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Theoretical analyses and laboratory experiments have been performed on the stability of a flow
generated by the differential cyclonic corotation of a flat, rigid disk in a uniformly rotating, linearly
stratified fluid contained within a cylindrical tank. The undisturbed fluid is stably stratified with salt
�Schmidt number ��670� and the �vertical� axes of rotation of the disk and the fluid container are
coincident. The theoretical analysis shows that when the interior flow satisfies gradient wind balance
�or, alternatively, thermal wind balance�, it is destabilized by the action of viscosity. In the
experiments, the manifestation of the viscous overturning instability is seen to be the formation of
steplike internal microstructures in the density field, observed as regularly spaced, curved
ring-shaped sheets with associated localized sharp, vertical density gradients. A stability analysis of
the flow shows that the instability criterion is dependent on local values of the vertical and radial
gradients of zonal velocity and the background density field. These quantities are measured in the
experiments using a combination of horizontal-plane particle image velocimetry and an array of
traversing microconductivity probes. The stability criterion based on this linear analysis predicts that
the interior of the fluid is unstable. Using the ��1 condition, simple asymptotic expressions for the
maximum growth rate and associated wave number have been derived from the cubic dispersion
relation. The theoretically predicted length scales and e-folding times associated with the fastest
growing modes are found to give excellent agreement with the corresponding values obtained from
the laboratory experimental data. © 2010 American Institute of Physics. �doi:10.1063/1.3422554�

I. INTRODUCTION

The term spin-up is commonly used to describe the pro-
cess by which a bounded fluid in a state of solid-body rota-
tion responds to a change in external forcing induced by an
increase in rotation rate of the flow boundaries �or, in some
cases, a specific region of the flow boundary�. Given the
significance of spin-up to the dynamics controlling many at-
mospheric and oceanographic flows �in which the effects as-
sociated with the Earth’s rotation are important and often
dominant�, a considerable amount of research has been dedi-
cated to analyzing the spin-up problem for both homoge-
neous and stratified fluids, as well as for a range of flow
geometries and configurations. Much of this previous work
to date is described in the review articles by Benton and
Clarke1 and, more recently, by Duck and Foster.2

This article further investigates the “double-diffusive”
instability associated with the spin-up of a stably stratified
fluid; a mechanism first identified by McInytre.3,4 The ex-
periment configuration we use to study this instability �de-
scribed in detail in Sec. III� consists of a cylindrical tank
containing a stably stratified water solution which is initially
in a state of solid rotation, with the axis of rotation coinci-
dent with the central symmetry axis of the cylinder. At time
t=0, relative motion within the fluid is induced by the rota-
tion of a smooth, flat, rigid, horizontal disk positioned at the

tank base and set to rotate uniformly, coaxially, and cycloni-
cally �viz., in the same direction as the background rotation�.
Various processes have been studied using this, similar or
related configurations. Typical examples include theoretical
aspects of stratified spin-up,5,6 mixing and frontogenesis,7–11

and internal waves.12

McInytre3 discovered the theoretical basis of the double-
diffusive instability when investigating the properties of a
steady axisymmetric zonal shear flow in a thermally strati-
fied annulus. Local linear stability theory was used to show
that when the background flow is in geostrophic balance, and
provided that ��1 �where for thermal and saline stratifica-
tions � denotes the Prandtl and Schmidt numbers, respec-
tively�, the flow can be destabilized by the disparity in dif-
fusion coefficients of momentum and density of the fluid,
giving rise to relatively small-scale axisymmetric overturn-
ing motions.

At about the same time, and using an experiment setup
similar to one the described here, Baker13 provided experi-
mental evidence of McIntyre’s instability for a salt-stratified
fluid. Baker13 used the shadowgraph technique to visualize
the instability, which manifests itself as a regular density step
�or staircase� microstructure superimposed on the back-
ground density field. �A shadowgraph image showing a typi-
cal density microstructure observed in our experiments is
given in Fig. 5�a�.� Baker13 used measurements obtained
directly from the shadowgraph images to compare with
McIntyre’s instability criteria for the ��1 limit. A similar
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analysis was performed by Calman,14 although improved ex-
perimental data were obtained using a single conductivity
probe �to sample the fluid density field� and dye lines �to
estimate the zonal velocity field�. �There is also speculative
evidence for the occurrence of this double-diffusive instabil-
ity in the study by Hedstrom and Armi.15�

This paper describes experiments used to investigate, in
detail, the development of McIntyre’s diffusive instability.
Following the approach of Baker,13 our experiments consider
the spin-up of a linearly stratified, salt water solution by the
differential rotation of a horizontal disk. The focus was on
obtaining detailed measurements of how the fluid density
and velocity fields �and associated gradients� develop as the
instability forms, with an emphasis on obtaining significantly
improved spatial and temporal resolution in comparison with
the relatively primitive measurements obtained by Baker13

and Calman.14 This was achieved using an array of high-
frequency response conductivity probes to measure the fluid
density field and particle image velocimetry �PIV� to mea-
sure the zonal-plane velocity field �at different heights within
the fluid�. McIntyre’s linear stability theory is also reformu-
lated in the context of this experimental setup. We then use
the dispersion relation in the ��1 limit to derive asymptotic
results for the most unstable normal mode. Maximum growth
rates and corresponding wave numbers are then compared
with observations.

II. LINEAR STABILITY THEORY

In anticipation of the cylindrical geometry used in our
experiments, let �r ,� ,z� denote the cylindrical coordinate
system which rotates with constant angular velocity �ẑ
about the vertical z-axis aligned antiparallel to the gravita-
tional acceleration vector −gẑ. Relative to this rotating refer-
ence frame, we consider a steady, axisymmetric zonal shear

flow u�r ,z�= v̄�r ,z��̂ of continuously salt-stratified water so-
lution which is Boussinesq and in hydrostatic and gradient
wind balance. �In this context, the term Boussinesq indicates
that density variations are assumed negligible except in the
buoyancy terms, and that the coefficients of viscosity ���,
salinity diffusion ���, and salinity contraction ��� are taken
to be constant �with frictional heating assumed negligible�.�
Moreover, we write the �dimensional� density and pressure
fields as

	�r,z� = 	s�z� + 	0�s̄�r,z� , �1a�

p�r,z� = ps�z� + p̄�r,z� , �1b�

where 	s�z� and ps�z� denote the hydrostatic components, 	0

is a constant reference density, and s̄�r ,z� is the dimension-
less salinity. The gradient wind balance �or zonal vorticity
equation�, therefore, is given by

2�� + v̄/r�v̄z = − g�s̄r, �2�

where the subscript partial-derivative notation is standard.
This basic flow-state will be assumed to remain stably strati-
fied �s̄z
0� and centrifugally stable �v̄r�0� throughout.
Note that the cylindrical nature of the flow means that Eq.
�2� includes the nonlinear �centrifugal� term 2v̄zv̄ /r, which is

required to maintain the balanced state when the isobars are
curved. However, it is worth noting that when curvature ef-
fects are negligible, Eq. �2� reduces to the thermal wind
equation 2�v̄z=−g�s̄r, which corresponds to the geostrophic
balance. Indeed, it is this thermal wind balance that was used
in the analysis of both McIntyre3 and Calman.14 However, it
should be noted that the analysis which follows here is little
affected by whether the background state is taken to be a
gradient wind or a thermal wind balance.

