
Enabling Rapid and Cost-Effective Creation
of Massive Pervasive Games

in Very Unstable Environments

Bartosz Wietrzyk, Milena Radenkovic
School of Computer Science and IT

University of Nottingham
Nottingham, NG8 1BB, UK
{bzw, mvr}@cs.nott.ac.uk

Abstract—Pervasive gaming is a new form of multimedia
entertainment that extends the traditional computer gaming
experience out into the real world. Through a combination of
personal devices, positioning systems and other sensors,
combined with wireless networking, a pervasive game can
respond to player’s movements and context and enable them to
communicate with a game engine and other players. We review
our recent deployment examples of pervasive games in order to
explain their distinctive characteristics as wireless ad-hoc
networking applications. We then identify the network support
challenges of scaling pervasive games to include potentially mass
numbers of players across extremely heterogeneous and
unreliable networks. We propose a P2P overlay capable of
storing large amount of game related data, which is the key to
combating the loss of coverage and potential dishonesty of
players. The proposed protocol decreases the deployment costs of
the gaming infrastructure by self organization and utilizing
storage space of users’ devices. We demonstrate scalability and
increased availability of data offered by the proposed protocol in
simulation based evaluation.

Keywords-DHT; MANET; Peer-to-Peer; Pervasive Gaming

I. INTRODUCTION
The wide spread usage and low cost of mobile and wireless

computing predict sizes for future applications of Mobile Ad
hoc Networks (MANETs) several magnitudes larger than
current protocols can handle. Such applications are often
location-based and they exploit positional information to
support mobile interactivity in domains as diverse as tourism
[1], information retrieval [2], resource discovery [2], workplace
awareness [3] and games [4].

The focus of this paper is on the gaming domain. Figures
quoted in the press increasingly show patterns of massive
investments and consumption budgets in this domain. For
example the European Union’s Sixth Framework Program and
British Engineering and Physical Sciences Research Council
(EPSRC) are investing millions of euros in projects and
initiatives such as the Integrated Project of Pervasive Games
(iPerG) [5] and Equator [6]. Major companies such as Nokia,
Sony, and Microsoft have assembled large advertising,
marketing, and development teams to promote and realize these

technologies on a massive scale. More than 300,000 players
participated in the Nokia Game in 2003, approximately 48
percent of whom were 25-40 years old. This points to a
significant trend: rather than simply toys for teenagers, mixed-
reality games are increasingly becoming an entertainment and
communication medium for adults. Together with BBC, BT,
Microsoft Research and the University of Bath we have
recently started Participate [7], a multi-million project that
explores convergence of pervasive, online and broadcast media
to create new kinds of mass-participatory events. Participate
will involve a number of massively multiplayer pervasive game
trials.

Pervasive games extend the traditional gaming experience
out into the real world. They become increasingly massive in
terms of number of players, their geographical distribution,
amount of data, duration of the game, heterogeneity of players’
devices and wireless platforms. That makes the demand of
these systems very different from the demands of the current
systems designed for hosting pervasive games of limited scale
or current massively multiplayer online games. For example
mass scalability, extreme heterogeneity management and
decreasing deployment costs are becoming essential
challenges.

One of the goals of this paper is to propose a peer-to-peer
overlay approach that is able to provide network connectivity
and basic network services in a self-organizing fashion,
opportunistically using available infrastructure when and where
it exists. Such an overlay would further enable rapid and cost-
effective creation and staging of massive pervasive games that
is one of the main concerns identified today in the networked
gaming community [8].

Pervasive games are often location based [8], potentially
utilizing touristically attractive remote areas where the
coverage of WLAN, UMTS and GPRS is typically limited.
UMTS coverage is still relatively constrained even in urban
areas and GPRS offers only limited bandwidth. Costs of using
UMTS and GPRS are high due to high infrastructure
maintenance cost. Therefore, MANETs are promising in terms
of extending wireless coverage, improving bandwidth and
lowering usage and deployment costs but the temporal

disconnections in MANETS are difficult to avoid. They can
degrade the playability of the game because players may not
receive the updates of the game state, their communication with
the other players and game operators may be hindered. This
motivates work on the dedicated storage and retrieval protocols
that effectively deal with disconnections, such as one proposed
in this paper.

The contributions of this paper are three fold: (1)
identification of challenges for applying MANET approach to
pervasive games in order to decrease costs, improve wireless
coverage and bandwidth, (2) a novel fully distributed self-
organized protocol based on a hybrid distributed hash table
(DHT) approach, (3) simulation based evaluation of the
proposed protocol.

This paper is organized as follows. Section II reviews our
recent deployment examples of pervasive games. Section III
identifies the requirements and challenges of massive pervasive
games. Section IV proposes our novel store and retrieval DHT
protocol. Section V presents simulation based evaluation of the
proposed protocol and discuses its security. Section VI briefly
reports on the related work. Finally, Section VII gives
conclusions.

