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Abstract: An experimental programme of cyclic mechanical testing of a 316 stainless steel, at
temperatures up to 600 ◦C, under isothermal conditions, for the identification of material con-
stitutive constants, has been carried out using a thermo-mechanical fatigue (TMF) test machine
with induction coil heating. The constitutive model adopted is a modified Chaboche unified
viscoplasticity model, which can deal with both cyclic effects, such as combined isotropic and
kinematic hardening, and rate-dependent effects, associated with viscoplasticity. The character-
ization of 316 stainless steel is presented and compared with results from cyclic isothermal tests.
A least-squares optimization algorithm has been developed and implemented for determining
the material constants in order to further improve the general fit of the model to experimental
data, using the initially obtained material constants as the starting point in this optimization pro-
cess. The model predictions using both the initial and optimized material constants are compared
to experimental data.

Keywords: unified viscoplasticity model, 316 stainless steel, material property determination,
non-linear least-squares optimization

1 INTRODUCTION

Many components in power generation plant, chemi-

Q1

cal plant, aeroengines, superplastic forming dies, etc.
are subjected to combined mechanical and thermal
loading. The materials undergoing these loadings can
be working under an inelastic state. An understand-
ing of the material behaviour at high temperature is
very important for lifetime estimation of these compo-
nents. In the last few decades, several viscoplasticity
constitutive models have been proposed for predict-
ing material behaviours at high temperature. In 1983,
Chaboche [1, 2] put forward what has become known
as the unified Chaboche viscoplasticity constitutive
model, which has been widely accepted. Phenomena
such as cyclic plasticity, creep relaxation, and harden-
ing can be simulated using this model. A key problem
for the use of this model is how to determine an initial
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set of material parameters to be used within the model.
A basic method for this initial constant determination
has been described by Tong et al. [3] and Zhan [4].

Using these initial constants within the model
allows a reasonably accurate prediction of the material
behaviour; however, a number of greatly simplifying
assumptions are made when obtaining these con-
stants. A more accurate material constant set can
be obtained by performing an optimization process
using this initial constant set as a starting point.
This article is particularly concerned with this opti-
mization process and the improvement made to the
model, when compared with experimental data, by
the optimization. A basic theory for determining opti-
mized material parameters and for model sensitivity of
parameters has been proposed by Mahnken and Stein
[5], Schwertel and Schinke [6], and Fossum [7, 8]. In
this article, Matlab [9] mathematics and optimization
toolboxes [10] are used as the development tools for
the optimization of the material parameters.

Experimental measurements of cyclic stress–strain
loops, within the plasticity and creep ranges, are an
essential step towards the determination of material
properties for a viscoplasticity model. These equations
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can be used in structural analyses aimed at predicting
the lives of components such as those in aeroengines
and power plant. In this article, the test data obtained
from an experimental programme for a 316 stainless
steel are presented along with the method used to
optimize the material properties.

2 EXPERIMENTAL TESTING

2.1 Materials

All experimental results have been obtained using
specimens made of 316 stainless steel. The chemical
composition of this material is given in Table 1.

2.2 Test equipment

The thermo-mechanical fatigue (TMF) machine used
in this work is an Instron 8862 TMF system, which
utilizes radio-frequency induction heating, is shown
in Fig. 1, allowing rapid heating. Forced air cooling,
through the centre of the specimen, is used, in order to
achieve rapid cooling. The maximum achievable load
for the machine is 35 kN (limited by the grips) and the
maximum allowable temperature is 1100 ◦C. Figure 2
shows a typical specimen geometry used for testing
with this machine. This is the specimen geometry used
in obtaining all the test results presented in this article.

2.3 Experimental results

2.3.1 Temperature uniformity

The requirement for temperature uniformity in the
gauge section of the specimen during this testing
is that the entire gauge section should be within
±10 ◦C of the target temperature. Therefore, the initial
experimental work was concerned with achieving this.

