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Abstract: We investigate the time evolution due to gravitational dynamics of a partic-

ular spacetime commonly used in brane-cosmology and string compactifications, namely

the Klebanov-Strassler geometry, which is achieved by adding a perturbation to the mo-

mentum of the static solution. We observe the effects this has on the spacetime and

look for evidence of black hole formation or collapsing cycles which could lead to sin-

gular geometry. The cycles are seen to commonly re-expand after reaching a minimum

value, showing the stability of the solution against perturbations which would change

its size. However black holes are observed to form for certain perturbations, which

could impede common uses of the throat’s stable tip.
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1. Introduction

Producing realistic models of our own universe using the knowledge we have of string

theory is a task plagued with difficulties, such as the selection of a vacuum out of many

choices, and the existence of moduli. String theory requires that extra dimensions are

present, but observations restrict them to be unobserved. Such extra dimensions may

be in the form of a compact manifold, the choice of which is a choice of vacuum with

the moduli being continuous parameters characterizing the manifold. These moduli

take the form of massless scalar fields within the low energy effective theory, which

are strongly constrained[1, 2]. With appropriate addition of fluxes and the inclusion of

quantum mechanical effects these moduli fields can take on an expectation value and

at the same time can acquire a mass, this is desirable as a large mass would explain
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why these fields have not been detected. In addition to the values taken by the moduli

is the more fundamental question of the topology of the compact manifold, however

the seemingly insurmountable challenge of selecting one topology was improved by the

possibility that vacua with different topology are connected by paths in the moduli

space, ones going through singular geometry manifolds[3, 4, 5, 6, 7]. Such a change

to the topology could be a very drastic process, altering intersection numbers or even

the Hodge numbers of the compact topology. These transitions can be made regular,

and their low energy dynamics studied within the realm of string theory[8, 9, 10, 11].

The range of possible vacuum topology and moduli is collectively called the string

landscape[12] and our own position within this huge range of vacua will determine

many of the phenomenological predictions of the construction. With the introduction

of an expectation value to the moduli fields some points within the string landscape

become preferable and the universe will flow to these points, maybe even changing

topology to get there if need be. With this additional knowledge about the Calabi Yau

manifold being compactified on, string theory can make phemomonological predictions

which may test it.

Warped throats are a possible feature within flux compactifications, they look like

an extended protrusion of the manifold, whose base does not grow in size very quickly

as we move away from the tip. Previously extra dimensions have been compactified

upon manifolds with such a region in efforts to produce inflationary models (warm

inflation, brane inflation, DBI inflation, spinflation) ; recreating the standard model

using anti-D3 branes[13] ; creating a hierarchy between the UV compactification scale

and the IR at the tip of the throat[14] or other interesting phenomenological effects.

These generally involve using this manifold as the background upon which some probe

brane is moved, where it is assumed that the probe does not influence the background

manifold. Warped throats are often chosen as a background manifold also because

they possess only a few moduli with flat directions. Most parameters which define the

size, shape and other properties of the throat, such as the dilaton and the complex

structure moduli, may be stabilized by the choice of flux, making the moduli at the

supersymmetric vacua (potential minima) precisely determined. The stabilized moduli

are less susceptible to backreaction from the branes and other probes added to create

the wanted interesting effects like inflation.

A good example of such a throat is the deformed conifold which can be combined

with fluxes to give a Klebanov-Strassler throat[15], this solution is the one commonly

used in investigations involving warped throats; it is this solution which we too will

use as a starting condition as we proceed to model the evolution of warped throats in

time. We intend to use type IIB supergravity to perform a numerical simulation of

the gravitational effects of perturbing the throat in the region around its tip. Unlike
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some previous studies, generally performed within the 4D-effective low energy theory

of the moduli space, we do not trust the moduli approximations alone due to the

immense freedom of the flux-containing, gravitationally-backreacting spacetime of IIB

supergravity. We hope that our more elaborate numerical simulations (ones able to

detect black hole formation and effects undetectable in the moduli approximation) will

shed more insight on the possible limitations of these previous attempts.

