individual can be regarded as a simple probabilistic model.
|m|tz)|a |onfsearc Iec rll(quuesl_ ort. ac I‘Ir']gd ard op Imtl Therefore, a QEA is also a kind of multi-model estimation of
problems from rear-world applications. 1o design an € distribution algorithm (EDA) [11], which samples offspgin
evolutionary algorithm, the choice of proper solution eepr

: ) solutions from probabilistic models. Therefore, there mwe
sentation and the o_levelopmeljt .Of appropriate search OPElassover and mutation operators used in QEA. In [12], a
ators. must be considered. This is .because representatio A has been extended to solve the multi-objective knapsack
solutions could affect some properties of the search lapsc roblem
such as redundancy, neighborhood structure, and ruggsedng )

1S -k | f soluti tai SIn order to find a set of diverse non-dominated solutions,
.[ ] ome well-known examples of solution representa 'Onl%any EMO algorithms incorporate mechanisms to encourage
include: binary, real-value vector, messy encodings, perm

ai qt ruct diversity of the population in the objective space. Howgver
ation, and tree structures. i .. .. maintaining diversity in the decision space is also crucial
In the past two decades, evolutionary multi-objectiv

lorith h | ‘i ; %o the performance of EMO algorithms. Based on this, we
(EMO) algorithms ave attracFed alot o |r_1tere_st ron_blevelop variants of NSGA-Il and MOEA/D with probabilistic
researchers [2][3]. Fitness assignment and diversity MaiQy ion representation. Each probabilistic individuatre-

tenance are two major research issues in evolutionarymulgpondS to one pheromone matrix, which is a probability

objecti\{e thimizat_ion._ quever, little work has b(_aen don‘?nodel commonly used in ant colony optimization (ACO)
on designing multi-objective oriented representation @f s algorithm [13]. We also compare the performance of NSGA-

Iutions. _In _[4]’ a_hYb“‘_’ representation was StUdiEd_ fo'il and MOEA/D with probabilistic representation to their
multi-objective optimization. That scheme uses both kinar

i o . —'original versions on the multi-objective travelling satem
and real-valued representations to encode individualen t

. ) . roblem.
popuIatlon._In [5], the influence of binary and ord_er—base The rest of this paper is organized as follows. Sec-
representations on the performance of EMO algorithms WaRn 11 introduces some basic definitions in multi-objeetiv

investigated for multi-objective knapsack problems. optimization. Section Il briefly overviews ant colony opti

. _ _ _ _mization. Section IV presents the new versions of NSGA-
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Il. MULTI-OBJECTIVEOPTIMIZATION In ACO, artificial ants build solutions by incrementally
Mathematically, a multi-objective optimization problem@dding solution components to a partial solution, which is

(MOP) can be stated as: initially empty. This procedure is stopped until a complete
solution is generated. The decision rule for accepting one
minimize F(z) = {f1(z),..., fm(x)} (1) component as new member of the partial solution is deter-

SN mined by both heuristic information and pheromone trail.

The ACO process for constructing solutions can also be

wherez is the vector of decision variableg, is the feasible understood as moving on a gragh — (C, £), where the

. . o
area in the decision search space &fad) € R™ is a vector vertices are the components @ and £ — {l;,} is the

of objectlve_functlons. . - : : connection between components. Connectignare associ-
When objective functions are conflicting, solutions in the . . :

L . ated with both pheromone trails;, storing global search

objective space are not completely ordered. For this reasan . : K -

. . - Information obtained from previous search, and heuristic

the optimal solutions of a MOP are trade-offs among objec-

. . . -~ val ii, representing problem- ific greediness. Assum
tives, known as Pareto-optimal solutions. For two objectiv aluesn;;, representing p oble speclic g eediness. Assume
) . . . . thatz, =< z,._1,¢; > is the partial solution constructed so
vectorsu,v € R™, u is said to dominate if and only if . .
. . far andc; is the current node, the next nodgis chosen from
u; <w; foralli e {1,...,m}, and there exists at least one . . .
. L . . . the feasible neighborhoad/; of nodec; by applying some
j€{1,...,m} satisfyingu,; < v,. A solutionz* € Q is said o . X i
. - I : : probabilistic decision rules. Then, the new partial soloti
to be Pareto-optimal if its objective vector is not dommbtex is set to< = 7 >. The decision rule is determined b
by the objective vector of any other solution $h The set *** v y

oo . . ; pheromone trails and heuristic values.
of objective vectors of all Pareto-optimal solutions isledl : .
: In the past twenty years, many variants of ACO algorithms
Pareto-optimal front.