II. PERVASIVE GAMES
In pervasive games players equipped with mobile devices

move through the world – be it on the city streets or in the
remote wilderness. Sensors capture information about their
current context, including their location, and this is used to
deliver them a gaming experience that changes according to
where they are, what they are doing and potentially even how
they are feeling. We begin by presenting recent examples of
pervasive games developed within the Equator [6] and iPerG
[5] projects including Can You See Me Now? [9] and Uncle
Roy All Around You [10]. Drawing on these examples, we
explore the key research challenges for how to provide
networking support for pervasive games that allows
disseminating, storing and searching for data in unstable
networks with frequent disconnections.

A. Example 1: Can You See Me Now?
Can You See Me Now? [9] was one of the early games that

we developed and staged in which up to two hundred on-line
players logged in over the Internet were chased across a map of

a city by three performers
who were running through its
streets. Central to Can You
See Me Now? was a
relationship between up to
twenty on-line players
(members of the public using
the Internet) who were
moving across a map of
Sheffield, and three runners
(members of Blast Theory)
who were moving through the
streets of Sheffield. The
runners chased the players.
The players avoided being
‘seen’. Everyone, runners and
players, saw the position of

everyone else on a shared map. Players sent text messages to
each other, which were also received by the runners. In turn,
runners talked to one another over a shared radio channel,
which was also overheard by the players.

Fig. 1 shows an example of the player interface. A simple
white icon showed the player’s current position according to
her local client. Other players were represented as blue icons.
The runners were shown as orange icons.

The runners also saw the map of Sheffield showing their
positions as well as the players’ positions and text messages.
This was delivered to them on a Compaq iPAQ from a server
in a nearby building over a 802.11b local area network. A GPS
receiver plugged into the iPAQ registered the runner’s position
as they moved through the streets and this was sent back to the
server over the wireless network via an armband antenna. The
runners also used walkie-talkies with earpieces and head-
mounted microphones (see Fig. 2).

B. Example 2: Uncle Roy All Around You
Uncle Roy All Around You [10] sent the public out on to

the streets of London equipped with handheld computers in
search of the elusive Uncle Roy (see Fig. 3). These street
players followed a series of clues that led them through St
James Park and the city streets of Westminster to Uncle Roy's
office in Piccadilly. From there they were directed to a nearby
telephone box and from there to a waiting limousine that drove
them back through London to the Institute of Contemporary
Arts, during which they were asked whether they would be
willing to commit to help a stranger if called upon.

At the same time, online players were exploring a parallel
virtual model of London, also
in search of Uncle Roy's
office. Once they found it
they could then help (or
hinder) the street players by
sending them instructions
and directions as text
messages, to which the street
players could respond with
short audio messages. Online
players were also invited into

Figure 1. An on-line player’s interface

Figure 2. A runner ready to go

Figure 3. A street player explores

central London in search of Uncle Roy

Uncle Roy's office - via a webcam - whenever a street player
entered inside and were asked the same question - would they
be willing to commit to help a stranger if called upon. At the
end of the game, we paired up street players and online players
who had made such a commitment and passed on their contact
details.

Uncle Roy was staged in central London for two weeks
during late May and early June in 2003 during which time it
was played by nearly three hundred street players and a similar
number of online players. Studies of Uncle Roy shed light on
how people use position information within mobile
experiences. In particular, Uncle Roy exploited a technique
called self-reported positioning in which street players would
report their known position, either explicitly by declaring their
position to Uncle Roy or implicitly by their PDA sending
information about which area of the map they were looking at
to remote online players.

III. REQUIREMENTS AND CHALLENGES
Section II showed how games are becoming increasingly

massive in terms of number of players, their geographical
distribution, amount of data, duration, heterogeneity of players’
devices and wireless platforms. This increases the turnover of
players (churn) who come and go without a warning. These
massive pervasive games are being deployed in increasingly
challenged environments. Despite the requirements, across the
multiple game generations, the infrastructure support has been
mostly centralized. This is very limiting in terms of: cost, scale,
network awareness and this in turn influences playability of the
games.

As we can see in Section II Pervasive games are often
location based, utilizing touristically attractive areas potentially
not only London but also remote wilderness e.g. highland in
northern Scotland, where the coverage of WLAN, UMTS and
GPRS is typically limited. UMTS coverage is still relatively
constrained even in urban areas and GPRS offers only limited
bandwidth. Costs of using UMTS and GPRS are high due to
high infrastructure maintenance cost. Therefore, MANETs are
promising in terms of extending wireless coverage, improving
bandwidth and lowering usage and deployment costs but the
temporal disconnections in MANETS are difficult to avoid.
They can degrade the playability of the game because players
may not receive the updates of the game state, their

communication with the other players and game operators may
be hindered. This can also undermine the consistency of the
game and make its logic unclear for the players.

The deployment of the games is only feasible when its total
cost is kept low. This includes the cost of the deployed
hardware, the cost of configuring the infrastructure before the
beginning of the game and the cost of reconfiguring it when the
number of players changes. Self organization of such systems
is important because it decreases effort necessary to configure
users’ software and potentially complex game engine.

