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Abstract

The bacterial Tn5 and Tn10 transposases have a single active site that cuts both strands of DNA at their respective
transposon ends. This is achieved using a hairpin intermediate that requires the DNA to change conformation during the
reaction. In Tn5 these changes are controlled in part by a flipped nucleoside that is stacked on a tryptophan residue in a
hydrophobic pocket of the transposase. Here we have investigated the base flipping mechanism in Tn10 transposition. As in
Tn5 transposition, we find that base flipping takes place after the first nick and is required for efficient hairpin formation and
resolution. Experiments with an abasic substrate show that the role of base flipping in hairpin formation is to remove the
base from the DNA helix. Specific interactions between the flipped base and the stacking tryptophan residue are required
for hairpin resolution later in the reaction. We show that base flipping in Tn10 transposition is not a passive reaction in
which a spontaneously flipped base is captured and retained by the protein. Rather, it is driven in part by a methionine
probe residue that helps to force the flipped base from the base stack. Overall, it appears that base flipping in Tn10
transposition is similar to that in Tn5 transposition.
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Introduction

Mobile DNA sequences have had a profound influence on

evolution. Although not as numerous as retrotransposons in higher

eukaryotes, cut-and-paste DNA-transposons are a successful group

of elements, well represented in all branches of life. They generally

encode a single transposase protein with a characteristic DDE triad

of amino acid residues in the active site. These ‘DDE’ enzymes

belong to an ancient superfamily of proteins that share a common

RNase H-like structural fold and catalyze phosphoryl transfer

reactions using a two-metal-ion mechanism. Most superfamily

members perform phosphoryl transfer reactions on only one strand

of their respective nucleic acid substrates. The relative simplicity of

this reaction is reflected in the compact structure of the catalytic

core of these enzymes. In contrast, most cut and paste transposases,

with the exception of the mariner family, use a hairpin intermediate

to cleave the second strand of DNA at the transposon end

(Figure 1A). In these enzymes the catalytic core is disrupted by the

insertion of an extra sub-domain that in Tn5 transposase interacts

with a flipped base at the transposon end [1–4].

Base flipping is a recurrent theme in nucleic acid metabolism.

The best known examples of enzymes that use this mechanism are

DNA methylases, glycosylases, and glycosyl- and alkyl-transferases

[5–9]. Other (more unusual) examples include pseudouridine

synthase, sarcin/ricin toxins, certain restriction endonucleases and

the Tus-Ter replication termination complex [10–15]. In most

cases base flipping provides the enzyme with access to its substrate

which is the base itself. The flipped base at the Tn5 transposon

end, first observed in the crystal structure of the transpososome

[1], was therefore unexpected because it is not subject to any kind

of modification such as methylation or excision. Nevertheless, the

powerful image of the flipped base stacked on a tryptophan residue

seemed to provide an explanation as to how the enzyme achieved

the steric freedom required for formation of the hairpin

intermediate (Figure 1A). However, biochemical experiments later

showed that although the hairpin step required removal of the

base from the helix, specific base stacking on the tryptophan

residue occurred only later, during hairpin resolution and target

site integration at the target site [16,17].

Amongst transposons, Tn10 and Tn5 are considered to be close

relatives even though the transposases share only 15–20% amino

acid sequence identity [18]. The proteins have identical active site

residues including the YREK motif, the DDE catalytic triad and

the tryptophan residue that stacks with the flipped base (Figure 1B).

Many base flipping enzymes also have a wedge or probe residue

that intercalates into the helix, filling the space vacated by the

flipped base. This can be a passive mechanism, as in DNA uracil

glycosylase, where the intercalating residue moves into the space

vacated when other elements of the protein capture a flipped base

[19,20]. Or the probe can actively push the flipped base from the

base stack, as in the HhaI methylase [21]. In Tn5 transposase a

second tryptophan is used as the probe residue, but this is

substituted by a methionine residue in Tn10 transposase

(Figure 1A, B).

Here we investigate the mechanism of base flipping in Tn10

transposition using biochemical tools and active site mutations. We
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find that the mechanism is similar to Tn5 transposition. However,

Tn10 transposition is more amenable to the permanganate base

flipping assay than Tn5 transposition. This difference allowed us to

measure the separate contributions to base flipping of the probe

and stacking residues. We conclude that base flipping is a central

player in the choreography of the phosphoryl transfer reactions

that make and resolve the hairpin intermediate.

Results

Base flipping increases after the first nick
Potassium permanganate reacts with thymine bases in distorted

DNA, particularly if they are in an extra-helical location [22,23].

The reagent attacks from above the plane of the base and is

therefore used as a probe for base-stacking interactions. In

conjunction with analysis of active site mutations, permanganate

footprinting of the Tn5 cleavage intermediates revealed that base

flipping increases greatly after the first nick [17]. However,

distortion of the helix was detected even before catalysis as evident

from the permanganate sensitivity of the transposon end in the

uncleaved transpososome complex.

