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a b s t r a c t 

Many engineering metals are polycrystalline, as such the elasticity, crystalline orientation and grain dis- 

tribution are cardinal factors in determining the physical properties of the material. The grain distribu- 

tion can be measured using a number of different techniques and the orientation by a subset of these 

(electron back scatter diffraction, spatially resolved acoustic spectroscopy). These measurements are rou- 

tinely deployed in materials development. However, the elasticity remains a more difficult parameter to 

measure and is rarely measured because the existing techniques are slow and cumbersome, with most 

current techniques requiring the laborious growth or destructive isolation of single crystals. In this work 

we present a technique that can determine the elasticity, crystalline orientation and grain distribution in 

a fast and easy measurement. The technique utilises SRAS imaging to provide the raw measurement of 

single grain velocity surfaces, this is input to a novel inverse solver that mitigates the problem of the 

inversion being very ill-conditioned, by simultaneously solving for multiple uniquely orientated grains 

at once in a brute-force approach. This allows simultaneous determination of the elastic constants and 

crystallographic orientation. Furthermore, this technique has the potential to work on polycrystalline ma- 

terials with minimal preparation and is capable of high accuracy, with the potential to realise errors in 

the determination of elastic constants values of less than 1 GPa ( ∼ 1 ). In this work we demonstrate good 

agreement with EBSD ( < 6 ◦ disagreement on average for all Euler angles) and determine elastic constants 

in line with existing single-crystal values, with an expected accuracy of better than 4 GPa. Experimental 

results are presented for pure α-Ti (hexagonal), Ni and the more exotic Ni-base alloy CMSX-4 (both cu- 

bic). With the proposed method, once the initial measurement has been made, subsequent measurements 

of the elasticity on the same sample can be made rapidly so that the elasticity can be measured in real 

time, opening the possibility that on-line measurement of elasticity can be used to monitor processes 

and enable high-throughput materials screening. The current instrumentation approach is applicable to 

materials with grain sizes down to 50 μm, with the possibility of improving this to grain sizes of ∼ 5 μm. 

Further modifications to instrumentation and acoustic velocity calculation will facilitate greater accuracy 

in the determination of elastic constants. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many engineering materials form, when in the solid state, into 

 crystalline structure. The lack of rotational symmetry in such 

rystal lattices imparts direction specific properties (these can be 

echanical, electrical and optical) on to the crystal; this is known 

s anisotropy. The elastic constant tensor of the material provides 

n essential understanding of the materials response to external 

tresses in the elastic regime. It would be difficult to overstate 
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he importance of the elastic constants to understanding the be- 

aviour of a material. Fundamentally, the elastic constants relate 

tress to strain [1] , and provide a bridge between the micro- and 

acroscopic worlds. From an engineering perspective, knowledge 

f the elastic constants and orientation in anisotropic crystalline 

aterials is vital for understanding the in-service mechanical per- 

ormance and facilitates the calculation of engineering elastic pa- 

ameters including: Voigt’s modulus, Reuss’s modulus, Hill’s mod- 

lus, shear modulus, Young’s modulus, bulk modulus, Poisson’s ra- 

io, and unveils other physical properties including strength, hard- 

ess, wear and melting temperature [2] . For the materials scientist, 

easured elastic constants can communicate information on many 
c. This is an open access article under the CC BY license 
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Fig. 1. The new inversion method described in this work, detailing the process of calculating the crystallographic orientation and elastic constants for a synthetic specimen. 

(a) The SAW velocity is measured in multiple grains using spatially resolved acoustic spectroscopy. By rotating the generation patch velocity surfaces can then be built up 

for each grain. The velocity surfaces shown are from three arbitrary planes of nickel (here we use three primary planes as examples). (c) The forward model is searched 

for the range of possible elastic constants ( C 11 , C 12 , C 44 ) and crystalline orientation (hkl). Each element of the forward model determines the velocity of all SAWs, which can 

propagate across that plane. (d) The output of the forward model search and one experimentally measured velocity surface are input to the inverse solver. The inverse solver 

calculates the ‘goodness of fit’ between the velocity surface and each element of the forward model. This is then repeated for each measured grain before taking the product 

of the figure of merit for all grains. The specimens elastic constants are then determined by the location of the maxima. (e) Calculated crystallographic orientation from the 

inverse solver, showing the three grains on one pole figure. (f) Final calculated elastic constants for this specimen. The figure shows three grains being used but the general 

algorithm is applicable to any number of velocity surfaces, results are improved when the orientation space will well sampled. 
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mportant phenomena in solids including magnetic and electron- 

attice interactions, phase-transitions and mode softening [3] . In 

hort, elastic constants have an essential role to play in the cal- 

ulation of many key physical quantities and in turn our wider un- 

erstanding of materials on the whole. 

The term single-crystal elastic constants refers to the values 

hat describe single orientation grain behaviour, in contrast to the 

alues that represent the bulk behaviour of aggregate media often 

alculated through Voigt-Reuss-Hill averaging. To date, determina- 

ion of single crystal elastic constants has primarily been achieved 

y ultrasonic measurement, mechanical testing to sample the com- 

liance tensor or theoretical calculation from first principles. Given 

hat the longitudinal wave velocity is a function of C i jkl and ρ , all 

ltrasonic measurements are in some sense probing the elasticity 

f the material. Fig. 1 conveys the link between the three factors (i) 

coustic velocity (ii) elastic constants and (iii) crystallographic ori- 

ntation, whereby normally two are needed to calculate the third. 

his approach is exploited throughout our engineered world, from 

edical imaging to seismology. 

Primarily the need to measure the elastic constants is driven 

y the evolution of material processing techniques and novel al- 

oy development. However, the progress in measuring techniques 

as fallen out-of-step with the rate of development in materials. 
2 
his has resulted in a situation where the majority of techniques 

or determining the elastic constants are only viable with single 

rystals specimens. However, it is infeasible for the vast major- 

ty of compounds to be grown into single-crystals, making such 

echniques unsuitable. Du and Zhao estimated that this applies to 

round 99% of the possible 160,0 0 0 distinct solid compounds, in 

ddition to many solid-solution compounds used in common struc- 

ural alloys [4] . Additionally, the proliferation of powder-feedstock 

dditive manufacturing techniques has opened the door to easy in- 

itu alloying, allowing new alloys to be created rapidly [5] . In such 

ases, the elastic constants for the pure element are used, often 

esulting in significant errors in the calculated mechanical proper- 

ies. 

In addition to growing single crystals, traditional ultrasonic 

echniques have required the resulting crystallographic orientation 

o be a favourable plane for inversion, such that an analytical so- 

ution can be found [6] . More recent developments have enabled 

lastic constants to be extracted from polycrystalline specimens in 

imited cases, usually assuming an orientation distribution is per- 

ectly random or highly textured [7] , and with over 10 0 0 grains

uch that small deviations from individual grains can be sup- 

ressed [8] . Most real specimens live in the intermediary, exhibit- 

ng a weak texture and not enough grains to make such assump- 
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ions on the statistical properties. In short, bulk-wave measure- 

ents can provide excellent sensitivity, but without good knowl- 

dge of the internal microstructure are fundamentally limited to 

orking on single-crystal materials. Although it is worth noting 

an et al. [9] and Tant et al. [10] did provide inverse techniques 

hat recover some of the internal microstructure orientation from 

ulk wave measurements, this may provide a basis for determina- 

ion of elastic constants in the future. Relevant acoustic techniques 

or determining crystallographic orientation or elastic constants are 

ummarised in Appendix A ( Table A.2 ). 

Surface acoustic waves (SAWs) are a good candidate for char- 

cterising polycrystalline specimens, as they allow acoustic local- 

sation - allowing the properties of each grain to be probed sep- 

rately. Aside from a few primary planes, analytical solutions for 

AWs are not tractable [11] . Thus, numerical schemes are a req- 

isite for orientation and elastic constant inversion. However, au- 

hors such as Xu et al. have concluded common optimisation al- 

orithms such as Powell’s method are ill-suited to the elastic con- 

tants problem and do not reliably determine the true values [12] . 

Aside from ultrasonic methods, nanoindentation modulus mea- 

urement, coupled with orientation measurement have recently 

een applied to obtain orientation-dependent Young’s modulus. 

hilst this method has not yet demonstrated the capability of 

valuating the full elastic constant values, there is no reason why 

his is not feasible [13] . Atomic force microscopy (AFM)-based 

ethods are well-established for the elasticity measurement of 

iological specimens, producing extremely high spatial resolution 

ualitative modulus maps. However, extraction of accurate elastic 

onstants is still far from a reality, especially for hard materials 

uch as metals [14] . Scattering of neutrons and x-rays have also 

reviously been used to determine elastic constants. Whilst the ac- 

uracy of these techniques is relativity poor compared to the ap- 

roaches already presented, it has allowed elastic constants to be 

etermined at extremely high temperatures [15] and in difficult to 

andle elements, such as barium [16] . 