IQhave been proposed. The main differences among them lie in
convert a MOP into one single objective optimization pro the design of pheromone representation (i.e. how to define

lem [14]. Among these traditional methods, weighted Surﬁolutmn components) and probabilistic decision rules: Fo

. .= = example, in the first implementation of ACO algorithm for
approach is one of the most commonly used. It minimize :

. . - 0 the travelling salesman problem, called ant system (AS) [15
the following weighted scalarizing function:

the probability of moving from node; to nodec; was

- defined as:
g(l‘, )‘) :Z)\zfz(x)a (2) a 8
i=1 D; (t) — [Tij(t)] ) [nij] (3)
wherel = (\1,..., \,) is the weight vector with\; > 0 for ! Yien; [ra®)]” [na)”
allie{1,....,m}and} 1", A; = 1. The optimal solution .

of ¢ is called supported. Under some mild conditions, it is

also Pareto-optimal to the MOP in (1). o nij = 1/d;; is the priori heuristic value and;; is the
distance between citieisand j;
[1l. ANT COLONY OPTIMIZATION « « and § are two parameters representing the relative
Ant colony optimization (ACO) [13] is a constructive importance of heuristic information and pheromone

meta-heuristic that mimics the behavior of ants when sgekin  information.
a path between the ant colony and a source of food. In ACO, » N is the feasible neighborhood of citynot visited yet.
the priori information (i.e. problem-specific heuristia) the When o = 0, the closest city is more likely to be selected
structure of good solutions and the posteriori information  as the new component of the current partial solution.
artificial pheromone trail) on the probabilistic distritmn Once a complete tour is generated, the pheromone trails
of previously obtained good solutions are used to sampteeed to be updated in two steps. First, the pheromone trail
offspring solutions in promising areas of the search spacfor each edge is modified by
Over the years, ACO algorithms have been applied to solve
many combinatorial optimization problems [15] [16], such 7i5(t) = (1 = p)735(t)
as travelling salesman problem and quadratic assignmcwﬁerep € (0,1] is the evaporation rate.
problem.

Consider a combinatorial optimization probleff, f, )
with the following characteristics:

Second, for each edgg, j) belonging to the tour, the
related pheromone trail is updated as follows:

e C={ci,...,cn. }is afinite set of solution components; Tij(t+1) = 7i5(t) + A75(t) 4)
« each stater of the problem can be represented by %vhereAr,(t) — 1/L(t)(L(t) is the length ofz).
sequence of solution componenis;,c;,...,ck,...). !

! ) In [17], one of the successors of AS, called Ant Colony
The set of all states is denoted Bythe set of candidate System (ACS), used a different probability decision rule.

solutions. _ . At each step, the nodg with the maximal greediness was
o«  C S is the feasible set of the search space Sat'Sfy'néhosen with probability, € [0, 1]. That is

certain constraints anfl(s) is the cost function for each
candidate solutios € S. J = argmaxg . [ ()] [n,;l]ﬂ.



The ACS approach uses the same rules as the original |AS Step 1: Initialization

with probability set tol — go. Step 1.1 Initialize NP weight vectors\(*), s = 1,...,NP
Like evolutionary algorithms, the application of ACQ ﬁgdnesietﬁbSThgadgo(;)ezxﬁicmgc%dvfﬁﬁ'\e ‘in’ dgf("ecsl"git,e

algorithms for multi-objective optimization has also attred closesgt’ weight vector’s ta(®):

interest for the research community. In [18], an empiric

A JeoEdit ) Step 1.2 Initialize pheromone trails,.(]‘.”(t) and subprobt
analysis of multi-objective ACO algorithms was conducted lem heuristics)®), s = 1,...,NP;

z

on bi-objective TSP problems. Step 1.3 Initialize NP solutions in current population
) (t),s = 1,...,NP by sampling from probabilistic
IV. MOEA/D AND NSGA-Il wWiITH PROBABILISTIC individuals. Set EP as an empty set.
REPRESENTATION Step 2: Reproduction and Update

for each subproblems € {1,...,NP}
Step 2.1 Sample an offspringy from the probability
model based on? () and7.?;

In this section, we first describe a quantum-inspired ge-
netic algorithm (QEA), in which the probabilistic repretsen

tion was first used. Then, the modified versions of MOEA/D Step 2.2 Improvey by applying local search:

and NSGA-II with probabilistic representation are present Step 2.3 Update EP withy;
Step 2.4 Competey with all neighbors.