McIntyre3 showed that the basic balanced state described
by Eqs. �1� and �2�, when otherwise stable according to the
classical inviscid criterion, can become unstable provided
that �=� /��1. In the present case, that of a salt-stratified
water solution with Schmidt number ��670, the destabiliz-
ing agent is viscosity. That is, the relative absence of salinity
diffusion �in comparison with momentum diffusion� means
that a fluid element that is perturbed from its initial balanced
state will be brought into momentum equilibrium by the ac-
tion of viscous torques significantly faster than the density of
the element is able to adjust to the ambient buoyancy of its
new surroundings. Therefore, any local density difference
induced by this double-diffusive mechanism can give rise to
meridional overturning motions �i.e., zonal vorticity�, the ba-
sic source of this instability. Moreover, the instability mecha-
nism is of a localized nature, not requiring for its function
the presence of a flow boundary, or a free surface. Hence,
adopting the approach taken by McIntyre,3 we treat the basic
flow as being unbounded and consider the local behavior of
small-amplitude, axisymmetric perturbations about the back-
ground balanced state described by Eqs. �1� and �2�.

The basic steady state is localized about an interior point
�r0 ,z0� by introducing dimensionless meridional coordinates
�x ,y� and time � defined, respectively, by

x = �r − r0�/1, y = �z − z0�/1, � = t/�1, �3�

where the dimensional time and length scales �1 and 1 are
chosen such that

�1 = �g�s̄r
0�−1/2, 1 = ��/2��1/2�−1/4, �4�

with the dimensionless parameter � defined as

� = g�s̄r
0/4�2. �5�

In the above, the notation s̄0= s̄�r0 ,z0� has been used, and
will henceforth be adopted throughout, together with
v̄0= v̄�r0 ,z0�. �Note that using the balanced state given in Eq.
�2�, we can also write �=−��r0+ v̄0�v̄z

0 /2r0�2, and that � is
the analogue of the dimensionless parameter defined in Eq.
�2.4d� of McIntyre3 �p. 24�.�

The background flow variables are then expanded about
the interior point �r0 ,z0� as v̄= v̄0+�r0�xv̄r

0+yv̄z
0� �like-

wise for s̄, v̄r, s̄r, v̄z, and s̄z�, where �=1 /r0 and ��1 is
assumed. Therefore, neglecting terms O��� �and noting that
1 /r=1 /r0�1+�x�=1 /r0+O����, the linearized equations for
perturbations in momentum and density, about �r0 ,z0�, can
be written in dimensionless form as

� �

��
− �2��2� − vy − sx = 0, �6a�
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� �

��
− �2�v − ��1�y − �x� = 0, �6b�

� �

��
− �−1�2�s − ��2�x − �y� = 0, �6c�

where ��y ,v ,−�x� and s denote �dimensionless� perturba-
tions in velocity and salinity, respectively, �each of which are
assumed to be axisymmetric functions of x, y, and ��, and
�2��2 /�x2+�2 /�y2 is the standard Laplacian. Using conti-
nuity, the stream function ��x ,y ,�� has been introduced to
eliminate the dependence on the pressure perturbation by
combining the radial and vertical momentum equations �us-
ing cross-differentiation� into the single Eq. �6a� for the
zonal component of vorticity, �2�. The dimensionless coef-
ficient parameters in Eqs. �6� are defined as

� = �/� , �7a�

�1 = �v̄r
0 + v̄0/r0 + 2��/v̄z

0, �7b�

�2 = �s̄z
0 − N0

2/�g�/s̄r
0, �7c�

which depend only on the system constants �� ,� ,��, the
buoyancy frequency N0= �−�g /	0�d	s /dz�1/2, and the local
characteristics of the zonal flow and salinity fields. Finally,
note that the final form of Eqs. �6� are obtained by choosing
the relative scales for the perturbation amplitudes such that

2�v̄0/r0 + ��v� = ��/��11� = g�s , �8�

where the star superscript denotes the dimensional form the
perturbation variables.

The linearized Eqs. �6� support simple normal mode so-
lutions of the form

��,v,s� = exp�ik�x cos � + y sin �� + ��� , �9�

where the growth rate � �which can be complex� is depen-
dent on the wavenumber k and the wave-vector direction
� �both of which are real�. The basic state �� ,�1 ,�2� is
therefore unstable if there exist values of �k ,�� such that
R����0. Substituting Eq. �9� into Eqs. �6� and setting the
determinant of the resulting coefficient matrix to zero gives a
cubic dispersion relation of the form

�� + k2�2�� + k2/�� + �I + G�� + �I/� + G�k2 = 0, �10�

where

I = 1
2sin 2� − �1 sin2 � , �11a�

G = 1
2sin 2� − �2 cos2 � , �11b�

which depend only on the background flow characteristics
and �.

The form of the dispersion relation �10� is the same as
that derived by McIntyre,3 and we now take advantage of
McIntyre’s analysis of Eq. �10�. First, we see that the neces-
sary criterion for classically subcritical flow to be I+G�0
for all values of �; since by putting k=0 in Eq. �10� with this
condition we then obtain the roots �=0, � i�I+G�1/2. More-
over, McIntyre shows that for this classically subcritical flow

�i.e., with I+G�0 assumed�, the necessary criterion for the
diffusive instability described above can be obtained by con-
sidering the real root of Eq. �10�

� = − k2�I/� + G�/�I + G� + O�k6� , �12�

where we have taken k�1 for this approximation.
Specifically, there is monotonic instability if and only if

there exist values of � such that R����0. Using Eq. �12�,
this condition at leading order reduces to I /�+G
0, which
gives

�1�2 

�

4
�1 +

1

�
�2

. �13�

Furthermore, oscillatory instability occurs if and only if there
exist � such that R����−k2�2+1 /�� �for details, see
McIntyre3�. Again, using Eq. �12�, this condition at leading
order becomes I /�+G� �2+1 /���I+G�, which gives

�1�2 

9

8
	 �1 + �1/3���2

1 + �1/�� 
 . �14�

We return to these theoretical results in Sec. IV, with analysis
of the limiting case for large Schmidt number �.