A list of experimentally measured elastic constants in pertinent 

aterials (including those determined in this work) are available 

n Appendix B , highlighting the variation in elastic constants re- 

orted for many materials. Ledbetter and Reed suggested this was 

ess a symptom of poor measurement accuracy than a failure to 

igorously characterise the materials studied [17] . Variations in the 

easured elastic constants can be a function of chemical impuri- 

ies, residual stress, processing route and magnetic saturation. 

The present study proposes that starting from the SAW velocity 

t is possible to simultaneously determine the crystalline orienta- 

ion of each velocity surface and the elastic constants of the speci- 

en as a whole. Refinements in the forward model have allowed a 

uasi brute-force approach to the inversion to be executed for the 

rst time, overcoming many of the issues with previous numerical 

nversion schemes. When coupled with the practically simple ul- 

rasonic technique spatially resolved acoustic spectroscopy (SRAS), 

lastic constants can be reliably determined from specimens with 

rbitrary crystalline orientation with good agreement to existing 

ingle-crystal values. This method is particularly applicable to poly- 

rystalline specimens to realise three clear benefits: the (often la- 

orious) process of producing a single crystal is not required; the 

rystallographic orientation does not need to be known or lend it- 

elf to analytic inversion; and allows the properties of materials 

n-service to be captured directly in the specific specimen, as op- 

osed to using facsimiles. 

This paper is structured as follows, in Section 2 , we begin by in-

roducing the numerical underpinning of the study, and detailing 

he experimental system used in this work. In Section 3 , we ex- 

lore the sensitivity of SAW to changes in the elastic constants and 

he resulting solution space, relating the expected error in elastic 

onstant determination to the measurement error of the experi- 
3 
ental system. In Section 4 , experimental results in single crys- 

al Ni, polycrystalline CMSX-4 and α-titanium are presented, we 

ompare and discuss all experimental measurements in relation to 

alidation measurements. Finally, in Section 5 , we discuss impli- 

ations of the proposed methodology and opportunities for future 

mprovements, before concluding. 

. Methodology and materials 

.1. Inversion algorithm 

The general method outlined in this work can be explained 

y providing a worked example, outlined in Fig. 1 , before dis- 

ussing each component in detail. (a) Starting with a polycrys- 

alline specimen of unknown elastic constants and crystalline ori- 

ntation, using spatially resolved acoustic spectroscopy (SRAS) the 

urface acoustic wave velocity (SAW) is captured across the spec- 

men in multiple propagation directions (b). The measurements 

rom three of the grains are shown as radial velocity surfaces, note 

he different wave modes and velocities on each plane. Fig. 1 (c) 

he possible velocity surfaces for each elastic constant permuta- 

ion and crystalline orientation is then determined using a brute- 

orce search of the forward model. The forward model looks for 

olutions to the Christoffel equation by scanning for roots of the 

eterminant. Several wave modes, including the Rayleigh (RSAW) 

nd pseduo (PSAW) surface waves, can be seen to propagate on 

his plane - each plane is a single element of the forward model 

olution (§2.2 details the forward model for calculating the SAW 

hase velocity). Fig. 1 (d) Each element of the forward model is 

hen compared to the measured velocity surfaces, using the over- 

ap function as the inverse solver (§2.3 details the overlap func- 

ion and inversion process). Each grain input then produces an in- 

ependent figure of merit for the elasticity and orientation space. 

y assuming that the elastic constants are a global property of the 

pecimen, the elasticity figures of merit for each grain can be com- 

ined to give a final set of elastic constants for the full specimen. 

inally, the orientation of each grain is then recalculated using the 

etermined elastic constants. Fig. 1 (e) Figure of merit for orienta- 

ion space, showing the orientation goodness of fit for grains 1, 2 

nd 3. 

This approach can be formalised by Eq. (1) , where: Ng is the 

umber of grains measured; F EO is the elasticity-orientation fig- 

re of merit for each of these grains; F E is the ensemble elasticity 

gure of merit for the whole specimen; (hkl) and φ1 denote the 

odelled plane and rotation; and C i j is the modelled elastic con- 

tant matrix. The orientation with the greatest correlation value 

s selected for each element of C i j . The elastic constants derived 

rom F E are then substituted back in to each F EO to determine the 

orrect orientation in each grain. A full list of symbols is given in 

ppendix C . 

 E ( C i j ) = 

∏ N g 
1 

F EO ( C i j , W, X, Y, Z) 

(W ( C i j ) , X ( C i j ) , Y ( C i j ) , Z( C i j )) 

= arg max 
( h,k,l ,φ1 ) 

F EO ( C i j , h, k, l, φ1 ) . 
(1) 

.2. Forward model 

To calculate the SAW velocity for a given orientation and elas- 

icity, the elastic wave equation must be solved with appropri- 

te boundary conditions. An elastic wave propagating on a surface 

ith normal x i exerts a stress, T i j , in the axis x j . From Hooke’s law

 i j can rewritten in terms of elasticity and strain, giving the elas- 

ic wave equation in anisotropic media, Eq. (2) . ρ is the material 

ensity, u i the displacement in the x i axis and C i jkl is the materi- 
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ls fourth-rank elasticity stiffness tensor. This formalises the rela- 

ionship between crystallographic orientation, elasticity and SAW 

ropagation. It is important to note other effects, such as tem- 

erature and residual stress can either change the values of C i jkl 

r the boundary conditions, usually these effects are vanishingly 

mall compared to the variations to anisotropy. 

∂ 2 u j 

∂t 2 
= C i jkl 

∂ 2 u k 

∂ x i ∂ x l 
for i,j,k,l = 1 , 2 , 3 . (2) 

The solution of the wave equation, Eq. (2) , is: 

 i = αi exp ( jk [ l 1 x 1 + l 2 x 2 + l 3 x 3 − v t ] ) (3) 

ubstituting Eq. (3) into Eq. (2) gives a set of homogeneous equa- 

ions, the well-known Christoffel equation, Eq. (4) . For non-trivial 

olutions the determinant of the Christoffel equation must equal 

ero. This approach is the standard operation for the calculation of 

coustic wave velocities. For known elastic constants the bulk wave 

elocities may be found simply by finding the roots which satisfy 

 non-zero determinant. 

 C i jkl l i l j − ρv 2 δik ) αk = 0 for i,j,k,l = 1,2,3 (4) 

For SAWs the boundary conditions, in addition to the wave 

quation, must also be satisfied. Firstly, As x 3 → −∞ then the dis- 

lacement must vanish, that is to say the displacement decreases 

hen moving away from the free surface. 

We may assume the solution of the wave equation for is a lin- 

ar combination of the terms of the form of Eq. (3) , with each hav-

ng the same phase velocity, v , but an l 3 value equal to one of the

hree lower half plane roots of Eq. (4) . The solution is then given

y Eq. (5) . 

 i = 

3 ∑ 

n =1 

C n α
<n> 
i exp ( jk [ l 1 x 1 + l 2 x 2 + l <n> 

3 x 3 − v t ] ) (5) 

C n is the weighting factor corresponding to the eigenvector, 
<n> 
i 

of the root l <n> 
3 

, which is a solution to the Christoffel equa- 

ion. A zero-traction boundary must also exist at x 3 = 0 , giving the

oundary condition of Eq. (6) . 

 3 j = C 3 jkl εkl = 0 , at x 3 = 0 , for j = 1,2,3 (6) 

Thus, the problem is then to determine the weighting factors, 

 C 1 , C 2 , C 3 ), of Eq. (5) such that the boundary conditions are satis-

ed. Substituting the assumed solution, Eq. (5) , into the boundary 

onditions, Eq. (6) , gives rise to another 3 × 3 equation set - we

ay call this the Rayleigh boundary value matrix, R. Again the de- 

erminant of this set of equations must be zero for a non-trivial 

olution, �R = 0. The members of R may be found by Eq. (7) . 

 nm 

= C m 3 kl α
<n> 
k l <n> 

l (7) 

True surface wave solutions exist when the Rayleigh determi- 

ant, �R , equals zero. In addition, pseudo-surface waves (PSAW) 

an exist with non-zero determinant, which can only satisfy the 

oundary conditions by shedding energy in the form of a bulk 

ave which leak into the solid. PSAWs can therefore only propa- 

ate with attenuation, nevertheless along certain directions on spe- 

ific planes these waves are observed in preference to true surface 

aves. This set of non-linear equations can not be solved analyt- 

cally (expect in certain high symmetry directions) and it is nec- 

ssary to search numerically for minima in the value of the �R , 

s proposed by Farnell [18] . Fig. 1 (c) shows the value of �R for

a) the (001) plane in nickel. At certain propagation directions four 

istinct modes can exist simultaneously: RSAW, PSAW and the fast 

nd slow transverse waves. 