Thermocouples were placed along the gauge section
of the specimen in order to monitor the axial, as well
as the circumferential, temperature gradients within
the specimen gauge section during a series of ramp
and hold, as well as cyclic thermal testing. Initially the
results were not within this tolerance, with axial devi-
ations of up to ±30 ◦C from the target temperature.
Therefore, new coil designs were investigated.

A key problem faced was achieving the tempera-
ture uniformity required while leaving enough space
between the turns of the coil for the attachment of
the extensometer to the gauge section of the speci-
men. Figure 1 shows the final coil design which gives
temperature uniformity throughout the gauge section

Fig. 1 Photograph of the heated specimen, induc-
tion coil, and extensometer setup for the TMF
machine

to within the tolerance required for target temper-
atures ranging from 200 to 1000 ◦C. Figure 3 shows
the temperature uniformity results obtained using this
coil and a 316 stainless-steel specimen, for a target
temperature of 800 ◦C.

2.3.2 Isothermal cyclic testing

Isothermal cyclic tests were carried out at tempera-
tures of 300, 500, 550, and 600 ◦C. At each temperature,
the test was performed for 50 cycles (producing 50
loops, shown in Fig. 4) at four strain ranges, i.e.
stepped strain-range testing (200 loops in total), using
one specimen for each of the temperatures. Example
results, at 600 ◦C, from these tests are shown in Fig. 4.
It can be seen that the majority of material harden-
ing occurred at the first and lowest strain range (±0.3
per cent). This can be seen by the large stress differ-
ence between the first and second times the maximum
strain is reached (for the innermost loops) compared
to that of the loops of the three larger strain ranges.
Therefore, these test results, at the lowest strain range,

Table 1 Chemical compositions of the 316 stainless steel (wt %)

Fe Cr Ni Mo Mn Si Cu V Co S C Nb P W Ti Al

66.4 16.8 11.8 2.15 1.42 0.5 0.49 0.08 0.07 0.03 0.02 0.02 0.01 <0.02 0.01 0.01

Proc. IMechE Vol. 223 Part L: J. Materials: Design and Applications JMDA273



Determination of material properties in the Chaboche unified viscoplasticity model 3

Fig. 2 Specimen geometry used with the TMF machine
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Fig. 3 Thermocouple positions and thermal uniformity results using the final coil
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Fig. 4 Isothermal cyclic test results at 600 ◦C

JMDA273 Proc. IMechE Vol. 223 Part L: J. Materials: Design and Applications



4 Y P Gong, C J Hyde, W Sun, and T H Hyde

were used to obtain the material constants for the
unified viscoplasticity model for each temperature.

3 THE UNIFIED CYCLIC PLASTICITY AND
VISCOPLASTICITY MODEL

The Chaboche unified viscoplasticity model has been
chosen to represent the uniaxial cyclic material
behaviour of 316 stainless steel. The uniaxial form of
the model is as follows

ε̇p =
〈

f
Z

〉n

sgn(σ − χ) (1)

where Z and n are material constants, εp is the plastic
strain, f represents the model yield criterion, shown
by the first of the following equations, σ is the stress
within the material, calculated as shown by the sec-
ond of the following equations, and χ is the kinematic
hardening parameter.

Also

sgn(x) =

⎧⎪⎨
⎪⎩

1 x > 0

0 x = 0

−1 x < 0

and 〈x〉 =
{

x x > 0 x > 0

0 x � 0 x � 0

The yield criterion and the total stresses are given by

f = |σ − χ | − R − k (2)

σ = χ + (R + k + σv)sgn(σ − χ) = E(ε − εp) (3)

where the elastic domain is defined by f � 0 and the
inelastic domain by f > 0.