2. Lagrangian and equations of motion

Our study takes place within the framework of type IIB supergravity, whose action is

given in the Einstein frame as follows [16, 17],

LIIB
10 = R ∗ I + 1

2
dφ ∧ ∗dφ − 1

2
e2φF1 ∧ ∗F1 −

1
4
F5 ∧ ∗F5

−1
2
e−φH ∧ ∗H − 1

2
eφF3 ∧ ∗F3 −

1
2
C4 ∧ H ∧ F3 (2.1)

The fields comprise a scalar dilaton φ, an R-R scalar with field strength F1 = dC0, an

R-R two form with field strength F3, an NS-NS three form field strength H = dB and

a self dual five form field strength F5 = dC4 + B ∧ (F3 + C0 H). We have made gauge

choices as we write these potentials, even though the four potential, C4, appears in

the Chern-Simmons term of the Lagrangian it still has a great deal of gauge freedom.

We need to separately impose the self duality condition upon F5 by hand, as it is

unconstrained by the Lagrangian

F5 = ∗F5. (2.2)

The Lagrangian gives the following equations of motion for these fields:

d(∗F5) = −F3 ∧ H (2.3)

d(eφ ∗ F3) = F5 ∧ H (2.4)

d(e2φ ∗ F1) = eφ ∗ F3 ∧ H (2.5)

d(e−φ ∗ H) = eφ F1 ∧ ∗F3 − F5 ∧ F3 (2.6)

d ∗ dφ = −e2φ ∗ F1 ∧ F1 −
1
2
eφ ∗ F3 ∧ F3 + 1

2
e−φ ∗ H ∧ H (2.7)

The fluxes also contribute to the energy momentum tensor, which means that our

spacetime will not be Ricci flat but will obey the Einstein equation,

RMN = 1
2
∂M φ ∂N φ + 1

2
e2φ F(1) MF(1) N + 1

96
F(5) M

abcdF(5) Nabcd

+
1

4
e+φ

(

F(3) M
abF(3) Nab −

1

12
F(3)

2 gMN

)

(2.8)

+
1

4
e−φ

(

H M
abH Nab −

1

12
H 2 gMN

)

.
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In the above we have been using a mostly plus metric signature and an antisym-

metric tensor obeying

ǫ0 1 2 3... = +1, (2.9)

with the ten dimensional Hodge dual being given by

∗eabc.. =
1

n!
ǫabc..

i1i2..inei1i2..in (2.10)

3. Klebanov-Strassler static solution

A static warped throat solution found by Klebanov and Strassler [15] will be used as our

starting condition to which we will add a small perturbation in the form of a momentum.

This in turn was based on the deformed conifold [18], which is a Calabi-Yau space with

one extended radial dimension, labelled by r, and a compact five dimensional base.

At high r, far from the origin, the deformed conifold tends to look like the standard

conifold (where the five dimensional base is a Sasaki Einstein metric with the topology

S2xS3). However at lower radius the deformed conifold has a base dependent on r, and

so loses scale invariance in r, the new scale being introduced by the new parameter ǫ.

We can write this line element in terms of a basis of one forms, gi defined and described

in detail in[15]. Using this basis of one forms to describe the five dimensional base of

ds6, we can write the deformed conifold as

ds6 = 1
2

ǫ
4
3 K(r)

(

1

3K3(r)

)

dr2

+ 1
2

ǫ
4
3 K(r)

(

sinh2
(r

2

))

((g1) 2 + (g2) 2)

+ 1
2

ǫ
4
3 K(r)

(

cosh2
(r

2

))

((g3) 2 + (g4) 2)

+ 1
2

ǫ
4
3 K(r)

(

1

3K3(r)

)

((g5) 2). (3.1)

Where we have used

K(r) =
(sinh(2r)) − 2r)

1
3

2
1
3 sinh(r)

. (3.2)

Note that K(r) does not vanish at the origin but tends to the constant value (2/3)1/3,

implying that the deformed conifold does not tend to a singular point at r = 0, but at

the tip there is a three sphere in the direction g3∧g4∧g5. This six dimensional manifold

will make up six of the ten dimensions in the solution to the Einstein equations. In

the case with no flux contributions we can product the deformed conifold with a 3+1

Minkowski metric ds1,3.