One known drawback of the forward solver is the calculation of 

he dominant modes. Currently the solver discriminates from the 

heoretical displacement of each mode. However, this is an imper- 

ect model as it does not account for the generation mechanism. 
4 
ome of the possible wave modes are inefficiently generated by 

hermoelastic absorption. Veres et al. have been able to implement 

his to good effect by finite difference modelling [19] . Where pos- 

ible, we have omitted measurement points close to the transition, 

o as to prevent this artefact from dominating the inversions re- 

orted in this work. 

The elasticity tensor C i jkl can be written as the 2D matrix C i j in 

oigt notation, where the crystal symmetry determines the num- 

er of independent constants. For example, Eq. (8) shows the 2D 

epresentation of the cubic and hexagonal stiffness matrices, with 

hree and five unknown constants, respectively, for example in the 

ubic case C = C ( C 11 , C 12 , C 44 ) . 

 c = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C 11 C 12 C 12 0 0 0 

C 12 C 11 C 12 0 0 0 

C 12 C 12 C 11 0 0 0 

0 0 0 C 44 0 0 

0 0 0 0 C 44 0 

0 0 0 0 0 C 44 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

 h = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

C 11 C 12 C 13 0 0 0 

C 12 C 11 C 13 0 0 0 

C 13 C 13 C 33 0 0 0 

0 0 0 C 44 0 0 

0 0 0 0 C 44 0 

0 0 0 0 0 C 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(8) 

here C 66 = ( C 11 − C 12 ) / 2 . 

Considering a cubic structure, the forward model calculates the 

AW velocity along each plane between the principle planes (001), 

101), (011) and (111) at rotations between 0 and 180 ◦, thus the 

heoretical velocities are defined as v ( h,k,l , φ1 ) . 

In the case of a hexagonal structure, the plane and rotation are 

efined by the Euler angles φ1 and 	, where φ1 is the rotation on 

he plane and 	 is the plane ( 0 ◦ is the basal plane). Therefore, the 

heoretical velocities are defined as v (	, φ1 ) . The Euler angle φ2 

annot be determined by linear acoustic techniques [20] . 

.3. Overlap function 

The process of determining the orientation and/or elastic con- 

tants from the SAW velocity is not straight forward. If two of the 

rientation, velocity or elastic constants are known, then, in princi- 

le, the third can be computed. However, determining either phys- 

cal parameter from the velocity is an ill conditioned problem that 

oes not lend itself to a tractable analytical solution [21] . The pres- 

nce of experimental noise makes the direct inversion impractical 

nd unreliable. Instead, the authors have previously proposed the 

rocess of calculating the overlap between the forward model and 

xperimentally measured velocity surfaces. The full experimentally 

easured velocity surface spectrum is used for the inversion, this 

s unlike most schemes, which use just the single velocity mea- 

urement [22] . This approach was found to be more robust to ex- 

erimental noise and a reduced number of scanned directions. No- 

ations in this section refer to the cubic case, references to (hkl) 

re substituted for 	 when dealing with hexagonal materials [20] . 

or simplicity, we initially describe the method of calculating only 

he crystallographic orientation (elastic constants are known) from 

he measured SAW velocity. 

The velocity spectrum of a given propagation direction is found 

y taking the fast Fourier transform of the measured signal acous- 

ic (see Section 2.5 for greater detail). For each pixel in the spec- 

men, the acoustic measurement provides a plot of signal ampli- 

ude against velocity as a function of propagation direction, θ , this 

s the velocity surface spectrum (example of velocity surfaces for 

he planes (001), (101) and (111) in nickel are shown in Fig. 1 b).
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herefore, the measured signal can be defined as A (v ( h,k,l , φ1 ) , θ ) , 

here 0 ◦ � φ1 < 180 ◦. 

The experimental dataset described above must then be com- 

ared to the velocity database calculated from the forward model, 

 c ( h,k,l , φ1 ) . The forward modelled calculated velocity must be as- 

embled into an analogous dataset of amplitude against propaga- 

ion direction. To achieve this, the SAW velocity, as calculated by 

he forward model, is transformed into a binary matrix I hkl by 

q. (9) (this takes values of SAW velocity calculated by the forward 

odel and creates a map of amplitude against prorogation direc- 

ion, the map is zero at all points expect the velocity index corre- 

ponding to the forward model value). I hkl has the same velocity 

imension, N v , as measured signal A (which varies depending on 

he zero-padding in Fourier transform), and is twice the length of 

 in the rotation dimension - this allows the rotation of A relative 

o the forward model to be determined. 

 hkl (v , φ1 ) = 

{
0 , v � = v c (h 14 k, l, φ1 ) 
1 , v = v c (h, k, l, φ1 ) 

(9) 

The overlap between I hkl (forward model output) and A (mea- 

ured experimental data) is now determined by calculating the 

um of the element-wise product as the lag of I hkl (with respect 

o A ) is varied, as defined by Eq. (10) . 

 hkl (p, q ) = 

N v ∑ 

v =1 

180 ∑ 

θ=1 

A (v , θ ) I hkl (v − p, θ − q ) 

−(N v − 1) � p � N v − 1 

−360 < q < 360 

(10) 

The v index in the result, S, represents a velocity offset, that is 

o say making the measured wave linearly faster or slower. How- 

ver, the velocity measured by the experimental system has al- 

eady been calibrated we therefore assume these is not system- 

tic offset in the measured velocity and therefore only p = 0 is of 

nterest. The q value reflects the rotation of the measured data rel- 

tive to the φ1 = 0 ◦ definition in the forward model, this can again 

e limited to the range −180 ◦ < q < 180 ◦, outside of this range the

elocity surfaces do not fully overlap and a maximum should not 

e found. 

The value of the figure of merit F O for this orientation is then 

ound by Eq. (11) , where S hkl is the output of Eq. (10) for a given

lane (hkl). The process described thus far has evaluated the over- 

ap function, S, for a single crystallographic plane; to determine the 

rystallographic orientation the overlap function is evaluated for all 

lanes (as calculated by the forward model) - the result of the in- 

ersion is then the crystallographic plane (h,k,l) and rotation ( φ1 ) 

hich has maximised the value of F O . This summarises the method 

f calculating the crystallographic orientation from the measured 

AW velocity. 

 O (h, k, l, φ1 ) = S hkl (φ1 ) (11) 

Similarly, when solving for unknown elastic constants (but a 

nown orientation), the figure of merit is given by Eq. (12) , where 

 C i j 
is the output of Eq. (10) for a given elastic constant set at a

ingle orientation. 

 E ( C i j ) = S C i j 
) (12) 

Thus far in this section we have described the overlap function 

or determining crystallographic orientation or elastic constants. In 

he case that neither are known, as is the thrust of this work, 

q. (10) is repeated for every modelled elastic constant set and ori- 

ntation (as neither are known), thus the figure of merit for the 

ull inverse problem is F EO ( C i j , h, k, l, φ1 ) , for a single pixel. 
5 
.4. Simulation 

As described by Smith et al., the error of a SRAS measurement 

ay be described by the standard deviation of the measured SAW 

elocity. These fluctuations from the true velocity cause errors in 

he described inversion process and it is important to correlate the 

easurement error to the error in the elastic constant determi- 

ation. As such, a simple process was established to simulate ex- 

erimental measurements, as a function of the velocity standard 

eviation. 

Starting with a predetermined ‘correct’ velocity surface (taken 

rom the forward model), the 180 (or fewer) velocity measure- 

ents around the plane, v , are perturbed by a small velocity, 

v . This process produces a final velocity surface which mimics 

he experimental measurement. This process can be be shown by 

q. (13) . 

 + δv = v measured where δv ∼ N (0 , σ 2 
v ) . (13) 

N (0 , σ 2 
v ) is a normal distribution, of mean 0 and a variance of

2 
v . The value of v measured is then interrogated for a standard de- 

iation of the velocity error, σv between 0 and 10 0 0 ms −1 . This 

pans the currently achievable standard deviation in the measured 

AW velocity [23] . Finally, using Eq. (13) , 10 0 0 velocity surfaces 

re generated for each value of σ in order to sufficiently sample 

he normal distribution of velocity perturbations. Results from this 

ethod are discussed in Fig. 6 . 