A. QEA For eachk € B(s), setz®(t) = y if 2(¥)(t) is worse
thany regardingg(z, A(*)).

QEA is an evolutionary algorithm paradigm based on the g
concepts of qubits and superposition of states in quantum g?ep %r Pheromone Update
mechanics. In this algorithm, solutions are encoded using a for each subproblems € {1,..., NP}
Q-bit representation system. Each Q-bit corresponds to two

. < Step 3.1 Evaporate pheromone tra'rléﬁ(t);
states ‘0’ or ‘1. The probabilities of finding these two stat

Step 3.2 Update pheromone traits’’ (¢) with =) (¢),

are denoted byy? and 32 respectively. Normalization of k€ B(s);
states needs to guaranteé + 32 = 1. An individual in end for
an Q-bit system can be defined as: Step 4: Termination
If the stopping conditions are satisfied, then output EP and stop;
Qi | Qg Qi otherwise set := ¢ + 1 and go to Step 2.
|5 | Q)
P B B Procedure 1: MOEA/D

wheren is the number of Q-bits, ant;, 3;),i =1,...,n

is a pair of complex numbers specifying the probability

amplitudes of states ‘0’ and ‘1’ of theth Q-bit, respectively. is very flexible to integrate some single-objective meta-
Essentially, each Q-bit individual is a simple probabitist heuristic search methods, such as differential evolutiais)(
model, which can represent multiple states of Q-bits. In QEA19], simulated annealing (SA) [20] and greedy randomized
a population of probabilistic Q-bit individuals is maimad. —adaptive search procedure (GRASP) [21].

It can also be viewed as a multi-modal estimation of distribu In the previous implementation of MOEA/D, each sub-
tion algorithm (EDA). Like classical EDA algorithms, QEA problem is only associated with one individual, which is its
produces offspring solutions by sampling from a probatidlis current best solution. As discussed in [19], the competitio
model, i.e., observing Q-bit probabilistic individualsn& between neighboring solutions might cause loss of diversit
each Q-bit individual stores global statistical inforroati To avoid this weakness, more complex memory should
of good solutions obtained previously in the search, evollpe used to store the information about the history of the
tionary algorithms with Q-bit representation have advgeta search for each subproblem. This memory could be a small
in exploring promising areas of the search space. In [12population or a probability model.

a multi-objective version of quantum-inspired evolutipna  So far, no work has yet been done on MOEA/D with
algorithm, called QMEA, was also proposed. That algorithnprobabilistic representation. In this paper, we investiga
uses NSGA-Il as its baseline algorithm and samples nemew version of MOEA/D, in which each subproblem is

solutions by observing Q-bit individuals. associated with one probabilistic individual represenigd
pheromone trails. At each generatignfMOEA/D maintains
B. MOEA/D the following data structures:
In [9], Zhang and Li proposed a decomposition-based , A set of NP weight vectors A(), ... \(NP).
evolutionary multi-objective optimization algorithm, |ksd « Current population -{x(l)(t),...,x(NP)(t)}, where
MOEA/D. It decomposes a multi-objective optimization 2®)(t),s = 1,...,NP is the current best solution to

problem into NP single objective subproblems with objextiv gz, A®);

functions g(x, A\(),i € {1,...,NP}. The main goal of ’ ’ ) (NP)

MOEA/D is to find the optimal solutions of NP subproblems ° P(f;)eromone populatior{r, (?)’ Ty (8)}, where
simultaneously. The information from the optimization of ~ 7i; (t) is the pheromone trail for the subproblem asso-
one subproblem is used to assist the optimization of similar ~ Ciated withg(z, AL,

subproblems. MOEA/D provides a general framework, which « Subproblem heuristics{nl(;), . ,nf]NP)}, where n§;>



is the heuristic for the subproblem associated witllgorithm in [6], called NSGA-II. In this algorithm, the

g(z, A). population is divided into a number of non-dominated fronts
« External population EP which is used to store all nonin terms of Pareto dominance. Within each front, all sohsio

dominated solutions found during the search. are mutually non-dominated. The solutions in the front

