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Abstract

Lattices are increasingly used in engineering applications. They can reduce weight
in aircraft components, increase the efficiency of heat exchangers and are used as
medical implants. Typically a regular and graded lattice, where the unit cells are
iterated one after another is used. Although methods exist to create stochastic
lattices, they are limited to apply only one randomness to all lattice defining pa-
rameters (isotropic randomness). However, nature suggests a different value of
randomness for each parameter (anisotropic randomness). Here we demonstrate
five new approaches to create a stochastic lattice to enable novel structure creation.
Firstly, a tool to create isotropic randomness, secondly, a way to create anisotropic
randomness, thirdly, an approach to create graded randomness, fourthly, a fea-
ture to create layered randomness controlled by a function, and finally, we create
a lattice with stochastic surface roughness. These techniques will provide new
possibilities in designing true biomimetic medical implants, heat exchangers and
mechanical components.
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1. Introduction

A cellular material is a structure formed by a system of vertices joined by
struts or surfaces [1]. It can be classified into random structures, so called foams
or stochastic lattices as well as into architectured materials which are called lat-
tices [2].
Traditionally, foams may be produced by a number of manufacturing processes
[3]. Amongst other processes, a foaming agent can be used in the melt or mixed
with powder to start a foaming process that yields to many cavities within the
material, which form a foam. Also, gas can be introduced to follow the same
route. However, these processes are restricted to specific materials and the band
of achievable cell sizes and relative densities highly depend on the method of man-
ufacture [3].
Moreover, wires were also used and arranged to resemble a lattice [4] to inves-
tigate the heat transfer capabilities. However, from the way these wires are de-
signed, it can be assumed that these are not easy to integrate into many engineer-
ing designs.
Alternatively, foams and lattices can be produced by additive manufacturing, which
gives more design freedom. They are included in many commercially available
software to create infill structures, and they are used in many engineering appli-
cations that are required to be lightweight [5]. A review by Benedetti et al. [2]
shows many different types of cellular materials in use: the strut based lattices
and the triply periodic minimal surfaces (TPMS) that form networks or sheets.
This review focuses on the fatigue properties of different lattices manufactured by
additive manufacturing. Al-Ketan et al. [6] presented a review that focuses on
TPMS structures and shows, amongst others, the mechanical properties that were
investigated and the applications for which TPMS structures were used. In these
reviews, stochastic lattices played only a marginal role but are worthy of further
exploration. The methods to design stochastic lattices with varying degrees of
randomness can be traced back to several papers.
Three methods exist to create controllable stochastic lattices. By controlled stochas-
ticity or controlled randomness, we mean that any pseudo-random distribution
creates numbers within a defined control space (2D) or volume (3D). For brevity,
we continue to use random instead of pseudo-random.
The method used by van der Burg et al. [7] starts with a periodic pattern composed
of points. Here this is defined as the first method. Each point has coordinates xn,
yn (2D) and zn (3D) in a given design space. Where n represents the point number.
An individual step distance ∆xn, ∆yn, ∆zn, generated by a uniform random dis-
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tribution is added to each coordinate. By controlling the allowable step distance,
they were able to define the control volume of each point. This gives xn + ∆xn,
yn + ∆yn, and zn + ∆yn, and the points are randomised. The periodic pattern was
created from different unit cells (UC). The UCs used were body centred cubic
(BCC), face centred cubic (FCC) and hexagonal close-packed (HCP). These ran-
domly distributed points were then used as seeding points for a Voronoi algorithm
to create struts of uniform thickness. The randomness was measured as the step
length of the uniform distribution divided by the UC length. Van der Burg et al.
[7] showed that by increasing the randomness of the basic UC, the Poisson’s ratio
and the Young’s modulus increase. The first method was also used by Roberts et
al. [8]. They periodically placed spheres in a design space. Then the displacement
of each sphere was determined by a Monte-Carlo method. They controlled these
spheres such that they did not overlap. However, the randomisation was not con-
trolled. They also applied another method by creating a Gaussian Random Field
from which they generated a lattice structure by evaluating the threshold value of
an isosurface. Moreover, they connected randomly distributed points by using a
nearest neighbour node-bond model. Methods like the Gaussian Random field,
where random nodes are created without a set of rules, is here considered as the
second method.
Luxner et al. [9] applied a method using a spatial random distribution and con-
trolled the random distribution by a step distance. The periodic array was pop-
ulated with different UCs. The used UCs are a simple cubic, a Gibson-Ashby,
a reinforced BCC, a BCC, a Kelvin, and a Weaire Phelan lattice. The vertices
of the lattices were connected by struts using a feature included in Abaqus. A
Finite Element Analysis (FEA) of the simple cubic and Kelvin structure showed
that the simple cubic structure had the highest elastic modulus anisotropy in the
[001] direction. In contrast, the Kelvin structure could be considered isotropic.
The increase of randomisation showed a decrease of the elastic modulus in the
[001] direction leading to a lower anisotropy. However, the elastic modulus of
the Kelvin structure was reduced in all directions with increasing randomness.
Comparing this to van der Burg et al.’s [7] structures, the elastic modulus did not
increase. This implies that the influence on the elastic properties depends on the