To investigate whether base flipping in Tn10 transposition also

takes place after the first nick we assembled transpososome

complexes with uncleaved and pre-nicked substrates and treated

them with permanganate (Figure 2A). No transposase-dependent

Figure 2. Base flipping after the first nick. Transpososomes were
assembled and treated with KMnO4. KMnO4 oxidizes thymine bases in
distorted DNA, particularly if they are in an extra-helical position [23].
Oxidation converts the thymine to cis-thymine glycol which, upon
piperidine treatment, undergoes further degradation leading to
cleavage of the DNA strand. After quenching the DNA was analyzed
on a DNA sequencing gel. A The substrate was either uncleaved or pre-
nicked. The nucleotide sequence of the transposon end is given on the
left, with the arrowhead indicating the location of the transposon end.
UC, uncleaved substrate; N, pre-nicked substrate, T’ase, transposase;
IHF, integration host factor; *, This band is an artifact that appears to be
caused by a heterogeneity at the 59-end of the DNA strand. Since the
label is located at the 39-end of the DNA strand, this artifact does not
contribute to the sequencing ladder or the permanganate footprints. B
As in part A except that the transpososomes were assembled on the
pre-nicked substrate with the wild type and mutant proteins.
doi:10.1371/journal.pone.0006201.g002

Figure 1. The hairpin and base flipping stages of transposition
in different families of transposons. A Different families of DDE
transposons have hairpin intermediates of opposite polarity. Scissile
phosphates are shown in red; transposon end and RSS, grey triangles.
Left panel: Binding of Tn5 transposase creates a distortion in the DNA
that destabilizes stacking of the T+2 base (green). The first step of the
reaction is a nick to expose the 39-OH at the end of the transposon. This
facilitates flipping of the T+2 base from the helix in preparation for
cleavage of the second strand by a direct transesterification reaction,
generating a hairpin intermediate on the transposon end [35,36].
Subsequently, the hairpin is resolved to yield a blunt transposon end.
The insert shows the co-crystal structure of the Tn5 transposon end, with
the flipped base at position +2 [1]. All of the residues of the bound
transposase have been omitted except for two tryptophan residues. One
acts as a probe inserted into the DNA helix, while the other provides
stacking interactions to stabilize the flipped base. Right panel: In the hAT
transposons and V(D)J recombination the polarity of the reaction is
reversed. The first nick occurs on the top strand generating a 39-OH on
the flanking DNA end [2,37,38]. Transesterification yields a hairpin on the
flanking DNA that is processed by the host. Residue -1 on the bottom
strand is distorted and becomes permanganate sensitive after the first
nick (green) [17]. B The amino acid sequence of the Tn5 transposase in
the vicinity of the probe and stacking residues is aligned with the
equivalent region from Tn10 transposase. The Tn5 transposase stacking
tryptophan is at position 298 and a tryptophan occupies the equivalent
position in Tn10 transposase. However, the Tn5 transposase probe
tryptophan aligns with a methionine residue in the Tn10 transposase. The
E residue of the YREK motif is also a member of the DDE triad of residues
that coordinate the catalytic metal ions and are essential for catalysis.
doi:10.1371/journal.pone.0006201.g001
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permanganate sensitivity was detected with the uncleaved

transposon end. In the corresponding Tn5 complex, residues

T+2 and T-1 were slightly sensitive, indicating the early distortion

of the DNA [17]. The absence of this signal in the Tn10

transposase complex may be due to the lower efficiency of

transpososome assembly, which is often as low as 5–10% and may

therefore obscure a faint signal. In contrast, when the transposo-

some was assembled with the pre-nicked transposon end, the T+2

residue was sensitive to permanganate oxidation (Figure 2A). This

indicates a significant change in the conformation of the T+2 base

at the end of Tn10, and that it is probably flipped from the helix

like its counterpart in the Tn5 transposon end.

In Tn5, the flipped base at position T+2 remains protected from

permanganate oxidation by its location within a hydrophobic

binding pocket and/or stacking against the tryptophan residue

[1,17]. Permanganate sensitivity of the flipped base was revealed

only after mutation of the stacking tryptophan residue [17]. The

permanganate sensitivity of the T+2 base in the wild type Tn10

transpososome indicates that the binding pocket in which the

flipped base is putatively held is more accessible than the

equivalent region in the Tn5 transposase. This provides a

technical advantage because the permanganate sensitivity assay

can be used to observe Tn10 base flipping dynamics in the wild

type background.

Probe and stacking residues both drive base flipping
Base flipping has been observed in many different enzymes.