The algorithmic framework of MOEA/D with probabilistic closer to the true Pareto front are preferred in selectiah an
representation is described Rrocedure 1 competition. To control the distribution of non-dominated

Step 1.1 is the same as in the original MOEA/D. In Ste§0|uti0n8 within each front, the density values of indiatku
1.2, NP probabilistic individuals are initialized. Thisept are estimated based on crowding distance. The solutions in
needs problem-specific information. Step 1.3 samples tfige less crowed part are preferred in selection.
initial population with probabilistic individuals. Sinaitly, Compared to MOEA/D, NSGA-II has no bias in searching
Step 2.1 generates an offspring solution for the curre@ny particular part of the Pareto front. All non-dominated
subproblem. Then, it is improved by local search in Stepolutions in the current population have equal chance to be
2.2. The acceptance function in local search is the objectiselected for reproduction. However, this might not be effi-
function of the current subproblem. In Step 2.3, the impdovecient when sampling offspring solutions due to the follogvin
solution is used to update the external population ER.if two reasons. First, the non-dominated solutions might have
not dominated by any member of EP, then add it into EP. Mery different structures in the decision space. Therefitee
any member of EP is dominated hy then it is removed possibility of generating high-quality offspring soluti® by
from EP. In Step 2.4y competes with all its neighbors. recombining these solutions is low. Second, the design-of re
After sampling and updating the current population, theéombination operators is often problem-dependent. Efficie
probabilistic individuals are updated in Step 3. For eactecombination operators for some combinatorial optinmzat
subproblem, the related pheromone trails are evaporatedgroblems are not always readily available.

Step 3.1, and then updated by the current solutions of all Here, we also investigate the version of NSGA-II with
neighboring subproblems in Step 3.2. probabilistic representation, in which multiple probail

models (pheromone trails) are maintained. Each probgbilit
model stores long-term search information. All offspring
solutions are sampled from these probability models. &imil

C. NSGA-II

Step 1: Initialization _ to MOEA/D in Procedure 1, NSGA-II also needs to main-
ffpo_l'l Initialize NP weight vectors randomly and setiain 5 set of weight vectors, current population, pheromone
S;p '12 Initialize {r"(t) (NP population, subproblem heuristics and external popuiatio

N ) INP) rw e The details of NSGA-Il with pheromone representation are
trails) and{n;,’,...,m;; }(priori heuristics); described inProcedure 2

itiali (¢)) (NP) L .
Step 1.3 Initialize {a" *(t), ...,z " (t)} randomly o gtans 1 1 and 1.2 initialize pheromone population, current
by sampling from probabilistic individuals. Set EP as|an . -~ L
empty set. population, and subproblem heuristics. These are sinvlar t

Step 2: Sampling the related steps in MOEA/D. Step 2.1 samples offspring

(t)} (pheromone

for s =1 to NP solutions from a probabilistic individual. Unlike the oirg
Step 2.1 Sample an offspring ) (t) from the probability NSGA-II, tournament selection and crossover are not needed
model based on?’ (t) andn.;; here. In Step 2.2, a local search is applied to improve off-
Step 2.2 Improvey®)(t) by applying local search; spring solutions. The acceptance function used in locatkea
Step 2.3 Update EP withy®)(t). is a scalar functiory(z, A) with normalized weight vector
end for generated randomly. The external population is updated in
Step 3: Nondominated Sorting Step 2.3, which use the same rules as in MOEA/D. Step

Step 3.1 Rank the union Of{x(l)(t),...,x(NP)(t)} 3 ranks all solutions in the union of current and offspring
and{y® (), ...,yNP(#)} using non-dominated sortirg populations by applying non-dominated sorting. The best NP
method; ] | solutions are copied into the population Q in the next gener-
Step 3.2 Copy the set Q of the best NP solutions intoaiinn 1 Step 4.1, the pheromone trails of each probaiailist

the population into the next generation; s
Step 4: Pheromone Update individual are evaporated. Then, they are updated by the

for s — 1 to NP offspring solution generated by this proba_bilistic indial _
Step 4.1Evaporate pheromone tra'riéj)(t); aslmt/_ell as those members of Q that dominate the offspring
solution.

