
Cheating for Problem Solving:
A Genetic Algorithm with Social Interactions

Rafael Lahoz-Beltra

Department of Applied Mathematics
Faculty of Biological Sciences

Complutense University of Madrid
Madrid 28040, Spain

lahozraf@bio.ucm.es

Gabriela Ochoa
Automated Scheduling, Optimisation

and Planning (ASAP) Group
School of Computer Science
University of Nottingham, UK

gxo@cs.nott.ac.uk

Uwe Aickelin
Intelligent Modelling & Analysis

Research Group (IMA)
School of Computer Science
University of Nottingham, UK

uwe.aickelin@nottingham.ac.uk

ABSTRACT
We propose a variation of the standard genetic algorithm that
incorporates social interaction between the individuals in the
population. Our goal is to understand the evolutionary role of
social systems and its possible application as a non-genetic new
step in evolutionary algorithms. In biological populations, i.e.
animals, even human beings and microorganisms, social
interactions often affect the fitness of individuals. It is
conceivable that the perturbation of the fitness via social
interactions is an evolutionary strategy to avoid trapping into
local optimum, thus avoiding a fast convergence of the
population. We model the social interactions according to Game
Theory. The population is, therefore, composed by cooperator and
defector individuals whose interactions produce payoffs
according to well known game models (prisoner’s dilemma,
chicken game, and others). Our results on Knapsack problems
show, for some game models, a significant performance
improvement as compared to a standard genetic algorithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – Heuristic methods

General Terms
Algorithms, Design.

Keywords
Genetic algorithms, social interaction, game theory, knapsack
problems.

1. INTRODUCTION
Genetic Algorithms (GAs) are designed to search for near-optimal
solutions in search spaces with multiple local optima. The GA
population endows the algorithm with noise-resistant properties.
According to [1], when the fitness values are modified by the

addition of a noise term N(0, 2σ), the algorithm’s performance
decreases in proportion to the value ofσ . To the best of our
knowledge, any study so far has addressed the issue of how to
improve the performance of GAs or other evolutionary methods
based on a ‘perturbation’ of the fitness values.

This paper proposes a new approach inspired by the behavior of
individuals in social systems. Using the well-known knapsack
problem, we show how the inclusion of ‘social interactions’ into
the GA cycle, significantly improves the algorithm’s
performance. Our approach is loosely related to co-evolutionary
approaches in that the fitness of an individual depends on its
relationship to other members of the population [2, 3]. However,
it differs from them in that the social interaction is not the main
mechanism for calculating the fitness of co-evolving (competing
or cooperating) species. Instead, in our approach the social
interaction is an additional step that slightly alters the individuals’
genetic fitness values.
It is worth pointing out that we are not interested in competing
with state-of-the-art heuristic approaches for the Knapsack
problem [4, 5]. Our interest lies instead in exploring how social
interactions modeled via Game Theory (GT) could improve the
GA performance. We aim to understand the evolutionary role of
social systems and its possible application as a non-genetic new
step in evolutionary algorithms. The main inspiration for our
approach is the following observation: in biological populations,
i.e. animals, even human beings and microorganisms, social
interactions often affect the fitness of individuals [6]. It is
conceivable that the perturbation of the fitness via social
interactions is an evolutionary strategy to avoid trapping into
local optimum, thus avoiding a fast convergence of the
population. In artificial neural networks, for example, the
perturbation of some critical elements of the network during
training is a common practice that improves its efficiency for
pattern recognition [7]. We hypothesize that a population evolves
better solutions when the fitness of the standard genetic cycle is
affected by the social interaction between the members of the
population. Our approach is inspired by the social life of
microorganisms such as the social amoebas (M. xanthus and D.
discoideum) [8, 9, 10] and viruses (φ 6) [11, 12, 13]. These social
microorganisms, in response to specific environmental signals
(starvation, reproduction, etc.), organize into social systems with
two kinds of individuals: cooperators and defectors. Cooperators
perform a group beneficial function whereas defectors are ‘social

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07...$5.00..