The model takes into account both kinematic hard-
ening and isotropic hardening as follows

χ̇i = Ci(ai ε̇p − χi ṗ) (4)

χ = χ1 + χ2 (5)

Ṙ = b(Q − R)ṗ (6)

where i = 1, 2, R, and χ are the isotropic and kinematic
hardening parameters, respectively, and b, Q, Ci, and

ai are the material constants. p is the accumulative
plastic strain, as shown by the following equation

ṗ = |ε̇p| (7)

Figure 5 shows the physical meaning of both types
of hardening and the effect they have on the yield
surface; both types of hardening are shown in three-
dimensional (principle) stress space. When the stress
state within the material causes the edge of the yield
surface to be reached, kinematic hardening, imple-
mented by equations (4) and (5), is represented as
the movement of the yield surface, as illustrated
in Fig. 5(a). Isotropic hardening, implemented by
equation (6), represents the growth of the yield surface,
as shown in Fig. 5(b).

Creep is also accounted for within the model in the
form of the Norton [11] creep law as follows

σv = Zṗ1/n (8)

Equation (1), the viscoplastic flow rule, is the gov-
erning equation within the model. As can be seen
from equations (2) to (8), all of the other model vari-
ables, such as those used for calculating both types of
hardening (isotropic, R, and kinematic, χ) and viscous
stress, σv, are dependant on the value of accumu-
lated plastic strain, p, calculated in turn as shown by
equation (7), from the plastic strain, εp, values cal-
culated from this viscoplastic flow rule. Equation (8)
defines the viscous stress and therefore the creep effect
within the model.

The above model has been implemented in Matlab,
which is a high-level programming language.

4 DETERMINATION OF THE INITIAL MATERIAL
PROPERTIES

The identification of the final values for material con-
stants requires a step by step procedure. First, the
initial values of the parameters are estimated using

2
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1

σ2

2
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σ2

1

σ3

(a) (b)

Fig. 5 Schematic representations of hardening behaviour: (a) kinematic and (b) isotropic
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the experimental results. These initial values are then
used to obtain an optimized material constant set in a
simultaneous parameter optimization routine.

In total, the material model requires the identifica-
tion of ten material constants. This section contains a
brief description of the methodologies used in calcu-
lating the initial estimations for these constants. The
procedure described by Zhan [4] is used for estimating
the initial values of the isotropic and kinematic hard-
ening constants. However, the initial values for Z and
n were determined using a ‘trial and error’ procedure
to fit the experimental data with reference to published
literature [12–15].

4.1 Initial yield stress, k, and Young’s modulus, E

From the initial (first-quarter cycle) experimental ten-
sile curve, Young’s modulus, E , is taken as the gradient
of the initial linear region of the curve. The initial yield
stress, k, can be estimated as the stress value at the
point at which the data begin to deviate from this
initial linear region.

4.2 Isotropic hardening parameters, Q and b

Equation (6) for the rate of isotropic hardening can be
integrated with respect to time to give the following
equation

R = Q(1 − e−bp) (9)

b =
[

ln(1 − R/Q)

p

]
(10)

Equation (9) shows that as the accumulated plas-
tic strain, p, increases, R exponentially approaches
saturation to a value of Q. Therefore, assuming that
the material hardening is entirely due to isotropic
hardening, and plotting R against the accumulated
plastic strain, the saturated value of R is identified
as Q, as shown in Fig. 6. Then choosing a point
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Fig. 6 Isotropic hardening variable R versus p for 316
stainless steel at 600 ◦C

within the transient region of the hardening behaviour,
shown circled in Fig. 6 for example, the correspond-
ing values of R and p can be identified. These values
(along with the calculated value of Q) are then put
into equation (10), which is a rearranged version of
equation (9) for b, and hence b can be identified. By
choosing this point roughly half way into the tran-
sient region of the hardening behaviour, the calculated
value of b ‘forces’ the model to go through this point,
and with the model saturating at the value of Q, the
result is a close model fit to the experimental data as
shown in Fig. 6.

