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The dynamics of intracellular Ca2+ is driven by random events called Ca2+ puffs, in which Ca2+

is liberated from intracellular stores. We show that the emergence of Ca2+ puffs can be mapped
to an escape process. The mean first passage times that correspond to the stochastic fraction of
puff periods are computed from a novel master equation and two Fokker-Planck equations. Our
results demonstrate that the mathematical modeling of Ca2+ puffs has to account for the discrete
character of the Ca2+ release sites and does not permit a continuous description of the number of
open channels.

PACS numbers: 87.16.Ac, 05.40.-a

I. INTRODUCTION

Understanding the emergence of cellular processes from molecular interactions is one of the most fundamental quests
in contemporary cell science. Since the number of reactions as well as the total number of molecules that participate
in these reactions span orders of magnitude, no universal approach exists. That holds in particular when we consider
the number of reacting molecules. On the one hand, there are processes that involve macroscopically large quantities,
so that their dynamics is correctly described by deterministic equations [1, 2]. On the other hand, recent experiments
have revealed that some reactions affect only tens of molecules. Irvine et. al have reported that T cells react to the
binding of even a single agonist [3]. Such a small number of interacting molecules demands a stochastic approach,
because fluctuations cannot be neglected anymore as deterministic modeling does. In the MinCDE system for example,
only a few thousand molecules are expressed [4]. It exhibits oscillations where the deterministic equations decay to a
stationary fixed point. Research of recent years revealed several systems in which noise shapes the dynamics essentially
and induces behavior that is not present without fluctuations (see [5, 6] for examples from gene expression and signal
transduction).
Another reason for the commitment of only a few molecules is the heterogeneity of cells. The number of reaction
partners may exhibit strong spatial and temporal variations due to heterogeneously spatial distributions of molecules
or large concentration gradients. These large gradients create a dynamic compartmentalization of the cell with largely
different concentrations between the compartments. If only a small number of elements is in one of these dynamic
compartments, fluctuations remain large despite the fact that many copies of that element may be present in the cell.
That is the case with intracellular Ca2+ dynamics (see below).
The dynamics of the Ca2+ concentration in the cytosol of a cell is determined to a large degree by release and uptake
of Ca2+ by intracellular storage compartments, in particular the endoplasmic reticulum (ER). Release is controlled
by inositol-1,4,5-trisphosphate (IP3) receptor channels (IP3R). They are arranged in clusters that comprise between 1
and 40 channels and that are randomly distributed on the membrane of the ER with distances between 1-7 µm [7, 8].
IP3Rs have the important property that their open probability depends on the Ca2+ concentration in the cytosol.
The details of this dependency will be discussed in section II. A moderate increase in the cytosolic concentration -
i.e. on the outside of the storage compartment - increases the opening probability.
Single channels behave of course stochastically [9]. The most important fluctuations arise from the stochastic closing
and opening of the Ca2+ channels [10]. They lead to random elemental release events called puffs. A puff is the
spontaneous opening of channels of a single cluster. Experimental and theoretical studies have suggested that puffs
play a pivotal role in intracellular Ca2+ dynamics [8, 11]. These investigations put forward the idea that all global
patterns like Ca2+ waves foot on Ca2+ puffs. To envisage the underlying mechanism, we start with a Ca2+ puff in
a neighborhood of closed clusters. The Ca2+ released by the puff diffuses to adjacent clusters, where channels may
open due to the Ca2+ dependent activation. If they do so, the liberated Ca2+ may induce neighboring clusters to
open, too, and release spreads through the whole cell. That represents a single spike of an oscillation. However, there
is no guarantee that a puff initiates a wave spreading throughout the cell, since activation is truly random as we will
show below.
The dynamic behavior of deterministic models using realistic concentration gradients provides further relevance of
fluctuations for intracellular Ca2+ dynamics. Stochastic simulations and bifurcation analysis of deterministic models
have demonstrated that Ca2+ oscillations that agree with experimental findings vanish in the deterministic limit
[10–12]. The reason is in the high Ca2+ concentration and large gradients that occur at an open cluster. They lead
to a saturation of all control processes at the open cluster that regulate Ca2+ liberation in a deterministic model,
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so that no oscillations can occur [13, 14]. Random fluctuations allow to escape from that saturation. The large
gradients around an open cluster generate a dynamic compartment and keep the volume with high concentrations
small. Consequently only a small number of active elements experiences strongly stimulating concentrations. That
precludes deterministic behavior in the dynamic compartment.
Given the vital part of Ca2+ puffs in intracellular Ca2+ dynamics and the importance of fluctuations, a stochastic
description of a single cluster is the focus of the present work. We will apply it to the initiation of Ca2+ puffs, which
represents the first step for any Ca2+ pattern. Our findings suggest that puff initiation can be mapped to an escape
process and that the mathematical description has to account for the integer number of open channels per cluster.
A continuous model of the fraction of open channels that incorporates realistic fluxes does not permit Ca2+ puffs for
parameter values that agree with experimental data. The mean first passage times can be represented as an infinite
series of exponentials. However, already the first terms in the expansion yield excellent convergence. That hints at a
Poissonian character of puff initiation. Although noise is intrinsically multiplicative for intracellular Ca2+ dynamics,
we provide evidence that additive noise may serve as a reasonable approximation.
We will introduce a Ca2+ model for an IP3 receptor channel cluster in the next section. It serves as input for a master
equation in section III, from which we will derive two Fokker-Planck equations in section IV. Finally, we will employ
these equations to characterize the initiation of Ca2+ puffs.