These challenges are different from the current massive
multiplayer on line games (MMOGs), as the target hardware
and typical design of the games in both cases are different. In
pervasive games the amount of multimedia data produced
during the gameplay both by players and operators is
potentially much higher. The heterogeneity of the players’
devices and network links, the probability of temporary
disconnections are also higher.

Considering these requirements, we see that they conform
to the peer-to-peer (P2P) paradigm. Distributed Hash Tables
(DHTs) [11-14] are a very promising P2P approach to cover
these requirements. With DHTs the data is distributed among
the nodes in a network and the hash is calculated to determine
the address of the node with certain information. The whole
architecture is strongly decentralized. It has been already
demonstrated [15] that DHTs can support on-line massively
multiplayer games in the wired networking environment.
Design of a DHT for massive pervasive games that have
wireless ad hoc users poses key additional challenges:

High churn rate [16, 17] – users come and go without any
warning, e.g. due to lack of battery capacity or leaving area
with the coverage. This can lead to loss of the game data.

Cheating [15] – dishonest players can alter data they store
and functionality of their nodes to gain advantage in the game.

Heterogeneity of user devices and their wireless platforms
– some of the users can use devices with constrained
computational power and storage space, the wireless platform
available to them can have very limited bandwidth.

Cost of the links - some of the users’ devices can be
connected over expensive links such as UMTS. These links can
be financially expensive for the users if they are charged for the
payload. If the operator charges fixed rate for using them or
participating in the game, the increased game related traffic
may affect other services and users.

Disconnections [18] – the coverage of wireless networking
platforms often used today can be limited in remote areas,
which are potentially attractive for staging pervasive games.
Even extending coverage of the wireless infrastructures with
MANETs does not eliminate temporary (and potentially long)
disconnections of players, which can affect their gaming
experience.

IV. STORAGE AND RETRIEVAL PROTOCOL
In this section, we propose a novel storage and retrieval

protocol for the massively multiplayer pervasive games in the

Figure 4. An online player explores central London

highly heterogeneous environment – Hybrid Pastry (HP). This
protocol provides users with improved coverage and bandwidth
by opportunistically utilizing the temporarily optimal available
wireless networking platform.

Our protocol is based on a peer-to-peer overlay capable of
storing large amount of game related data. The peers in this
overlay comprise both distributed dedicated servers and users’
devices. In order to decrease the deployment costs and increase
scalability data is stored by some of the users’ devices. In order
to address churn and high cost of certain links our protocol
differentiates between different classes of users, each of them
has different tasks related to application-level routing and
storage of game data. To make it less vulnerable to data loss,
churn and dishonesty of players, game data stored by the users
is replicated, i.e. each piece of game data is stored by several
users. When a node requests data, multiple copies are fetched
and compared. Nodes having data different from other replicas
are accused of cheating and blacklisted. This can potentially
lead to the explosion of replies. In order to avoid this, it is
necessary to carefully select the number of replicas. If this
number is too high the explosion of replies can occur and cause
increased network congestion. If there are too few replicas the
invulnerability to cheating, churn and disconnections may be
compromised.

Our protocol recognizes three classes of nodes:

Regular Clients (RCs) are connected over expensive (e.g.
GPRS, UMTS), low bandwidth (e.g. GPRS) or unreliable
(MANET over e.g. Bluetooth or 802.11) links or are resource
constrained devices. These nodes do not receive or send traffic
not directly related to their participation in the game in order to
limit utilization of the expensive/low bandwidth links and
storage space of constrained devices. In particular they neither
store game related data which is accessed by other users nor, if
possible, forward queries issued by other nodes or answers to
these queries. If the number of RCs is much larger than nodes
of other types described below, for the reasons of scalability, it
may be inevitable for them to forward some of the queries.

Super Clients (SCs) are clients connected over cheap, high
bandwidth links e.g. wired network or 802.11g (infrastructure
mode) and are powerful devices such as desktop or laptop
computers. They store shared game data, forward queries and
replies but they are considered not trusted so each unit of data
is stored on several SCs and compared upon retrieval. Sending
data to a set of nodes and comparative retrieval of replicated
data is performed only by SCs. Therefore, an RC has only to
receive or send each of the data units once, which potentially
considerably limits the bandwidth on expensive links and usage
of resources on constrained devices. An RC can be upgraded to
SC and SC can be downgraded to RC depending e.g. on the
network congestion or moving from/to WLAN coverage.

Application Servers (ASs) are dedicated servers deployed
for the purpose of the game. They store data, route queries and
answers to these queries. The data they store is not replicated as
these nodes are not affected by churn and are trusted.

As addressing and application level routing in our protocol
are motivated by Pastry DHT [11, 19] for better understanding
we briefly review the original Pastry protocol.