parasites’ or cheaters that fail to perform a group beneficial
function. They instead reap the benefits of belonging to a group.
Usually, in Nature cheaters are genetic mutants or individuals
including selfish genes.
Based on above considerations we developed a GA with a
population composed by cooperators and defectors individuals.
In this approach the fitness function includes two terms:

fi = f(x) + Δ f(x) (1)
The first term, f(x), term is the standard chromosome fitness

calculated by the objective function, whereas the second term, Δ
f(x), is the fitness given by the social interaction between

chromosomes. The Δ f(x) value is obtained applying a Game
Theory model. Thus, it is the value given by the payoff matrix
that summarizes the combination of strategies (cooperator,
defector) during pair-wise interactions. We selected several games
from general GT (see http://www.gametheory.net/), and GT
applied to Microbiology [8, 13], namely: (i) prisoner’s dilemma,
(ii) chicken game, (iii) mixed polymorphism, (iv) friend or foe,
(v) facultative defection (vi) battle of sexes, and (vii) stag hunt.
All these games are: (a) 2x2, (b) symmetric and (c) non-zero sum
games.
We are interested in identifying the game model that confers a
population better performance than a standard GA. We conducted
extensive experiments on three Knapsack instances (with single
and multiple sacks). Our results show, for some game models, a
significant improvement of the optimized solutions as compared
to those obtained by a standard GA.
The next section outlines the proposed GA with social
interactions. Thereafter, Section 3 describes in detail the
simulation experiments conducted on both the single and
multidimensional Knapsack problem. Section 4 shows our
simulations results, Section 5 discusses the results, whilst section
6 summarizes and concludes our findings.

2. A GENETIC ALGORITHM WITH
SOCIAL INTERACTIONS BETWEEN
INDIVIDUALS
This section describes the proposed GA including a social
interaction step.

2.1 A GAGT algorithm
The outline of the algorithm is the following:
 /* GAGT Algorithm */
 WHILE not stop condition DO
 Social interaction.
 Evaluation fi.
 Selection (or reproduction) of a new generation.
 Crossover.
 Mutation.
 END DO

2.2 Social interaction between individuals
Our approach assumes a mixed population composed by
cooperators and defectors. Chromosome interactions are pair-

wise, they interact equally likely with each other. The interactions
are modeled according to GT. The GA is hybridized with the GT
model as follows. Let i be a chromosome, its fitness value, fi,, is
given by two terms:

fi = GAβ max

()f x
f

 + GTβ max

()f x
f

Δ
Δ

 (2)

where f(x) is the ‘genetic term’ or fitness value calculated with the
problem objective function, and ()f xΔ is a ‘social term’, which
corresponds to the resulting payoff after the social interactions
between chromosomes. In the above expression, both fitness
terms are normalized. The normalization terms are the maximum

fitness of the population at any given generation maxf and the

maximum payoff in the payoff matrix maxfΔ . Note how the
fitness value fi is a weighted sum of fitness values. In
particular, GAβ and GTβ are the weights modeling the relevance
of the genetic and social events, respectively.

As already mentioned, we assume a mixed population composed
by two kinds of chromosomes: cooperators and defectors. The
cooperators correspond to the usual GA chromosomes, whose
fitness is calculated in conformity with regular practice in genetic
algorithms. However, defector chromosomes exhibit a distinctive
feature: they are able to cheat (‘act dishonestly’) when the fitness
value is calculated. A defector will increase ‘dishonestly’ its
fitness value compared with a cooperator. It is important to note
that even when fitness is modified it does not involve a change in
the chromosome gene values.
Let us consider a social interaction between two chromosomes
selected at random. The combination of strategies (C=cooperator,
D=defector) during a pair-wise interaction is summarized by the
following payoff matrix:

1

2

C D
C k k s
D k s s c

−
+ −

 (3)

which shows the payoff for the row player. In the matrix, k is the
reward and k-s1 the sucker’s payoff that will be included in the
fitness function of a cooperative chromosome. Likewise, in a
cheater chromosome the following values, k+s2 or temptation to
cheat, and k-c or punishment, will be also included in the fitness
function. Considering the above payoff matrix we have four
possible cases:
(a) A cooperative chromosome i meets with another cooperative
chromosome, then the fitness value for the cooperative
chromosome i is calculated with ()f xΔ = k.