.5. Experimental set-up 

Spatially resolved acoustic spectroscopy (SRAS) is well estab- 

ished for determining the crystallographic orientation in a vari- 

ty of crystalline materials by measuring the SAW velocity across 

he specimen in multiple propagation directions. However, it relies 

n knowledge of the elastic constant values, as taken from exist- 

ng literature, to generate the forward models for the orientation 

nversion [24] . Diagrams of the experimental system used in this 

ork and the generation phenomena are shown in Fig. 2 (a) and 

b), respectively. 

SRAS utilises a short pulse ( ∼ 1 ns , 2 kHz repetition rate) Q- 

witched laser to generate surface acoustic waves (SAWs). The Q- 

witched laser is used to illuminate an optical mask, which is then 

e-imaged on to the specimen surface, Fig. 2 (a). This structured 

ight is absorbed and through the thermo-elastic effect, creates a 

urface acoustic wave. The grating fringes imaged on the specimen 

urface typically have a spacing of 24 μm (as used in this work), 

hich directly corresponds to the wavelength of the SAW, λg . The 

pacing of the re-imaged grating fringes is adjustable by changing 

he original mask spacing and/or the magnification of the objec- 

ive lens. The short pulse length provides a wide operating win- 

ow that can span from tens to hundreds of megahertz, easily con- 

rolled by adjusting the mask spacing or the magnification factor. 

 second (probe) laser is used to measure the perturbation caused 

y SAW propagation. The beam is focussed on to the sample and 

eturned to a split photo-diode detector, yielding a signal that is 

ensitive to the slope of the surface. The optical arrangement of 

he system is shown in Fig. 2 (a). In this work the generation laser

as of wavelength 1064 nm so as to be well absorbed by the spec- 

mens and the detection beam was of wavelength 532 nm in order 

o maximise the proportion of the beam reflected by the speci- 

en surface back to the optical detector. The sample can be raster 

canned to captured the SAW velocity across the specimen surface. 

In Fig. 2 (b), a polycrystalline sample is shown, where the colour 

ndicates a differing grain orientation. The generation patch is 

hown by red fringes of light, this is thermo-elastically absorbed 

y the specimen. This then generates a SAW of fixed wavelength, 
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Fig. 2. The SRAS experimental method described in this work. (a) The generation and probe laser beams are delivered to the specimen by the same objective lens and 

reflected probe light is shown incident at the detector. The grating mask in the generation path is imaged at the specimen surface with adjustable magnification to control 

the SAW wavelength. (b) Schematic of SAW generation and propagation, (SAW amplitude is exaggerated). The surface perturbation deflects the beam proportionally to the 

gradient, which is then measured by a split-photodiode detector. The frequency of the wave remains a function of only the properties under the generation patch. (inset 

waveform) example of measured signal. 
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hat propagates perpendicular to the fringe direction. The gener- 

ted surface acoustic wave propagates at a frequency, f s , which 

s simply determined by the elementary equation v s = f s λg , where 

 s is the SAW velocity. Rayleigh surface waves are non-dispersive, 

hus the frequency of propagation does not change once gener- 

ted; the frequency of the wave packet is a function of the near- 

urface properties, primarily the elastic response, under the gener- 

tion patch only and is not affected by grain boundary crossings 

r variations in the propagation distance. Thus, the SAW velocity 

an be measured for each generation point across the specimens 

urface. This method is unlike traditional time-of-flight measure- 

ents and is immune to acoustic aberrations [25] . Fig. 1 (b) shows 

he measurement of surface acoustic waves in three grains, one 

t higher frequency (and higher velocity) and one at lower fre- 

uency, the SAW propagates only in directions normal to the grat- 

ng pattern. Therefore, by rotating the generation patch, SAWs can 

e propagated at different angles, which allows the anisotropy of 

he SAW velocity to be probed [26] . 

The all-optical non-dispersive nature of SRAS avoids the 

ainstaking alignment of a grain centre to the acoustic source [12] , 

ithout the need for couplant or polydimethylsiloxane film [27] . 

he high signal-to-noise (SNR) ratio of SRAS allows high fidelity 

easurements to be made without temporal averaging - this re- 

ults in multi-megapixel images of the microstructure, which are 

aptured in less than 1 h [23] . 

Finally, when measuring SAWs, the condition of the surface be- 

omes an important factor to consider. The stress state of a spec- 

men can have a perceptible effect the SAW velocity, origins of 

his include damage from polishing, annealing [28] or shot-peening 

29] . In many metals, the damage layer can extend to a few tens 

f micrometres, greater than the typical penetration depth of many 

AW methods [30] . This is particularity a problem of Brilliouin 

cattering as the working frequencies ( >1 GHz) result in a SAW 

hich is extremely sensitive to the surface condition [31] . The 

coustic wavelength, and hence penetration depth, of SRAS can 

asily be varied between ∼12 − 250 μm. Depending on the wave- 

ength used, the reader should be aware that the derived elastic 

roperties are only representative of the interrogated volume at 

he surface. 

.6. Examined materials and sample preparation 

Three specimens were examined experientially, one face-center- 

ubic pure nickel, one hexagonal-close-packed pure α-titanium 

nd a CMSX-4 nickel alloy specimen. Nickel and titanium are 

he basis of many pivot engineering alloys throughout aerospace 
6 
32] and nuclear applications [33] , making them sensible candi- 

ates to demonstrate the present technique. 

The pure nickel specimen was a single-crystal cylinder, cut 

ith its (001) plane exposed for examination. The titanium speci- 

en was polycrystalline, cut with an exposed face of dimensions 

2 . 5 mm × 12 mm , with several distinct grains contained within 

his area. 

CMSX-4 is a common aerospace alloy, favoured for its combi- 

ation of high-temperature strength, stiffness and microstructural 

tability and resistance to fatigue and oxidation/corrosion [34] . The 

pecimen presented in this work was cast in a mould-seed ge- 

metry for seeded single crystal growth of a turbine blade, with 

he imaged specimen cut from the channel section, giving a poly- 

rystalline microstructure. Further detailed information on sample 

reparation and microstructure can be found in [35] . The CMSX- 

 specimen presented in this work was the second in a collection 

f specimens manufactured at the same time. Specimen A was left 

n the as-cast state, whilst specimen B was subjected to solution 

eat treatment. Both A and B were taken from sections through 

he channel. These specimens are of particular interest as previous 

eporting had shown good agreement between SRAS results and 

BSD for orientation determination in only specimen A, when us- 

ng literature elastic constant values for CMSX-4 [36] . As described 

n that work, the same elastic constant values produced a poor ori- 

ntation result for the heat-treated specimen. 

All specimens discussed had their exposed surface prepared by 

echanical polishing, leaving the specimen with a mirror-like fin- 

sh (this is essential for the implementation of the SRAS instru- 

ent used in this work). Electron back scatter diffraction was used 

o image the polycrystalline microstuctures and orientation prior to 

RAS scanning. The grains of both polycrystalline specimens used 

or this study were relatively coarse ( > 500 μm), this is signifi- 

antly larger than the spatially resolution of the system, 100 μm), 

eaning the studied grains were well-resolved. 

. Sensitivity modelling 

.1. Influence of elasticity on ultrasonic velocity 

The first step in extending the inversion method to the determi- 

ation of elastic constants, is a sensitivity analysis relating changes 

f elastic constants to the SAW velocity. Fig. 3 (a)–(c) shows the 

hange in SAW velocity on the { 111 } plane in pure Ni for the three 

lastic constants independently perturbed by ±20 GPa. The first 

oint to note is that the effect of C 11 is the inverse of C 12 , this

s suggestive of interdependence between these constants. Further- 
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Fig. 3. (a)–(c) present results in cubic Ni. The change in SAW velocity across the { 111 } plane for perturbations in the elastic constants (a) C 11 , (b) C 12 , (c) C 44 over a range of 

40 GPa. It is important to note the dependence between C 11 and C 12 , simply perturbing C 11 and C 12 in equal and opposite directions (i.e. C 11 ⇑ , C 12 ⇓ by 10 GPa) results in a 

near identical SAW velocity. (d) - (h) present results for hexagonal Ti on the plane φ = 45 ◦ , for perturbations in each of the five independent elastic constants over a range 

of 40 GPa. φ = 45 ◦ is selected as it has both RSAW and PSAW components. (d) C 11 , (e) C 12 , (f) C 44 , (g) C 13 , (h) C 33 . 
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ore, there is an anisotropy in the velocity change, for example 

omparing C 44 at 45 ◦ and 70 ◦. Over this range, the change in ve- 

ocity is in the order of 600 ms −1 . The repetition spaced by 60 de- 

rees is due to the six-fold symmetry on the plane { 111 } , planes 

ear { 001 } have four-fold symmetry and intermediate planes have 

wo-fold symmetry. These findings are in good agreement with the 

ork of Stoklasova et al., who note that as the SAW has a signif-

cant shear component, the shear elastic coefficients, 
C 11 −C 12 

2 and 

 44 can be accurately determined by SAW velocity measurement 

37] . 