III. EXPERIMENTS

A. Experiment arrangement

Figure 1 shows a side view of the experiment apparatus.
A cylindrical acrylic tank �diameter 36 cm; height 30 cm�
was fitted centrally inside an outer rectangular container
�thereby eliminating optical distortion caused by the curved
sidewalls� and mounted on a rotating turntable with the axis
of the cylinder aligned through the vertical rotation axis of
the table �as shown�. With the table initially stationary, the
two tanks were filled to a depth H=25 cm with a linearly
salt-stratified water solution using the standard double-
bucket system.16,17 Once filled and the fluid quiescent, the
system was gradually brought to a state of solid-body rota-
tion, with the desired angular frequency �. To prevent ex-
cessive mixing, the prescribed final solid rotation rate of the
system ��� was attained using small incremental increases
from rest over a time interval of about 7 hours.

Following the approach of Baker,13 the flow conditions
required to observe the instability were established using a
smooth disk of radius R=17.5 cm �and negligible thick-
ness�, set to rotate horizontally at the base of the cylindrical
tank about a drive shaft mounted through the central axis of
cylinder �see Fig. 1�. The drive shaft was connected �via a
water-tight seal� to an external motor positioned below the
two tanks, allowing the disk to be rotated independently of
the table with a predetermined �constant� angular frequency
�d. The disk rotation �in the same sense as the background
rotation of the system� was initiated at time t=0, with the
fluid in a state of solid rotation. Our cylindrical coordinates
�r ,� ,z� are aligned so that the horizontal disk surface corre-
sponds to z=0, with the vertical z-axis directed through the
central axis of the cylinder. In all cases, the time taken for the
disk to reach a steady rotation rate was significantly less than
one table rotation period �2� /��.
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Measurements of vertical profiles of fluid density were
obtained using an array of three conductivity probes18 fitted
on a vertical, motor-driven traverse mechanism above the
cylinder, at radii r /R=0,0.5,0.9 �see Fig. 1�. A personal
computer �PC� mounted on the turntable controlled the mo-
tion of the traverse, together with acquisition and storage of
the conductivity and probe-position data. When idle, the
probes were located above the fluid with only the sampling
tip submerged below the fluid surface. A single traverse mea-
sured the vertical structure of fluid density over the range
0.04�z /H�0.90 �during the downward stroke only�, at
these three radial locations. The traverse time and sampling
frequency of the probes were 1.5 s and 200 Hz, respectively,
giving density measurements approximately every 0.08 cm.
The correspondence between conductivity and density was
established empirically before each experiment, using a
simple calibration procedure. During the initial period fol-
lowing the onset of disk rotation, density measurements were
taken at intervals of between 30 s and 2 min. The sampling
frequency was progressively reduced throughout the experi-
ment, as the flow conditions became quasisteady, to intervals
of between 20 and 30 min during the later stages of the
experiment.

The primary source of uncertainty in the density mea-
surements was associated with inherent signal noise and the
empirical conversion between conductivity to density. In all
cases, the resulting variability in the density measurements
obtained with the probes was negligible �and always less
than 10−3 g /cm3�. Uncertainties in the probe response in-
duced by thermal variations in the fluid �over the period of

each experiment�, and the variability associated with the me-
chanical measurements of probe position, were both found to
be negligible in comparison to the above. �It is worth noting
that the water used to fill the tanks was first allowed to reach
the ambient temperature of the laboratory over a period of 24
hours; typical variations in the fluid temperature over the
period of each experiment were always less than 1 °C.�

Measurements of the zonal velocity field were obtained,
in four horizontal layers above the disk, using PIV. Small,
neutrally buoyant tracer particles used to seed the fluid were
illuminated by four horizontal light sheets positioned at fixed
heights z /H=0.12, 0.32, 0.52, and 0.72 �see Fig. 1�. A
cyclic timing device activated each light sheet individually
�for a set period of 30 s�, while the remaining lights
were switched off. This sequence was repeated indefinitely.
The particle trajectories were recorded during each 30 s in-
terval using a digital video camera �sampling at 24 Hz with
1380�512 pixel resolution� fastened to the turntable and
positioned to view vertically down into the tank interior
through a thin perspex lid used to eliminate free-surface dis-
tortion �see Fig. 1�. The PC mounted on the turntable was
used for image acquisition and storage, with the velocity
fields calculated at the end of the experiment using PIV tech-
niques developed by Dalziel.19 At each of the four fixed
heights, the processed velocity data, denoted by u1�x ,y , t�i
+u2�x ,y , t�j, were first calculated in terms of the Cartesian
coordinates system x=r cos �, y=r sin �, and then converted
to corresponding polar coordinates, denoted U�r ,� , t�r̂
+V�r ,� , t��̂, using the standard transformation

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
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FIG. 1. Sketch showing the experiment apparatus.
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The axisymmetric zonal velocity profiles v̄�r ,z�, at each of
the four sample heights, were obtained by first time-
averaging each V�r ,� , t� over the 30 s exposure period and
then averaging azimuthally. Applying the same procedure to
U�r ,� , t� gave ū�r ,z��0 �thus demonstrating the axisym-
metric nature of the flow in the interior region�. Error bars
illustrating the typical rms variability associated with these
combined averaging procedures will be included in the ve-
locity data, when presented in the following sections. Uncer-
tainties associated with the PIV processing were negligible in
comparison.

Note also that the conductivity probes could not be used
in the seeded fluid required for the application of PIV due to
interference caused by the tracer particles with the probe tips.
Experiments, therefore, were repeated in pairs �one to obtain
density measurements and one for velocity measurements�.
Care was taken to ensure that each pair of experiments was
performed under the same conditions, and that the velocity
and density measurements were obtained at coincident times
in each case. In a selected number of the density experi-
ments, the shadowgraph method20 was also used to visualize
the density perturbation field. Images were captured using
the digital video camera �described above� mounted horizon-
tally on the table, with the fluid body illuminated by a pro-
jected light source directed horizontally through the opposite
wall of the tank �see Fig. 1�. These images were not used for
the purpose of quantitative measurements, but solely to visu-
alize the features of the fluid density field.