ds2
10 = ds1,3 + ds2

6. (3.3)
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3.1 D-brane sourced fluxes

If we introduce N D3branes and further supplement this with M D5branes wraped

arround the two sphere of a deformed conifold (these have previously been coined ”frac-

tional D3branes”) then it corresponds to taking a Calabi Yau manifold with deformed

conifold singularity and introducing a large flux through the three sphere[19, 20]. The

effect of combining ds6 with (fractional) Dbranes is to source fluxes and so contribute to

the Energy-Momentum tensor of the Einstein equation. This means that the spacetime

metric can no longer be Ricci flat and it changes the static solution to the solution of

[15]. The new fluxes require a change to the metric (3.3), making the minkowski slices

depend upon the radius of the deformed conifold component and so we get conformal

symmetry breaking (for non-zero M). This r dependence is introduced by means of a

function, h(r).

ds2
10 = h−

1
2 (r) (ds1,3) + h

1
2 (r)

(

ds2
6

)

(3.4)

The static solution is described in detail in [15], we intend to use this metric and these

fluxes as initial conditions which we will then go on to perturb. The fluxes, three-forms

and the five-forms of the static case are described in terms of the metric coordinates.

The scalar dilaton and R-R scalar go as,

F1 = 0, (3.5)

eφ = gstring. (3.6)

In addition to the usual potential, the M fractional branes we have placed at the tip of

the deformed conifold, consistently give flux through the g5 ∧ g3 ∧ g4 direction at the

origin, this is the 3 sphere,

C2 = M
sinh(r) − r

2 sinh(r)

(

g1 ∧ g3 + g2 ∧ g4
)

,

F3 = M g5 ∧ g3 ∧ g4 + dC2. (3.7)

H can be described by the potential B,

Bα = gstringM
r coth(r) − 1

2 sinh(r)
(cosh(r) − 1),

Bβ = gstringM
r coth(r) − 1

2 sinh(r)
(cosh(r) + 1),

B = Bαg1 ∧ g2 + Bβg
3 ∧ g4,

H = dB. (3.8)

– 5 –



The final flux is the five form, self dual F5. Its self duality condition along with the

equation of motion and our choices of F3 and H lead to the solution that,

F5 = B ∧ F3 + ∗(B ∧ F3). (3.9)

The nature of h(r) in the static case (this is the value for h(r) which we impose as an

initial condition) is given by a differential equation.

d h(r)

dr
= −α

2
2
3

4

r coth(r) − 1

sinh2(r)
(sinh(2r) − 2r)

1
3 . (3.10)

The introduction of this h(r) changes the scales and removes the conformal invariance.

To totally define h(r) we also need a boundary condition (to complement the 1st order

differential equation), Klebanov and Strassler impose the restriction that h must vanish

at high r.

lim
r→∞

h(r) = 0. (3.11)

Meaning that the radius of the throat tends to grow only very slowly for large r.

3.2 Superpotential and stabilized moduli

The potential created by the introduction of the flux can be found from the Hamiltonian

constraint, as described in [21] and used in[22]. This potential is then used to find a

prediction to the evolution of the moduli field. Taking a slice through this moduli space

along which only the volume of the three-sphere is permitted to change, we find the

potential as a function of this volume. This method results in a potential of the form

plotted in figure.1. This diverges very quickly as the volume gets small, it permits a

minima at a position determined by the other moduli and parameters (such as M),

and tends to grow (albeit quite slowly) as the volume gets very large. The minima

represents the static warped deformed throat solution. The scale of the compactified

dimensions is now set by the fluxes, the size of the three sphere at the origin is stabilized

according to the minima of the potential and is no longer a free modulus, in the static

case it must conform to

ǫ =

(

16M2gstring

α

)3/8

. (3.12)

4. Time dependent spacetime anzatz

If we start with the static solution then no change will happen as we move forward time,

however with only a small initial perturbation the metric and the fluxes are observed

to evolve. It is our intention to introduce an initial perturbation that changes the size
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Figure 1: The potential as a function of the volume of the three sphere in planck units

of the three sphere at the origin of the deformed conifold, possible outcomes include

the formation of a black hole solution; the collapse of the three sphere to a naked

singularity; or the sphere may change size without collapsing all the way to zero. To

observe the effects of an initial deformation we use a more general metric and flux

ansatz, a system with the capacity to be time dependent, and then observe the effects

we can incite with a small initial perturbation.