A. Pastry
Pastry [11, 19] is a structured p2p routing protocol that

implement the DHT abstraction. In a Pastry network, each node
has a unique, uniform, randomly assigned nodeId in a circular
128-bit identifier space. Given a message and an associated
128-bit key, Pastry reliably routes the message to the live node
whose nodeId is numerically closest to the key.

In a Pastry network consisting of N nodes, a message can
be routed to any node in less than Nb2log � steps on average,
where b is a configuration parameter responsible for the
number of rows, columns in the routing table and maximal
number of routing steps. Each node stores only O(logN)
entries, where each entry maps a nodeId to the associated
node’s IP address. Specifically, a Pastry node’s Routing Table
is organized into Nb2

log rows with (2b-1) entries each. Each
of the (2b-1) entries at the row n of the Routing Table refers to
a node whose nodeId shares the first n digits with the present
node’s nodeId, but whose (n+1)th digit has one of the (2b-1)
possible values other than the (n+1)th digit in the present
node’s nodeId. Pastry stores multiple candidates per Routing
Table entry to increase availability. In addition to a Routing
Table, each node maintains a Leaf Set, consisting of L/2 nodes
with numerically closest larger nodeIds and L/2 nodes with
numerically closest smaller nodeIds, relative to the present
node’s nodeId. L is another configuration parameter. In each
routing step, the current node forwards a message to a node
whose nodeId shares with the message key a prefix that is at
least one digit (or b bits) longer than the prefix that the key
shares with the current nodeId. If no such node is found in the
Routing Table, the message is forwarded to a node whose
nodeId shares a prefix with the key as long as the current node
but is numerically closer to the key than the current nodeId.
Such a node must exist in the Leaf Set unless the nodeId of the
current node or its immediate neighbor is numerically closest to
the key.

B. Hybrid Pastry
We propose Hybrid Pastry (HP) in which data in the form

of key-value pairs is stored by SCs and ASs with nodeIDs
closest to the keys. NodeIDs are calculated by hashing IP
addresses of the nodes. The key identifying data is a hash value
calculated over a subset of data. This can be, for example, the
name of the object related to these data, such as the name of the
place that a stored picture shows. As the time plays an
important role for the queries, it can also be used for the hash
calculation. It is particularly important not to calculate hash
over the same data associated with different objects. If the
same hash values identify different objects the fair distribution
and thus scalability of the whole system can be seriously
affected [20]. In particular, some of the users’ devices can be
forced to store much more data than the others.

There are also two types of messages – directed to a node
from any group (e.g. answers to queries) or directed to a node
which is an SC or AS. Routing of the messages issued by any
class of nodes is initially performed only by SCs and ASs and
reaches RCs only at last hop(s). Therefore, the state of nodes in
HP differs from Pastry in the following way. Neighborhood Set
and Routing Table contain only SCs and ASs. There are also

two Leaf Sets – one for SCs and ASs (SC/AS Leaf Set) and one
for RCs only (RC Leaf Set). This separation is necessary to
assure that a message will finally reach an RC regardless of the
proportions between the numbers of RCs, SCs and ASs.
Otherwise it could happen that the SCs or ASs with nodeId
closest to the key of the forwarded message has its Leaf Set full
of other SCs and ASs and is not aware of the existing RC that
should be the next hop.

At the initial stage, when the message is routed only by SCs
and ASs the Leaf Set with RCs is ignored. Only when the
message is directed to any class of nodes and already reached
the SC or AS with nodeId numerically closest to the message’s
key, it can be further forwarded to an RC from the RC Leaf Set
if it has a nodeId numerically closer to the message’s key than
the forwarding node.

If the number of RCs is much higher than the number of
SCs and ASs it may happen that not all RCs will fit into the
Leaf Sets of ASs and SCs. In that case a very limited number of
last hops may be performed by RCs. For that reason an RC
after receiving a key-data pair checks if it has in its RC Leaf
Set a node with nodeId numerically closer to the key of the
message.

Note that SCs and ASs are potentially much less affected
by churn and disconnections than RCs. Therefore, limiting the
number of hops performed by RCs potentially considerably
improves the probability of successful delivery and decreases
delays/overhead necessary to forward the message.

Depending on the type of the storing node stored data can
be replicated or not. The key-value pair which is to be stored is
routed to the SC or AS with the nodeId numerically closest to
the key. The node stores it and if it is an SC it replicates the
data to M-1 SCs with nodeIds numerically closest to the key of
the message. Similarly, when the data is retrieved from SC, the
SC with nodeId numerically closest to the key of the message
is responsible for retrieving and comparing all the replicas.
This is necessary for detecting nodes with tampered data. If the
overall number of the collected replicas is lower than M
because the nodes storing them left or were downgraded to RC,
the retrieving node disseminates the ‘missing’ replicas.
Optionally it may be allowed to retrieve and compare less than
M replicas in case of increased network traffic in order to
improve network friendliness for the cost of decreased security.
The node comparing or updating replicas also controls if a
node, which requested update or retrieval, is allowed to do that.