used UC and randomness. Yang et al. [10] proposed a method, which could be
categorised as method one, too. The UC is a Schwarz Primitive TPMS structure,
described by an implicit function ϕ(x, y, z). Here, the parameters x, y, z are altered
by a random distribution function similar to a Gaussian distribution. This ran-
domises every coordinate directly. The result is a stochastic TPMS lattice.
Another method used by Silva et al. [11] created random 2D Honeycomb struc-
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tures using a uniform distribution from which random values are generated for
the node coordinates. Then they populate node after node into a design space.
While populating each node, every subsequent node’s distance to the previous
was checked to be in a controlled volume. This method is the third method. An
FEA showed that the difference between the elastic properties of 2D Honeycombs
with randomness and without randomness is statistically insignificant. The third
method was also used in four publications by Zhu et al. for 3D [12], [13], 2D
randomised Honeycombs [14], and in the explanation of the method [15]. All
four studies create a starting point from which they introduce more points with
coordinates generated by a random uniform distribution. A minimum step dis-
tance controlled the randomness. Firstly, Zhu et al. [14] investigated 2D Voronoi
Honeycombs’ mechanical properties using an FEA approach. They showed that
the Young’s Modulus and Shear Modulus increase with increasing randomness.
On the contrary, the Bulk Modulus showed a lower value at increasing random-
ness. Interestingly, the higher Young’s modulus was observed for relative densities
lower than 0.2. At values higher than 0.2, it seems that the Young’s modulus of
the fully random Voronoi Lattice is lower than the regular Voronoi Lattice. At
low relative densities smaller than 0.05, Zhu et al. [14] show that the Poisson’s
ratio is similar for the randomised lattices and the regular lattice. However, with
increasing relative density, the Poisson’s ratio of the fully random lattice is lower
than the regular lattice’s Poisson’s ratio. In [12], Zhu et al. compared a regu-
lar tetrakaidecahedron 3D Voronoi lattice with a randomised 3D Voronoi Lattice.
They show that the randomised lattices have a higher Young’s modulus and shear
modulus than the regular lattice. Moreover, the Bulk modulus is decreasing with
increasing randomness. Additionally, Zhu et al. [13] also studied the influence
of the randomisation of 3D Voronoi lattices on the stress and strain behaviour.
They showed that the randomised lattices are stiffer than the regular lattice up to
a strain of roughly 0.2 to 0.3. After a strain of 0.2 and 0.3, the random lattice’s
stress flattens and forms a plateau, while the stress of the regular lattice is still
increasing. However, the relative density was 0.01. This gives rise to the ques-
tion of how these lattices would behave when additive manufactured. Because the
relative densities in Zhu et al. studies are in general relatively low. The second
method was also applied in two publications by Martı́nez et al. In their earliest
publication, Martı́nez et al. [16] used a Poisson disc sampling approach to allocate
seeding points for a subsequent Voronoi Tesselation. By varying the number of
seed points within certain regions of a design, they can tailor the elasticity to cre-
ate compliant designs, additively manufacture them and investigate their elastic
properties. Using the same seed point generation and stretching the Voronoi cells
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according to stress fields, Martı́nez et al. [17] created orthotropic elastic proper-
ties. These were applied to a gear and a chair. However, they were not able to
create anisotropic designs. McConaha et al. [18] solved this by relying on ran-
domly distributed points that the Llyod Algorithm rearranged to create centroidal
Voronoi diagrams in 2D. By stretching the created cells according to anisotropy
fields, they were able to create anisotropic Voronoi cells. Even though Martı́nez
et al. and McConaha et al. rely on random seed points, they are not tailoring the
randomness.
Another method that does not fit the proposed randomisation categories was used
by Mirzaali et al. [19]. They used a honeycomb structure with two different UC
strut angles and mixed them randomly to create an auxetic structure. By con-
trolling the proportions of UC a with an angle α and a UC b with with an angle
β, they used a random uniform distribution and divided the set of numbers into
two parts with changing probability. In that way, they were able to control the
Poisson’s ratio of an auxetic lattice. A more recent study by Mueller et al. [20]
compared the energy absorption of regular lattices with different connectivity and
different rotation angles with random lattices with the same connectivity. They
showed that random lattices are advantageous in energy absorption applications
due to the ability of random lattices to absorb energy more evenly. The regular
lattices showed many stress peaks before compacting what the random lattices did
not show. In Mueller et al. [20], the random lattices were created by method one,
where a random continuous uniform distribution was created for the coordinate of
each point to randomise it. These lattices were not additively manufactured. How-
ever, random Voronoi lattices were recently additively manufactured and investi-
gated by Maliaris et al. [21]. Their impact properties were studied through impact
experiments and an FEA analysis. The analysis showed good energy absorption
behaviour of these random lattices which makes them candidates for many energy
absorption applications. Moreover, currently free available tools like MSLattice
[22] and FLatt Pack [23] offer a variety of lattices and functionality. Still, they do
not offer the functionality to create stochastic lattices.Commercial software like
nTopology [24], [25] and Autodesk Within Medical [26] offer the use of creating
stochastic lattices and the creation of rough surfaces. However, the methodology
is not available which is a limit for academic usage. In contrast to adding sur-
face roughness computationally, ways were explored in additive manufacturing.
Hence, the surface roughness was manipulated using machine parameters [27] as
well as exploiting the staircase effect [28].