We choose a metric that is capable of changing in time and is also stable to evolve

numerically at the origin[23, 24].

ds2
10 = T (t, r)2 h−

1
2 (r) (ds1,3)

+a2(t, r) h
1
2 (r) 1

2
ǫ

4
3 K(r)

(

1
3K3(r)

)

dr2

+b2(t, r) h
1
2 (r) 1

2
ǫ

4
3 K(r) (sinh2(r/2)) ((g1) 2 + (g2) 2)
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+c2(t, r) h
1
2 (r) 1

2
ǫ

4
3 K(r) (cosh2(r/2)) ((g3) 2 + (g4) 2)

+d2(t, r) h
1
2 (r) 1

2
ǫ

4
3 K(r)

(

1
3K3(r)

)

((g5) 2). (4.1)

The profiles T (t, r),a(t, r),b(t, r),c(t, r) and d(t, r) define the metric at all times. We also

had to impose boundary conditions at the origin of the simulation. These conditions

were to ensure that local flatness remained at later times[25].

c2(t, r)|r=0 = d2(t, r)|r=0, (4.2)

b2(t, r)|r=0 = a2(t, r)|r=0. (4.3)

We also required that all these profile functions were always even at the origin. At

later times the size of the three sphere can be found from d2(t, r)|r=0 and c2(t, r)|r=0.

Of course we must also allow the fluxes to change with time (as they almost cer-

tainly will when the metric is perturbed). Initially the axion is constant and the

equations of motion show this can continue to be the case at later times, also the dila-

ton is initially constant at all points however this is permitted to change at later times

according to the equations of motion,

F1 = 0, (4.4)

φ = φ(t, r). (4.5)

The M fractional branes that we have placed at the origin will not change but will

always give flux through the three-sphere, however the potential C2 can change,

C2 = Cα(t, r)
(

g1 ∧ g3 + g2 ∧ g4
)

,

F3 = M g5 ∧ g3 ∧ g4 + dC2. (4.6)

The other three-form flux, H , is described by two separate functions Bα(t, r) and

Bβ(t, r), these are used as a description of B, and B defines H .

B = Bα(t, r)g1 ∧ g2 + Bβ(t, r)g3 ∧ g4,

H = dB. (4.7)

Even at later times the five-form flux is still determined by the other fluxes according

to (3.9).

All the fluxes are defined by the metric and four profile functions, φ(t, r), Cα(t, r),

Bα(t, r) and Bβ(t, r). It is these functions that we will evolve using the equations of

motion. In addition to the equations of motion, we also imposed boundary conditions

on these functions, we required that Bα(t, r) and Bβ(t, r) be odd, φ(t, r) be even and

Cα(t, r) be even and must vanish at the origin. This is the choice of fluxes that are

capable of acting as the initial conditions and evolving consistently to later times.
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4.1 Initial conditions

By comparing the static Warped deformed conifold metric (3.4), and our time depen-

dent ansatz (4.1), we can read off the initial metric conditions a term at a time.

T 2(0, r) = a2(0, r) = b2(0, r) = c2(0, r) = d2(0, r) = 1 (4.8)

Flux is added when we give M a non-zero value (we introduce fractional branes), its

strength depends upon our string coupling gstring and the number of branes M . The

initial values of the fluxes can be found from (3.6), (3.7) and (3.8). They are defined

by the functions

eφ(0,r) = gstring, (4.9)

Bα(0, r) = gstringM
r coth(r) − 1

2 sinh(r)
(cosh(r) − 1), (4.10)

Bβ(0, r) = gstringM
r coth(r) − 1

2 sinh(r)
(cosh(r) + 1), (4.11)

Cα(0, r) = M
sinh(r) − r

2 sinh(r)
. (4.12)

This also requires that h(r) to take on the value which obeys the differential equa-

tion (3.10) and also tends to zero asymptotically. We found h(r) numerically as we

input the initial conditions.