(b) A cooperative chromosome i meets with a cheater
chromosome, then the fitness value for the cooperative
chromosome i is calculated with ()f xΔ = k-s1.

(c) A cheater chromosome i meets with a cooperating
chromosome, then the fitness value for the cheater chromosome i
is calculated with ()f xΔ = k+s2.

(d) A cheater chromosome i meets with another cheater
chromosome, then the fitness value for the cheater chromosome i
is calculated with ()f xΔ = k-c.

We conducted several simulation experiments with different
social interaction models: prisoner’s dilemma (PD), chicken game
(CG), mixed polymorphism (MP), friend or foe (FOF), facultative
defection (FD), battle of sexes (BS) and stag hunt (SH). The
payoff matrix (3) could be replaced by this other equivalent
matrix:

C D
C R S
D T P

 (4)

being R, S, T and P the reward, sucker’s payoff, temptation to
cheat, and punishment, respectively. In agreement with GT for
each one of the social interaction models the payoffs will be equal
to:
PD: T>R>P>S or k+s2>k>k-c>k-s1 with C<S1
CG: T>R>S>P or k+s2 > k > k-s1> k-c with c>s1
MP: T>R>S>P=0 or k+s2>k>k-s1>k=c with k=c>s1
FOF: T>R>P=S=0 or k+s2>k> (k=c) = (k=s1) with k=c=s1
FD: T>R=P>S or k+s2>(k=k-c)>k-s1
BS: R>P>T=S=0 or k>k-c>(k+s2)=(k-s1)=0
SH: R>T>=P>S or k>k+s2>=k+s2>k-s1

2.3 Genetic operators
The remaining steps of our algorithm closely resemble those of a
standard GA. Specifically we used binary tournament selection,
two-point recombination with a rate of 0.75, and the standard bit
mutation with a rate of 1/L, where L is the length of the
chromosome (in this case the number of items in the underlying
Knapsack instance).

3. SIMULATION EXPERIMENTS

3.1 Single 0/1 Knapsack problem
Let i be a chromosome and assume we have j objects to be packed
in a single sack. Each item has a value vj and weight wj. With W
being the maximum weight that we can carry in the knapsack. We
used the well-known 0-1-knapsack problem, restricting the
number of each object xj to 0 or 1. The aim is to maximize j j

j
v x∑

subjected to j j
j

w x W≤∑ . We consider the chromosomes encoded

as binary strings: a value of 1 indicates that an object is placed in
the knapsack, whilst a value of 0 indicates that the object is left
behind. The population is composed by two kinds of
chromosomes: cooperative and cheater chromosomes. As we
mentioned before, the difference between them lies is the way
both genetic and social fitness are calculated. A cheater

chromosome i will increases the value vj of an object j in an
amount equal to jvΔ , or alternatively decreases its weight value

wj to jwΔ . The fitness of both types of chromosomes will be
calculated as follows. The fitness g(x) for a cooperative
chromosome is given by the usual expressions:

,

()
,

j j j j
j j

j j j j
j j

w x W v x

g x
w x W W w x

⎧ ≤
⎪
⎪= ⎨
⎪ > −⎪
⎩

∑ ∑

∑ ∑
 (5)

whereas for a cheater chromosome the fitness is given by:

, ()

()
, ()

j j j j j
j j

j j j j j
j j

w x W v v x

g x
w x W W w w x

⎧ ≤ + Δ
⎪
⎪= ⎨
⎪ > − − Δ⎪
⎩

∑ ∑

∑ ∑
 (6)

such that 100jv τΔ = and 100jw τΔ = being τ the ‘cheating

degree’ (i.e. 10, 20, …, 100).