Fig. 3 (d)–(h) shows the change in SAW velocity on the plane 

= 45 ◦ when varying the five independent elastic constants of ti- 

anium, again across a range of ±20 GPa. Titanium is characterised 

y the presence of the PSAW, which dominates close to the basal 

lane before giving way to the RSAW as the cut-plane tilts away, 

= 45 ◦ has been chosen as it exhibits both wave modes. From (d) 

nd (e) again we see that C 11 is the inverse of C 12 , in the RSAW 

egions. However, in the PSAW region varying C 12 appears to have 

o impact on the SAW velocity. In the recent work of Zoubkova 

t al. the authors suggest the measurement of Rayleigh type sur- 

ace waves is important for accurate determination of the full elas- 

ic constant matrix [38] . This is in agreement with the present 
7 
nds, which suggest measurement of the PSAW represents a route 

o decouple the elastic constants C 11 and C 12 . 

This illustrates governing properties for the RSAW and PSAW 

re different and thus have different interactions with elastic con- 

tants. The basal plane is isotropic in hexagonal materials, this 

eans only Euler-Bunge angles φ1 and 	 can be determined by 

inear acoustic techniques [20] ), an important limitation of this 

ork for orientation determination. 

The results for C 13 and C 33 are given in Fig. 3 (g)-(h), respec- 

ively. For the RSAW mode both constants exhibit minimal ef- 

ect on the SAW velocity. In the PSAW region the change be- 

omes more distinct ( ∼ 150 ms −1 over ±20 GPa). It is also seen 

hat the value of C 13 and C 33 changes the position of the mode 

ransition. Given this effectively causes changes in SAW velocity of 

500 ms −1 accurately measuring this position is likely to greatly 

mprove the accuracy to which these elastic constants can be 

etermined. 

Given the interaction shown in Fig. 3 (a),(b) and (d),(e) it is use- 

ul to consider the value of C 11 − C 12 , henceforth referred to as C �

o prevent confusion with the plane C 11 − C 12 , which refers to the 

 − y space mapped by plotting the value of F E for a range of val-

es of C 11 and C 12 , with all other elastic constants held constant. 
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Fig. 4. (a) C � is the elastic constant that causes the greatest change in SAW velocity 

across the orientation space in Ni. The change in SAW velocity at the four marker 

positions are 1) 70 ms −1 , 2) 140 ms −1 , 3) 55 ms −1 and 4) 22 ms −1 . The change 

from perturbations C 11 / C 12 is not shown but varies between 6 ms −1 near { 001 } 
and 2 ms −1 near { 111 } . (b) The elastic constant that causes the greatest change 

across the orientation space in Ti. C 44 and C � have been excluded for φ1 > 90 ◦

(line of symmetry). The change in SAW velocity at the four markers positions are 

1) 89 ms −1 , 2) 76 ms −1 , 3) 15 ms −1 and 4) 1 ms −1 . 
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 11 / C 12 is used to refer both constants in cases where their be- 

aviour is similar. 

Fig. 4 (a) shows the elastic constant, which causes the greatest 

hange in SAW velocity across the orientation space in Ni. Veloc- 

ty surfaces are symmetric about the indicated line and thus C �

an be excluded in the second half to provide information on the 

ucceeding sensitivity. The result is a simple conclusion where the 

rder of sensitivity C �, C 44 , C 11 / C 12 is constant across all planes. 

he change in SAW velocity however, remains anisotropic. In short, 

easuring a plane near { 0 . 5 0 . 5 1 } makes constant determination 

n easier task than near { 001 } , as the change in SAW velocity - as 

 function elastic constants - is greater. 

Similarly, Fig. 4 (b) shows the elastic constant sensitivity in Ti, 

cross the orientation space. C � and C 44 are the dominant elastic 

onstants across the orientation space, as seen in the left hand- 

ide of the plot. SAWs in hexagonal crystal structures are symmet- 

ic about φ1 = 90 ◦; C 44 and C � have been excluded for φ1 > 90 ◦. 

he response in this region is harder to interpret, with a chaotic 

ehaviour flipping between C 11 / C 12 , C 13 and C 33 as elastic constant 

hich causes the greatest change in SAW velocity. In general, di- 

ections close to φ1 = 90 ◦ are sensitive to C 11 / C 12 , then give way 

o C 13 as φ1 → 0 ◦. Grabec et al. have recently studied the elas- 

ic constants of tetragonal materials (which belongs to the same 

rystal family as hexagonal materials) and determined that in ad- 

ition to the shear elastic coefficients which are well determined 

n the cubic case, the additional volume-preserving extension term 

C 11 −C 12 +2 C 13 −4 C 33 
6 may be easily determined by SAW measurements, 

gain this is in good agreement with the results presented in the 

resent work [39] . 
8 
In summary, these results demonstrate the underlying 

nisotropy of the elastic constant influence in SAW velocity. 

he variation in the SAW velocity, within a useful range of elastic 

onstants, are well within the bounds of typical SAW measurement 

ccuracy at certain angles ( > 100 ms −1 ), but necessitate challenging 

evels of accuracy at other angles ( < 1 ms −1 ). By sampling various 

rystalline orientations the sensitivity to each elastic constant 

an be maximised. Therefore, the inversion algorithm proposed 

n this work is most effective when using velocity surfaces from 

ultiple grain orientations to ensure some sensitivity to all elastic 

onstants is included. 

.2. Analysis of error and uncertainty 

The next step in determining the elastic constants from SAW 

elocity is to investigate the solution space, understanding this is 

n invaluable tool for tailoring the search, informing on the ac- 

uracy of elastic constant determination and dictating the search 

ange. In general, it is beneficial for the solution space to be con- 

ave, with a single global minimum, with large variations in F E 
hen members of C i jkl are perturbed. Fig. 5 (a) shows this to be 

rue in the plane C 11 − C 44 , the position of the minimum in this 

lane could be well determined by any simple optimisation al- 

orithm. In contrast, the minimum is poorly defined in the plane 

 11 − C 12 ; values along the same diagonal trajectory (where C � re- 

ains constant) produce similar values of F E . This is the impact of 

he interdependence between C 11 and C 12 , as shown in Fig. 3 . 

As shown by Fig. 5 (a), the orthogonal C 11 + C 12 is therefore 

he direction with poor sensitivity. This effect can be visualised 

y looking at two typical velocity surfaces from elastic con- 

tant perturbation; Fig. 5 (c) where SAWs on the plane (111) for 

 perturbation in the plane C 11 − C 44 (blue line) and the plane 

 11 − C 12 (red line), of equal perturbation from a nominal value 

black line). Clearly, the perturbation in the C 44 direction is much 

arger, 102 ms −1 on average, than the C 11 − C 12 direction where the 

hange is only 2 ms −1 on average. 

The range over which to search can be estimated by plotting 

he elastic constants of several cubic materials on a scale nor- 

alised by the value of C 44 . Most materials have several similar 

iterature vales. However, it appears most are tightly spread in the 

 � direction but can be extremely spread out in the C 11 + C 12 di- 

ection. β − T i (red diamonds) and Al (blue circles) are notable ex- 

mples. Whilst not conclusive, this would be typical of measure- 

ents which can determine C � but lack the accuracy to determine 

he specific values of C 11 and C 12 along the minimum. Applying 

he familiar Born stability criterion C 11 > C 12 significantly reduces 

he search space ( E < 0 region in black). Given this, and the im- 

ortance of searching close to the plane C 11 + C 12 , searching in a 

quare grid generates many solutions far way from the minimum 

nd in some cases solutions that are unstable (inset square grid). 

nstead, a grid tiled around values of C � allows greater refinement 

f search (inset tilted grid). The Zener anisotropy ratios, α, 0.5, 1 

nd 2 are indicated by dashed white lines. It is worth remarking 

he difference between anisotropy where α > 1 and α < 1 . Aside 

he from the absolute difference in velocity, the shapes of the ve- 

ocity surface in KCL ( α > 1 ) and Ni ( α < 1 ) are noticeably differ-

nt, as the directions of high velocity are 45 ◦ out of phase. Care 

hould be taken not to perform the inversion of measured veloc- 

ty surfaces with modelled surfaces from the other side of α = 1 

s the incorrect rotation on the plane may be determined. Further 

nformation of this style of plot can be found in [40] . 