It is worthy of mention that the use of cellular materials in mechanical designs
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is linked to Biomimicry in du Plessis’s review on the subject [29]. Biological de-
signs like shark denticles teach us that randomness in nature must be different for
different parameters such as length, width, skew or roughness [30].By evaluating
the dimensional distribution, the standard deviation σ divided by the correspond-
ing average parameter, relative randomness values can be calculated. Typically,
the relative randomness can vary between 2-9 % for the length, 5-42 % for the
roughness, 1-8 % for the aspect ratio (length divided by width), and 6-48 % for
the skew of shark denticles for one species [30]. The beech tree, by way of an-
other example, also shows different levels of randomness across parameters: the
tree height’s and specific leaf size’s relative randomness ranges from 1-4 %, and
the tree’s trunk diameter relative randomness at ‘human breast height’ varies from
5-11 % [31]. If these parameters are considered design input parameters, it is
evident that randomness must be tailored. Hence, let us consider a regular dis-
tribution of points in a 2D system where each point’s x and y coordinate can be
regarded as a controllable parameter. To apply randomness to a regular array fig. 1
a), two simple cases exist. The same randomness can be applied to the x and y
parameter fig. 1 b), which we call isotropic randomness, or x and y have a dif-
ferent randomness parameter fig. 1 c). This is anisotropic randomness. It can
be seen that for a randomisation σx < σy, the dots appear to be more aligned
in the y-direction. is important to notice that the introduced terms isotropic and
anisotropic randomness should not be confused with isotropic or anisotropic ma-
terial properties.

Regular Isotropic Anisotropic

σx=0, σy=0 σx=0.3, σy=0.3 σx=0.15, σy=0.3 

a) b) c)

Figure 1: a) shows a regular arrangement of points. b) illustrates isotropic randomness superim-
posed on the regular array a). c) is demonstrating anisotropic randomness added to the regular
array a).

The reported literature that creates stochastic lattices shows significant lim-
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itations. Firstly, the same randomisation for all parameters is used, which we
previously defined as isotropic randomness. Secondly, the randomisation cannot
be graded within the lattice. Thirdly, the struts are subject to a uniform thickness.
Fourthly, locations with higher stochasticity cannot be created. Fifthly, roughness
cannot be added to the lattice surface, which would benefit thermo-mechanical
applications. Here we present a novel toolset to create stochastic lattices that
overcomes these limitations. Firstly, we introduce the different UCs which create
the regular distribution of points. On these points, we will position ellipsoids.
A Gaussian distribution is then used to create the different randomisation offsets
for each ellipsoid’s parameters. We can solve the first problem by using different
randomisation values for the various ellipsoid’s parameters, leading to anisotropic
randomness. By using a linear gradient, we can increase the randomness in dif-
ferent directions. This solves the second limitation. Using ellipsoids, where we
can manipulate the radius in different directions, we can achieve non-uniform
strut thicknesses. By creating a stochastic sine layer inside the lattice, we can
create a layer of randomness which solves the fourth limitation. Moreover, by
randomly varying the surface, we can create roughness and overcome the fifth
limitation. Hence, we demonstrate five simple tools which include isotropic ran-
domness, anisotropic randomness, graded randomness, layered randomness, and
surface roughness. These features can be used for thermo-mechanical, energy ab-
sorption or frequency dampening. Moreover, it gives researchers a tool to perform
necessary experiments to investigate the mechanical properties.

2. Methodology

Here we describe the methodology to design a stochastic lattice. The method-
ology was implemented in MATLAB R2020b. The general program flow can be
seen in fig. 2. Firstly, a desired ‘parent’ lattice UC is selected, for example, a
cubic UC. All lattice types are compatible with this methodology to the knowl-
edge of the authors. Afterwards, the UC parameters are defined. These are the
cell size ux, uy and uz, the lattice volume dimensions lx, ly and lz, and the relative
density RD. Again this parameter set can be greatly expanded to describe any
lattice type or geometry. Then the randomisation process is defined: isotropic
randomness, anisotropic randomness, graded randomness, layered randomness.
Stochastic roughness can be applied after the lattice creation, which may result
in change of the RD. For each randomness prescription, specific parameters are
defined. After the randomisation process, 0esulting binary matrix is smoothed
by using MATLAB’s smooth function and the relative density is adjusted within
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±0.01 to achieve the desired relative density. If roughness is applied, smoothing
is not applied. Subsequently, the faces and vertices of the lattice are determined
via MATLAB’s isosurface and isocaps function. Then the faces and vertices were
exported to an STL file by the available function ’stlwrite’ [32]. The ’stl’ files
were then visualised by using AutoDesk Meshmixer.