Once two chromosomes are selected at random, a social
interaction takes place between them. Three are the possible
chromosome-chromosome interactions:

• Cooperative-cooperative:

max max

max max

,

,

j j
j

j j GA GT
j

i

j j
j

j j GA GT
j

v x
kw x W

f f
f

W w x
kw x W

f f

β β

β β

⎧
⎪ ≤ +⎪ Δ⎪⎪= ⎨
⎪ −⎪
⎪ > +

Δ⎪⎩

∑
∑

∑
∑

 (7)

• Cooperative-cheater:

 Cooperative:

1
max max

1
max max

,

,

j j
j

j j GA GT
j

i

j j
j

j j GA GT
j

v x
k sw x W

f f
f

W w x
k sw x W

f f

β β

β β

⎧
−⎪ ≤ +⎪ Δ⎪⎪= ⎨

⎪ −⎪ −⎪ > +
Δ⎪⎩

∑
∑

∑
∑

 (8)

Cheater:

2
max max

2
max max

()
,

()
,

j j j
j

j j GA GT
j

i

j j j
j

j j GA GT
j

v v x
k sw x W

f f
f

W w w x
k sw x W

f f

β β

β β

⎧ + Δ
+⎪ ≤ +⎪ Δ⎪⎪= ⎨

⎪ − − Δ⎪ +⎪ > +
Δ⎪⎩

∑
∑

∑
∑

 (9)

• Cheater-cheater:

max max

max max

()
,

()
,

j j j
j

j j GA GT
j

i

j j j
j

j j GA GT
j

v v x
k cw x W

f f
f

W w w x
k cw x W

f f

β β

β β

⎧ + Δ
−⎪ ≤ +⎪ Δ⎪⎪= ⎨

⎪ − − Δ⎪ −⎪ > +
Δ⎪⎩

∑
∑

∑
∑

(10)

In the simulation experiments the conditions are given by (1) the
optimization problem, i.e. knapsack problem, (2) the game theory
parameters (k, s1, s2 and c values of the payoff matrices should be
scaled with the optimization problem) and (3) the genetic
algorithm parameters (described in section 4).

Game model parameters, k, s1, s2 and c values in the payoff
matrices, were set up according to the values shown in Table 1.

Table 1.- Game models. Payoff matrix parameters *

* Payoffs estimation from:

(1) see virus φ 6 [11, 12]. (2) see social amoeba M. xanthus [9, 10]. (3)
Values were estimated based on (1). (4) see social amoeba D.
discoideum [10]. (5) Usual values were normalized to 1.

In addition, we studied the relationship between the cheating
degree τ and the number of feasible solutions obtained (YNS).
The experiments were conducted with the PD model, GAβ =0.8,

GTβ =0.2, and the following cheating degrees 10, 15, 20, 25, 30,
40 and 50.

3.2 Multidimensional Knapsack Problem

A multidimensional version of the problem consists of m
knapsacks of weights W1, W2, …, Wm and j objects with values v1,
v2, …, vj

. The objective is to find a solution that guarantees that
no knapsack is overfilled jm j m

j
w x W≤∑ and that yields maximum

value jm j
j

v x∑ . The fitness g(x) for a cooperative chromosome is

given by the usual expressions:

,

()
, 0

jm j m jm j
j j

jm j m
j

w x W v x

g x
w x W

⎧ ≤
⎪
⎪= ⎨
⎪ >⎪
⎩

∑ ∑

∑
 (11)

discarding infeasible solutions. Thus, for those solutions that
violates the constraints the fitness is 0. In the case of a cheater
chromosome the fitness is given by:

, ()

()
, ()

jm j m jm jm j
j j

jm j m m jm jm j
j j

w x W v v x

g x
w x W W w w x

⎧ ≤ + Δ
⎪
⎪= ⎨
⎪ > − − Δ⎪
⎩

∑ ∑

∑ ∑
 (12)

4. RESULTS

We conducted experiments on 3 benchmark instances of the
Knapsack problem, as described in Table 2.