Even though many of these are unrelated, they often have

mechanistic similarities. For example, base flipping is usually

driven by some combination of DNA bending, the intrusion of a

probe residue and stabilization of the flipped base in an extra-

helical location. We therefore investigated the effects of the

putative probe and stacking residue mutations on the permanga-

nate sensitivity at base T+2 of the Tn10 transposon end.

Transpososome complexes were assembled with the wild type

and mutant proteins and treated with permanganate (Figure 2B).

As before, wild type transposase produced a strong permanganate

signal at T+2. However, the signal was reduced by 70% and 55%

in the W265A (stacking) and M289A (probe) mutants, respectively.

This reveals that the probe residue has an active role in base

flipping, and suggests that base flipping is driven by more than the

interactions between T+2 and the stacking tryptophan.

T+2 crosslinking increases after the first nick
The permanganate sensitivity of the flipped base in the Tn10

transposon end suggested that the hydrophobic pocket in which it

is presumably held is more accessible than the equivalent region in

the Tn5 transposase complex (above). In the Tn5 reaction the

sequestration of the flipped base is reflected in the fact that it can

be photo-crosslinked to the stacking-tryptophan. Indeed, it was

crosslinking that provided a firm experimental link between the

flipped base observed in the cocrystal structure and the

permanganate signal [17].

To investigate the contacts with the putative stacking-trypto-

phan in the Tn10 transposase we substituted the T+2 residue with

IdU and assembled complexes using uncleaved and pre-nicked

transposon ends (Figure 3A). The complexes were exposed to UV,

and analyzed by SDS-PAGE (Figure 3B). With the uncleaved

transposon end a faint transposase-dependent product was

detected (lane 3). This signal increased 2-fold with the pre-nicked

transposon end (lane 6). Under similar experimental conditions

with the Tn5 transposase crosslinking increased 5-fold [17].

The high efficiency of crosslinking in the Tn5 reaction allowed

peptide sequencing to identify the crosslinked residue [17].

However, we repeatedly failed to generate peptide sequences

from Tn10 transposase because of the low concentration of the

tryptic peptides and the high background of un-crosslinked DNA.

To address the lack of a rigorous experimental control, we tested

the W265A stacking-residue mutant for crosslinking with the pre-

nicked substrate (Figure 3C, D). The mutation largely abolished

crosslinking, providing evidence, albeit indirect, that this residue is

the crosslinking target.

We also tested crosslinking of the M289A probe-residue mutant

to the flipped base (Figure 3D). This mutation caused a 60%

reduction in crosslinking, comparable in magnitude to its effect on

the permanganate sensitivity of T+2 (Figure 2B). This correlation

supports our view that T+2 permanganate sensitivity and cross-

linking are both good indicators of base flipping.

Figure 3. Crosslinking between transposase and the flipped
base. The thymidine residue T+2 on the top strand of the DNA
substrate was substituted with the zero-length crosslinking reagent
iodouracil which reacts primarily with aromatic amino acid side chains.
Transpososomes were assembled on 59-end labeled uncleaved (UC)
and/or pre-nicked (N) substrates. An aliquot was removed to monitor
transpososome assembly by EMSA. The remainder was exposed to UV
light and analyzed by SDS-PAGE. Autoradiograms are shown. A
Transpososome assembly with wild type transposase was monitored
by EMSA. As expected, assembly on linear DNA fragments requires the
presence of the host protein IHF [29]. B UV crosslinking of the reaction
mixtures from part A and analysis by SDS-PAGE. Crosslinking was
detected only in the presence of transposase and was more prominent
after the first nick. C and D The same as parts A and B respectively,
except that the transpososomes were assembled on the pre-nicked
substrate using wild type and mutant transposase.
doi:10.1371/journal.pone.0006201.g003
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The catalytic effects of probe and stacking residue
mutations

The Tn10 transposase probe and stacking residues were altered

to alanine and the purified transposases were assayed for cleavage

activity (Figure 4A). The DNA substrate was labeled at both 59-

ends so that both top and bottom strand nicks and the hairpin

intermediate could be observed in a single experiment. The three

phosphoryl transfer reactions that constitute cleavage of the

transposon end were quantified and plotted as a percentage of the

total substrate in the reaction (Figure 4C-F).

With the wild type Tn10 transposase, neither the nicked nor

hairpin intermediates accumulated as they were converted rapidly

to the cleaved-end product (Figure 4A, C). With the W265A

stacking residue mutation first strand nicking was normal, but the

rate of hairpin formation was greatly reduced (Figure 4D).

Furthermore, the accumulation of hairpin at later time-points

suggests that the hairpin resolution step is slightly slow in the

absence of the stacking residue. This is similar to the behavior of

the equivalent Tn5 transposase mutation [16].