Step 4.2Updater.>” (t) by y*)(¢) and all solutions inQ
which dominateg,'(t)
Step 5: Termination V. PHEROMONETRAILS AND HEURISTICS IN

If the stopping conditions are satisfied, then output EP and 5top;\m | T1-0BJECTIVE TRAVELLING SALESMAN PROBLEM
otherwise set := ¢ + 1 and go to Step 2.

Procedure 2: NSGA-II In this paper, we tested MOEA/D and NSGA-II with
probabilistic representation on the multi-objective &iting
Deb et al. proposed a fast non-dominated sorting genesalesman problem. A travelling salesman problem with



TABLE |

ObJeCtlveS can be formulated as: AVERAGE NUMBER OF FUNCTION EVALUATIONS USED BYMOEA/D

(k) n—1 k k AND NSGA-II WITHOUT LOCAL SEARCH
£y = dE) 4 d k=1,...,m (6)
= : instance | MOEA/D | NSGA-l | MOEA/D-ACO | NSGA-I-ACO
KROAB50 | 1487523 | 825694 95985 67450
where KROCD50 | 1489063 | 862066 95048 68460
) ) KROABI00 | 2395545 | 1449649 49068 43800
e m=(m,...,m,) IS a permutation of1,...,n} where KROCDI00 | 2379413 | 1437141 49218 43610

n is the number of cities.
. dﬁflr] is the cost between city; and city =; regarding
criterion k. probability decision rules are used in both algorithms. We
Like the single objective ACO algorithms for travelling /S0 compared them with the original versions of MOEA/D
salesman problem, solution components correspond te citi@nd NSGA-II, in which cycle crossover is used for repro-
(nodes) in a graph while links between components corréiction. The population size is set to 200 in all algorithms
spond to edges between cities. In MOEA/D, the heuristifor all instances. Botla and 3 used in probabilistic decision

values of each subprobleg{z, \(*)) are defined as rules are set to 1. The probability in ACS decision rule
. is 0.95 while the pheromone evaporation rate is 0.1. The
i) — 1/2/\(s)d(k) . neighborhood size in MOEA/D is 20. We a_lso investigated
i = kT the performance of MOEA/D and NSGA-II with local search.

—_ . ) ) The 2-opt local move, which randomly exchanges two edges
The definition of heuristic values in NSGA-II is almost thej, the tour. is used to generate neighboring solutions. Each
same as that in MOEA/D. The difference is that NSGAjqcq) search procedure is stopped after examining 100 neigh
Il uses weight vectors generated randomly and changed @iy The total number of runs of each algorithm for each
each construction step. In this paper, only bi-objectivé®TSj,stance was set to 20. In each run, each algorithm is stopped
instances are tested. MOEA/D uses a set of NP weigler 50 seconds for the instances with 50 cities and 100
V((asc;tors with uniform ((;J;stnbunon(,s)whmh are generated byseconds for the instances with 100 cities. All algorithmsawve
AT =1/(NP-DandA;” =1 - A, s = 1,...,NP.. implemented in C++ and run in PC computer (Intel (R) Core
The values of pheromone trails in both algorithms argrM)2 CPU, 1.86 GHz, 2GB RAM) running Windows XP.
initialized by: To measure the quality of the non-dominated solu-

m tions found by MOEA/D and NSGA-Il, we use the in-
Tﬁfzrj(o):m/zggfk(x) verted generation distance (IGD) metric in our experi-
k=1 ments [9], which can be formulated as: IGRP*) =
where P — {x(1>(0),...,x(NP>(0)}. > uep- Minyep dist(u, v) /| P*|. The IGD metric computes

the average distances of solutions in a referenceP$eto

the setP of resultant solutions. To measure the range of
objectives in P, we also calculate the following indicator

_ values: R)(P) = |maxgep fi(x) — mingep fi(z)],i =
Ol = { 1/g(x, X)) if edge (m; ;) belongs tox 1, m.