II. Ca2+ MODEL

The IP3 receptor channel is a tetramer the subunits of which have binding sites for Ca2+ and IP3 . We implement
a model for a single subunit that is based on ideas of De Young’s and Keizer’s [15]. They assume a subunit to
possess three binding sites: an activating Ca2+ binding site, an inhibiting Ca2+ binding site and an activating IP3

binding site. The occupation of the binding sites controls the state of the subunit. When IP3 and Ca2+ are bound
to their activating binding sites, a subunit is in the activated state. As soon as Ca2+ binds to the inhibiting binding
site, a subunit is inhibited, independent of the state of the other binding sites. It can only be activated again upon
dissociation of Ca2+ from the inhibiting binding site. Experiments have indicated that an IP3R channel is conducting
when at least 3 subunits are activated [16, 17]. Random binding and unbinding of Ca2+ and IP3 and therefore random
state changes of the receptor are the source of stochasticity of intracellular Ca2+ dynamics.
The number of open IP3R channels determines the Ca2+ flux from the ER to the cytosol. Since the release channels
are tightly packed within a cluster, a relation between the number of channels in the cluster and cluster size exists.
Consequently, we can map the number of open channels to the size of a conducting area (or volume) equal to the
area occupied by all open channels. A change in the number of releasing IP3R channels corresponds to a modulation
of the conducting area of a cluster. This region is usually not connected. However, Swillens et al. showed that the
spatial arrangement of IP3R channels does not influence the Ca2+ dynamics at an open cluster [7]. Therefore, we
map the area of all conducting release channels to an area of the same size concentric to the cluster area. Let a
denote the radius of this region, N the total number of channels per cluster and no the number of open channels, then
a = a0

3
√
no/N . That reflects the above notion that the volume of the conducting sphere corresponds to the volume

that is occupied by the fraction no/N of open channels. If no = 0 then a = 0, and a takes the maximal value a0 if all
N channels are open.
The deterministic dynamics of this cluster model has been investigated in [13, 14]. In addition to IP3 mediated Ca2+

liberation, we considered sarco-endoplasmic reticulum calcium ATPase (SERCA) pumps, which transport Ca2+ from
the cytosol to the ER, and a leak flux. The stationary Ca2+ concentration profile that results from these three fluxes
is

c(r)=
[
A(a)

sinh( k1r)
r

+ e1

]
Θ(a− r)+

[
B(a)

exp(−k2r)
r

+ e2

]
Θ(r − a) , (1)

where

A(a) =
l(k2a+ 1)

cosh(k1a)k1 + sinh(k1a)k2
, (2a)