The M289A probe residue mutation did not have much effect

on the first nick which appeared rapidly at the start of the reaction

(Figure 4A, E). However, the hairpin intermediate appeared late

and persisted during the remainder of the reaction. The probe

residue is therefore important for the hairpin formation and

resolution steps of the reaction. The equivalent Tn5 transposase

mutant functions similarly although the hairpin resolution defect is

worse (90% of the hairpin product remained after 120 minutes)

[17]. Finally, the Tn10 double mutant was completely defective for

the hairpin formation step, although the kinetics of the nicking step

were relatively normal (Figure 4A, F).

T+2 interactions promote hairpin resolution
To investigate the role of the flipped base at different stages of

the reaction, an abasic residue was introduced at position +2. We

refer to this substrate as Aba+2. In transposition reactions with the

wild type transposase, the abasic substrate underwent nicking at a

similar rate to the equivalent wild type substrate (Figure 4G,

compare with C). A key difference between the wild type and

abasic substrates was observed at the hairpin intermediate stage,

where the hairpin accumulated because it was not resolved

efficiently (Figure 4G). This suggests that direct interactions

between the protein and the flipped base are important for hairpin

resolution. This is consistent with the phenotype of the Tn10

W265A mutant on the unmodified DNA substrate where hairpin

resolution is also somewhat impaired (Figure 4D).

Unsequestered T+2 interferes with hairpin formation
It has already been shown that the stacking residue mutation

inhibits hairpin formation on the normal Tn10 transposase

substrate (Figure 4D). When this mutant was assayed with the

Aba+2 substrate, the hairpin defect was completely rescued

(Figure 4H). Hairpin resolution was slow compared to the fully

wild type situation, but no more so than with the wild type protein

on the Aba+2 substrate (compare Figure 4G and H). This suggests

that the hairpin-formation defect of the W265A mutant is caused

by interference from the T+2 residue which is no longer retained

in its proper extra-helical location by the stacking interaction.

We next tested whether the M289A mutation could be rescued

by the Aba+2 substrate (Figure 4B, I). The kinetics of the first nick

were largely unchanged. However, the amount of hairpin

intermediate present at each time point was greater than in the

equivalent wild type situation. It therefore appears that with the

Aba+2 substrate the hairpin is produced more quickly but resolved

more slowly compared to the wild type substrate (compare Figure 4

E and I). The behavior of the double mutant on the Aba+2

substrate was very similar (compare Figure 4F and J). Together

these results show that T+2 interferes with hairpin formation, but

promotes hairpin resolution.

Discussion

A general model has been proposed for base flipping reactions

[24]. Protein binding first distorts the phosphodiester backbone

to provide an exit route for the target base out of the helix. A

probe residue pushes the base out of the helix and/or fills the

space vacated. Finally, the flipped base is trapped in an extra-

helical location by stabilizing interactions with the protein. Our

previous work revealed that Tn5 transposase uses all three of

these mechanisms. However, the role of the probe residue

remained ambiguous, particularly whether it is actively involved

in base flipping, or serves only to fill the space vacated by the

flipped base.

An active flip and capture mechanism in Tn10
transposition

Our present results suggest that the mechanism of base flipping

in Tn10 transposition is similar to Tn5 transposition [16,17]. Base

flipping in Tn5 transposition could not be detected directly using

the permanganate assay because the base was protected in a

hydrophobic binding-pocket in the protein. Base flipping was only

revealed after the protective pocket was made more accessible by

mutation of the stacking tryptophan residue [17]. In contrast, the

equivalent region in the Tn10 transposase appears to be more

accessible, and base flipping can be detected by the permanganate

sensitivity assay with the wild type protein. This made it possible to

determine the separate contributions of the probe and stacking

residues in an otherwise wild type background (Figure 2).

The stacking residue mutation (W265A) reduced permanganate

sensitivity by 70%, showing that this residue contributes substan-

tially to maintenance of the flipped state (Figure 2B). The probe

residue mutation (M289A) reduced permanganate sensitivity by

55%, suggesting that it is not merely moving in to fill the space

vacated by the flipped base. Rather, it suggests that the probe may

help force the base from the base stack. However, the present results

do not provide conclusive proof of this view which would require

initial rate measurement, for example, by proton exchange.

The probe and stacking residues are important for hairpin

formation and resolution. This is evidenced by the accumulation

of nicked and hairpin products in cleavage reactions with the

respective mutant transposases (Figure 4D, E ). The Aba+2

substrate rescues hairpin formation, but not resolution (Figure 4H,

I ). This suggests that hairpin formation requires the absence of the

T+2 residue from the helix. In contrast, efficient hairpin resolution

requires the interaction between the flipped T+2 residue and the

stacking tryptophan. This is similar to what occurs in Tn5

transposition. In this case we previously suggested that the flipped

base could be likened to a handle that is used by the protein to

position the second strand of DNA in the active site [17].

The probe residue also appears to have a role in hairpin

resolution as this intermediate accumulates in cleavage reactions

with the M289A transposase (Figure 4E). This may be an indirect

consequence of the base flipping defect in this mutant which would

reduce the crucial interaction between the flipped base and the

stacking tryptophan. However, the probe residue may also have a

direct role in positioning the DNA strand during hairpin

resolution.