4.3 Kinematic hardening parameters, a1, C1, a2,
and C2

Equation for the rate of kinematic hardening
behaviour can be integrated with respect to time, to
give the following equations

χ1 = a1(1 − e−C1εp) (11)

χ2 = a2(1 − e−C2εp) (12)

If, only the initial tensile curve (first-quarter cycle) is
used (therefore, σ − χ > 0 and sgn(σ − χ) = 1), equa-
tions (11) and (12) can be substituted into equation (5)
and then into equation (3) to give

σ = a1(1 − e−C1εp) + a2(1 − e−C2εp) + R + k + σv

(13)

If the later stages of hardening are considered, it can
be assumed that χ1 (and therefore a1 and C1) has a
negligible effect on the hardening and therefore the
kinematic hardening is dominated by χ2 (a2 and C2).
Therefore, equation (13) can be simplified to

σ = a2(1 − e−C2εp) + R + k + σv (14)

Differentiating equation (14) with respect to εp, rear-
ranging and taking natural logs of both sides gives
the following equation (assuming yield stress, k, and
viscous stress, σv, to be constants)

ln
(

∂σ

∂εp
− ∂R

∂εp

)
= −C2εp + ln(a2C2) (15)

Therefore, plotting ln[(∂σ/∂εp) − (∂R/∂εp)] versus εp

as shown in Fig. 7 allows the identification of C2 from
the gradient, and a2 from the y-axis intercept. Sim-
ilarly, a1 and C1 can be found for the lower strain
region, from equation (13), having already identified
a2 and C2 [4].

In order to perform this fit to the data, it is neces-
sary to obtain expressions for ∂σ/∂εp and ∂R/∂εp, as
functions of εp, to use in equation (15). For the initial
tensile curve (the first quarter cycle), p = εp, which can
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y = -9.2865x + 25.15

24.05

24.1

24.15

24.2

24.25

24.3

24.35

24.4

0.085 0.095 0.105 0.115

εp (%)

ln
(d

σ/
εp

 -
 d

R
/d
εp

)

Fig. 7 Plot used in the calculation of the kinematic
hardening material constants a2 and C2 for 316
stainless steel at 600 ◦C

be substituted into equation (9). This expression can
then be differentiated with respect to εp, to give the
following

∂R
∂εp

= bQe−bεp (16)

The calculation of ∂σ/∂εp is more complicated. Tak-
ing dσ/dεp, multiplying by dt/dt and dεT/dεT, then
rearranging gives the following

dσ

dεp
= dσ

dεT

1
ε̇p

ε̇T (17)

Hence, expressions for dσ/dεT and ε̇p are required.
The value of ε̇T is controlled during testing and hence
is known. To obtain ε̇p, Hooke’s law, εe = σ/E , is
substituted into the following equation for total strain

εT = εe + εp (18)

εT = σ

E
+ εp (19)

Rearranging equation (18) and differentiating it with
respect to time gives

dεp

dt
= dεT

dt
− dσ

dt
1
E

(20)

Multiplying the final term in equation (20) by
dεT/dεT and rearranging gives

ε̇p = ε̇T

(
1 − 1

E
dσ

dεT

)
(21)

Therefore, an expression for dσ/dεT is needed in
equations (17) and (21). In order to obtain an expres-
sion for dσ/dεT, a smoothing function is needed
to eliminate complications caused by scatter in the
experimental data, which could cause negative val-
ues of dσ/dεT to be obtained at some strain values.

The smoothing function used in this case is the
Ramberg–Osgood equation [16–18], that is

εT

ε0
= σ

σ0
+

(
σ

σ0

)n0

(22)

ε0 = σ0

E
(23)

Equation (23) can be substituted into equation (22)
to give

EεT

σ0
= σ

σ0
+

(
σ

σ0

)n0

(24)

which can then be differentiated with respect to εT

to give

dσ

dεT
= σ0

ε0

[
1 + n0 (σ/σ0)

n0−1] (25)

The Ramberg–Osgood constants, namely ε0, σ0, and
n0, can be found by rearranging and taking logs of both
sides of equation (24) to give

log(EεT − σ) = n0 log σ + (1 − n0) log σ0 (26)