FCC

FCC+

Cubic

x

y

z

lx

ly

lz

uy

ux

uz

Unit Cell

Volume

Isotropic

Anisotropic

Graded

Sine Layer

Roughness

BCC

Select UC
Apply five tools to 

superimpose randomness
Create faces
and vertices

Define
UC Size

Volume Size
Relative Density

Create 
STL File

S E
Adjust relative 

density

Figure 2: The stochastic lattice script program flow. A UC is selected, and its dimensions are
defined. Then the lattice control volume is defined, and the desired relative density is set. Then five
tools can be applied to the defined volume: isotropic randomness, anisotropic randomness, graded
randomness, layered randomness. The stochastic roughness can be applied to each randomisation
tool after the RD adjustment. After that, the relative density is adjusted to reach the desired relative
density. Finally, the lattice’s vertices and faces are created and saved as an STL file.

2.1. Regular Lattice
Let us consider a UC in the shape of a cube, fig. 3 a). The length of each side

can be described by ux, uy and uz.
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Figure 3: a) shows a basic cube UC defined by ux, uy and uz. By subtracting the UCs b)-e) from
a), a Cubic, BCC, FCC and FCC+ UC is created. g) shows the case of two overlapping circles
where two segments S 1 and S 2 appear.

A UC is the initial regular structure that is periodically distributed within the
design space. Here we populate a cubic, a BCC, an FCC, and an FCC+ UC. The
FCC+ UC is the union of the cubic and FCC UC. The UCs are shown in fig. 3 b) -
e). On each of the nodes, which are represented by 1/8th, a half, or a full sphere
in fig. 3, a sphere is placed. The sphere can be calculated by the implicit function
of an ellipsoid (1).

ϕ(xcn, ycn, zcn, rxn, ryn, rzn) =
xc2

n

rx2
n
+

yc2
n

ry2
n
+

zc2
n

rz2
n

(1)

An ellipsoid was chosen to create a sphere to control several parameters after
applying the randomisation. In that way, the sphere can be stretched in many
directions. Here, xcn, ycn, zcn describe the n-th ellipsoid’s centre position, while
rxn, ryn, and rzn describe the n-th ellipsoid’s radius in the x, y, and z-direction.
The applied relative density RD defines the final lattice volume VLattice eq. (2).

VLattice = RD · Vcube (2)

The cube’s volume Vcube is defined by eq. (3), if, as in this case, ux = uy = uz.

Vcube = u3
x (3)

To determine the sphere’s radius, the following equations are solved for two spe-
cial cases, eq. (4). Case 1: RD ≥ RDLimit is the closed-cell structure, and Case 2:
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is the open-cell structure RD < RDLimit. p is the number of spheres within one
UC, and q is the number of overlapping segments. RDLimit is the point where the
UC transitions from closed cells to open cells.

VLattice =

VCube − p · VS phere RD ≥ RDLimit

VCube − p · VS phere + q · VS egment RD < RDLimit
(4)

The UC parameters p, q, and RDLimit are described in tab. 1. The sphere in eq. (4)

Table 1: The parameters to determine the radius of a Cubic, BCC, FCC, and FCC+ UC. p is the
number of full spheres within a UC, q is the total number of overlaps and RDLimit is the limit where
the UC shifts from a closed-cell to an open-cell.

Unit Cell p q RDLimit

Cubic 1 6 1 − 1·π
6

BCC 2 16 1 −
√

2·π
8

FCC 4 48 1 −
√

2·π
6

FCC+ 5 12 1 − 5·π
48

can be described by eq. (5).

VS phere =
4 · π

3
· r3 (5)

Each segment’s volume VS egment can be calculated by eq. (6) due to overlapping
spheres, where h is the height of one segment, as shown in fig. 2 g).

VS egment =
π

3
· (r − h)2 · (2 · r + h) (6)

2.2. Parameter Randomisation
To randomise the lattice structure, it is necessary to superimpose a random

distribution to all of the parameters describing the ellipsoid eq. (1). This gives
a total of six parameters that can be subject to randomisation. For simplicity, we
will explain the randomisation process for xcn (the method is identical for all other
parameters). The randomisation is introduced by moving xcn by a certain random
distance ∆xcn, eq. (7), which gives a randomised value xcrann.

xcrann = xcn + ∆xcn (7)
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The random distance ∆xcn is created by a Gaussian distribution, eq. (8).

f (∆xcn|µ, σ) =
1

√
2π · σ

· e−0.5·( ∆xcn−µ
σ )2

(8)

A mean value µ describes the Gaussian distribution. In this work, if not otherwise
specified, µ is assigned to be zero because the parameters of the regular UC was
already defined. The standard deviation σ is the control parameter (or randomi-
sation value), used to control the location where the random values are created
around µ. For a Gaussian distribution, roughly 68 %, 95 %, and 99% of randomly
distributed values are created within σ, 2σ, and 3σ, respectively. This allows
isotropic and anisotropic randomness to be described geometrically (see fig. 1).