Base Flipping Dynamics
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Base flipping and the reversed hairpin polarity of
eukaryotic transposons

The RAG1/2 V(D)J recombinase is one of the eukaryotic

members of the DDE family in which the polarity of the hairpin

intermediate is reversed. The reversed polarity of the hairpin

intermediate begs the question as to whether any elements of the

Tn5/Tn10 base flipping mechanism are conserved in these

enzymes [3,25]. Our own investigation of V(D)J recombination,

using a similar strategy to that applied here, demonstrated that

although the base at position -1 is apparently flipped, it does not

appear to engage in a specific interaction with aromatic amino

acid residues in the recombinase that would indicate capture of the

flipped base (JB and RC to be presented elsewhere).

Our current results with Tn10 indicate that efficient hairpin

resolution depends on the interaction of the flipped base with

tryptophan 265. The eukaryotic members of the DDE family such

as RAG1, which do not resolve the hairpin intermediate, are

therefore perhaps unlikely to capture the flipped base in a highly

specific interaction, especially since it is probably located in the

flanking DNA where the sequences are in any case variable.

Materials and Methods

Proteins
Wild type Tn10 transposase was expressed from pRC60 which

contained the transposase gene on an NdeI-BamHI fragment

cloned into pET11a. The W265A and M289A mutations were

introduced by site directed mutagenesis. The proteins were

expressed and purified as described in [26]. The host protein

integration host factor (IHF) was expressed from pRC188, which

identical to pPR204 obtained from Phoebe Rice. This plasmid

contains the himA and hipD genes encoding IHF subunits cloned

as an operon in pET27b. The protein was expressed and purified

essentially as described in [27,28]. IHF is require to fold the linear

DNA fragments during assembly of the Tn10 transpososome

[29,30]. A MonoS chromatography step was added to the

purification procedure. The column buffer was 25 mM Tris

pH 8, 1 mM EDTA, 2 mM DTT and 10% glycerol. Elution was

with a 20 ml gradient from 50 mM to 2 M NaCl in the same

buffer. Pooled fractions were stored at 280uC. The nicking

endonuclease N.BsaI was a gift from Shuang-yong Xu at New

England Biolabs [31].

Oligonucleotides and plasmid construction
The following oligonucleotides were used: Tn10Armshort, -

59CGAGGTCGACCCGAAACCATTTG; NBsaExt, 59GGTCT-

AGGTGAGCGTGGGTCTCGCGGTCTGATGAATCCCCT-

AATGATTTTGG; UCTn10, 59GGTCTAGAGTGAGCGTGG-

GTCTCGCGGTCTG; UCIdUTn10, 59GGTCTAGAGTGAG-

CGTGGGTCTCGCGGTC{IdU}G; UCdUTn10, 59GGTCTA-

GAGTGAGCGTGGGTCTCGCGGTC{U}G. Modified resi-

dues appear within curly brackets. The uracil was used for generating

the abasic substrate and the iodo uracil was for protein-DNA

crosslinking. The plasmid pRC915 (pJB15) was constructed as

follows. The outside end of IS10-Right was amplified from pRC98

(pKC3) [32] using oligonucleotides Tn10Armshort and NBsaExt.

The fragment was cloned into pDRIVE (Qiagen) from which the

ampicillin gene had been removed to yield a plasmid with a single

BsaI recognition site overlapping the transposon end. This site was

used to generate the pre-nicked substrate by digestion with N.BsaI.

DNA substrates
Linear transposon ends for the permanganate assay were

generated by digesting pRC915 with EcoRI and AccI. This

yielded a fragment with 83 bp of transposon and 47 bp of flanking

DNA sequences. If a pre-nicked transposon end was required the

plasmid was previously treated with the nicking endonuclease

N.BsaI at 50uC for 4 h. The DNA fragments were 39-end labeled

with 32P using dCTP and the exo- Klenow fragment (NEB). This

added a single 32P cytosine residue to the top strand of the

transposon arm. The opposite strand remained unlabeled. The

labeled transposon end fragment was purified by electrophoresis in

a TBE-buffered 5% polyacrylamide gel, and recovered by the

crush and soak method as described [29,33].