In all experiments, the fluid depth above the disk surface
H was kept fixed at 25 cm with � varied from 0.1 to
0.5 rad /s. The hydrostatic fluid density field 	s�z� was al-
ways stably and approximately linearly stratified with initial
buoyancy frequency N0= �−�g /	0�d	s /dz�1/2 ranging be-
tween 1.0 and 2.0 1 /s, 	0 denoting the value of 	s�z� at z
=0. Note that when N0 was compared with corresponding
buoyancy frequency measured during the solid rotation state,
no significant differences were evident. Of course, a state of
purely static equilibrium cannot exist in the solid rotation
state21,22 �viz., the parabolic isosurfaces of salinity and pres-
sure that are necessary for a contained, stratified fluid to be in
a state of pure solid rotation, are not solutions of the corre-
sponding salinity equation, ��2s̄=0, when ��0�. However,
for the experiments described in this article, with Froude
number Fr=�2R /g�10−2, the resulting small-scale cen-
trifugal convective circulations are very weak and have a
negligible effect.

The disk rotation was always cyclonic with �d ranging
from 0.2 to 1.0 rad /s. In all cases considered, 2.0�N0 /�
�20 and 1.0�N0 /�d�5.0. Corresponding values of the
Rossby number Ro=�d /2� were in the range 0.2–2.0, with
the mid-disk Reynolds number Rem=�dR2 /4� between 1700
and 7500. For the range of salt concentrations used, the ki-
nematic viscosity � and the molecular diffusivity of salt �
were effectively constant at 0.01 and 1.5�10−5 cm2 /s, re-
spectively, giving a constant Schmidt number of �=� /�
�670. Each experiment was run for between 15 and 24

hours. Table I shows a selection of typical experiment pa-
rameters. Of the four experiments shown, the diffusive insta-
bility was observed to occur only in experiments A and B.
These four experiments will henceforth be used to illustrate
our discussion throughout. Of course, the mechanism for
McIntyre’s viscous overturning instability is the same for all
��1. However, we did not attempt to vary � in our experi-
ments. It should be noted, however, that in the experiments
by Baker13 and Calman,14 the Schmidt number was varied
between 310
�
1800, and the instability was observed to
form within this range �provided, of course, the necessary
instability criteria was satisfied�.

B. Observations

Before discussing the instability formation, we first de-
scribe how the required flow conditions are established. At
t=0 the disk motion is initiated, with the container sidewalls
remaining stationary relative to the rotating frame. The re-
sulting spin-up processes thereafter establish two regions of
flow, denoted I and II, which are shown schematically in
Fig. 2; the left-hand and right-hand halves of the diagram
depict the early and later stages of the flow development,
respectively.

After several rotation periods, a thin boundary layer is
established above the disk surface wherein the fluid is accel-
erated and spun-up by the action of viscous stresses. No
longer stationary relative to the rotating frame, the boundary-
layer fluid is forced radially outward by Coriolis acceleration
and replaced with lighter fluid from the overlying interior by
Ekman suction.22,23 On encountering the container sidewall,
the radial flux is forced upward into the lighter interior, es-
tablishing a local adverse vertical density gradient which
overturns the fluid, forming a secondary meridional circula-
tion. Initially, therefore, the spun-up fluid forms the frontal
region, I, confined to the lower corners of the container �see
Fig. 2�a�� consisting of the heaviest fluid, originally posi-
tioned above the disk. The vertical extent of the front is
determined by the relative strength of the background strati-
fication �N /��.

Region II consists of the interior fluid above the bound-
ary layer and region I. Henceforth, BB� will be used to de-
note the interface between regions I and II, while AB� will
denote the early stage interface between the boundary layer
and region II �as shown in Fig. 2�a��. Vertical Ekman suction
increases cyclonic vorticity inside region II �by stretching the
background vorticity�, thereby generating zonal velocity, the

TABLE I. A selection of four experiments chosen to illustrate the parameter
ranges in which the diffusive instability was observed �A and B� and was not
observed �C and D�.

Experiment
label

�
�rad /s�

�d

�rad /s�
N0

�1 /s� Ro N0 /�

A 0.31 0.23 1.0 0.37 3.2

B 0.50 0.23 1.7 0.23 3.4

C 0.12 0.25 1.0 1.0 8.3

D 0.26 0.97 1.3 1.9 5.0
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magnitude of which decreases with height z, with the fluid
furthest above the disk remaining largely unaffected. A sche-
matic illustration of the induced zonal shear flow established
in region II is shown in Fig. 2�c�. Furthermore, directly above
AB�, Ekman suction acts to deform the initial, near-planar
isopycnals downward, whereas above the developing corner
front �region I� they are forced upward, as depicted in Fig.
2�a�. Again, far above the disk surface, the isopycnals remain
largely unaffected.

The features described above are readily identified in
Figs. 3 and 4, which show �or include� data obtained from
experiment A after n= �� /2��t=9 rotation periods
�t�3 min�. In particular, note the direction in which the
density profiles are deformed relative to the initial linear
state �Fig. 3�, with the initial formation of region I evident at
r /R=0.9, for z /H�0.15 �below which the fluid is well-
mixed�. Also note the form of the axisymmetric zonal shear
flow v̄�r ,z , t�, with v̄z
0 and the no-slip condition establish-
ing a region in which v̄r
0 near the tank sidewalls �Fig. 4�.

The processes described above continue, causing region
I to expand radially inward as it is supplied �via the boundary
layer� with fluid from region II, the density of which is
gradually decreasing with time. In doing so, the contact area
AB� between the boundary layer and region II gets progres-
sively smaller, thereby reducing the radial flux and the ver-
tical Ekman suction on region II. Eventually, region I ex-
pands to cover the area above disk surface �i.e., AB�=0�, as
depicted in Fig. 2�b�. At this point, the direct supply of inte-
rior fluid to region I via the disk boundary layer �and Ekman
suction� is effectively switched off, whereafter lighter fluid
from region II is entrained directly through the interface BB�
by diffusion, reducing the rate at which the fluid in region II

is spun-up. In experiment A, this event occurs after n�120
rotation periods �t�42 min�. After this time, the interior

region II flow is essentially quasisteady, while the interface
BB� migrates slowly upward through the fluid. The small
velocity difference between the disk surface and the fluid
below BB� maintains a weak, secondary meridional circula-
tion in region I.

The later stages of the flow development for experiment
A are shown in Figs. 4 and 5, after n=720 rotation periods
�t�4 hours�. The interface BB� is now clearly evident in
each density profile at z /H�0.25, below which the fluid is
essentially well-mixed and largely spun-up �see Fig. 4�d��. It
is worth noting here that when Experiment A was terminated
after 24 hours �n=4125�, the interface BB� had only ad-
vanced to a position at z /H�0.45. Also note in Fig. 4 the
marked decrease in the rate at which the fluid in region II is
spun-up during the period between n=120 and 720, in com-
parison with the rate observed during the early stages be-
tween n=9 and 120, when the Ekman dynamics are preva-
lent. This quasisteady nature of the interior flow is further
confirmed by Fig. 6, showing the temporal development of
the zonal flow field v̄�r ,z , t� at the mid-disk radius r /R
=0.5.