Note that the node retrieving the replicas sends them
directly to the querying node, not using application level multi
hop routing. This is very important for saving the bandwidth,
especially in the case when the number of RCs is much higher
than the number of ASs and SCs. More precisely in that case
RCs do not have to forward queried data.

Downgrading a node from SC to RC is similar to leaving
the DHT in the proposed protocol, which is perform similarly
as in the original Pastry [19]. The Leaf Sets are maintained
actively by periodical sending keep-alive messages to all nodes
in both Leaf Sets. The new status of the downgraded node is
advertised in the acknowledgments it sends for the received
keep-alive messages. The downgraded node also propagates its

status in the lazy way by starting to refuse providing access to
the public data it stores. Nodes which discover that this node
has been downgraded remove it from the Neighborhood Set
and Routing Table and move it from the AS/SC Leaf Set to the
RC Leaf Set. The repopulation of the Routing Table, AS/SC
Leaf Set and Neighborhood Set in order to cover the gap after
downgraded node is performed similarly as in the original
Pastry upon the node’s departure.

When a node is upgraded from the RC to SC it informs
about that all the nodes in both its Leaf Sets, Routing Table and
Neighborhood Set so they can upgrade their states accordingly.
If any of these nodes removes the upgraded node from the RC
Leaf Set, the RC Leaf Set is repopulated by retrieving the RC
Leaf Set from the live node with the largest index on the side of
the failed node.

Lazy repairing of the Routing Tables from the original
Pastry also helps in the propagation of the information about
downgrades and upgrades of the nodes. More precisely, during
message forwarding, when a Routing Table entry is found to be
either empty or containing a failed node, the message is routed
to another node with numerically closest nodeId. If a
downstream node has a routing table entry that matches the
next digit of the message’s key, it automatically informs the
upstream node of that entry.

Arrival and departure of nodes is performed similarly as in
the original Pastry DHT [11].

C. Synchronization
As we can see in Section II pervasive games are

characterized by higher versatility than the current Massively
Multiplayer On Line Games (MMOGS), which typically have
very similar architectures [15]. Therefore, the synchronization
model has to be adjusted to the construction of the game. Let us
consider the games described in Section II as en example. They
are location based so we use the cell-based synchronization
similarly as proposed by Knutssen et. al. [15]. In particular the
game area is divided statically or dynamically into cells. The
data associated with the cell (i.e. references to players located
there, references to multimedia data) can be stored (and
replicated) as key-value pairs. This data comprises keys of the
multimedia data associated with the cell, stored as key-value
pairs and ids of the players located within the cells both
physically as runners and virtually as on-line players (from
Can You See Me Now, see Section II). Note that another form
of handling keys of the multimedia data is passing them as a
part of the communication among players and between players
and game operators.

Players occupying the cell inform about their actions the
node numerically closest to the id of the cell (cell coordinator),
which updates the state of the cell. The cell id can be a name of
the place, map coordinates (in case of self reporting, see
Section II), or id of a gsm cell (in case of GSM positioning
[8]). Cell coordinator also acts as the root of the application
level multicast tree (such as Scribe [21]) informing other
players about the changes in the cell they occupy. Note that
Scribe multicast based on Pastry DHT is congruent with the
proposed protocol. If a player is disconnected for some time
she may miss the updates sent by the cell coordinator. After a

reconnection such player polls the coordinator for the current
state of the cell.

V. ANALYSIS OF THE PROPOSED PROTOCOL

A. Simulation Based Evaluation
This section discusses simulation based evaluation of the

proposed protocol. We concentrate here on a single MANET
that can be a part of a larger topology. In the basic case 20
wireless nodes (802.11) move according to Random Waypoint
Model [22] with the random speed from 1 to 2 m/s (uniform
distribution) which reflects the walking speed of humans [23].
Nodes make random stops from 0 to 180 seconds (uniform
distribution). They move on the square area 400m × 400m and
communicate with the rest of topology through the stationary
gateway located in the middle of one of the sides of the
simulation area. The communication range of both wireless
nodes and the gateway is 250m. The simulated mobile nodes
represent street players (e.g. Uncle Roy All Around You) or
runners from Can You See Me Now.

We assume that the total number of nodes in the topology is
1000. It comprises several MANETs and dedicated servers. We
simulate one of the MANETs being the part of the overall
topology. All the nodes issue queries every 60 seconds and
receive replies to these queries with 5KB payload of data. This
represents data concerning other players and objects from the
‘virtual’ world including location data, text, images, sounds etc.
Every 10 seconds each node sends 1KB of data for storage (an
update) and in case of success it receives an acknowledgement
[24]. This represents spatial data, measurements from the
sensors carried by players, communication with other players
or information about player’s interaction with the objects from
the ‘virtual’ world.