In titanium, the solution space of the planes C 11 − C 44 and 

 11 − C 12 is similar to (a) and (b), such that it is not worth repro- 

ucing here. Instead, two particularly interesting planes are shown. 

irstly, Fig. 5 (e) plots the value of F E for 	 = 90 ◦ in the plane

 − C , note the scale has changed from Fig. 5 (a)-(b). Whilst we 
13 33 
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Fig. 5. Examples of elastic constants solution spaces for nickel (a)-(b). (a) The plane C 11 − C 44 . The minimum is well defined at ( C 44 = 130 GPa, C 11 = 250 GPa). (b) The plane 

C 11 − C 12 . The minimum is poorly defined at ( C 12 = 150 GPa, C 11 = 250 GPa). (c) Comparison of SAWs on the plane (111) for a perturbation in the plane C 11 − C 44 (blue line) 

and the plane C 11 − C 12 (red line), of equal perturbation (10 GPa) from the minimum (black line). The relative position of the three elastic constants sets are shown in the 

inset scatter plot. Perturbations in C 44 are easier to measure as they cause larger changes in the SAW velocity. (d) Elastic constants of several cubic materials on a normalised 

scale. The background colorscale is the normalised Young’s modulus ( E/ C 44 ) in the [001] direction and α is the Zener ratio [40] . Several materials appear spread along the 

diagonal of anisotropy, this is the direction of least sensitivity. Thus, when determining elastic constants a wide range of values along this diagonal should be considered. 

Examples of the solution space in hexagonal titanium, note the scales have been reduced compared to Ni (d) - (e). (d) The plane C 13 − C 33 in the RSAW region. (e) The plane 

C 11 − C 33 the PSAW region, this region has a greater sensitivity to C 33 , but has a co-dependency on the value of C 11 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

9 
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Fig. 6. Simulations of errors in the determination of elastic constants, as a function of velocity standard deviation for pure (a) Ni and (b) pure Ti. (c) provides context to 

(a) and (b) by illustrating the typically available velocity standard deviation in the SRAS experiment, as a function of signal averages. From (c) it can be seen that a velocity 

standard deviation of < 10 ms −1 is readily achievable even in the 8 fringe case (more broadband signal) with few averages ( ∼ 10 ), this corresponds to a standard deviation 

of 10 GPa for C 11 and C 12 (least sensitive constants) in Ni (approximately 4% and 6 . 65% , respectively). 
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ee a minimum does exist, the function is weakly concave. Finally, 

ig. 5 (g) plots the value of F E for 	 = 0 ◦ in the plane C 11 − C 33 ,

his region has a greater sensitivity to C 33 ( Fig. 3 (h)) but it has an

nterdependence on the value of C 11 , making the minimum poorly 

efined. To the authors knowledge, this is the first reporting of the 

olution space in hexagonal crystal systems. 

The ability to accurately determine the elastic constants of the 

pecimen is primarily dependent on the instrument accurately 

easuring the SAW velocity. By simulating the velocity surfaces 

hat would be determined by a range of δv the corresponding er- 

ors in elastic constant determination were elucidated. Fig. 6 shows 

he resulting standard deviation in elastic constant determination 

s a function of the velocity error standard deviation for (a) nickel 

nd (b) titanium. The experimental availability of these velocity 

rrors is contextualised by Fig. 6 (c), showing the expected veloc- 

ty standard deviation as a function of number of signal averages 

nd fringes in the generation patch. In both materials we see C 44 

nd C � is determined most accurately, whilst the interdependency 

etween C 11 and C 12 causes significantly more uncertainty. As hy- 

othesised from Fig. 3 (f), C 13 is slightly easier to determine than 

 33 . Reducing the standard deviation in the determination of all 

lastic constants to below 1 GPa is practically achievable if >100 

verages can be used, allowing the elastic constants to be deter- 

ined with meaningful accuracy. 

. Experimental results 

.1. Nickel and CMSX-4 alloy 

The following section presents the results of elastic constant 

nd crystallographic orientation determination in three real-world 

pecimens. We firstly present the inversion of a velocity surface 

 Fig. 7 (a)) of a Ni single crystal specimen on the (001) plane. Elastic

onstant values for pure Ni are well established in published liter- 

ture and thus provides a useful basis for validating the inversion 

ethod. The determined crystallographic plane is {001}, and elastic 

onstants calculated by inversion are in good agreement with the 

rior literature, Fig. 7 (b) - results from this specimen are indicated 

y � markers. 

The previous result, in single crystal Ni, has demonstrated the 

echnique with a single high quality velocity surface in a specimen 

ith well characterised elastic properties. A more complex Ni al- 

oy is now considered, using a greater number of grains but lower 

uality velocity surfaces. Two CMSX-4 polycrystalline specimens 

ere fabricated (with one annealed and one left in the ‘as-built’ 

tate) and then scanned by SRAS, with the SAW velocity measured 
10 
n 18 directions at an interval of 10 ◦. The orientation result of the 

as-built’ specimen has previously been reported [36] , and showed 

ood agreement to EBSD, using literature elastic constants. The an- 

ealed specimen (studied below) is of particular of interest to the 

resent work as the original orientation result showed poor agree- 

ent to EBSD, suggesting an error in elastic constants. 

The seven grains indicated in Fig. 7 (g(i))) were selected for the 

nversion process as these had unique orientations and a large 

umber of pixels with good SNR. The waveforms from each pixel in 

hese grains were then averaged (each grain had at least 10 0 0 pix- 

ls once boundary regions and locations with poor SNR ratio were 

xcluded). From Fig. 7 (b) (results from this specimen are indicated 

y � markers), the calculated elastic constants are within the re- 

orted range for CMSX-4; C 11 and C 12 are particularly in good 

greement with the measurements of Amulele et al. for CMSX-4 

41] . 

However, the calculated value of C 44 is ∼ 8 GPa lower than re- 

orted values. Mendik et al. found that alongside the impact of 

urface condition and residual stress, annealing a sample changes 

he measured SAW velocity and lower the values of C 44 mea- 

ured [30] . Annealing of the specimen is the only difference be- 

ween this specimen and that previously reported with good ori- 

ntation agreement using literature elastic constants, and therefore 

he probable source of discrepancy in C 44 . 

Example results of the inversion process for grain 5 are shown 

n Fig. 7 (c), directions with high SNR (such as 90 ◦) had a smaller

elocity standard deviation, this was due to the anisotropy in the 

mplitude of the SAW [42] . The mean difference between the mea- 

ured data and inversion is 19 ms −1 , compared to 78 ms −1 for the 

iterature elastic constants in this grain. 

Bearing in mind the variation in SAW velocity due to elastic 

onstant perturbation is anisotropic across a plane (see Fig. 3 ), it 

s useful to compare the measured propagation directions to the 

ensitive directions, as when measuring only 18 directions it may 

e possible to miss propagation directions that cause large changes 

n the SAW velocity, for a given elastic constant. Fig. 7 (d) plots the

ngle measured velocity surfaces against the change in velocity for 

 perturbation in C 44 of 10 GPa for seven planes, corresponding to 

hose used in the inversion. Aside from grain 3, the velocity sur- 

ace was measured in a region with a change in velocity greater 

han 50 ms −1 . This suggests the inversion should be sensitive to 

 44 and the calculated value of 119 GPa is accurate. 

Fig. 7 (e) shows the orientation result of the SRAS inversion 

ompared to the EBSD dataset and the orientation calculated from 

iterature values for CMSX-4 elastic constants. In general, the EBSD 

ata are in much better agreement with the orientation calculated 
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Fig. 7. (a) Measured data for single crystal Ni specimen, with fitted data superimposed. The measured data-point ∼ φ1 = 25 ◦ has been excluded from inversion as this occurs 

at the transition between wave modes as shown. (b) The elastic constants of Ni and Ni-alloys. Both experimental datasets show good agreement to existing values. Red bars 

indicate the expected standard deviation in elastic constants determined in this work. The SAW inversion is particularity sensitive to the value of C � . (c) Velocity surface 

from grain 5 compared to the velocity surfaces (red-line) from SRAS inversion and literature value of elastic constants. The colourscale of the measured data indicates the 

relative amplitude of the SAW in the given direction. Error bars indicate the standard deviation of the measurement across the pixels used for the inversion. (d) Plot of the 

velocity variation as a function of 10 GPa perturbation in C 44 , for the 7 grains used as inputs for the inversion and the position of the 18 ultrasonic measurements on each 

grain. In all grains except 3, several measurements have been taken at angles with high sensitivity. (e) Comparison of the inverse pole figures for the CMSX-4 specimen, from 