These initial conditions give the static solution, so if all the momenta (e.g. Ṫ ) are

zero to begin with then no evolution should occur. If instead we start with non zero

momenta we perturb the metric away from the static case and can go on to see the

future evolution. In order to best represent a physical system make our perturbation

vanish as we go away to large distances, representing a localized perturbation. Our

initial momentum must also conform to the constraints upon the Hamiltonian and the

momentum imposed by the Einstein equations.

5. Results

We kept the values of the string coupling and the number of fractional branes consistent

throughout all plotted simulations, Mgstring = 120 and M = 30, we also specified the

warping α so that the static solution was at ǫ = 1. If we add momentum going like

(5.1)-(5.3)

ċ

c
=

ḋ

d
= −Pe−r2

(5.1)
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Ṫ

T
= Pe−r2

(5.2)

ȧ|r=0 > 0 ḃ|r=0 > 0 (5.3)

Then a positive value of P will cause the size of the three sphere at the origin to initially

fall but this may only be temporary, whereas a negative P will cause the three sphere to

grow (the symmetry between c and d maintained the local flatness (4.2)). As we impose

the initial conditions we must obey the Hamiltonian and momentum constraints, this

requirement was used to numerically find the initial values of ȧ and ḃ. The choice (5.2)

was made to aid this numerical integration.

In order to best summarise the results of our perturbed evolution we shall con-

stantly be watching the size of the three sphere at the origin. If this shrinks it shows

that the origin is becoming closer to that of a conifold, approaching the formation

of a conical singularity, with the three-sphere vanishing being the most extreme case.

Alternatively we may find other outcomes, such as the formation of black holes.

5.1 Formation of black holes and apparent horizons

We will attempt to discover if and when black holes have formed by constantly looking

for apparent horizons on the timeslice. The existence of an apparent horizon will show

that there exists an event horizon outside it or coinciding with it[26]. The event horizon

is a sure sign of a black hole spacetime. The apparent horizon can be detected upon

any single timeslice[27], upon a timeslice with unit normal ni and where Kij is the

extrinsic curvature of the slice, the apparent horizon is at the outermost shell of points

satisfying

0 = ∇in
i + Kijn

inj − K. (5.4)

Where K is the trace of Kij . Such a shell will show that the origin is now encased

within a black hole event horizon. If the area of the apparent horizon converges upon

a constant value then we can take this value to be a good estimate to the area of the

resultant event horizon[26].

5.2 Bounce

In order to prompt the size of the three sphere to drop we introduce a momentum of

the form (5.1)-(5.3) where P > 0, this drop in the size of the sphere is, however, only

temporary. As is seen in Fig. 2, after quickly reaching some minimum value (which

depends on the strength of the momentum) the size of the three sphere then proceeds to

grow, tending back to a value close to its starting value. This is an expected behaviour

since the size of the three sphere is no longer a free modulus, it is determined, in

the static case, by the fluxes. Since the string coupling and the number of branes is
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Figure 2: The size of the three sphere begins to fall but reaches a minima then returns

to its starting value

unchanged by the momentum, the ground state of the three sphere is the static value,

the three sphere will tend to return to this value. In these cases no horizon is formed

and the size of the three sphere tends to flow to the flux-preferred value. This can be

seen to be true and quickly realized even for initial momenta hundreds of times the

warped deformed scale, showing the restoring force to be very strong indeed. This is

expected behaviour due to the swift divergence of the potential at low radius, as shown

Fig. 1.

5.2.1 How low can it go?

Though the size of the three sphere can be seen to return to its initial value, it first

drops to a minimum value dependent upon the initial momentum. If we continue to

increase the scale of initial momentum we can ask how low we can force the three sphere

to drop, could it be that there is some (very high) momentum which causes the sphere

to drop to zero before it stops falling? We can find the lowest value which the three
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Figure 3: The smallest size the three sphere reaches for a range of momenta

sphere falls to for a range of initial momentum. As shown in Fig. 3 the size does drop

with the initial momentum but it drops at a decreasing rate and it would take a huge

momenta to even approach zero (it actually looks as though the asymptotic behaviour

may not be to zero but to a constant, lowest possible, sphere size). If we fit this to an

exponential function of the form,

α0 + β0e
−γ0P 1/4

. (5.5)

(also plotted in Fig. 3) then we can see that causing the sphere to vanish (if it is

possible) would require incredible initial momentum way beyond the capabilities of our

simulation.