B(a) =
l(sinh(k1a)− cosh(k1a)k1a)

exp(−k2a)(cosh(k1a)k1 + sinh(k1a)k2)
, (2b)

with

l =
−kckpE

(kl + kp + kc)(kl + kp)
, k1 =

√
kl + kp + kc

D
, k2 =

√
kl + kp

D
, (3)
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and e1 := (kl + kc)E/(kl + kp + kc), e2 := klE/(kl + kp). The constants kl, kp and kc denote the leak flux coefficient,
the strength of the SERCA pumps and the channel flux coefficient, respectively. The diffusion coefficient is given by
D. E denotes the concentration of free Ca2+ in the ER.
Simulations have demonstrated that the Ca2+ concentration rapidly equilibrates upon a change in the number of
open channels [12]. Hence, we will approximate the Ca2+ dynamics by its stationary value in the remainder of this
work. The number of open channels no uniquely determines the Ca2+ concentration according to equation (1) and
a = a0

3
√
no/N . The focus of the two subsequent sections is the calculation of no.

III. MASTER EQUATION

The number of open channels no depends on the state of the subunits of the IP3Rs. A state of a subunit is determined
by the occupation of its binding sites. The De Young Keizer (DK) model has three binding sites per subunit and
hence eight subunit states. We reduce these eight states in two steps to three states. Firstly, we eliminate the IP3

dynamics adiabatically since IP3 binding and unbinding are much faster than the Ca2+ dynamics in the framework
of this model. The resulting four states are labeled by a binary pair ij, where the first index represents the Ca2+

activating binding site and the second the Ca2+ inhibiting binding site [11]. An index equals 1 when the binding site
is occupied and 0 otherwise, e.g. 10 corresponds to the activatable state of a subunit. The second approximation
uses the fact that we are interested in activation starting from a stationary state. Transitions among the inhibited
states 11 and 01 have little impact on that activation process. Moreover, these states are rarely populated during puff
initiation. Consequently we lump the two inhibited state into one state h̄. Figure 1 depicts the transition scheme for
this 3 state model. The transition rates follow from [15] and [11].

FIG. 1: Transition scheme for the three state model of the IP3 receptor. d5 = b5/a5 is the dissociation constant for Ca2+

activation, b6 the dissociation rate of Ca2+ from the inhibiting site averaged over both IP3 binding states. We denote the
number of subunits in one of the three states by n10, n00 and nh̄

Modeling the dynamics of an IP3R on the basis of its subunits leads to various consequences for a cluster of N IP3Rs
. As long as every IP3R is treated individually and subunits are assigned to individual channels - as has been done in
stochastic simulations [11] - the state of the cluster is uniquely determined by the states of its subunits. However, an
approach based on a population of subunits not grouped into individual channels is more suitable for the derivation
of master equations and Fokker-Planck equations which we would like to use. That requires to determine the number
of open channels from the total number of activatable subunits in the subunit population. We assume that the
activatable subunits are randomly scattered across the channels. The distribution of the n10 activatable subunits on
the 4N subunits of a cluster decides upon the value of no and hence the Ca2+ concentration. We show in the appendix
that this distribution is sharply peaked around its mean value. Therefore, we set no = 〈no〉 = na. na is defined in
equation (52).
The stochastic nature of Ca2+ release through IP3Rs entails that the exact number of subunits in either of the three
states 10, 00 or h̄ at a given time t, i.e. the triplet (n10(t), nh̄(t), n00(t)), cannot be specified exactly any more. On
the contrary, only the probability P (n10, nh̄, n00; t) to find a certain realization of (n10, nh̄, n00) at time t is accessible.
Since the total number of subunits is fixed, the values of n10 and nh̄ suffice to specify the triplet (n10, nh̄, n00; t), so
that P (n10, nh̄, n00; t) = P (n10, nh̄; t).
The probability P (n10, nh̄; t) changes in the time interval [t, t+ dt] due to two opposing processes: Being in (n10, nh̄)
at time t, binding or unbinding of Ca2+ alters n10 or nh̄ during dt and hence reduces P (n10, nh̄; t). On the other
hand, transition from states as (n10 + 1, nh̄) or (n10− 1, nh̄) into (n10, nh̄) increases P (n10, nh̄; t). Taking all possible
reactions according to the figure 1 into account, the time evolution of P (n10, nh̄; t) is captured by the master equation
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[18]