In Figs. 5�a� and 5�c�, the regular steplike perturbations
to the near-linear background density stratification �in region
II� are the manifestation of the axisymmetric viscous over-
turning instability identified by McIntyre.3 We now focus our
attention on region II and describe how this density micro-
structure is observed to form. For further details regarding
the dynamics leading to the formation of region I, the reader
is referred to related numerical and experimental studies.9–12

In Sec. II we presented the linear theory to describe this
diffusive instability mechanism. Recall that a basic require-
ment of this theory was for the background flow to be in the
balanced state represented by Eq. �2�. Indeed, over the range
of conditions considered in this article, the instability was
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FIG. 2. Schematic showing the important flow characteristics leading to the development of the flow regions I and II �see text for description�. The left-hand
and right-hand halves of the diagram show the early and later stages of the flow development. The inset �c� illustrates the form of the axisymmetric zonal shear
flow v̄�r ,z , t� observed in region II.
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observed to form only in regions of the interior flow which
eventually satisfy this condition, following the initial period
of �notably� unsteady flow as the fluid interior adjusts to the
onset of disk rotation. Moreover, the staircase density micro-
structure was observed to form only at times after the local
flow had reached this balanced state. This is demonstrated by
Fig. 7 which shows, for the four experiments listed in Table
I, the times at which the flow is �or is not� in balance; here,
Eq. �2�, in slightly rearranged form, is represented by the
horizontal broken line. In all cases, the data shown are taken
from the interior point r /D=0.5, z /H=0.52. Recall the mi-
crostructure was observed to form in experiments A and B
�represented by � and +�, in which Ro is small, but not in
experiments C and D �represented by � and �� where
Ro�1. Consider first experiments A and B. The data for
these two experiments �� ,+� show that the flow �at this
point� reaches the balanced state after n�150 disk rotations.
Note, however, in both experiments the density step struc-
tures do not become fully formed at this point until much
later, i.e., for experiment A after n�720 �as shown in Fig. 5�.
Conversely, the data for experiments C and D �� and ��
show clearly that at no time is either flow in balance at
r /D=0.5, z /H=0.52. Experiment C simply corresponds to
the case of weak background rotation �with Ro=1.0 and

��0.1 rad /s�, in which the Coriolis effects are not domi-
nant. Experiment D, in addition, corresponds to the case of
relatively strong forcing of the flow by the disk motion �with
Ro=1.9 and �d�1 rad /s�, in which case previous studies10

have shown �using a setup similar to the one described here�
that the induced flow is three-dimensional, exhibiting signifi-
cant secondary azimuthal wavelike modes.

The density perturbations first develop in the lower re-
gion of II �above the interface BB��; Fig. 8 shows a sequence
of shadowgraph images, taken at various times throughout
experiment A. Initially, two �or three� step structures appear
in the form of axisymmetric curved horizontal sheets. As
time progresses and the fluid is gradually spun-up, more of
the interior region II is destabilized resulting in additional
step structures forming further above the interface BB�. Once
fully formed, the steplike perturbations have a remarkably
regular wavelength and remain robust until they are either
entrained through the slowly advancing interface BB�, or the
table or disk rotation is terminated, and the fluid is spun
down. Notably, the step structures do not appear to be unduly
affected by the vertical motion of the traversing conductivity
probes.

It should be noted that the shadowgraph images can be
somewhat misleading, due to the depth-integrated view
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FIG. 3. Measurements obtained from experiment A after n= �� /2��t=9 rotation periods. �a� A shadowgraph image obtained during the early stages of the
flow development; the homogeneous region shows where the fluid remains unperturbed and �essentially� linearly stratified. ��b�–�d�� A set of measured density
profiles obtained at this time, where 	1 denotes the value of 	s�r ,z� at z=0.9H; corresponding radial locations �r /R=0,0.5,0.9� are indicated. The initial
density profile for the solid rotation state �t
0� is shown by the broken lines.
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through the side of the tank. That is, in Figs. 5�a� and 8, the
microstructure appears to take the form of axisymmetric,
saucer-shaped sheets, extending horizontally across the cyl-
inder. This is not the case. The density measurements show
that around the stagnant central axis �r=0� the background
density field remains unperturbed and essentially linear, as
shown by Fig. 5�b�. Here, the necessary conditions for the
onset of instability are not satisfied in this stagnant region.
�This ring-shaped structure of the sheets was also identified
by Calman.14� However, Fig. 5�b� does show the presence of
a weak and smeared density step structure in the interior
region II, at r=0. These structures were observed in the axial
density profiles only during the later stages of the experiment
�in this case, n=720, i.e., after 4 hours�, and several hours
after the step structures have formed in the midradius pro-
files. This manifestation of the density microstructure at r
=0 is likely to be due to �neglected� nonlinear effects.

Before turning to the stability question, we need to ad-
dress what is an interesting consequence of the data shown in
Fig. 7. Linear spin-up theory �see Refs. 2, 5, and 6, for ex-
ample� indicates that in the early stages of spin-up, the Ek-
man flux is O�E1/2� and the meridional velocity components
in the fluid interior are also O�E1/2� as a result. That being
the case, the terms in the azimuthal vorticity equation not
shown in Eq. �2� are very small. Thus, it seems surprising
that the data for experiments A and B in Fig. 7 show a large