Table 2.- Knapsack problem instances

Instance
name

No. of
items

No. of
sacks

Best
known

Source

SK250 250 1 Na [14]

MK250 250 5 59312 [4]

MKSento1 60 30 7772 [15]

The genetic algorithm parameters: N (population size), G (number
of generations), α (cheater rate), pc (crossover rate), pm
(mutation rate), and τ (cheating degree), were set as follows: N
=500, G=1000, α =0.1. In order to facilitate the search for
improved solutions, the experiments were conducted with a high
value of the cheating degree τ =50, (single knapsack) and τ =60
(multiple knapsack). The crossover rate pc and mutation rate per
bit pm were 0.75 and 1.0/L (where L is the chromosome length)
respectively. A control experiment was carried out with a
standard genetic algorithm. The number of replicas (algorithm
runs) was set to 100 for each game model. For the standard GA, a

 PD
(1)

CG
(2)

MP
(1)

FOF
(3)

FD
(4)

BS
(5)

SH
(5)

K 1.0 1.0 1.0 1.0 1.0 1.0 1.0

S1 0.4 0.5 0.5 1.0 0.3 1.0 0.7

S2 1.0 9.0 0.5 0.5 0.3 -1.0 -0.2

c 0.2 0.17 1.0 1.0 0.0 0.3 1.0

larger number of replicas was conducted, specifically, 100 x the
number of game models explored. We consider an ‘experiment’,
a set of runs according to the description above, including the
standard GA and the seven game models studied.

Our results support that the inclusion of ‘social interactions’
modeled via Game Theory into the GA cycle improves the
algorithm’s performance. Figure 1 illustrates the best feasible
solutions obtained for the single knapsack problem. For each
solution, the plot show the knapsack weight (Y axis), and the
knapsack value or fitness (X axis). We observe that the standard
GA shows worse performance (left side, Figure 1) than those
solutions obtained with the GA including social interactions (right
side, Figure 1). It is important to note that whereas PD, FOF and
FD promote cheating, BS and SH promote cooperation. CG and
MP promote a mix of cheaters and cooperators (polymorphic
populations). With CG the population evolves to a soft
polymorphism, whilst with MP the population will exhibit a
strong polymorphism (about 50%-50% of cheaters-cooperators).

Figure 2 shows a perfect linear regression (Table 3) between the
cheating degree τ and the number of feasible solutions (YNS). We
also found a perfect linear regression (Tables 4-5) between the
cheating degree τ and the mean fitness of feasible solutions
(NSf , Figure 3). A similar linear relationship is observed between

τ and the maximum fitness value of feasible solutions (max
NSf ,

Figure 4).

Figure 1. Single Knapsack problem. Best solutions founds
with the standard GA (left) and the GA with social
interactions (right).

cheater degree

no
n s

pu
rio

us
 so

lut
ion

s

0 10 20 30 40 50
0

10

20

30

40

50

60

Figure 2. Linear regression between the cheating degree τ
and the number of feasible solutions (YNS).

cheater degree

Me
an

 F
itn

es
s

0 10 20 30 40 50
10100

10130

10160

10190

10220

10250

10280

Figure 3. Linear regression between the cheating degree τ
and the mean fitness of non-spurious solutions (NSf).

cheater degree

Ma
xim

um
 F

itn
es

s

0 10 20 30 40 50
10210

10230

10250

10270

10290

Figure 4. Linear regression between the cheating degree τ
and the maximum fitness value of non-spurious solutions
(max

NSf).

knapsack value (Fitness)

kn
ap

sa
ck

 w
ei

gh
t

GA
PD
CG
FOF
FD

10000 10050 10100 10150 10200 10250 10300
6440

6460

6480

6500

6520

6540

Table 3.- Regression ANOVA (YNS = 52.2395 - 1.17725 τ)

Total (Corr.) 2027.43 6
Correlation coefficient = -0.903002
R-square = 81.5412

Table 4.- Regression ANOVA (NSf = 10115.6 + 3.0 τ)

Total (Corr.) 10997.6 6
Correlation coefficient = 0.988022
R-square = 97.6188

Table 5.- Regression ANOVA (max
NSf = 10197.0 + 1.44263τ)