(left to right) EBSD, SRAS using inversion elastic constants and SRAS using existing elastic from literature. Numeric labels in the EBSD data indicate the grains used in the 

inversion process. The elastic constants calculated by the SRAS inversion in this work have significantly improved the orientation result, relative to the EBSD dataset. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
11 
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Fig. 8. (a) Measured velocity surface in Grain 1, with fitted result from inversion superimposed, calculated to be φ = 66 ◦. (b) Measured velocity surface in Grain 2, with 

fitted result from inversion superimposed, calculated to be φ = 39 ◦ . The orientation was determined within 1 ◦ of EBSD in both cases, areas shown in white indicate where 

data was omitted from inversion, due to the uncertainty of the mode transition. (c) Single direction SRAS velocity map of whole specimen surface, G1 and G2 indicate the 

two grains used for inverse analysis. (d) Comparison of elastic constants determined by SRAS and literature values, for Ti. Red bars indicate the expected standard deviation 

on each elastic constant from SRAS inversion. Black bars indicate the range of values found in prior literature. All constants fall within the range found in literature and all 

except C 33 show good agreement with the values of Hearmon [43] . 
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n this work. Considering the EBSD data have not been used as an 

nput to the inversion and is generally considered the benchmark 

or crystallographic orientation calculation this helps confirm the 

alidity of the new elastic constant set for this specimen. For 	, 

he rotation between (001) and (111), the disagreement between 

nversion elastic constants and EBSD was 1 . 3 ◦, compared to 5 . 9 ◦

or the literature values. For φ2 the discrepancies were 6 . 9 ◦ and 

3 . 1 ◦, respectively. Given the values of C �, C 11 and C 12 match those 

ound in literature, the updated value of C 44 has clearly been cru- 

ial in improving the orientation determination. 

.2. Pure titanium 

Determination of the elastic constants in hexagonal materials is 

ore complex as the search space becomes significantly larger due 

o five independent elastic constants. Furthermore, from Figs. 3 (g)- 

h) and 5 (d) the SAW velocity has a weak sensitivity to the two 

dditional constants C 13 and C 33 across much of the orientation 

pace. To demonstrate the proposed method, a polycrystalline tita- 

ium specimen was scanned using SRAS, Fig. 8 (c) shows the sin- 

le direction SRAS velocity map and indicates the two arbitrary 
12 
rains targeted for the inversion. The inversion result and calcu- 

ated orientation are shown in Fig. 8 (a) and (b) for grains 1 and 2,

espectively. The crystalline plane, φ, of the two grains was calcu- 

ated as 66 ◦ and 39 ◦, respectively, within 1 ◦ of the mean EBSD re- 

ult from the grain in both cases. The determined elastic constants 

how good agreement with existing literature values, Fig. 8 (d). In 

ll cases, the elastic constants fall within the range found in prior 

iterature, and agree particularly well with oft-quoted values deter- 

ined by Hearmon [43] . 

In the case of C 33 there is a discrepancy of ∼ 6% . In Grain 

 ( Fig. 8 (a)), the sensitivity in C 33 comes from the RSAW veloc- 

ty around φ1 = 0 / 180 , which in the measured data are relativity 

ower amplitude than at φ1 = 0 ◦/ 180 ◦. In Grain 2 ( Fig. 8 (b)), the

osition of the mode transition provide the sensitivity to C 33 , how- 

ver data around this position this was omitted from the inversion. 

. Discussion 

Combined improvements in hardware and algorithm efficiency 

ave allowed a brute-force approach, as used in this work, to 

ecome a viable method for the first time. The calculation of a 
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Table 1 

Forward model search resolution for inversion of SAW velocities in 

CMSX-4 specimen. 

Parameter Resolution 

Coarse search 

(hkl) 0.1 to (011) to (111) 

C 44 1 GPa over 30 GPa 

C � 0.5 GPa over 10 GPa 

Computation time 6 h 

fine search 

(hkl) 0.05 to (011) to (111) 

C 44 0.5 GPa over 8 GPa 

C 11 0.5 GPa over C � ± 4 GPa 

C 12 0.5 GPa over C � ± 4 GPa 

Computation time 16 h 
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ingle velocity plane now takes ∼ 5 s at a velocity resolution of 

 ms −1 , quoted speeds are for an Intel® i9-10900X @ 3.70 GHz. The 

eneration of forward models and the inversion are both suited 

o parallel computation, allowing modern multi-core hardware to 

e leveraged. As a demonstration of the computational demand, 

able 1 tabulates the search parameters and computation time for 

he inversion of the CMSX-4 specimen studied in this work (us- 

ng the pc described above). The brute-force method has proved 

ttractive given the local minimum and weakly concave shape in 

he C 11 − C 12 plane, mitigating previous issues with optimisation 

olvers [12] . 

The standard deviation of elastic constants given in 

ig. 6 should be considered a lower-bound of the errors achiev- 

ble without further modification to the method. Firstly, these 

rrors are dependent on capturing the velocity surface at 180 

niformly incremented propagation directions, reducing this will 

educe accuracy. Elastic constant standard deviations expected 

hen using 18 measurement angles, as in the present work, 

ere calculated in this fashion and included with experimental 

esults above. Furthermore, given that the acoustic generation 

echanism relies on thermoelastic expansion, we would expect to 

ee some temperature change from the pulsed laser. Simple finite- 

lement modelling estimates the resultant temperature rise in Ti 

s < 1 ◦C. Experimental data presented in this work are spatially 

ver-sampled - a given location on the specimen is exposed to 

ultiple laser pulses, therefore the build up in temperature from 

uccessive pulses of the generation laser must be considered, this 

s estimated to be 2 − 3 ◦C, again by finite-element modelling. To 

ive these values context, an increase in specimen temperature 

f 2 ◦C reduces the three cubic elastic constants [44] in turn 

lowing the SAW velocity by ∼ 10 ms −1 in CMSX-4 on average [45] . 

nacting rigorous temperature control of the specimen during the 

RAS experiment will be required to realise improved accuracy. 

Finally, in most crystalline materials, certainly in the nickel 

nd titanium specimens studied in this work, several surface wave 

odes can propagate. In the single crystal Ni and Ti results pre- 

ented, velocity measurements near the mode transition have been 

xcluded as the current method of discriminating between the 

odes is somewhat imprecise and leads to uncertainty in the lo- 

ation of these transitions on the plane. In future, coupling the 

orward model with a finite-element model to calculate the wave 

ode displacements will further improve the inversion accuracy. 

The current implementation of SRAS allows rapid high resolu- 

ion velocity maps to be acquired by prioritising raster scanning. 

his has limited the present work to either several grains with few 

ngular measurements or detailed angular measurements in few 

rains. Making adjustments to the instrumentation to prioritise an- 

ular scanning will allow high velocity resolution velocity surfaces 

o be captured in many grains, with the expectation this would 

urther improve the accuracy in elastic constant determination. Ex- 
13 
erimental data in this work have been captured at 18 propagation 

irections with single-shot measurements, optimal parameters for 

inimising scan time but increases the errors in elastic constant 

nd orientation determination. By using temporal averaging and 

canning a greater number of directions, the accuracy of determi- 

ation can further be improved. 

The grain size in all of specimens studied in this work are rela- 

ivity large (mm-scale). For this proposed method to operate grains 

ust be spatially resolved by the experimental system. Presently, 

he spatial resolution of the experimental system is ∼ 50 μm . This 

overs a wide range of relevant materials and processing routes. 

owever, we envisage the spatial resolution can be further im- 

roved by a factor of ∼10 through minor changes to the opti- 

al imaging system, making the proposed method applicable to a 

ider range of materials. 

. Conclusions 

We have presented a measurement and inversion method us- 

ng SAW velocity measurements to determine the orientation and 

lastic constants in crystalline specimens, with experimental ex- 

mples in pure Ni (cubic), Ti (hexagonal) and the Ni-alloy CMSX-4. 

he determined elastic constants in CMSX-4 are estimated to have 

ssociated standard deviations of 2 GPa for C 44 and 10 GPa for C 11 

nd C 12 (although the value of C � is found with a standard de- 

iation of 1 GPa). The final orientation result showed good agree- 

ent with EBSD data from the specimen, significantly improved 

rom the orientation result when using literature values for CMSX- 

 elastic constants rather than the output of the SRAS inversion. 

his highlights that aside from determining the elastic constants, 

he full inversion algorithm has the benefit of making the estab- 

ished orientation inversion process more robust, by removing the 

ependency on literature values for elastic constants. To close, pos- 

ible sources of error and future improvements to the methodology 

ere discussed. 

As such, the present work establishes the general methodol- 

gy as an exciting new characterisation tool to non-destructively 

dentify the orientation and single crystal elasticity matrix from 

olycrystalline specimens. The techniques demonstration on the 

epresentative samples with simpler microstructure implies the 

ethodology’s wider applicability for novel and previously unmea- 

urable alloys. 