Ṗ (n10, nh̄; t) =

− [n10[b5+a6c(n10)] + nh̄b6]P (n10, nh̄; t)− [hN−n10−nh̄]a5c(n10)P (n10, nh̄; t)

− [hN−n10−nh̄]a6c(n10)P (n10, nh̄; t)+[n10+1]a6c(n10+1)P (n10+1, nh̄−1; t)

+ [hN−nh̄−n10+1]a5c(n10−1)P (n10−1, nh̄; t)+[n10+1]b5P (n10+1, nh̄; t)

+
b6c(n10 − 1)[nh̄ + 1]
c(n10 − 1) + d5

P (n10 − 1, nh̄ + 1; t) +
b6d5[nh̄ + 1]
c(n10) + d5

P (n10, nh̄ + 1; t)

+ [hN − nh̄ − n10 + 1]a6c(n10)P (n10, nh̄ − 1; t) .

(4)

For instance being in (n10, nh̄), the term proportional to a6c in the first line denotes a transition from 10 to h̄, so that
the final state is (n10 − 1, nh̄ + 1). The Ca2+ concentration is given by equation (1). The Ca2+ concentration in the
master equation depends on n10, which is indicated by the notation c(n10). The radius a in equation (1) follows from
the number of activatable subunits as a = a0

3
√
na/N according to the preceding discussions.

The adiabatic elimination of the IP3 dynamics leads to non-integer values for the number of open channels. That
demands a careful interpretation of the size of the conducting membrane patch, which was assumed to take only
discrete values due to the discreteness of no. One approach is to truncate the rational values of no as [no]+, where
[no]+ denotes the largest integer that is less or equal no. It entails c = cb as long as n0 < 1, where cb denotes the
base level of the Ca2+ concentration. This approach favors the closed configuration during puff initiation. In another
approach we will keep the non-integer value of no and consider a as a quasi continuous function. We will discuss the
effects of both approaches with respect to puff initiation.
Equation (4) is an accurate description of the stochastic dynamics represented by the scheme in Figure 1. We will
derive approximations like Fokker-Planck equations to calculate escape time characteristics from this master equation.

IV. FOKKER-PLANCK EQUATIONS

The discrete nature of master equations often impedes an analytic treatment. That holds in particular for master
equations with nonlinearities or artificial boundary conditions. In these cases, several approximations have been put
forward [18–22]. Despite the plethora of methods, there is still no consensus which approximation is best [23]. Each
of them possesses advantages and drawbacks, so that the problem at hand finally decides which procedure to use.
We will concentrate on van Kampen’s Ω expansion and a method that is similar to a Kramers-Moyal expansion. The
latter keeps the nonlinearities of the master equation in the fluctuations, whereas the former approximates them in
a linear fashion. Moreover, van Kampens’s expansion is only valid when the macroscopic equation displays a single
stable fixed point.
The Ω expansion requires a small parameter 1/Ω in the master equation, which for our purposes is the inverse number
of subunits, i.e. Ω = 4N . The systematic expansion of equation (4) in powers of Ω is based on the transformations
n10 = Ωφ(t)+Ω1/2ξ and nh̄ = Ωψ(t)+Ω1/2η. They decompose the variables of the master equation into macroscopic
parts (φ, ψ) and fluctuations (ξ, η). Inserting this ansatz into equation (4), the first non vanishing order of Ω yields
the macroscopic equations

∂φ

∂t
=− φ(a5c+ a6c+ b5) + ψ

(
b6c

c+ d5
− a5c

)
+ a5c , (5a)