We simulate both original Pastry [11, 19] and the proposed
Hybrid Pastry (HP). In the simulations Pastry nodes send
queries/data with probability PMANET (0.02 in case of MANET
with 20 nodes) to other nodes within the simulated MANET
and with probability 1-PMANET (0.98 in case of MANET with 20
nodes) over the gateway. PMANET=NMANET/N, where N is total
number of nodes in the topology and NMANET is the number of
nodes within the simulated MANET. In both cases data and
queries are routed by all nodes in the multi hop manner. The
queries arrive from the gateway every 3 seconds and the data
updates every 0.51 seconds. Both these frequencies (fGTW) are
calculated from the following formula:

N
NNNf

PNNff MANETMANETN
MANETMANETNGTW

)(
)(

−
=−= (1)

where fN is the frequency for a single node. In case of
Hybrid Pastry all nodes within the MANET are RCs so no data
updates and no queries are sent to them. All the queries and
updates they issue are routed to the gateway in the multi hop
manner.

We perform two sets of simulations. In first we are altering
the density of the nodes and in second the number of nodes in
the simulated MANET, with the constant density 125
nodes/km2. In the second set of simulations we assume that the

total number of nodes in the overlay is 1000 so we are
recalculating the PMANET and frequency of updates/queries
coming from the gateway for each simulation. We perform the
simulation in ns-2 [25] and the MANET routing protocol is
AODV [26].

We monitor Success Ratio (SR) and average delays. SR is
the percentage of successfully received answers to the queries
sent by mobile nodes within the simulated MANET and
successfully delivered data updates sent by these nodes. Delays
are measured as average time between sending a query/data
update and receiving response/data update. SR and delays are
important for player’s experience because they have influence
on how often and how fast a player is informed about changes
in state of the game and how quickly her actions affect other
players. The results of the simulations are presented in Fig. 5.

In Fig. 5a we can see that denser topologies are not
challenging for both protocols. Hybrid Pastry outperforms
Pastry in terms of SR of queries by to 13.8% for average
densities. The SR of data updates is similar for both compared
protocols. In Fig. 5b we can notice that the average delays of
queries and updates are similar for both protocols in case of all
tested densities.

In Fig. 5c we can see that Hybrid Pastry achieves better SR
than Pastry for both updates and queries (by up to 7%) for
numbers of nodes higher than 5. The measured SR is
pessimistic as we do not consider here neither multiple replicas
nor repeating queries after regaining connectivity or end of
increased network traffic. Note that the considered number of
nodes refer to a single MANET, not to the size of the overall
topology.

The delays shown in Fig. 5d are slightly higher for the
Hybrid Pastry than Pastry but this can be attributed to the
higher SR of Hybrid Pastry. In particular packets that take most
time to deliver for Hybrid Pastry would not be delivered by
Pastry.

To summarize, we demonstrated that the proposed protocol,
Hybrid Pastry, offers better scalability in terms of size of a
single MANET, offering better SR which affects players’
experience. It also deals better with sparser topologies of
MANETs. We achieved that without any significant increase of

Figure 5. Simulation results

delays.

B. Security
This section discusses the possibilities of tampering data

and/or functionality of the system using the proposed protocol
in order to get advantage in the game. Dishonest players can
modify data stored by their node to gain advantage in the game.
This behavior can endanger consistency of the game. In order
to prevent this each key-value pair stored by SCs is replicated
to M-1 other SCs. M is a configuration parameter selected as a
compromise between network/computational overhead and
limiting vulnerability to disconnections, churn and cheating.
Optionally it can be adjusted dynamically depending on the
available bandwidth.

On retrieval all the replicas are compared by the SC, which
has nodeId numerically closest to the key identifying data. If
compared data is different the most common value is assumed
as not tampered and the other values as tampered. Nodes which
provided tampered data are removed from the game and
blacklisted. The blacklist can be kept on one of the ASs.

We can assume that the probability of tampering a data unit
stored by a user is PT and the probability of tampering data
stored by AS is negligible. Then, for the original Pastry the
probability of retrieving the tampered data (PTR) is

T
ASSCRC

SCRC
TSSCSRCTR P

NNN
NN

PPPP
++

+
=+=)((2)

where PSRC, PSSC are probabilities of storing a key-value
pair by an RCs and SCs respectively. NAS, NRC, NSC are
numbers of ASs, RCs and SCs.

In the proposed protocol the node comparing the replicas
accepts the most common version of data as not tampered so
we can pessimistically assume that the querying node receives
a tampered data if more than half of the replicas are tampered.
It is pessimistic because we assume that all the tampered
replicas are modified in the same way. From the Bernoulli’s
Trials we can calculate:

iM
T

i
T

M

M
iASSCRC

SC

M

M
i

T
ASSCRC

SC
M

M
i

TSSCTR

)P(P
)!iM(!i

!M
NNN

N

)P,M,i(b
NNN

N
)P,M,i(bPP

−

=

=

=

−
−++

=

=
++

==

∑

∑∑

1

2

22

 (3)

For example for the PT=0.01, 10 ASs, 100 SCs and 1000
RCs for original Pastry PTR=0.099. For the proposed protocol
the dependence between PTR and M is shown in Fig. 6. As we
can see, even a small number of replicas such as three
considerably helps in fighting tampering but it is not advisable
to have an even number of replicas. Fig. 6 clearly shows that
using two replicas is particularly suboptimal for combating
tampering. If one of the nodes tampers the replica the node
retrieving replicated data will not know which replica is
original. If both nodes tamper their replicas in the same manner
the tampered version is accepted as original. The only

possibility of retrieving the
original data unit is when it is
not altered by both nodes
holding the replicas, which
has lower probability than
retrieving a single not
tampered replica.