Therefore, plotting log(EεT − σ) versus log σ allows
the identification of n0 (gradient) and σ0 (from the
y-axis intercept). An example of this plot, for a tem-
perature of 600 ◦C, is shown by Fig. 8. Equation (23)
can then be used to determine ε0. Table 2 shows the
Ramberg–Osgood constants calculated for the four
temperatures.

y = 7.0468x - 50.956
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Fig. 8 Plot of log(EεT − σ) versus log σ used in
determining the constants used in the Ram-
berg–Osgood equation

Table 2 Ramberg–Osgood constants at
multiple temperatures

T (◦C) ε0 (%) σ0 (MPa) n0

300 0.218 03 337.61 7.2409
500 0.202 77 295.11 6.1627
550 0.217 79 307.65 7.2846
600 0.192 12 267.26 7.0468
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4.4 Creep constants, Z and n

Typical values of Z and n have been taken from the
literature, such as Ryu [12] and Hyde [13–15]. The Mat-
lab computer program for the model was run varying
these constants within the typical range of values in
order to obtain good fits to the model; this resulted in
the constants presented in Table 3.

4.5 Initial material constants

Table 2 summarizes the initial material constants iden-
tified from the isothermal test data for 316 stainless
steel for the four temperatures.

5 OPTIMIZATION OF THE MATERIAL CONSTANTS

5.1 Optimization model

The identification of the material constants in the
Chaboche unified viscoplasticity model is a reverse
process based on experimental data. In order to accu-
rately determine the full set of material constants,
an optimization procedure is adopted. The optimiza-
tion method selected is a least-squares algorithm. The
principle of the optimization is to search for the global
minimum of the difference between the square sum
of the calculated stresses from the Chaboche model
and the corresponding measured stresses obtained
from strain-controlled cyclic experimental data [5].
The optimization model can be described mathemat-
ically as

F (x) = 1
2

M∑
i=1

[σ(x)
pre
i − σ

exp
i ]2 → min (27)

x ∈ Rn (28)

LB � x � UB (29)

where F (x) is the objective function, x is the optimiza-
tion variable set (a vector of n-dimensional space, Rn),
which for this specific case contains the full set of the
material constants in the Chaboche model

x = [a1, c1, a2, c2, z, n, b, Q, k, E]T (30)

LB and UB are the lower and upper boundaries of
x allowed during the optimization. σ(x)

pre
i and σ

exp
i

are the model predicted total stress and the exper-
imental measured stress, respectively, at a specific

time i, within the loops. M is the total number of
experimental data points used in the optimization.

5.2 Numerical techniques

At a specific point within the stress–strain loops, the
predicted total stress σ(x)

pre
i can be obtained by solving

a set of differential equations, as shown in equa-
tions (1) to (8), for a known material constant set, x.
The total stress rate is given by

σ̇ = E(ε̇ − ε̇p) (31)

From equations (1) to (8) and equation (31) a first-
order non-linear system of differential equations with
the variables of εp, χ1, χ2, R, and σ can be obtained.
To calculate the predicted stress value, σ(x)

pre
i , it is

necessary to solve the system of differential equations
using a numerical method. This involves obtaining
numerical solutions for the following state vector

y = [εp, χ1, χ2, R, σ ]T (32)

One of the most popular methods of solving dif-
ferential equations using numerical techniques is
the automatic adaptive variable step Runge–Kutta–
Fehlberg algorithm [19]. For each time interval, the
updated state vector, ym+1, at the (m + 1)th time step,
is estimated as

ym+1 = ym +
6∑

j=1

γjkj (33)

A tolerance vector, em, is introduced to estimate the
variation sensitivity of the solution to the step length

em =
6∑

j=1

(γj − γ ∗
j )kj (34)

The next time step increment can be adjusted based
on the current value of em. γj and γ ∗

j are algorithm
factors, and the values of variable kj is calculated in
the Runge–Kutta–Fehlberg algorithm [19].