∂ψ

∂t
=− (a6c+ b6)ψ + a6c , (5b)

with c = c(a0
3
√
φa) and φa := r3φ3(4 − 3rφ). r denotes the fraction of subunits in the state 10 that are activated:

r := I/(I + d1). Equations (5) correspond to the rate equations that are associated with the transition scheme
in figure 1, when the conservation condition n10 + nh̄ + n00 = 4N is applied. Note that φa is the continuous limit
(N →∞) of equation (52). Therefore, φa is the probability that at least 3 of the 4 subunits of an IP3R are activated.
The solutions of equation (5) represent the deterministic part of the above transformation of variables. They have
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the stationary values

φ̄ =
d6c

(c+ d5)(c+ d6)
, ψ̄ =

c

c+ d6
, (6)

which agree with results in [14]. d6 = d2(I + d1)/(I + d3) is an effective dissociation constant. d2 denotes the
dissociation constant for Ca2+ inhibition when the IP3 binding site is ligated, d1 and d3 represent the dissociation
constants of IP3 binding [15].
The next order in Ω determines the fluctuations through the probability P (n10, nh̄; t)
= P (Ωφ+ Ω1/2ξ,Ωψ + Ω1/2η; t) =: Π(ξ, η; t) according to

∂Π
∂t

=−
[
g11

∂

∂ξ
+ g21

∂

∂η

]
(ξΠ)−

[
g12

∂

∂ξ
+ g22

∂

∂η

]
(ηΠ)

+
1
2

[
h11

∂2

∂ξ2
+ 2h12

∂2

∂η∂ξ
+ h22

∂2

∂η2

]
Π .

(7)

The matrices (gij) and (hij) with h12 = h21 are defined as

g11 := b6d5ψc
1/(c+ d5)2−a6

(
c+ φc1

)
−b5−a5

(
c− (1− φ− ψ)c1

)
, (8a)

g21 := a6c
1 − a6ψc

1 , (8b)

g12 := b6c/(c+ d5)− a5c , (8c)

g22 := − (a6c+ b6) , (8d)

and

h11 := a5(1− ψ − φ)c+ b6ψc/(c+ d5) + a6φc+ b5φ , (9a)

h21 := −b6ψc/(c+ d5)− a6φc , (9b)

h22 := a6(1− ψ)c+ b6ψ . (9c)

with

c1 :=
dc

da
(a0

3
√
φa)

a0

3
3
√
φ−2

a

[
18r4φ3 − 12r3φ3 − 12r3φ2

]
. (10)

Equation (10) arises from inserting equation (52) into a = ao
3
√
na/N and then expanding c(a) in powers of Ω. The

matrix (gij) coincides with the matrix of the linearized macroscopic equations (5). The fluctuations enter through the
matrix (hij). The Hurwitz criterion [24] assures that this matrix is positive semi definite, which means that equation
(7) is a linear multivariate Fokker-Planck equation.
The linear treatment of the noise in equation (7) has cast some doubt on the validity of the Ω expansion. Therefore,
a different class of Fokker-Planck equations have been proposed that keep the nonlinearities of the master equation.
Kramers and Moyal have treated the shifts n10 ± 1, nh̄ ± 1 of n10 and nh̄ in equation (4) by means of a Taylor
expansion [19, 20]. Following this procedure and defining the new variables φ := n10/Ω and ψ := nh̄/Ω, we obtain a
Fokker-Planck equation for the probability p = p(φ, ψ, t):

∂p

∂t
=
∂

∂φ

[
φa6c+ φb5 − (1− ψ − φ)a5c−

b6c

c+ d5
ψ

]
p

+
∂2

2Ω∂φ2

[
φa6c+ φb5 + (1− ψ − φ)a5c+

b6c

c+ d5
ψ

]
p

+
∂

∂ψ

[
b6 − (1− ψ)a6c

]
p+

∂2

2Ω∂ψ2

[
b6 + (1− ψ)a6c

]
p

− ∂

Ω∂ψ∂φ

[
φa6c+

b6c

c+ d5

]
p .

(11)
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The nonlinearities are introduced through c = c(a0
3
√
φa) with φa defined as after equation (5).