For each probabilistic individual, the valuezs(rf;rj of
pheromone trails are increased by a certain solutioas
follows:

A, 0 Otherwise
B. Experimental Results and Analysis
1) MOEA/D and NSGA-II without Local Search: Fig. 1
Anﬁf%(t) = Z ATS;@)M and 2 plot the non-dominated solutions found by MOEA/D,
o z€8 o NSGA-II, MOEA/D-ACO and NSGA-II-ACO after 20 runs.
d he average number of solutions examined by each algorithm
are reported in Table I. Table Il shows the mean and
standard deviation IGD-metric values of non-dominated so-
VI. COMPUTATIONAL EXPERIMENTS lutions found by the four algorithms. The average diffeenc
In this section, we compare the original MOEA/D andPetween the best and the worse values of the non-dominated
NSGA-Il to their variants with probabilistic representati Solutions obtained by the four algorithms on each objective
based on pheromone trails, which are denoted by MOEA/['€ Summarized in Table Ill. From these results, we can make

The total amount of pheromone values changed is:

where S is the set of solutions selected for pheromon
update.

ACO and NSGA-II-ACO respectively. the following observations.
_ _ « Table | shows that the average number of solutions
A. BExperimental Settings examined by MOEA/D-ACO and NSGA-II-ACO is

In our experiments, we used two 50-city TSP instances much less than the number of solutions by MOEA/D
(KROAB50 and KRCD50) as well as two 100-city TSP and NSGA-II. This can be explained by the fact that the
instances (KROAB100 and KROCD100) [22]. All four in- computational complexity of constructive heuristics in
stances are bi-objective. They are constructed by condpinin  MOEA/D-ACO and NSGA-II-ACO is higher than that
two benchmark single objective TSP instances. The ACS of crossover and mutation operators in MOEA/D and
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TABLE Il
MEAN AND (STANDARD DEVIATION) OF IGD-METRIC VALUES FOR THE NONDOMINATED SOLUTIONS FOUND BY MOEA/D(ACO) AND
NSGA-1I(ACO) WITHOUT LOCAL SEARCH

Instance MOEA/D NSGA MOEA/D-ACO | NSGA-TI-ACO

KROAB50 | 41607.1 (4112.9)| 37510.0 (2714.1) | 3200.6 (190.9) | 2104.1 (230.4)
KROCD50 | 39180.4 (2396.8) | 34695.0 (2370.6) | 2890.4 (97.1) | 2530.7 (519.1)
KROABI00 | 104531.7 (5587.2)] 100496.0 (3144.3)] 6106.5 (257.6) | 5146.6 (367.4)
KROCD100 | 105132.8 (4759.5)| 101922.1 (4746.6) 58355 (351.8) | 4392.3 (411.7)

TABLE Il
AVERAGE RANGES(R(), R(2)) OF OBJECTIVES IN THE NONDOMINATED SOLUTIONS FOUND BY MOEA/D AND NSGA-II WITHOUT LOCAL SEARCH

Instance MOEA/D

NSGA MOEA/D-ACO NSGA-I-ACO
KROAB50 | (18119, 18819)| (22391, 22052)| (58120, 49713) | (54800, 44947)
KROCD50 | (19892, 18093)| (20684, 21157)| (57416, 62977) | (47386, 53867)
KROABI00 | (21882, 27155)| (28099, 27216)| (135466, 129729)| (123297, 114071)
KROCDI00 | (26880, 27700)| (25900, 24171)| (124089, 120009)| (114902, 110945)

NSGA-Il. These results also indicate that the problem-  solutions close to the minimum of each objective and
specific constructive heuristics are more efficient than  achieved better distribution along the Pareto fronts.
the standard crossover and mutation operators whene The mean IGD-metric values in Table Il show the
sampling offspring solutions. MOEA/D-ACO and NSGA-II-ACO found better IGD-

It can be seen from Fig. 1 and 2 that the non-dominated values than MOEA/D and NSGA-II. These results show
solutions found by MOEA/D-ACO and NSGA-II-ACO that the non-dominated solutions found by two EMO
are much better than those found by MOEA/D and  algorithms with probabilistic representation are closer
NSGA-Il on all 4 instances. However, both EMO al- to the Pareto fronts than those found by the original
gorithms with probabilistic representation have similar  versions. We can also observe that NSGA-II-ACO per-
performance in approximating the Pareto front. NSGA-  formed better than MOEA/D-ACO on all 4 instances in
[I-ACO found better solutions in the middle parts of terms of the IGD-metric.