2.3. Graded Randomness
Another way to exploit randomness is to grade randomness. Lattice parame-

ters like the cell size, strut thickness or wall thickness have been graded previously
[22]. However, any parameter including randomness can be graded by the same
principle. Here we grade the standard deviation σ of the Gaussian random distri-
bution eq. (8) by a linear function eq. (9) in the x-direction. It is the same for the
y and z-direction. Consider position x=0 with a randomisation of σx=0, and x = lx

with a randomisation of σx=lx . Then a linear gradient increases the randomness
from position 0 to position lx from, for example, σ = 0 to σ = 0.3.

σ(x) =
σx=lx − σx=0

lx
· x + σx=0 (9)

2.4. Randomised Layers
When randomising lattice structures, it is also possible to design sandwich

structures, where a randomised lattice layer (red) is enclosed within two regular
lattice layers (white), see fig. 4 a). Here the layer is demonstrated by a 2D section
in the x-z plane with a length of lx and lz. A height h describes this layer within
the lattice volume. This height h describes the position within the volume and
depends on the length of the volume in z-direction lz and divider d. d determines
at which position the layer can be found. The layer has a thickness, which can be
described by t.
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Randomness value < 0
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0.1
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Resolution

Random Layera) Smooth Surfaceb) Rough Surfacec)

Figure 4: a) Random Layer of thickness t at a height h and overall lattice dimensions of lx and lz in
the x-z-plane. b) A smooth surface represented by an isosurface blue at a threshold value of zero.
The isosurface separates the solid material (1) from the void (0). Values close to the surface are
selected according to a randomness value. For randomness values > 0, every third zero surface
value is selected, and for randomness values < 0, every third one surface value is selected. c)
The rough surface was created by adding the roughness values to the selected surface values. This
alters the isosurface (blue) and hence creates roughness.

To describe this flat layer, we chose a sine function to demonstrate versatility.
In the future, this could help to tailor this layer to address fluid or vibration prob-
lems. Let us assume that all ellipsoids have been created and form a volume with
a regular lattice structure. Each ellipsoid’s radii rxi, j,k, ryi, j,k, rzi, j,k, and centre po-
sitions xci, j,k, yci, j,k, zci, j,k can be described. i, j, k stand for the matrix coordinates,
where the parameters of each ellipsoid are stored. The parameters are stored in an
ordered sequence, so that i = j = k = 1 is the first ellipsoid close to the lattice’s
coordinate system. Moreover, i = j = k = n is then the last ellipsoid. Hence, i,j,k
correlate with the coordinate system x, y, z. To find the suitable i, j, k values for
zci, j,k to achieve a sine layer, the value k has to be expressed by a sine function that
propagates along the x-direction, which is i. Then k can be described by eq. (10).
In eq. (10), a is the amplitude, pd is the periodicity, and h is the predetermined
height.

k(i) = round(a · sin(pd · i) + h) (10)

The randomisation of the ellipsoid’s centre coordinates and radii can be described
by eq. (11). Here zci, j,k is used in this example but the procedure is the same for
the other coordinates and radii. The randomised centre coordinate zcrani, j,k is the
sum of the centre coordinate zci, j,k and the random value ∆zi, j,k which originates
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from eq. (8)).
zcrani, j,k = zci, j,k + ∆zi, j,k (11)

The thickness of the layer at k is just one layer of points. Thickness can be created
by setting the point layer within the matrix between −t to t. Then the layer can be
described by eq. (12).

−t < i < t (12)

2.5. Creating surface roughness
Every lattice created after the randomisation process can be described by a

binary matrix. In the binary matrix, zero represents a void and one stands for the
solid. If MATLAB’s iso-surface function is used at a threshold value of zero, the
computed faces and vertices describe a surface just at the boundary between the
solid (1) and the void (0). The surface is represented by a blue line in fig. 4. To
apply the surface roughness, the binary matrix needs to be altered before applying
the iso-surface function. This can be done by finding the transition from 0 to
1 or 1 to 0 in the control volume Vi, j,k. Then the Gaussian random distribution
eq. (8) is used to create positive and negative values of ∆rough around the mean
value µrough by controlling σrough. The negative values are then added to 1 and the
positive values to 0, see eq. (13). If the roughness value is zero, no roughness is
added.

Vi, j,k =

1 + ∆rough i f ∆rough < 0
0 + ∆rough i f ∆rough > 0

(13)

This will result in a rough surface fig. 4 b). Here we manipulate every third value.
This results in an isosurface (blue) with irregularities/ roughness. The roughness
depends on the selected resolution. Hence, the roughness will vary between two
matrice’s entries. Subsequently, the iso-surface function can be applied and the
faces and vertices can be computed.

2.6. Lattice Parameters
Table 2 shows the lattice parameters that were used to design the lattices in the

following section.
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Table 2: The lattice parameters used to construct the lattice geometries in this publication. The
parameter Ux,y,z is the UC size. lx,y,z the expansion of the lattice in the x, y and z-direction. RD is
the relative density, MR is the mesh resolution and d, t, p are the divider, thickness and periodicity
that define the sine function. The values for the small, ring, middle and index finger, and thumb
are shown.