Linear transposon ends for the cleavage assays were generated

by PCR using the primers Tn10Armshort and UCTn10 with

Figure 4. Cleavage reactions with transposase mutants and an abasic substrate. Transpososomes were first assembled in the absence of
divalent metal ions. The cleavage reaction was initiated by the addition of MgCl2 at time zero. Aliquots were withdrawn at the indicated times and
the reaction halted by the addition of EDTA and SDS. The products were analyzed on a DNA sequencing gel and recorded and quantified by
autoradiography on a phosphoimager. The DNA substrates were labeled at both 59-ends so that all three phosphoryl transfer reactions could be
observed in a single experiment. The steps of the cleavage reaction are shown in panel A of the figure below the gel panel. The flanking DNA is to the
left and the transposon arm to the right of the half bracket that indicates the location of the transposon end. The positions of the radioactive labels
are indicated by the asterisks. Since the reactions are analyzed on denaturing gels, the unlabeled DNA strands, illustrated in grey, are not detected in
the autoradiograms. The identity of each band is indicated to the right of the gel in panel A. Bands I and IV each represent a single product of the
reaction as indicated. Bands II and III each represent mixtures of more than one co-migrating product and/or substrate as indicated. A & B Cleavage
reactions of wild type and abasic DNA substrates. The diagonal slashes indicate regions of the gels that have been removed because they contain no
relevant information. Unaltered images of the gels are provided in Figure S1. The identity of the products are indicated next to each band: Band I is
the hairpin intermediate; Band II consists the unreacted substrate plus the top strand of the nicked product; Band III contains the bottom strand of
the nicked product and the bottom strand of the cleaved transposon end (the resolved hairpin); Band IV contains the top strand of the cleaved
flanking DNA that is released upon hairpin formation. In panel B the substrate has an abasic residue at position +2 of the top strand. This was
prepared by incorporating a uracil residue at that position by PCR and subsequently treating the substrate with uracil glycosylase. This approach was
preferred over one in which the abasic site could have been incorporated during oligonucleotide synthesis. Tn10 transposon arms are folded during
assembly of the transpososome [32,39,40], and the DNA fragments required are too long for convenient oligonucleotide synthesis. C-F Quantification
of cleavage intermediates. The respective products are plotted as a percentage of the total substrate in the reaction. The amount of each
intermediate present at each time point is indicated by the shading within the column. None of the conditions tested severely inhibit the nicking step
of the reaction. Sixty minutes is sufficient time for all of the transpososome complexes present at the start of the reaction to achieve the first nick. The
height of the column at the 60 minute time point is therefore equivalent to the efficiency of transposome assembly, which varied over a 3-fold range
in the reactions presented in this experiment. Bands I and IV (corresponding to the hairpin and cleaved top strand, respectively) are unique and
unambiguous products of the reaction and can be quantified directly from the gel by phosphorimager analysis. Other intermediates and/or substrate
comigrate and therefore can not be quantified directly. They were calculated as follows: first strand cleavage (first nick) = Band III - (Band IV - Band I).
Hairpin resolution = Band IV - Band I. These calculations rely on equal labeling efficiency at either end of the substrate. To determine the efficiency of
labeling an aliquot of the substrate was cleaved into two parts by NdeI, and the ratio of label incorporated at each end of the fragment was
determined by phosphoimager analysis. This ratio was used to adjust all quantifications described above.
doi:10.1371/journal.pone.0006201.g004
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plasmid pRC915 as template. This yielded a fragment with 91 bp

of transposon and 28 bp of flanking DNA sequences.

The DNA fragment with the IdU crosslinking reagent at

position +2 of the transposon end was generated using the primer

pair Tn10Armshort and UCIdUTn10. This yielded a fragment

with 91 bp of transposon and 28 bp of flanking DNA sequences.

The DNA fragment used for preparing the transposon arm with

an abasic site at position +2 was generated using the primer pair

Tn10Armshort and UCdUTn10. The PCR product was treated

with uracil DNA glycosylase (NEB) for 2 h. The abasic site was

stabilized by making the solution 100 mM in freshly diluted

NaBH4 and incubating on ice for 30 min. The DNA was then

purified using a MicroSpin G-50 gel filtration device (Amersham

Pharmacia).

The PCR generated substrates were end labeled with 32P using

T4 polynucleotide kinase, and purified as described above for the

39-end labeled substrates.

Transpososome assembly and cleavage assays
Transpososome assembly mixtures and quantification of the

complexes by EMSA was as previously described [29,34] except

that the Tris buffer was replaced by Hepes pH 7.5 and DTT was

omitted from all solutions. Standard reactions (20 ml) contained

2 nM radiolabeled substrate, 10 nM IHF and approximately

1 nM transposase. The efficiency of Tn10 transpososome

assembly is variable from day-to-day and we routinely performed

protein titrations which were used to normalize the level of

complex formation with the different proteins and substrates. For

the permanganate and crosslinking assays the reactions also

contained 4 mM CaCl2. Transposase was added last and the

mixture was incubated at room temperature for 1.5 h. The

cleavage reaction was initiated by making the mixture 5 mM in

MgCl2.