Looking forward, SRAS and other SAW localisation techniques 

re attractive tools for elasticity measurements as they can be used 

ith polycrystalline specimens of unknown orientation whilst hav- 

ng have spatial and velocity resolutions that can be tweaked to 

chieve the required accuracy across a wide range of specimens. 

rawing together these capabilities promises a flexible tool for 

easuring the elastic properties across a wide range of materials - 

upporting future novel research in material sciences. 
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Table A1 

Review of existing acoustic approaches to measure elasticity and crystallographic orientation. 

Technique name Measurand 

Polycrystalline 

materials 

Det. of 

crystallographic 

orientation 

Simultaneous 

determination Experimental specifications Ref 

Spatially resolved acoustic 

spectroscopy 

SAW � 1 ◦ � 

∗ > 10 μm grain diameters [22] 

Line focus acoustic microscopy SAW � × × immersion tank, known orientation and 

geometry 

[46] 

SAWP’DMS TDTR’MODEL SAW � × × PDMS film applied to sample, identified 

grain boundaries 

[4] 

Acoustic reflection SAW × 1 ◦ (rotation only) × immersion tank, Schlieren imaging [47] 

Scanning acoustic microscope SAW � � � large grains, liquid couplant layer [48] 

Acoustic spectro-microscopy SAW � � � liquid couplant layer, > 1 mm grain 

diameters 

[12] 

Impulse stimulated scattering 

method 

SAW � � � Similar to SRAS [49] 

Brillioun scattering SAW, L, S � � � high frequencies ( >1 GHz) give 

sensitivity close to surface 

[50] 

Point-source method L, S × � × small excitation area, complex 

wavefield data 

[51] 

Ultrasonic bulk wave L, S × � × Precise orientation of crystal axis [6] 

Resonant ultrasound 

spectroscopy 

SW × × × parallelepiped or similar [52] 

Resonant ultrasound 

spectroscopy - Baysian method 

SW × 2 ◦ � parallelepiped, geometry measured to 

< 0 . 1% 

[52] 

SAW: surface acoustic wave, S: shear bulk wave, L: longitudinal bulk wave, SW: standing wave. ∗ Present work Sensitivity and errors are noted where published results are 

available, in many cases such information has yet to be reported. 
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ppendix A. Ultrasonic measurement techniques for elasticity 

nd orientation 

ppendix B. Elastic constants 

Values of elastic constants for various cubic and hexagonal ma- 

erials are given in Tables B.3 and B.4 , respectively. Values are re- 

roduced as given in the original literature. Where possible, uncer- 

ainties and errors are listed, however to-date many studies have 

mitted these values. Where error bounds are given these are often 

he error associated with the measurement of the direct property, 

ffered with the caveat that the errors in the final calculation of 

he elastic constants will be no less than the initial measurement 

rror. 
Table B1 

Experimentally derived elastic constants (GPa) of various cubic materials from

Material C 11 C 12 C 44 

GPa 

Cubic 

Aluminium 108.2 62.3 28.4 

107.3 60.08 28.3 

Nickel 246 ± 3 . 5 153 ± 3 . 5 121 ± 1 

247 153 122 

251.6 154.4 122 

252 . 8 ± 2 152 ± 3 123 . 8 ± 1 

CMSX-4 251 . 5 ± 5 163 ± 5 119 ± 1 

251 159 132 

248 155 132 

258 159 129 

243 ± 2 153 ± 2 128 ± 1 

Silicon 168 66 84 

165 . 779 ± 0 . 05% 63 . 9365 ± 0 . 2% 79 . 6346 ± 0 . 05

165.64 63.94 79.51 

Tungsten 512.57 205.82 152.67 

500.85 198.60 162.67 C 

521 . 48 ± 0 . 2% 201 . 01 ± 0 . 2% 158 . 50 ± 0 . 2% 

∗Values determined in this work are shown in bold . A Reported to the author
B Reported to the author in personal communication by V. Alberts. 
C Likely to be misprint and should be 152.67 GPa. 

14 
It should also be noted, that in many cases these constants are 

erived from measurement of the compliance matrix, S i jkl , rather 

han stiffness matrix, C i jkl , as this is accessible though mechanical 

esting. However, as reported by Hearmon, recovering C i jkl by the 

nversion of S i jkl is highly sensitive to measurement errors, leading 

ropagation of large errors in the final elastic constants [53] . For 

xample, a measurement error of just 2% in the compliance values 

an result in a deviation of over 10% for the elastic constants. For 

aterials with C 12 > 0 , inversion of the stiffness matrix to recover 

he compliance matrix has more tolerable errors. 

Unfortunately, the tools for testing the validity of elastic con- 

tants extend to only the checking the stability criterion for the 

rystal. The eponymously named Born criterion for cubic crystals 

75] : 

 11 − C 12 > 0 , C 11 + 2 C 12 > 0 , C 44 > 0 
 existing literature. 

Notes on errors Ref 

calculated from compliance [54,55] 

> 0 . 5% , particularly C 12 [56] 

- ∗

[54] 

> 0 . 5% , particularly C 12 [57] 

propagated from measurement errors [58] 

- ∗

- [59] A 

- [59] B 

likely ≥ 2% [41] 

errors are FWHM of the minimisation function [59] 

≥ 5% [60] 

% - [61] 

errors expected to be similar to [61] [62] 

calculated from compliance in [63] 

calculated from compliance in [64] 

estimated [65] 

 in personal communication by W. Hermann. 
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Table B2 

Experimentally derived elastic constants (GPa) of various hexagonal materials from existing literature. 

Material C 11 C 12 C 13 C 33 C 44 Notes on errors Ref 

Hexagonal 

Magnesium 59 . 4 ± 0 . 7% 25 . 61 ± 1 . 8% 21 . 44 ± 1 . 8% 61 . 6 ± 0 . 7% 16 . 4 ± 0 . 7% propagated from measurement errors [66] 

Titanium 161 ± 0 . 6 90 . 5 ± 0 . 5 66 ± 1 . 8 174 ± 3 . 6 47 ± 0 . 3 - ∗

154 . 0 ± 0 . 5% 86.0 67.3 183 . 0 ± 0 . 5% 46 . 7 ± 0 . 5% larger errors for C 12 & C 13 [6] 

160 ± 5 90 ± 4 66 ± 3 181 ± 2 46 . 5 ± 0 . 4 standard deviation from three repeats in [43] 

163.6 92.3 67.92 185.2 47.05 tabulated from graph in [67] [68] 

162 . 4 ± 0 . 2% 92 69 . 7 ± 0 . 8 180 . 7 ± 0 . 2% 46 . 7 ± 0 . 2% C 12 ≥ 0 . 2% [69] 

Ti-6Al-4V 136.0 78 68.0 163 40 fitted to experimental mechanical testing [70] 

141 ± 3% 76 . 9 ± 3% 57 ± 3% 163 ± 3% 48 . 70 ± 3% - [46] 

170.0 92.0 70.0 192.0 52.0 inverted from diffraction elastic moduli [71] 

Zinc 177.6 24.0 60.2 74.0 39.8 Calculated from compliance in [72] [73] 

163.5 17.1 41.5 55.3 39.8 Calculated from compliance in [72] [73] 

163 . 68 ± 0 . 5% 36 . 4 ± 2% 53 . 0 ± 5% 63 . 47 ± 0 . 5% 38 . 79 ± 0 . 5% - [74] 

∗Values determined in this work are shown in bold . 
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nd later extended for other crystal systems [76] , including hexag- 

nal: 

 11 > | C 12 | , C 33 ( C 11 + C 12 ) − 2 C 

2 
13 > 0 

C 11 C 13 − C 

2 
12 > 0 , C 44 > 0 . 

Alers and Neighbours used this approach to detect errors in re- 

orted elastic constants for brass and gold [76] . All of the constants 

isted above satisfy the stability conditions, beyond that it is im- 

ossible to draw further conclusions on their validity. Alongside 

he advancement of technology to measure elastic constants, tools 

or validation are also a necessary development. 

ppendix C. List of symbols 

Symbol Description 

F E Figure of merit for elasticity at one pixel 

F O Figure of merit for orientation at one pixel 

F EO Figure of merit for elasticity & orientation at one pixel 

F E Figure of merit for elasticity ensemble for whole specimen 

N g Number of measured grains 

v Measured SAW velocity (ms -1 ) 

C i j Elasticity matrix in Voigt notation (GPa) 

I Binary matrix of calculated velocity 

A Measured velocity surface 

N v Number of bins in velocity scale 

S Overlap matrix 

θ Relative propagation direction of SRAS measurement 

(hkl) Cubic plane in Miller indices 

φ1 First Euler angle, defines rotation on the plane 

φ Second Euler angle, used in hexagonal to define the plane 

σv Standard deviation of velocity measurement (ms -1 ) 

W, X, Y, Z Orientation of maximum overlap for a given C i j 
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