Function Ux,y,z lx/ly/lz(mm) RD MR d t p

Isotropic 5 mm 25/25/25 0.2 0.2 mm - - -
Anisotropic5 mm 25/25/25 0.2 0.2 mm - - -
Grading 5 mm 50/25/25 0.2 0.2 mm - - -
Sine 0 5 mm 25/25/25 0.2 0.2 mm 2 4 1
Sine I 5 mm 25/25/25 0.2 0.2 mm 2 4 0.25
Sine II 5 mm 25/25/25 0.2 0.2 mm 2 4 0.5
Roughness10 mm 60/30/30 0.2 0.2 mm - - -
Small 5 mm Boolean 0.1 0.2 mm - - -
Ring 10 mm Boolean 0.2 0.2 mm - - -

Middle 10 mm Boolean 0.2 0.2 mm - - -
Index 5 mm Boolean 0.2 0.2 mm 2 4 0.5

Thumb 15 mm Boolean 0.2 0.2 mm - - -

2.7. Additive Manufacturing
The stochastic lattices were manufacturing through selective laser sintering

(SLS) on an EOS EOSINT P100 Formiga. The process parameters used in this
research group [33] are displayed in tab. 3. After manufacturing, excess Nylon
12 powder was removed from the stochastic lattices. Then the stochastic lattices
were sandblasted, followed by a clean-up with pressurised water. After that, the
stochastic lattices were cleaned in an ultrasonic bath and then dried in an oven.

Table 3: EOS EOSINT P100 Formiga SLS Nylon 12 process parameters [33].

Material Laser
Power

Layer
Thickness

Scan
Speed

Hatch
Spacing

Chamber
Tempera-

ture

Nylon 12 21 W 100 µm 2500
mm/s

250 µm 173 °C
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3. Results

3.1. Function I: Isotropic Randomness
Figure 5 demonstrates the isotropic randomness applied to lattices composed

of Cubic, BCC, FCC+ and FCC UCs, demonstrating the versatility of this ap-
proach. A randomness of σ = 0, σ = 0.15, and σ = 0.3 was applied to each lat-
tice. At σ = 0 all lattices are regular. By increasing the randomness to σ = 0.15,
and σ = 0.3, it can be seen how the randomness increases. The FCC lattice
structure was also manufactured through SLS.

σ = 0.15

σ = 0.00

σ = 0.30

Cubic BCC FCC+ FCC FCCa) b) c) d) e)

Figure 5: Isotropic randomness applied to a Cubic a), BCC b), FCC+ c) and FCC d) UC. e), the
FCC UC is presented as manufactured by SLS. The randomness σ ranges from 0.00 over 0.15 to
0.3 mm.

To confirm that the tools produce the desired randomisation, the randomised
coordinates and raddii of the isotropic FCC lattice was evaluated as shown in
fig. 6. a) - f) show histrograms with a symmetric distribution. The deviation from
the input randomisation 0.15 is small and the variation is within expected ranges.
The lowest randomisation value was found at σrx = 0.136 and the highest value
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was observed at σy = 0.149. An evaluation of the RD of the FCC isotropic lattice
at a randomisation of 0.15 showed that the RD of the lattice was 0.213 compared
to the 0.21 desired RD. The as printed RD was determined to be 0.18.

a) b) c)

d) e)

𝜎𝑥 = 0.146

f)

𝜎𝑦 = 0.149 𝜎𝑧 = 0.146

𝜎𝑟𝑥 = 0.136 𝜎𝑟𝑦 = 0.147 𝜎𝑟𝑧 = 0.146

Figure 6: Evaluation of the ellipsoids’ parameter-set of the isotropic FCC lattice. The input ran-
domisation for all parameters is σ = 0.15, the RD is 0.2. a), b), c) show the added parameter
∆x, y, z to the x, y, z-coordinate and the corresponding standard deviation σx,y,z. d), e), f) show the
randomised ellipsoids’ radii and the their standard deviation σrx,ry,rz.

3.2. Function II: Anisotropic Randomness
Anisotropic randomness is shown in fig. 7, where every ellipsoid’s parameter

(eq. (1)) has a different randomisation value σ. a) - c) show the randomisation of
the radii in the x, y, and z-direction. d) - f) show the randomisation of the centre
position of each ellipsoid. An anisotropic lattice structure can be constructed by
superimposing all six different randomisation possibilities as illustrated in g). In
the bottom part of g), a SLS example of the anisotropic lattice is presented.
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σxr=0.4 σyr=0.25 σzr=0.175

σx=0.2 σy=0.15 σz=0.3
=x

z

y

z

x

z

y

z

x

z

x

z

y

x

z

a) b) c)

d) e) f)

g)

Figure 7: Six parameters of an FCC lattice were randomised by six different randomisation pa-
rameters. In a) to c), the ellipsoid’s radii are randomised, while in d) to f), the ellipsoid’s centre
positions are randomised. Anisotropic randomness as illustrated in g) is achieved by superimpos-
ing all six demonstrated randomisation possibilities. Moreover, SLS was used to manufacture the
anisotropic random lattice. The British five pence coin is 18 mm in diameter.