Crosslinking assay
Transpososomes were assembled as described above with the

IdU substrate. An aliquot was analyzed by EMSA to determine

the efficiency of assembly. Half of the remaining material was

exposed to a Stratagene 2040 EV transilluminator (five 312 nm

fluorescent tubes each rated at 15 W power) for 40 min from

above at a distance of 8 cm. The other half of the sample was

retained as an unexposed control. Samples were mixed with

Laemmli SDS-PAGE loading buffer, heated for 20 min at 50uC
and then analyzed by Laemmli SDS-PAGE using 8% polyacryl-

amide. The gels were dried and quantified with a Fuji

Phosphorimager.

Permanganate base flipping assay
Complexes were assembled and treated with 8 mM KMnO4 for

30 S at room temperature before quenching with a ‘stop solution’

that achieved a final concentrations of 300 mM NaOAc pH 5.5,

30 mM EDTA, 100 mM DTT and 100 mg/ml glycogen. The

DNA was recovered in a pellet by ethanol precipitation. The pellet

was dissolved in 100 ml of freshly diluted 1M piperidine by heating

to 90 uC for 30 min. Following a second round of ethanol

precipitation the DNA was dissolved in TE buffer plus 7 M urea

and analyzed on a 10% polyacrylamide DNA sequencing gel. The

products were identified by reference to a Maxam-Gilbert C+T

sequencing ladder generated by treating the substrate with 60%

hydrazine for 10 min before quenching as described above.

Supporting Information

Figure S1

Found at: doi:10.1371/journal.pone.0006201.s001 (8.12 MB TIF)

Acknowledgments

We would like to thank Shuang-yong Xu at New England Biolabs for the

gift of the N.BsaI nicking endonuclease, and Azeem Siddique for editorial

help.

Author Contributions

Conceived and designed the experiments: JB RC. Performed the

experiments: JB. Analyzed the data: JB RC. Wrote the paper: RC.

References

1. Davies DR, Goryshin IY, Reznikoff WS, Rayment I (2000) Three-dimensional

structure of the Tn5 synaptic complex transposition intermediate. Science 289:

77–85.

2. Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, et al. (2004)

Transposition of hAT elements links transposable elements and V(D)J

recombination. Nature 432: 995–1001.

3. Lu CP, Sandoval H, Brandt VL, Rice PA, Roth DB (2006) Amino acid residues

in Rag1 crucial for DNA hairpin formation. Nat Struct Mol Biol 13: 1010–1015.

4. Hickman AB, Perez ZN, Zhou L, Musingarimi P, Ghirlando R, et al. (2005)

Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol

12: 715–721.

5. Stivers JT (2004) Site-specific DNA damage recognition by enzyme-induced

base flipping. Prog Nucleic Acid Res Mol Biol 77: 37–65.

6. Roberts RJ, Cheng X (1998) Base flipping. Annu Rev Biochem 67: 181–198.

7. Fromme JC, Banerjee A, Verdine GL (2004) DNA glycosylase recognition and

catalysis. Curr Opin Struct Biol 14: 43–49.

8. Parikh SS, Mol CD, Hosfield DJ, Tainer JA (1999) Envisioning the molecular

choreography of DNA base excision repair. Curr Opin Struct Biol 9: 37–47.

9. Tubbs JL, Pegg AE, Tainer JA (2007) DNA binding, nucleotide flipping, and the

helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase

and its implications for cancer chemotherapy. DNA Repair (Amst) 6:

1100–1115.

10. Hoang C, Ferre-D’Amare AR (2001) Cocrystal structure of a tRNA Psi55

pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell

107: 929–939.

11. Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V (2007)

Nucleotide flipping by restriction enzymes analyzed by 2-aminopurine steady-

state fluorescence. Nucleic Acids Res 35: 4792–4799.

12. Szczepanowski RH, Carpenter MA, Czapinska H, Zaremba M, Tamulaitis G,

et al. (2008) Central base pair flipping and discrimination by PspGI. Nucleic

Acids Res 36: 6109–6117.

13. Tamulaitis G, Zaremba M, Szczepanowski RH, Bochtler M, Siksnys V (2008)

How PspGI, catalytic domain of EcoRII and Ecl18kI acquire specificities for

different DNA targets. Nucleic Acids Res 36: 6101–6108.

14. Correll CC, Yang X, Gerczei T, Beneken J, Plantinga MJ (2004) RNA

recognition and base flipping by the toxin sarcin. J Synchrotron Radiat 11:

93–96.

15. Mulcair MD, Schaeffer PM, Oakley AJ, Cross HF, Neylon C, et al. (2006) A

molecular mousetrap determines polarity of termination of DNA replication in

E.coli. Cell 125: 1309–1319.

16. Ason B, Reznikoff WS (2002) Mutational analysis of the base flipping event

found in Tn5 transposition. J Biol Chem 277: 11284–11291.

17. Bischerour J, Chalmers R (2007) Base-flipping dynamics in a DNA hairpin

processing reaction. Nucleic Acids Res 35: 2584–2595.