5.3 Implementation in Matlab

Matlab is a high-performance language for technical
programming and computing. Various toolboxes are
provided within Matlab, including the Mathematics

Table 3 Initial material constants at multiple temperatures

T (◦C) k (MPa) E (GPa) b Q (MPa) a1 (MPa) C1 a2 (MPa) C2 Z (MPa.s1/n) N

300 39 154.84 39.46 32.76 119.1 5964.1 108.4 1001.6 179 10
500 32.5 145.54 33.35 30.41 94.6 6472.6 113.3 979.91 175 10
550 31 141.26 31 27.8 86.3 6939 114.8 957.69 173 10
600 30 139.12 28.6 27.43 80.06 7111.9 116 928.7 170 10

JMDA273 Proc. IMechE Vol. 223 Part L: J. Materials: Design and Applications
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Toolbox and Optimization Toolbox, which extends the
capability of the Matlab numeric computing environ-
ment and has access to most of the standard routines
within Matlab [9, 10].

The ODE45 function within the Matlab Mathematics
Toolbox has been selected for solving the first-order
system of differential equations from the initial values
problem. A variable step length Runge–Kutta–Fehlberg
algorithm is utilized within the ODE45 function. From
the initial value of yo and the time interval beginning at
t0 and ending at tfinal, i.e. [to, tfinal], the value of the state
vector shown by equation (32) can be obtained for a
given set of material parameters, i.e. the optimization
variable set, x.

The non-linear least-squares optimization func-
tion lsqnonlin is provided within the Matlab opti-
mization Toolbox, in which the Levenberg–Marquardt
algorithm is used for each of the iteration steps. Gradi-
ent matrix and Jacobian matrix of the objective func-
tion, F (x), are unnecessary to be provided in explicit
form. They can be calculated automatically within the
lsqnonlin function using the finite difference method.

5.4 Program development

An optimization program for determining the mate-
rial parameters in the Chaboche unified viscoplasticity
model has been developed and implemented within
Matlab. It is very convenient to utilize the Matlab
functions to solve the differential equations and to
process the results using Matlab. Figure 9 shows the

No 

σ−∑ σ=
=

kk

Start

Call Data-Identification:  (εi , σi
exp ), (i=1, M)

Input: ε-σexp  data , έ, εmin, εmax, LB ,UB, λ1, λ2

Call ODE45: (εi , σ (xk) i
pre),  ( i=1, M )

|| xk- xk -1 ||≤ λ1
| F(xk) - F(xk -1) | ≤ λ2

End

xk+ 1= xk  + Δxk

Yes

Initial parameters x0

Optimized parameters x*

Fig. 9 Flowchart for the optimization process

flowchart for the optimization process implemented
within Matlab, where the dashed box highlights the
lsqnonlin optimization process.

The initial parameters estimated using the experi-
mental data are used as the input in a simultaneous
identification procedure within the optimization.

In order to reduce the computing time of the itera-
tive seeking process, a user-defined subroutine, Data-
Identification, for the identification and selection of
experiment data has been developed within Matlab
and a series of subintervals of time can be obtained
from the experimental loops. The predicted stress
value at the end point of a subinterval is calculated
using the ODE45 function corresponding to a certain
set of material parameters xk .

Within the lsqnonlin optimization function, the
optimization process is implemented and the opti-
mum parameters, x*, are obtained. In order to avoid
convergencing to a local minimum rather than to the
intended global minimum, the first step was to obtain
the first set of ‘optimum’ parameters, by the least-
squares method starting from the initially estimated
sets of parameters. These sets of optimum parameters
are then perturbed by adjusting a finite step away from
it to investigate whether a better minimum is achieved
or whether it returns to the same position. This process
is repeated until the same minimum is returned from
different restart positions.

Calculated results obtained directly from the
Chaboche model using the differential equation solver
within the Matlab are compared with those obtained
from a time marching method. Encouragingly, the two
sets of results are almost identical. Some discrete data
obtained from a theoretical function are also used
to check the validation of the optimization program.
Again the same level of accuracy was obtained.

5.5 Optimized constants

Table 4 summarizes the optimized material constants
using the initial material constants (Table 3) as the
starting points for the optimization process.