3.3. Function III: Graded Randomness
In fig. 8, four examples to grade randomness to an FCC lattice are shown. a)

- c) show the principles of grading the ellipsoid’s radius and center randomisation
in x, y, and z-direction, respectively. In a) the lattice is graded from 0 to 0.3, in b)
from 0 to 0.25 and c from 0 to 0.2. All three examples show how the initial regu-
lar structure gradually becomes more random. An anisotropic graded randomness
lattice can be created by superimposing these three examples as shown by way
of example in fig. 8 d). d) shows the regular structure in the lower-left corner,
while the graded randomness is different in all directions. The four demonstrated
graded randomness lattices were also manufactured by SLS to demonstrate man-
ufacturability. The manufactured lattices are shown below a) - c) and on the right
of d).
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σx and σxr
graded from 0 to 0.3

a) σy and σyr
graded from 0 to 0.25

σz  and σzr
graded from 0 to 0.2

b) c)

x

y

z

x

y

z

x

y

z

y

z

x

d)

σx and σxr
graded from 0 to 0.3

σy and σyr
graded from 0 to 0.25

σz  and σzr
graded from 0 to 0.2

Figure 8: Graded randomness is demonstrated in three different directions with three different
randomisation values in FCC lattices. a) the x-position and x-radius is randomised from 0 to 0.3,
b) the y-position and the y-radius is randomised from 0 to 0.25, c) the z-position and the z-radius
is randomised from 0 to 0.2. Superimposing the three different graded lattices a)-c) results in an
anisotropic graded randomness lattice d). Lattices a)-d) were also manufactured via SLS.

3.4. Function IV: Layered Randomness
The method described in section 2.5 was used to create a layer with random-

ness in an FCC lattice cube, as illustrated in fig. 9. As demonstrated in fig. 9 a), a
flat layer can be constructed via the function (10) if the amplitude a is set to zero,
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which means the sine part of the function is not applied. However, by increasing
the amplitude a and changing the periodicity p a sine layer is created (fig. 9 b).
Through increasing the periodicity p (fig. 9 c), the sine layer can be compressed.
Stochastic layer examples can be manufactured via SLS as shown.

x

z
SINE 0a) SINE Ib) SINE IIc)

x

z

x

z

Figure 9: Three FCC lattices created with a stochastic layer by a sine function. a) is a layer
within the FCC structure where the amplitude of the sine function is zero, resulting in a flat layer.
b) By increasing the amplitude of the sine function, a sine function occurs within the lattice.
c) By changing the periodicity, the sine function is compressed in comparison to b). a-c) were
manufactured via SLS.

3.5. Function V: Surface Roughness
The fifth tool is stochastic surface roughness. In fig. 10, two FCC type lattices

of the same size are demonstrated. a) shows the original lattices that includes no
roughness. Therefore a smooth surface can be seen when magnified. Superim-
posing a roughness (µrough and σrough = 0.2) results in a rough surface lattice as
demonstrated in image b). Through additive manufacturing a) and b), it can be
seen that the surface roughness can also be replicated via additive manufacturing
(see protrusion in fig. 10 b) lower image).
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𝜇𝑟𝑜𝑢𝑔ℎ and σrough = 0 𝜇𝑟𝑜𝑢𝑔ℎ and σrough = 0.2a) b)

c) d)𝜇𝑟𝑜𝑢𝑔ℎ and σrough = 0 𝜇𝑟𝑜𝑢𝑔ℎ and σrough = 0.2

Figure 10: a) shows a smooth FCC lattice. roughness was applied to µrough and σrough. b) shows
a lattice with superimposed roughness, where 0.2 was applied to both µrough and σrough . A SLS
example of each lattice is presented. A British five pence coin (18 mm diameter) is shown for
scale. The roughness in the SLS example in a) is shown and b) indicated by an arrow.

3.6. Stochastic Sculpture
In fig. 11, a hand is demonstrated that shows the lattices created by the five

tools previously demonstrated (a hand geometry published on Thingiverse by
George Weber [34] was used and lattices, logos and texts were added). All lattices
are made from an FCC type lattice. The small finger represents the isotropic ran-
domness; the ring finger is made from an anisotropic random lattice. The middle
finger shows graded randomness, while the index finger includes a stochastic sine
layer. The thumb represents the roughness layer. On the backside of the hand,
a regular lattice is included and the fingers are stabilized through rods to prevent
early failure. This design is intended as a demonstrator, therefore it includes the
title of this paper and the authors’ names and details of a forthcoming software
package incorporating these methods. A demonstration was printed via SLS.
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V. Roughness

IV. SINE

III. Graded
II. Anisotropic

I. Isotropic

Stabilizing 

Rod

Regular 

Lattice

a) b)

Figure 11: a) To illustrate the implementation of stochastic lattices the fingers of a hand show the
five tools devised here. An FCC UC was used to illustrate each process. b) The sine layer within
the index finger is highlighted. A regular FCC lattice is included on the backside of the hand. (The
original hand geometry without lattices and text was published on Thingiverse by George Weber
[34]) The British five pence coin is 18 mm wide.