the Pareto fronts while MOEA/D found better extreme o The results in Table Il show that MOEA/D-ACO



TABLE IV

AVERAGE NUMBER OF FUNCTION EVALUATIONS USED BYMOEA/D VII. CoNCLUSION

AND NSGA-Il WITH LOCAL SEARCH In this paper, we investigated the performance of two state-
of-the-art evolutionary multi-objective (EMO) algorittan
Instance MOEA/D NSGA-II MOEA/D-ACO NSGA-II-ACO . e s
KROAB50 35436936 | 36149497 8039799 5978060 namely MOEA/D and NSGA-II, when using prObablllSth
}?58:80150% gg;g;iig 23223;2}1 Zggiggg i?ggﬁg representation based on pheromone trails. In both algo-
RROCDI00 | 50422778 | 62902484 | 4631292 4156555 rithms, an individual is encoded by a probability model,

i.e. pheromone trails. Offspring solutions are samplednfro
the probabilistic individuals and problem-specific helicts

performed better than NSGA-II-ACO in diversity. The We compared the four algorithms without local search -
ranges of non-dominated fronts found by MOEA/D-MOEA/D, NSGA-Il, MOEA/D-ACO and NSGA-II-ACO on

ACO are wider than those of non-dominated squIhe multi-objective travelling salesman problem. Our expe
tions obtained by NSGA-II-ACO. The reason is thaimental results showed that MOEA/D-ACO and NSGA-II-

MOEA/D-ACO specifically spends equal computationaIA‘CO performed much better than the original MOEA/D

effort in searching different parts of the Pareto fronts'?md NSGA-II without probabilistic representation. MOEA/D

In contrast, NSGA-II-ACO does not have any bias tf\CO performed worse than NSGA-II in finding solutions in
search any’ part of the Pareto fronts. the middle parts of Pareto fronts but it found more diverse

, . Pareto fronts. We also compared the four algorithms when
2) MOEA/D and NSGA-I1 with Local Search: Fig. 3 and ging |ocal search. Our results showed that MOEA/D found
4 plot the non-dominated solutions found by the four algopatter |GD-metric values than MOEA/D-ACO. However, it
rithms using local search in 20 runs. The average numbers gfe s more number of function evaluations. We conclude
solutions examined by each algorithm are reported in Tablgat probabilistic representation can improve the efficjen
IV. The mean and standard deviation IGD-metric values ofs gvo algorithms in sampling high-quality solutions by

non-dominated solutions found by the four algorithms argqngiryctive heuristics and in diversifying the searcmglo
shown in Table V. The average differences between the bg§s et fronts by pheromone trails. In the future, we intend

and the worse va'lues of the non-dqmiqated solutions qbiainFo apply EMO algorithms with probabilistic representatton
by the four algorithms for each objective are summarized igher challenging multi-objective combinatorial optimiion
Table VI. From these results, the following observations Caproblems.

be made.
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Fig. 4. Plots of the non-dominated solutions found by MOEA/R &NSGA-II with local search on KROAB100 and KROCD100

TABLE V

MEAN AND (STANDARD DEVIATION) OF IGD-METRIC VALUES FOR THE NONDOMINATED SOLUTIONS FOUND BY MOEA/D AND NSGA-Il wiTH
LOCAL SEARCH

instance MOEA/D NSGA-TI MOEA/D-ACO | NSGA-II-ACO
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KROCD50 | 661.0 (185.4) | 1599.6 (392.0) | 993.8 (62.3) | 2023.7 (183.4)
KROABI00 | 2354.9 (406.4)| 8638.4 (1471.0)| 4333.7 (213.6) | 4707.0 (463.8)
KROCDI00 | 2483.5 (437.1)| 7607.4 (1172.5)| 4092.9 (243.1) | 3830.8 (336.2)

TABLE VI

AVERAGE RANGES(R(Y) | R(2)) OF OBJECTIVES IN THE NONDOMINATED SOLUTIONS FOUND BY MOEA/D AND NSGA-Il WITH LOCAL SEARCH
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