6 COMPARISON OF MODEL AND EXPERIMENTAL
DATA

Figures 10 to 14 show comparisons of the material
model predictions and the experimental data for a
range of temperatures, using both the initial and the
optimized material constants.

6.1 Initial and stabilized loops

Within this section, for all of the figures shown, part
(a) shows the initial tensile curve and first full loop
for the relevant temperature. Each part (b) shows
the stabilized loop for the same temperature as the
corresponding part (a).
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Table 4 Optimized material constants at multiple temperatures

T (◦C) k (MPa) E (GPa) B Q (MPa) a1 (MPa) C1 a2 (MPa) C2 Z (MPa.s1//n) n

300 28.99 159.0655 19.92 26.79 55.47 16 343.09 211.22 1215.40 116.06 7.21
500 37.98 135.4666 16.77 32.79 36.66 19 963.66 160.59 1506.58 70.60 40.00
550 27.29 146.9359 11.29 36.93 70.17 11 744.56 171.01 1396.05 39.72 11.38
600 18.98 149.6897 42.45 28.68 87.56 7285.09 163.53 1328.70 129.12 3.72
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Fig. 10 Model comparison to experimental data using both the initial and optimized material
constants at 300 ◦C: (a) initial tensile curve and first loop and (b) saturated loop
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Fig. 11 Model comparison to experimental data using both the initial and optimized material
constants at 500 ◦C: (a) initial tensile curve and first loop and (b) saturated loop
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Fig. 12 Model comparison to experimental data using both the initial and optimized material
constants at 550 ◦C: (a) initial tensile curve and first loop and (b) saturated loop
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Fig. 13 Model comparison to experimental data using both the initial and optimized material
constants at 600 ◦C: (a) initial tensile curve and first loop and (b) saturated loop
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Fig. 14 Model comparison to experimental data using both the initial and optimized material
constants for hardening behaviour at (a) 300 ◦C, (b) 500 ◦C, (c) 550 ◦C, and (d) 600 ◦C

6.2 Hardening behaviour

Within this section, the hardening behaviour for each
temperature is presented.

7 DISCUSSION AND FUTURE WORK

A unified viscoplasticity material model, which
includes both (non-linear) isotropic and kinematic

hardening behaviour as well as viscoplasticity
phenomena, such as rate dependency, has been
implemented in Matlab. A programme of isothermal
tests has been conducted using induction coil heating,
with the temperature uniformity controlled to within
±10 ◦C up to temperatures of 600 ◦C. The test data
have been used to identify the material constants for
the material model at different temperatures between
300 and 600 ◦C. The experimental data have also been
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employed to validate the Matlab implementation of
the unified viscoplasticity model, showing excellent
model to test correlation for the isothermal tests
considered.

Although the material constants obtained directly
from the experimental data give fairly accurate pre-
dictions of the material behaviour when compared
with the experimental data, some fairly crude assump-
tions have to be made. Such an assumption includes
that the kinematic constants a1 and C1 have neg-
ligible effect on the hardening behaviour at high
strain values in order to obtain a2 and C2. There-
fore, the employment of an optimization scheme,
which was developed within this work, has been
used to obtain a new set of material constants. The
starting point for the optimization procedure is the
initial constants obtained directly from the experi-
mental data. This new set of material constants gives a
more accurate prediction of the material behaviour,
when compared with the experimental data, than
the initial estimation. The optimization method used
is based on a least-squares algorithm. Within the
optimization, the global minimum of the difference
between the square sum of the calculated stresses
from the model and the corresponding measured
stresses obtained from strain-controlled cyclic exper-
imental loops is searched for, in order to provide the
best general fit to the experimental data. The imple-
mentation of this optimization process has proven
to further improve the general fit of the model to
experimental data.

This work will be further developed in order that
relaxation periods can be included at the extreme
strains within the mechanical waveforms. Another
area for intended future development is the imple-
mentation of temperature dependency of the model in
order that TMF simulations can be run and compared
to corresponding experimental data.
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