Equations (4), (7) and (11) constitute the starting point for a systematic study of puff frequencies. Given a con-
figuration (n0

10, n
0
h̄
) at time t = 0, they all yield the probability for a configuration (nt

10, n
t
h̄
) at time t > 0. If we

identify (n0
10, n

0
h̄
) with the resting state of a cluster and (nt

10, n
t
h̄
) with the first channel opening, such a transition in

the configuration space gives the probability for a Ca2+ puff. Consequently, we interpret a puff as an escape process
from the state (n0

10, n
0
h̄
) to the state (nt

10, n
t
h̄
). Although the above equations allow the calculation of this escape prob-

ability, no general solutions are known for two dimensional escape processes (see [25] for a recent result). However,
the time scale separation between Ca2+ activation and Ca2+ inhibition leads to a reduction of the two dimensional
equations to one dimension. Since the inhibiting processes are much slower than binding and unbinding of Ca2+ to
the activating binding site, we assume that nh̄ remains unchanged during the initiation of a puff. That is identical to
setting nh̄ = const, and the master equation simplifies to

Ṗ (n10; t) =− b6c(n10)
c(n10) + d5

nh̄P (n10; t) +
b6c(n10 − 1)

c(n10 − 1) + d5
nh̄P (n10 − 1; t)

− (4N − n10 − nh̄)a5c(n10)P (n10; t) + b5(n10 + 1)P (n10 + 1; t)

− b5n10P (n10; t) + (4N − n10 − nh̄ + 1)a5c(n10 − 1)P (n10 − 1; t)

− a6c(n10)n10P (n10; t) + a6(n10 + 1)c(n10 + 1)P (n10 + 1; t) .

(12)

For a later analysis, it is convenient to rewrite equation (12) in the form

Ṗ (n10; t) = − (gn10 + rn10)P (n10; t) + gn10−1P (n10 − 1; t) + rn10+1P (n10 + 1; t) (13)

with

gn10 =
b6c(n10)

c(n10) + d5
[Ωψ̄] + (4N − [Ωψ̄]− n10)a5c , rn10 = b5n10 + a6c(n10)n10 , (14)

and ψ̄ defined as in equation (6). From equation (12), we could again derive Fokker-Planck equations in the same
manner as before. However, a more direct approach for the one dimensional Ω expansion is setting η equal to zero in
equation (7) due to nh̄ = const. Keeping only the derivatives with respect to φ in equation (11) gives the nonlinear
Fokker-Planck equation. Note that these one dimensional equations are only valid during the initiation phase of a puff,
whereas equations (4), (7) and (11) capture the full time evolution. Nevertheless, we will concentrate on equation (12)
and the entailing Fokker-Planck equations in the remainder of this work, because they admit analytic solutions and
provide far reaching insights into puff frequencies. The existence of analytic solutions is one of the most prominent
features of van Kampen’s expansion, so that we will treat the corresponding Fokker-Planck equation most generally
in the next section.

V. ESCAPE TIMES

The initiation of a Ca2+ puff corresponds to an escape from the stationary state to the first channel opening. That
requires the definition of the boundaries of the phase space area from which the escape occurs. Since we restrict the
discussion to one dimension in phase space, the boundary consists of two points. We see from equation (12) that the
lower boundary d is at n10 = 0 and that it is reflecting. That agrees with the interpretation of n10 as the number
of activatable subunits, which is always positive. The value of the upper boundary b is chosen such that the number
of open channels no = 1. The upper boundary corresponds to the escape site, so that the boundary condition is of
absorbing type [26].
The time t to reach the absorbing boundary is a stochastic variable. It is described by the probability density ρ(t) i.e.
ρ(t)dt is the probability that the stochastic process reaches b between t and t+ dt. ρ is most conveniently computed
from G(x, t) = 1−

∫ t

0
ρ(x, τ)dτ , which represents the probability that d ≤ n10 < b at time t when it started at x = n0

10

at t = 0. The time evolution of G is governed by L̃, which is the adjoint of the Fokker-Planck operator L [26]. Up
to now, no general solution has been obtained for arbitrary L. Yet, an analytic expression exists for G in the case of
a linear Fokker-Planck operator, e.g. van Kampen’s Ω expansion. Since the following derivation always holds and is
not restricted to the current problem, we introduce new constants v and w. They are given by v = −g11 and w = h11
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defined as in equations (8a) and (9a), respectively, in the present study. G obeys the linear backward Fokker-Planck
equation [26]:

∂G(x, t)
∂t

= −vx∂G(x, t)
∂x

+
w

2
∂2G(x, t)
∂x2

, v, w > 0 , (15)

with initial and boundary conditions

G(x, 0) =

{
1, d ≤ x ≤ b

0, else
,

∂G(d, t)
∂x

= 0 ∀t , G(b, t) = 0 ∀t . (16)

The initial condition states that d ≤ x < b at t = 0 with probability one. The reflecting boundary condition at
x = d in the adjoint Fokker-Planck equation is expressed by a no-flux boundary condition. Setting G ≡ 0 at the right
boundary corresponds to an absorbing boundary. We solve equation (15) with the ansatz G(x, t) = exp(−λt)u(x),
λ ≥ 0 so that it reduces to the ordinary differential equation

d2u

dx2
− 2vx

w

du

dx
+

2λ
w
u = 0 . (17)

Applying the transformation z := x2/4 we find for ū(z) := u(x)

z
d2ū

dz2
+
(

1
2
− 4vz

w

)
dū

dz
+

2λ
w
ū = 0 . (18)

It equals Kummer’s equation for ũ(z̃) := ū(z) with z̃ := 4vz/w

z̃
d2ũ

dz̃2
+
(

1
2
− z̃

)
dũ

dz̃
+

λ

2v
ũ = 0 . (19)

Two independent solutions of equation (17) are [27]

u1(x) := M

(
− λ

2v
,
1
2
,
vx2

w

)
, u2(x) := xM

(
1
2
− λ

2v
,
3
2
,
vx2

w

)
. (20)

M designates the confluent hypergeometric function

M(a, b, x) :=
∞∑

k=0

(a)k

(b)k

xk

k!
, (21)

where (a)0 := 1 and (a)k := a(a + 1) . . . (a + k − 1). The boundary condition at n10 = b entails that a solution of
equation (17) is

v(x) := C1

[
u1(x)−

u1(b)
u2(b)

u2(x)
]

= u1(x)−
u1(b)
u2(b)

u2(x) . (22)

Without loss of generality we set C1 = 1 because it merely serves as normalization. The second boundary condition
fixes the still unknown eigenvalues λ. They constitute an infinite countable set {λn} due to the finiteness of d and b.
Therefore, the general solution of equation (15) can be expressed as

G(x, t) =
∞∑

n=0

an exp(−λnt)vn(x) . (23)

The subscript of vn(x) indicates that equation (22) has to be evaluated at λ = λn (see equation (20)). The coefficients
an are determined by the initial condition G(x, 0) which results in

an =

b∫
d

r(x)vn(x)dx

/ b∫
d

r(x)v2
n(x)dx , r(x) :=

2
w

exp
(
− v

w
x2
)
. (24)
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Here we used the orthogonality relation of the eigenfunctions vn(x):

b∫
d

vn(x)vm(x)r(x)dx = δm,n

b∫
d

v2
n(x)r(x)dx . (25)

The probability ρ(x, t) that the absorbing state is reached between t and t + dt is readily computed from G(x, t) as
ρ = −∂tG(x, t). Note that ρ is already normalized due to the initial condition G(x, 0). Hence, the mean first passage
time T (x) equals

T (x) := 〈t(x)〉 =

∞∫
0

tρ(x, t)dt = −
∞∫
0

t∂tG(x, t)dt =
∑

n

anvn(x)
λn

. (26)

Equation (26) includes an infinite number of eigenvalues. We found that the first three terms of the sum over n were
sufficient to achieve results indistinguishable from the exact results of equation (30).
An alternative approach to the mean first passage time follows from the differential equation [26]

−vxdT (x)
dx

+
w

2
d2T (x)
dx2

= −1 , (27)

with the solution

T (x) =
2
w

b∫
x

dy

h(y)

y∫
d

h(z)dz , h(x) := exp
{
− v

w
(x2 − d2)

}
. (28)

Performing the z integration we find

T (x) =
√

π

vw

b∫
x

dy exp
( v
w
y2
)

erf
(√

v

w
y

)

+
π

2v
erf
(√

v

w
d

){
erfi
(√

v

w
x

)
− erfi

(√
v

w
b

)}
.