deviation from the balanced state given by Eq. �2� during the
initial stages �between n=0 and 150 rotation periods� of the
flow development. The authors are grateful to an anonymous
referee for making this observation. We consider that the
reasons for this anomaly go to the inherent nonlinearity of
the experiments reported here, for which Ro=O�1�. There is
no existing theory for this nonlinear regime, so the orderings
are unclear. There are two difficulties. First, the Ekman layer
itself is nonlinear, which means that there is no local Ekman
suction law analogous to the familiar linear one.24 The non-
local character is critical, since now the layer develops from
center to rim, with the entire structure nonlinearly coupled to
the flow above it. Second, there is the question of the corner
eruption of Ekman fluid, a prominent and crucial feature of
linear spin-up, first noted by Walin.5 There is no reason to
expect that such an eruption in the nonlinear regime re-
sembles closely that in the linear flow—there will be strong
coupling of the corner eruption with the rest of the boundary
layer, likely leading to unpredictable a priori orderings of the
interior flow. �For an example of how complex that coupling
can be, the reader is referred to Belcher et al.25 and related
papers.� In summary, the clear ordering arguments in linear
spin-up depend crucially on the local Ekman suction law; in
the absence of such simplified dynamics, the orderings of the
interior flow cannot be accomplished with any confidence. In
fact, the data of Fig. 7 suggest precisely that there are interior
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FIG. 4. Experiment A: Measurements of zonal velocity field v̄�r ,z , t� at heights z /H=0.12,0.32,0.52,0.72; three sets of measurements are included in each
plot, obtained after n= �� /2��t=9, 120, and 720 rotation periods, as indicated. Error bars are provided in the n=9 measurements �every fifth data point� to
indicate the typical variation. A similar degree of variation was observed in each of the data. The broken line shows the corresponding disk speed �r�d� at each
radial position, and therefore represents the limiting spun-up state.
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meridional velocities �during the early stages� that are much
larger than O�E1/2�, although the detailed measurements of
the meridional plane velocity fields that are necessary to con-
firm this behavior were excluded from consideration in our
experiments. While further experiments designed to investi-
gate meridional flow fields are of merit in this regard, we
emphasize here that the initial stage of the spin-up process
has no real relevance to the core stability analysis we present

in this paper. For that reason, we focus henceforth on the
later stages when the flow is quasisteady and the instability
occurs. Before doing so, however, we note for completeness
that an increase in effective viscosity of the fluid �because of
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FIG. 5. Experiment A, as in Fig. 3, except that n= �� /2��t=720. At this time, region I is fully established across the disk surface, with BB� at z /H�0.25.
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the presence of tracer particles� has been invoked by the
referee as a possible explanation for the imbalance aspect of
the initial state behavior outlined above. �Recall that such
particles were not present in the experiments used to obtain
the density measurements.� However, the viscosity correc-
tion in a dilute suspension of small particles is known26 to be
a multiplier of �1+5� /2�, where � is the concentration of
particles by volume. In our experiments, � is always less
than 5�10−4, and so the viscosity correction is clearly neg-
ligible for these conditions.

We conclude this discussion by noting that the initial
period of rotating-stratified spin-up problems, for Ro=O�1�,
is currently not well understood and requires further detailed
study.

IV. LARGE-� CASE

It turns out that one may use asymptotic techniques to
considerable advantage to obtain relatively simple results for
the most unstable mode. Not only is � large for the water-salt
system, but the numerical values of �1 and �2 are generally
large and negative in this series of experiments. Hence, we
construct asymptotic solutions for �→�, simultaneously
with �1 ,�2→−�.

If ��1� , ��2��1, and are both negative �as they are in
the experiments�, then Eq. �10�, written here again for
convenience,

�� + k2�2�� + k2/�� + �I + G�� + �I/� + G�k2 = 0, �16�

and the fact that I and G are both positive for large and
negative �1 ,�2 indicate that there can be no positive real
root for �, since all of the terms are positive. However, we
know from McIntyre3 that the instability that arises at large
�1�2 is monotonic, and it is evident from the experiments
that �1�2 is in fact quite large. The only way that Eq. �16�
might exhibit a positive real root is if the multiplier of either
the large �1 or �2 terms in I or G is small, that is, either
cos � or sin � must be small, thereby making either I or G
negative. So, � must be near 0 or � /2. It turns out that the
latter case is the one that leads to instability.

A. Stability for �=O„1…

If �1, �2→−�, �→�, then Eq. �16� becomes, to lead-
ing order,

�� + k2�2� − ��1 sin2 � + �2 cos2 ��� − �2k2 cos2 �

= 0, �17�

so long as � is such that neither the sine or cosine is small.
We have dropped for the moment the 1 /� terms, since they
contribute higher-order corrections to what follows. Then,
using the largeness of the three parameters, and assuming
that �=O�1�, we get to leading order the stable root

� � − � �2 cos2 �

�1 sin2 � + �2 cos2 �
�k2 + O� 1

�1
,

1

�2
,
1

�
� .

�18�

Certainly, an asymptotic solution for � depends on the rela-
tive orderings of the three large parameters in this problem,
�1, �2, and �. Nonetheless, a more formal approach than
what is presented here shows that, in order to obtain Eq. �18�
from Eq. �17�, we need require only that �1=O��2� and
1 /�=o�1�.

The other two roots correspond to large values of �, and
scaling � with −�1, construction of a two-term series gives
the damped, oscillatory modes

� � � i− �1�sin2 � +
�2

�1
cos2 ��1/2

−
k2

2
�2�1 sin2 � + �2 cos2 �

�1 sin2 � + �2 cos2 �
� , �19�

for �1 ,�2→−�. Once again, since ��1, the corrections to
this expression are higher order.

So, even though the three roots are of differing scales at
large �−�1�, none of them leads to an instability of this flow.
We now turn to an analysis of the solutions for � when � is
near � /2.
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FIG. 8. Experiment A: Sequence of shadowgraph images illustrating the development of the density microstructure in region II.
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B. Instability for �È� /2

To examine this case, we write

� =
�

2
+ �̃, ��̃� � 1,

so the parameters that occur in the Eq. �16� take the approxi-
mate form

I � − �̃ − �1, G � − �̃ − �2�̃2, �20�

taking �̃ to be small and �1 and �2 large and negative.
Substituting into Eq. �16� then gives the approximate poly-
nomial in this regime,

�� + k2�2�� + k2/�� − �2�̃ + �1 + �2�̃2��

− ��̃ + �2�̃2 + ��̃ + �1�/��k2 = 0. �21�

Retaining only the dominant terms in the asymptotic limits
described above, and for k=O�1�, this equation becomes

�� + k2�2� − �1� − ��̃ + �2�̃2 + �1/��k2 = 0. �22�

Then, so long as � is not large, we get the approximate
solution

� � − � �̃ + �2�̃2 + �1/�
�1

�k2 + O� 1

��1
� . �23�

�The two oscillatory roots, Eq. �19�, do not alter dramatically
in this regime from those results given above, since putting
�=� /2 in that equation clearly does not invalidate those
asymptotics.� Now, clearly for �̃ sufficiently large, � goes
like −k2, indicating stability. Since the denominator is always
negative, the requirement for instability becomes

�̃ + �2�̃2 + �1/� � 0. �24�

This polynomial is positive provided �̃ lies between two
roots, that is,

�̃− 
 �̃ 
 �̃+,

where

�̃� = −
1

2�2
� 1

4�2
2 −

�1

��2
.