Total (Corr.) 3222.66 6
Correlation coefficient = 0.877695
R-square = 77.0348

Regarding the Multiple Knapsack instances, for Sento1 we
obtained, in two different experiments with τ =50, a total of 10
solutions significantly better than those obtained with the standard
GA. For the increased cheating degree toτ =60, 6 solutions were
significantly better than those obtained in the control experiment.
In the three experiments carried out with this instance the best
results were obtained with FOF, FD and PD. The CG game failed
to produce better results than those obtained in the control
experiments. In the two experiments conducted under τ =50, the
best solution 7719 was found with the FOF and FD models. A
Mann-Whitney (Wilcoxon)’s test (with a p-value equal to zero)
show that the differences among medians were statistically
significant at the 95.0% confidence level. In consequence, the GA
with social interactions performs better than the standard GA
regardless of the game model used. In the experiment withτ =60
the Mann-Whitney (Wilcoxon) test, with a p-value 0.013, show
that there are statistically significant differences among the
medians at the 95.0% confidence level. Once again, we conclude
that our approach improves the algorithm’s performance.

Regarding the multiple knapsack instance MK250, the social GA
produced good results in only two of the three experiments. In
these two experiments a total of 8 significant best, as compared to
the best result in the control experiment, were obtained. The best
results were obtained with the FD game model, being the best
obtained solution value 56481. The Mann-Whitney (Wilcoxon)
test (with a p-value 0.001) show that there are statistically
significant differences among the medians at the 95.0%
confidence level.
In order to strengthen or support our results we performed some
experiments replacing the social interactions (payoff matrix
values) by uniform or Gaussian noise (stochastic matrix). The
experiments were conducted with PD model, GAβ =0.8, GTβ =0.2,
and SK100 [14]. Figure 5 demonstrates how solutions obtained in
presence of noise are well below of those obtained including
social interactions into the GA cycle.

5. DISCUSSION
Our interpretation of the dynamic behavior of a genetic algorithm
with social interactions is as follows. Initially, cooperators and
only a few cheater chromosomes compose the population, starting
out the evolution of such mixed-population. After many
generations, a solution with high fitness is reached by a cheater
chromosome. At this stage most solutions, cooperators and
cheaters, are non feasible (spurious) solutions (e.g. knapsacks
with high j j

j
v x∑ but j j

j
w x W>∑) being the population on the

verge of extinction. Only a few cheater chromosomes are
optimized feasible solutions, showing a significant improvement
compared with a simple GA. When solving a optimization
problem, the interest lies in finding particularly good solutions,
and the final fate of population is meaningless [16]. It is important
to note that our approach promotes cheaters whereas the usual
approach in Game Theory or in Evolutionary Game Theory
promotes cooperation. For instance, some mechanisms have been
suggested to promote cooperation such as chaotic variations of
appropriate amplitude [17], kin selection [18], tit-for-tat strategy
[19], etc.

Figure 5. Single Knapsack problem with uniform or Gaussian
noise. Above the threshold line (4295) are the solutions obtained
with social interactions (PD model).

Source SS DF MSS F-rate P-
Value

Model 1653.19 1 1653.19 22.09 0.0053

Residual 374.24 5 74.8479

Source SS DF MSS F-rate P-
Value

Model 10735.7 1 10735.7 204.97 0.0000

Residual 251.88 5 52.376

Source SS DF MSS F-rate P-
Value

Model 2482.57 1 2482.57 16.77 0.0094

Residual 740.089 5 148.018

Fit
ne

ss

Uniform Gaussian
4000

4050

4100

4150

4200

4250

4300

y:4295.12

In our social GA, however, cheaters ‘promote themselves’ by
having an eventual reproductive (fitness) advantage. In
consequence, no additional mechanism is needed to promote
cheating. We propose that modeling cheating through a genetic
algorithm with social interactions could be a novel approach for
problem solving.