Note that for the number
of replicas higher than two it
is relatively difficult to
blacklist non-cheating
players by tampering data. In

order to achieve this it would be necessary to tamper in the
same way more than one replica. This would require
cooperation between randomly designated set of players.

A user can request update or retrieval of data without
having appropriate access rights. That should be detected by a
node, which is numerically closest to the key of the
updated/requested data.

A user can tamper her SC’s functionality so that it does not
retrieve and compare replicas stored by other SCs. This gives
only a short-lived advantage because the churn makes the
closest numeric proximity between nodeId and the keys of the
stored messages transient. At any time, such SC may be asked
to provide its replica for comparison and if it provides altered
data its cheating is immediately detected or if it provides
legitimate data, its illegal advantage in the game is gone.
Similar applies to illegal disabling of the access rights control.

A subset of nodes can be tampered in the way they lie
about their capabilities trying to qualify as a different class.
Pretending to be an SC instead of an RC is not profitable for a
user as this potentially highly increases usage of computational
power and network bandwidth, thus decreasing the node’s
performance and player’s gaming experience. On the contrary,
pretending to have a more constrained hardware and/or
network connection in order to qualify as RC instead of SC can
offer a user much better performance. This form of attack only
decreases the performance of ASs, other SCs and in extreme
cases RCs without affecting consistency of game data and
functionality.

VI. RELATED WORK
The proposed protocol is based on the Pastry DHT [11, 19],

which we extended in order to handle heterogeneity of peers,
cheating and churn of possibly mobile players. There are many
examples of heterogeneity management in unstructured p2p
systems including JXTA [27], Guntella 0.6 [28] etc. To the best
of our knowledge the only structured p2p system addressing
heterogeneity is Hybrid Chord [16, 17] but this protocol is
more oriented at accessing user data rather than application
data. Therefore, it does not address limiting network traffic at
the more constrained nodes. Contrary to the authors of Hybrid
Chord we decided to base our protocol on Pastry rather than
Chord. We believe that Pastry better supports replication and
delegating traffic from more constrained to more powerful
nodes as nodes have more knowledge about their neighbors
from the address space.

Figure 6. Relation between the
number of replicas (M) and probability

of retrieving tampered data (PTR)

Using replication to handle churn and unreliability of nodes
in the structured p2p overlay was proposed in the PAST [29]
storage system based on Pastry DHT [11, 19]. We proposed
[18] using proactive caching, similar to replication to address
partitioning of the wireless network. However in both these
cases caching is not congruent with the heterogeneity of the
nodes and does not address dishonesty of the users.

Using Pastry DHT for the purpose of Massively
Multiplayer Online Games (MMOGs) was proposed in [15].
The networking challenges in MMOGs are considerably
different than in mass scale pervasive games (see discussion in
Section III) so the referenced work concentrates on the
synchronization problems not addressing heterogeneity of the
peers and their links. They also consider replication only in
terms of reliability, not for combating dishonesty of players.

There is also research concerning utilizing MANETs for
gaming [4] but typically scale of such games is limited in terms
of number of users and scope of a single MANET.

The considerable body of research addresses cheating in the
current MMOGs [30, 31]. The referenced work mainly
addresses cheating by delaying announcement of the players’
positions. The applicability of this work to the pervasive games
is limited as the position reported by players is associated with
their physical location. Therefore, players can only cheat by
reporting false positions, which typically can be easily detected
from the physical interactions with other players and the
environment.

VII. CONCLUSIONS
In this paper we identified network support challenges of

scaling pervasive games to include potentially mass numbers of
players across extremely heterogeneous and unreliable
networks. Then we proposed a self organized p2p overlay
addressing these challenges. In order to increase scalability and
decrease deployment costs it utilizes bandwidth and processing
power of the users’ devices. The proposed protocol utilizes
heterogeneity of the hardware and network connectivity
available to users, using available infrastructure when and
where it exists. It is optimized for high rate of churn,
disconnections and limited coverage of the currently deployed
wireless platforms. It is also resistant to dishonesty of users,
making no assumptions about the fair use of the system. We
demonstrated performance of the proposed protocol by
simulation based evaluation. Such an overlay further enables
rapid and cost-effective creation and staging of massive
pervasive games that is one of the main concerns identified
today in the networked gaming community [8].