This range shrinks to zero when the square root vanishes.
Thus, for a finite range of �̃ that obeys criterion �24�, and
hence leads to �monotonic� instability, we require

�1�2 

�

4
, k = O�1� . �25�

This result agrees with the large-� limit of McIntyre’s result,
Eq. �13�. Before modifying this result for large k, we note
that �̃ in the critical range of Eq. �25� is of order 1 /�2, and
is therefore small as initially assumed. Again, formal asymp-
totics show that result �23� is asymptotically valid for
��1�→� provided that �2=O��1�, but also now that
�=O��1�2�, which is consistent with our experiments.

C. The instability at large k for �È� /2

We have found an instability that occurs near �=� /2
whose growth rate is proportional to the square of the wave
number, and so grows to larger values as k increases. On the
other hand, it is immediately obvious for k sufficiently large
that all solutions to Eq. �16� are stable, that is, R���
0.
Therefore, at some intermediate value of k which evidently
must be large, � passes through zero. We seek in this section
to examine the instability in that range of k. We note from
Eq. �23� that � scales with k2 /�, but from Eq. �21�, on the
other hand, since � is smaller than k2, we obtain a scaling
��k6 / ��1��. Balancing these gives k��−�1�1/4 if we take
�=O��1�2� as above. Then, � is of order �−�1�−3/2. Hence,
we now write

k = �− �1�1/4�, � =
�− �1�1/2

�
� . �26�

Substitution into Eq. �21� gives the leading-order result

� = −
�2

1 + �4��4 +
�

�1�2
�� + �2 +

�1�2

�
��

+ O� 1

�1
� , �27�

for �̃=� /�2. The instability criterion �25� is recovered if
�2�1.

Since the result �23� is wholly contained in Eq. �27�, we
can compute � versus k for a given value of � from Eq.
�27�. Parametric restrictions here are those of the foregoing
k=O�1� discussion. Typical results are shown in Fig. 9 for
both stable and unstable cases. We note that in Eq. �23� the
growth rate is order 1 /�, when k=O�1�. However, in this
regime, the growth rate is order �−�1�1/2 /�, much larger, and
so maximum growth rates occur for k=O��−�1�1/4�.
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FIG. 9. � vs k for three values of �1�2 /� and with �=−1 /2. The cases
shown are: �1�2 /�=0.1 �solid line�, �1�2 /�=0.2 �dashed line�, and
�1�2 /�=0.5 �dotted-dashed line�. Recall from Eq. �25� that monotonic
instability occurs when �1�2 /�
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Clearly, the maximum growth rate arises when both �
and � derivatives of � vanish. That occurs at �m=−1 /2 and,
after solving a quadratic for �4, at

�m
4 =

� − 3 + �1 − ���9 − ��
2

, �28�

where

� � �1 −
�

4�1�2
� . �29�

Substitution into Eq. �27� gives this maximum value of the
growth rate as

�m �
�− �1�1/2

�
�3 − 3� − �1 − ���9 − ��

� − 1 + �1 − ���9 − ��
�

��� − 3 + �1 − ���9 − ��
2

�1/2

. �30�

The associated wave number is given by

km � 	−
�1

2
�� − 3 + �1 − ���9 − ���
1/4

, �31�

which is real only for �
0, and that occurs if Eq. �25� is
satisfied.

To summarize then, the most unstable mode of form �9�
is

exp�i�− �1�1/4�m�y +
x

2�2
� + �m�� , �32�

where this asymptotic result is valid for

�1,�2 → − � and � = O��1�2� . �33�

In dimensional form, the characteristic vertical length scale
�L� and time scale �T� for this most unstable mode are given
by

L =
2�

km
� �2

g�s̄r
0�1/4

and T =
2�

�m
� 1

g�s̄r
0�1/2

. �34�

D. Comparison with experiment

Theoretical predictions were compared with measure-
ments from the experiment data at r0 /R=0.5, z0 /H=0.52. At
this interior point, the measured density and zonal velocity
fields �and associated gradients� were not unduly affected by
the advancing frontal region, or by the tank sidewall. More-
over, this point provided a period of at least 1 hour before the
flow became unstable, allowing the corresponding onset time
for the instability to be determined. This is illustrated by Fig.
10, which shows �1�2 plotted against n for experiments A
and B. Also shown are the conditions for monotonic and
oscillatory instability; the latter is obtained directly from Eq.
�14�, by taking the ��1 limit. �Note that in all experiments
considered here, and as illustrated in Fig. 10, the condition
for oscillatory modes was never satisfied.� When Figs. 7 and
10 are compared, we see that it takes around n=200 rotation

periods for the flow in experiments A and B to reach approxi-
mate gradient wind balance �i.e., about 70 and 40 min,
respectively�.

It is possible to compute �1�2 from linear, spin-up
theory, of the kind reviewed elsewhere,2 and then compare
with the experimentally obtained product shown in Fig. 10.
However, there is a serious difficulty with such a compari-
son: the linear spin-up theory requires Ro�1, and in the
initial stages of the spin-up, due to the corner eruption,
Ro�E1/2, where E=� /�H2 is the Ekman number �which is
about 5�10−5 in our experiments�. In fact, here, Ro�E1/2.
Of all the small parameters that are relevant to such an analy-
sis �viz., Ro ,E1/2 ,�−1�, the Rossby number is by far the larg-
est. After temporal adjustments have occurred, and for the
case for which �Ro�1 �as in these experiments�, though the
gradient wind balance remains approximately linear, the
equations for the zonal velocity component and the density
perturbation are inherently nonlinear. Salinity perturbations
near the boundary, in a layer of width E1/2 / ��Ro�1/3, drive
similar perturbations in the thicker �E1/2� Ekman layer, and
that induces a nonzero salinity perturbation in the interior.

We denote by Lexp the height �or wavelength� of the fully
developed density step structure observed in the experi-
ments, measured directly from the midradii density profiles
at the point �r0 ,z0�. This step height was compared with the
corresponding vertical perturbation length scale L predicted
by the theory. The results for experiments A and B are given
in Table II. Once fully developed, the height of the density
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FIG. 10. Plot showing �1�2 plotted against dimensionless time n for Ex-
periments A ��� and B �+�; all data shown are taken from the interior point
r=r0=0.5R, z=z0=0.52H. Also shown are the ��1 conditions for mono-
tonic instability ��1�2
� /4� and oscillatory instability ��1�2
9 /8�.

TABLE II. Predicted and measured values of perturbation length and time
scales for experiments A and B.