5.3 Growth

We also consider cases of (5.1)-(5.3) where P < 0, these will tend to cause the size

of the sphere at the origin to grow. Again we would expect (from our potential) this

growth to be only temporary and that the size would fall back towards the starting

value, as the static case is still determined by the fluxes and it is this value we would

expect the size of the tip to flow to. We do see this slowing of the growth in Fig. 4,

but slowing down takes so long that the restoration of the size is not seen within the

timescaleof the simulation, this can be attributed to a shallow restoring potential. We
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Figure 4: P = −50: The size of the three sphere begins to grow but at a decelerating

rate

believe that the three sphere would eventually return to the starting value (the static

case) but this takes a very long time.

5.4 Black hole formation

Relaxing the condition (5.3) was also attempted. This made the situation far more

susceptible to the formation of black hole horizons, detectable by shells obeying (5.4).

The presence of an apparent horizon often occurs already in the initial conditions, but

the late time creation and growth of an apparent horizon is also possible, as shown in the

example of Fig. 5. These horizons would be intolerable if we wished to achieve results

such as inflation, topology change or moduli stabilization, any interesting effects would

be enclosed behind the horizon. Even very weak initial conditions (|P | = 1) already

contain apparent horizons before the simulations starts, and weaker conditions still form

them within a small time. This shows that adding even a small initial momentum to

appropriate metric functions (grr and g11, g22 in this case) introduces a risk of creating

black holes. A momentum which would solely change the size of the three sphere is

disallowed by the Hamiltonial and momentum constraints, other changes to the inital

conditions must be applied and the nature of these will determine the creation of a

black hole.
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Figure 5: P = 0.7: The size of the horizon area begins to grow but at a decelerating

rate

6. Conclusions

We have used the static warped deformed conifold as an initial condition to which we

have added a momentum tending to alter the size of the three sphere at the origin. The

size of the three sphere seems very stable against momenta which would provoke it to

shrink, this is explained by the stabilization of the sphere by the flux. The flux fixes

the size of the three sphere and induces a potential that resists any change to the size.

We have seen in the simulations that, due to the very steep potential in the direction

of reducing the three-sphere, the sphere soon recovers its original size and, presumably,

returns to the original geometry. The geometry was also seen to be remarkably robust

to high-momentum perturbations in the direction of making the sphere smaller, with

simulations even suggesting a minimum size of the three-sphere.

On the other hand, if we insert momentum which tends to increase the size of the

three sphere then the growth slows down on a much longer timescale, as one would

expect on physical grounds by diluting flux-lines rather than squeezing them. This

leads to a shallow potential in this direction, and a geometry that is more susceptible

to growth than collapse of the three sphere. We believe the growth would eventually

stop and the size of the three sphere would tend back to its starting value, however

this is not seen in simulation due to the much larger timescales involved.

– 14 –



The theme seems to be that the size of the three sphere cannot be collapsed to zero

by adding initial momentum, the three sphere will reduce in size temporarily but will

return to a value close to its starting size and will not vanish. This seems to rule out

the possibility of forming a conical singularity when there are fluxes to consider. It does

verify the stable radius of the three sphere in the Klebanov-Strassler static solution,

as expected, and it also makes manifest the difficulty of dynamical topology changing

transitions being realized in string theory when fluxes are present. We should, of course,

make clear that there is a huge degree of freedom in choosing the initial data, despite

the resrictions of the Hamiltonian and momentum constraint, and such conclusions are

based on the initial data we chose.

While the size of the three-sphere may be stabilized by the fluxes, they do not

guarantee anything about the risk of black hole formation. As we have demonstrated

in our simulations, black holes can be formed from the throat with only a very small

perturbation if it is in the ”wrong” direction. This is a big risk (though not a certainty)

in any procedure that involves dynamics on a deformed conifold, and such perturbations

must be ruled out or otherwise addressed while making any models using probes on

throats. The assumption that the manifold is unaffected by small probes may turn out

to be too rash.
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