6. SUMMARY AND CONCLUSIONS
We have proposed a variation of the standard GA that includes
social interactions between the members of the population. The
social interaction is modeled according to Game theory, and a
number of well known game models in the theoretical biology
literature were studied. We found that the proposed social
interaction step improves the problem solving capabilities of the
standard genetic cycle. Therefore, we suggest that modeling
cheating through a genetic algorithm with social interactions could
be a novel approach for problem solving.
Our future work will include a larger number of instances and
additional combinatorial problems. Moreover, the implementation
of the proposed technique in the context of Genetic Programming is
currently under study.

ACKNOWLEDGMENTS
The first author was supported by Laboratorio de Bioinformatica,
Complutense University of Madrid (UCM), and in part under
‘Profesores UCM en el Extranjero 2008’ grant.

REFERENCES
[1] Grushin, A. The effects of static fitness function noise upon the

performance of genetic algorithms. In Proceedings of the 7th
Joint Conference on Information Sciences (JCIS’06)
(Kaohsiung, Taiwan, ROC, 2006). Cheng, H.D., Chen, S.D.,
Lin, R.Y. Atlantis Press, 275-278.

[2] Hillis, W. D. Co-evolving parasites improve simulated
evolution as an optimization procedure, Artificial Life II, SFI
Studies in the Science of Complexity, vol. X, edited by C.G.
Langton, C. Taylor, J.D. Farmer and S. Rasmussen, Addison-
Wesley, pp. 313-324, 1991.

[3] Mitchell A. Potter and Kenneth A. De Jong, Cooperative
coevolution: An architecture for evolving coadapted
subcomponents, Evolutionary Computation 8 (2000), no. 1, 1-
29.

[4] Chu, P.C. and Beasley, J.E. A genetic algorithm for the
multidimensional knapsack problem. Journal of Heuristics 4,
(1998), 63-86.

[5] Vasquez, M., Hao, J.-K.: A hybrid approach for the 0-1
multidimensional knapsackproblem. In Proceedings of the
International Joint Conference on Artificial Intelligence 2001,
pp. 328–333 (2001).

[6] Wolf, J., Brodie, E.D., Moore, A.J. Interacting phenotypes and
the evolutionary process. II. Selection resulting from social
interactions. The American Naturalist 153, 3 (March 1999),
254-266.

[7] Guozhong, A. The effects of adding noise during
backpropagation training on a generalization performance.
Neural Computation 8, (April 1996), 643-674.

[8] Travisano, M., Velicer, G.J. Strategies of microbial cheater
control. TRENDS in Microbiology 12, 2 (February 2004), 72-
78.

[9] Lenski, R.E., and Velicer, G.J. Games microbes play. Selection
1, 1-3 (2000), 89-95.

[10] Velicer, G.J. Social strife in the microbial world. TRENDS in
Microbiology 11, 7 (July 2003), 330-337.

[11] Turner, P.E. A virus booster for game theory. ASM News 69, 6
(2003), 289-295.

[12] Turner, P.E. Cheating viruses and game theory. American
Scientist 93, (2005), 428-435.

[13] Turner, P.E., Chao, L. Escape from Prisoner’s dilemma in
RNA phage φ 6. The American Naturalist 161, 3 (March
2003), 497-505.

[14] Zitzler, E., Laumanns, M. (2008). Swiss Federal Institute of
Technology Zurich. Systems Optimization. Test Problem
Suite.
http://www.tik.ee.ethz.ch/sop/download/supplementary/testPro
blemSuite/

[15] Beasley, J. E. (1990). OR-library: Distributing test problems by
electronic mail. Journal of the Operational Research Society,
41(11):1069–1072. Also available at http://www.ms.ic.ac.uk/
info.html.

[16] Nowak, M.A. Five rules for the evolution of cooperation.
Science 314, 5805 (December 2006), 1560-1563.

[17] Perc, M. Chaos promotes cooperation in the spatial prisoner’s
dilemma game. Europhysical Letters 75, 6 (September 2006),
841-846.

[18] Hamilton, W. D. The Genetical Evolution of Social Behavior.
Journal of Theoretical Biology 7, 1 (1964), 1–52.

[19] Axelrod, R. The Evolution of Cooperation. Basic Books, New
York, 1984.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