4. Discussion

The purpose of this study was to expand the capability of stochastic design
tools. We created regular location arrays on which we positioned spheres to create
commonly known lattice types. We then superimposed various types of random-
ness on the sphere’s location and manipulated the sphere’s radii by assuming the
sphere is an ellipsoid. This resulted in five simple tools to design stochastic lat-
tices. Isotropic randomness is when the same randomness value is used for each
parameter. Anisotropic randomness is when the randomness value is different for
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each parameter. This should not be confused with the simple directional variation
in properties of solid materials. Graded randomness is when the randomness value
changes from a minimum value to a maximum value according to its location. A
stochastic layer is a layer that is enclosed between two regular structures, has a
specific thickness, location and can follow a defined function. A stochastic sur-
face roughness is used to roughen the surface by a certain randomness value over
the whole structure. The results are five tools that can be applied individually or
in unison for many engineering applications.
The five tools can be compared and contrasted as follows to the most recent litera-
ture about the subject. The majority of stochastic designs are represented by strut
based lattices of uniform thickness [20], but also stretched stochastic Voronoi lat-
tices [18], [16], and the randomisation of implicit functions can be observed [10].
Here, we used ellipsoids that we extract from a solid, resulting in open and closed
cells with varying strut thickness, which gives more randomisation possibilities
than previously adopted lattice structures. The isotropic randomness tool is sim-
ilar to techniques observable in older literature like [7] or newer literature like
[20] or [18]. They applied the same randomness value for each parameter. This
resulted in forming the idea to establish the manipulation of randomness itself.
Furthermore, anisotropic randomisation can be distinguished from the isotropic
randomness because for each parameter a different kind of randomness is used.
Moreover, in the research field of lattices, it is common to grade the UC size or
the relative density [23]. We transferred this to tailor randomness. Therefore we
created a tool that changes the randomness linearly according to its location. This
can easily be translated to nonlinear functions or localised around ‘sensitiser’ fea-
tures. Different layers like sandwich structures are well understood, and in lattice
designs, hybrid structures can be observed [35], where two different lattice struc-
tures morph into one another. However, we created a flat or sine shaped layer of
randomness, which creates new application opportunities.

The demonstrated tools show the following limitations. Firstly, the mechani-
cal or thermal properties are not known yet. Hence, the future research fields are
speculative at this time. Secondly, the tools do not incorporate rules that could
define relationships between the different randomness. For example, a rule could
be to only allow the sizes of the ellipsoid to only permit a closed or open cell
stochastic lattice to be created. Third, the stochastic surface roughness tool cre-
ates roughness but this needs to be linked to the specific additive manufacturing
process to design surface roughness efficiently, for example for the purpose of in-
creased heat transfer.
There are several fields where stochastic lattices could be applied. An application
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for anisotropic randomness, graded randomness and stochastic surface roughness
are medical engineering applications. Here, especially the design tools could aid
the interaction between the bone structure and the lattice, and improve the al-
ready proposed design by Murr et al. [36], which shows differently sized random
lattices. Moreover, studies confirm that random like lattices [37] increase the pull-
out force of teeth implants and that circular pedestals randomly positioned on a
surface improve osseointegration [38]. In mechanical engineering applications,
these tools could be used to optimise frequency band gaps [39]. It could be as-
sumed that the stochastic lattices compared to recently studied regular lattices [40]
could help filter certain frequencies, especially when the acoustics might vary a
lot. Furthermore, as recently shown, stochastic lattices absorb energy with distinct
energy-time profiles [20]. This is compared to regular lattices where failure is a
compound of discrete events where unit cells break in sequence. Hence these lat-
tices could be used in energy absorption applications. Additionally, stochastic lat-
tices could be used in thermo-mechanical applications, where the anisotropic and
graded randomness could fulfil two functions. Wong et al. [41] could not show
that lattices increase heat transfer because most of the lattice’s struts were in the
wake zone of the fluid and due to the lattice’s channel like design the turbulence
generation was poor. Stochastic lattices could overcome this problem because the
struts would not be in line anymore. Moreover, due to this stochastic irregularity
in the design, the boundary layer could be restrained from developing an unnec-
essary high thickness, thus resulting in higher heat transfer [42]. In summary the
stochastic lattice is set to be an increasingly important design feature.

5. Conclusion

Here we demonstrated five tools to design a stochastic lattice, which were im-
plemented in human a hand model, where each finger represents one design tool.
Four lattices (Cubic, BCC, FCC, FCC+) can create a regular array of spheres on
which we superimpose a Gaussian random distribution. This leads to a stochastic
lattice. By tailoring the randomisation value, we achieve isotropic randomness,
where the same randomness values are used throughout the system. Anisotropic
randomness is achieved when we apply for each design parameter a different ran-
domisation value. Graded randomness can be achieved by applying a linear func-
tion to the randomisation value and superimpose it on the regular lattice structure.
By applying a sine function, we can create a flat or curved stochastic layer. By al-
tering the surface of the solid with the explained stochastic function we can create
stochastic surface roughness. To demonstrate the five tools’ additive manufactura-
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bility. All five tools were demonstrated by an additive manufactured SLS example.
The results are five tools that can be applied in medical engineering, mechanical
engineering and thermo-mechanical designs. This opens new opportunities for
research in said fields.
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