18. Chalmers R, Sewitz S, Lipkow K, Crellin P (2000) Complete nucleotide

sequence of Tn10. J Bacteriol 182: 2970–2972.

19. Stivers JT (2008) Extrahelical damaged base recognition by DNA glycosylase

enzymes. Chemistry 14: 786–793.

20. Wong I, Lundquist AJ, Bernards AS, Mosbaugh DW (2002) Presteady-state

analysis of a single catalytic turnover by Escherichia coli uracil-DNA glycosylase

reveals a ‘‘pinch-pull-push’’ mechanism. J Biol Chem 277: 19424–19432.

21. Klimasauskas S, Szyperski T, Serva S, Wuthrich K (1998) Dynamic modes of

the flipped-out cytosine during HhaI methyltransferase-DNA interactions in

solution. Embo J 17: 317–324.

22. Rubin CM, Schmid CW (1980) Pyrimidine-specific chemical reactions useful for

DNA sequencing. Nucleic Acids Res 8: 4613–4619.

Base Flipping Dynamics

PLoS ONE | www.plosone.org 7 July 2009 | Volume 4 | Issue 7 | e6201



23. Serva S, Weinhold E, Roberts RJ, Klimasauskas S (1998) Chemical display of

thymine residues flipped out by DNA methyltransferases. Nucleic Acids Res 26:
3473–3479.

24. Cheng X, Blumenthal RM (1996) Finding a basis for flipping bases. Structure 4:

639–645.
25. Grundy GJ, Hesse JE, Gellert M (2007) Requirements for DNA hairpin

formation by RAG1/2. Proc Natl Acad Sci U S A 104: 3078–3083.
26. Chalmers RM, Kleckner N (1994) Tn10/IS10 transposase purification,

activation, and in vitro reaction. J Biol Chem 269: 8029–8035.

27. Lynch TW, Mattis AN, Gardner JF, Rice PA (2003) Integration Host Factor:
Putting a Twist on Protein-DNA Recognition. J Mol Biol 330: 493–502.

28. Liu D, Sewitz S, Crellin P, Chalmers R (2006) Functional coupling between the
two active sites during Tn10 transposition buffers the mutation of sequences

critical for DNA hairpin processing. Mol Microbiol 62: 1522–1533.
29. Sakai J, Chalmers RM, Kleckner N (1995) Identification and characterization of

a pre-cleavage synaptic complex that is an early intermediate in Tn10

transposition. EMBO J 14: 4374–4383.
30. Chalmers R, Guhathakurta A, Benjamin H, Kleckner N (1998) IHF modulation

of Tn10 transposition: sensory transduction of supercoiling status via a proposed
protein/DNA molecular spring. Cell 93: 897–908.

31. Zhu Z, Samuelson JC, Zhou J, Dore A, Xu SY (2004) Engineering strand-

specific DNA nicking enzymes from the type IIS restriction endonucleases BsaI,
BsmBI, and BsmAI. J Mol Biol 337: 573–583.

32. Crellin P, Chalmers R (2001) Protein-DNA contacts and conformational

changes in the Tn10 transpososome during assembly and activation for cleavage.

EMBO J 20: 3882–3891.

33. Chalmers RM, Kleckner N (1996) IS10/Tn10 transposition efficiently

accommodates diverse transposon end configurations. EMBO J 15: 5112–5122.

34. Liu D, Crellin P, Chalmers R (2005) Cyclic changes in the affinity of protein-

DNA interactions drive the progression and regulate the outcome of the Tn10

transposition reaction. Nucleic Acids Res 33: 1982–1992.

35. Kennedy AK, Guhathakurta A, Kleckner N, Haniford DB (1998) Tn10

transposition via a DNA hairpin intermediate. Cell 95: 125–134.

36. Bhasin A, Goryshin IY, Reznikoff WS (1999) Hairpin formation in Tn5

transposition. J Biol Chem 274: 37021–37029.

37. Ramsden DA, Gellert M (1995) Formation and resolution of double-strand

break intermediates in V(D)J rearrangement. Genes Dev 9: 2409–2420.

38. van Gent DC, McBlane JF, Ramsden DA, Sadofsky MJ, Hesse JE, et al. (1995)

Initiation of V(D)J recombination in a cell-free system. Cell 81: 925–934.

39. Sewitz S, Crellin P, Chalmers R (2003) The positive and negative regulation of

Tn10 transposition by IHF is mediated by structurally asymmetric transposon

arms. Nucleic Acids Res 31: 5868–5876.

40. Crellin P, Sewitz S, Chalmers R (2004) DNA looping and catalysis; the IHF-

folded arm of Tn10 promotes conformational changes and hairpin resolution.

Mol Cell 13: 537–547.

Base Flipping Dynamics

PLoS ONE | www.plosone.org 8 July 2009 | Volume 4 | Issue 7 | e6201