Experiment
label

L
�cm�

Lexp

�cm�
T

�hours�
Texp

�hours�

A 1.04�0.09 1.10�0.11 4.3�0.7 5.0�0.3

B 0.82�0.04 0.80�0.09 2.4�0.8 3.1�0.3
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step was observed to remain essentially constant. Hence,
each value of Lexp was an average value calculated from the
period after the density step had fully formed; typically, this
average was taken from between six and eight individual
measured values, obtained over a period of between 2 and 3
hours. The corresponding rms values are also shown to indi-
cate the typical variation over this period. Likewise, the val-
ues of L shown in Table II are averaged values. Recall that
the length scale L is calculated using Eq. �34�, and so the
background flow conditions ��1 ,�2 ,� ,1� at �r0 ,z0� must
be used. The quasisteady nature of the background flow,
clearly illustrated by Figs. 7 and 10, means that the values of
L exhibit a degree of slow-time variation. However, in all
cases considered here, the calculated values were found to
become essentially constant, and always well before the time
at which the step structure is observed to be fully formed.
Hence, the values of L shown in Table II are the average
taken from this near-constant period; again, rms values are
included to indicate the typical variation observed. Clearly,
the correspondence between experiment and theory is very
good, especially bearing in mind that the stability analysis is
linear and that the height of the density steps observed in the
experiments do not represent very small perturbations from
the linear initial state. A similar degree of correspondence
was found in the other experiments in which the instability
was observed to form.

Table II also shows the time scale T calculated, using Eq.
�34�, for experiments A and B. For the same reasons outlined
above, the values of T shown are averages �taken over the
same period used to average L�. Again, rms values are in-
cluded to show the typical variability. Of course, the corre-
sponding e-folding time scale could not be measured directly
from the experiment data. Hence, the growth time scale for
the experiments, henceforth denoted Texp, was defined as the
time from when the condition for instability is first satisfied
to when the density step structure was first observed to be
fully developed. The corresponding values are also shown in
Table II; the confidence intervals of 0.3 hours are based on
the typical sampling frequency of the density probes during
the latter stages of the experiment. Despite the comparatively
arbitrary way in which Texp has been defined, the agreement
between the time scales is good. Of course, one would ex-
pect Texp to be several times larger than the e-folding time T
for the most unstable mode.

It is also observed that the values of the product �1�2

are larger at larger values of z. Hence, in general, the insta-
bility is observed to form in the lower portion of the tank.
This is indeed what one sees in our experiments, as
illustrated by Figs. 5 and 8. Moreover, as one moves upward
through the unstable region toward the critical value
�1�2=� /4 �so that ���→0, where recall �
0 in this un-
stable region�, the wavenumber �km� and growth rate ��m� of
the most unstable mode decrease toward zero. According to
Eqs. �30� and �31� this decrease goes like

km � ��1�

3
�1/4

and �m � − �23/2�

3�
�km

2 , �35�

when ���→0 �with �
0�.

V. SUMMARY AND FINAL REMARKS

Experiments were performed on a linearly salt-stratified
water solution ���670� in a cylindrical container that was
initially in a state of solid-body rotation. Relative fluid mo-
tion was induced by a disk positioned at the container base,
and set to rotate independently of the container and cycloni-
cally. The disk rotation results in the formation of two dis-
tinct regions of flow �Fig. 2�. Initially, a layer of well-mixed
fluid is observed to form in the high-shear region immedi-
ately above the disk surface, within which the fluid is essen-
tially spun-up �region I, Fig. 2�b��. In addition, Ekman suc-
tion acts to stretch the background vorticity, thereby
establishing a zonal shear flow within the interior fluid above
�region II, Fig. 2�b��. Notably, the background stratification
remains essentially linear, albeit deformed by the stretching
effect; the mixed-layer interface is observed to migrate
slowly upward through the fluid interior. Our experiments
focused on analyzing the stability of the axisymmetric zonal
flow within this interior region.

It was found that only when the local flow conditions
were in the �near-steady� balanced state was the interior re-
gion destabilized by the viscous overturning mechanism first
proposed by McIntyre.3 This instability is identified through
the formation of a steplike density perturbation to the near-
linear background density gradient. The step structures are
first observed to form in the lower part of region II �above the
interface BB��, and take the form of curved nearly horizontal
ring-shaped sheets. As time progresses the zonal flow within
region II increases so that more of the interior becomes un-
stable, resulting in additional step structures forming further
above the interface BB�. Once fully formed, the step struc-
tures appear to have a near-constant wavelength. Moreover,
the step structures remain robust until they are entrained
through the slowly advancing interface BB� �or until the
table rotation is terminated and the fluid spun down�.

The instability criterion, derived from conventional nor-
mal mode analysis, is shown to be dependent on the dimen-
sionless parameters �, �1, and �2, the latter depending on
the local values of the vertical and radial gradients of the
background density and zonal velocity fields. These quanti-
ties were measured in each experiment using a combination
of zonal-plane PIV and a radial array of traversing conduc-
tivity probes. The data obtained confirmed that the instability
criterion �viz., �1�2
� /4 for ��1� does indeed predict-
when the interior region is unstable �see Fig. 10�. The simple
linear theory provides criteria for both monotonic and oscil-
latory instability. However, in our experiments only mono-
tonic modes were observed �as shown in Fig. 10�.

By using the fact that � ,�1�2�1, simple asymptotic
expressions for the maximum growth rate and associated
wave number were derived from the cubic dispersion rela-
tion. The predicted perturbation length scales L were com-
pared with the corresponding wavelength Lexp of the step
structures measured directly from the midradii density pro-
files. Over the range of experiment conditions considered
here, the agreement was found to be very good, where in all
cases �Lexp /L��1.0–1.3, where typically, Lexp�1 cm.
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Likewise, the predicted and measured perturbation time
scales were compared, where in all cases �Texp /T�
�1.1–2.1. Here, Texp was defined as the growth time of the
fully developed step structure �typically of the order several
hours�, which one would expect to be several times larger
than the e-folding time for the most unstable mode.

Finally, we have determined, as noted earlier, that the
inherent nonlinearity of the base flow in this problem, owing
to Rossby numbers that are much larger than any other small
parameter in the problem, means that comparisons with lin-
ear spin-up theory2 are meaningless. That difficulty appears
in two ways in this paper. First, nonlinearity of the underly-
ing flow makes it impossible, short of full numerical solu-
tion, to obtain a sensible long-time limit for �1�2, for com-
parison with the asymptote evident in Fig. 10. In Spence
et al.,6 good agreement between experiment and theory was
found, for example, for v versus t at particular �r ,z� loca-
tions, but there Ro /E1/2 is order one. So, second, similar
linear-theory comparisons with the data of Fig. 6 are also
meaningless, for precisely the same reasons, and so have not
been included here. The point of this paper is, in fact, not
comparison of experiment and theory for the spin-up itself,
but comparison of stability theory with results of the experi-
ments.
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