REFERENCES
[1] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou,

"Developing a context-aware electronic tourist guide: some issues and
experiences", In Proc. of CHI, The Hague, The Netherlands, 2000, pp.
17-24.

[2] H. Pucha, S. M. Das, and Y. C. Hu, "Ekta: An efficient DHT substrate
for distributed applications in mobile ad hoc networks", In Proc. of
WMCSA, English Lake District, UK, 2004.

[3] R. Want, A. Hopper, V. Falcão, and J. Gibbons, "The active badge
location system", ACM TOIS, January 1992, 10 (1), pp. 91-102.

[4] D. Budke, K. Farkas, O. Wellnitz, B. Plattner, and L. Wolf, "Real-time
multiplayer game support using QoS mechanisms in mobile ad hoc
networks", In Proc. of WONS, Les Ménuires, France, 2006.

[5] "iPerG", Available: http://www.pervasive-gaming.org/.
[6] "Equator", Available: http://www.equator.ac.uk/.
[7] "Participate", Available: http://participateonline.co.uk/.
[8] M. Capra, et al., "The multimedia challenges raised by pervasive games",

In Proc. of International Multimedia Conference, Hilton, Singapore,
2005, pp. 89-95.

[9] S. Benford, et al., "Can you see me now?" ACM TOCHI, March 2006, 13
(1), pp. 100-133.

[10] S. Benford, et al., "Uncle Roy All Around You: implicating the city in a
location-based performance", In Proc. of Proc. ACE, 2004.

[11] A. Rowstron and P. Druschel, "Pastry: scalable, decentralized object
location, and routing for large-scale peer-to-peer systems", In Proc. of
Middleware, Heidelberg, Germany, 2001, pp. 329-350.

[12] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, "Tapestry: an
infrastructure for fault-tolerant wide-area location and routing",
Computer Science Division (EECS), Berkeley, Califorina, Technical
Reprt UCB/CSD-01-1141, 2001.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A
scalable content-addressable network", In Proc. of SIGCOMM, San
Diego, California, USA, 2001.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
"Chord: a scalable peer-to-peer lookup service for Internet applications",
In Proc. of SIGCOMM, San Diego, California, USA, 2001.

[15] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, "Peer-to-peer support for
massively multiplayer games", In Proc. of INFOCOM, Hong Kong,
2004.

[16] S. Zöls, R. Schollmeier, W. Kellerer, and A. Tarlano, "The Hybrid Chord
protocol: a peer-to-peer lookup service for context-aware mobile
applications", In Proc. of ICN, Reunion Island, France, 2005.

[17] S. Zöls, S. Schubert, W. Kellerer, and Z. Despotovic, "Hybrid DHT
design for mobile environments", In Proc. of AP2PC, Phoenix, Arizona,
USA, 2006.

[18] M. Radenkovic and B. Wietrzyk, "Wireless mobile ad-hoc sensor
networks for very large scale cattle monitoring", In Proc. of ASWN,
Berlin, Germany, 2006, pp. 47-58.

[19] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, "Exploiting network
proximity in peer-to-peer overlay networks", technical report MSR-TR-
2002-82, 2002.

[20] J. Eberspächer, G. Kunzmann, S. Zöls, and W. Kellerer, "Peer-to-peer
networks, applications and services", in ASWN, Berlin, Germany, 2006,
Available.

[21] M. Castro, et al., "An evaluation of scalable application-level multicast
built using peer-to-peer overlays", In Proc. of INFOCOM, 2003.

[22] D. B. Johnson and D. A. Maltz, "Dynamic source routing in ad hoc
wireless networks": Kluwer Academic, 1996.

[23] S. D. Pinna, Forces and motion, Raintree Steck-Vaughn Publishers,
Austin, Texas, USA, 1998.

[24] S. Benford, et al., "The error of our ways: the experience of self-reported
position in a location-based game", In Proc. of UbiComp, Nottingham,
UK, 2004, pp. 70 - 87.

[25] L. Breslau, et al., "Advances in network simulation", IEEE Computer,
2000, 33 (5), pp. 59-67.

[26] C. E. Perkins and E. M. Royer, "Ad-hoc on-demand distance vector
routing", In Proc. of WMCSA, 1999.

[27] "jxta.org", Available: http://www.jxta.org/.
[28] T. Klingberg and R. Manfredi, "Gnutella 0.6", Available: http://rfc-

gnutella.sourceforge.net/src/rfc-0_6-draft.html.
[29] A. Rowstron and P. Druschel, "Storage management and caching in

PAST, a large-scale, persistent peer-to-peer storage utility", In Proc. of
ACM SIGOPS, 2001.

[30] N. E. Baughman and B. N. Levine, "Cheat proof playout for centralized
and distributed online games", In Proc. of INFOCOM, 2001.

[31] A. S. John and B. N. Levine, "Supporting P2P gaming when players
have heterogeneous resources", In Proc. of NOSSDAV, Stevenson,
Washington, USA, 2005.