(29)

The functions erf(x) and erfi(x) = erf(ix)/i denote the Gaussian error function and the imaginary Gaussian error
function, respectively. The remaining integral can be solved by series expansion so that the final expression for the
mean first passage time takes the form

T (x) =
b2

w
F2;2

(
1, 1;

3
2
, 2;

w

v
b2
)
− x2

w
F2;2

(
1, 1;

3
2
, 2;

w

v
x2

)

+
π

2v
erf
(√

v

w
d

){
erfi
(√

v

w
x

)
− erfi

(√
v

w
b

)}
.

(30)

We employed the generalized hypergeometric function

Fp;q(a1, . . . , ap; b1, . . . , bq;x) =
∞∑

l=0

(a1)l · · · (ap)l

(b1)l · · · (bq)l

xl

l!
, (31)

and used the identiy

j!
2j + 2

j∑
l=0

(−1)l

(2l + 1)(j − l)!l!
=

1
2

(1)j(1)j(
3
2

)
j
(2)j

. (32)

We defer the proof to the appendix. The reason for presenting two methods for evaluating the mean first passage
time is based on their different scopes of applicability. If we were only interested in T , then equation (30) would be
preferable because it requires less computation. However, we are limited to the first moment [26]. The advantage of
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the first approach is that we obtain any moment by one integration. Moreover, we have access to the time evolution
of the escape process which allows for a more detailed analysis.
The above results could only be obtained analytically because the corresponding Fokker-Planck equation was linear.
In the case of a nonlinear Fokker-Planck equation, all quantities have to be computed numerically. The mean first
passage time is evaluated best from a generalization of equation (28). For L = −∂xA(x) + ∂2

xB(x)/2 we find [26]

T (x) = 2

b∫
x

dy

h(y)

y∫
d

h(z)
B(z)

dz , h(x) := exp
{ x∫

d

2A(y)
B(y)

dy
}
. (33)

The study of Fokker-Planck equations instead of master equations is often motivated by easier treatment. That holds
in particular in higher dimensions, because a broader spectrum of tools is available for Fokker-Planck equations than
for master equations [28] and even analytical calculations may be possible as in the case of equation (12). That
constitutes one of the reasons for the derivations in section IV. However, Fokker-Planck equations always represent
approximations. The only way to test their quality is a comparison with results obtained from a master equation.
To this end, we consider a general one step process, to which class equation (12) belongs. We assume that this jump
process starts at a site m at t = 0. Being at site n the particle hops to the right with a rate gn and to the left with a
rate rn, respectively. When it reaches the left boundary L, it is reflected. Then, the mean first passage time to arrive
at a site R > m reads [18]

TR,m =
R−1∑
i=m

(
1
gi

+
i∑

l=L+1

riri−1 · · · rl
gigi−1 · · · gl

1
gl−1

)
. (34)

That allows us to estimate the validity of the preceding approximations. The transition rates ri and gi follow from
equation (14) for the current investigation.

VI. RESULTS

A. Mean first passage time

The calculation of the mean first passage times according to equations (26), (33) and (34) necessitates a further
specification of the boundaries. Since we consider a cluster with N channels, the upper boundary φb for the nonlinear
Fokker-Planck equation is given by the solution of (rφb)3(4 − 3rφb) = 1/N . The left hand side corresponds to the
fraction of open channels as discussed after equation (5). For the lower boundary, we have φ = 0. This value holds for
the master equation, too. The upper boundary for the master equation is obtained by rounding off Ωφb to its nearest
integer value [Ωφb]. Before specifying the boundary conditions for van Kampen’s expansion we note that it describes
the strength of the fluctuations ξ around the fixed point φ̄. The left boundary is imposed by n10 > 0, whereas the
right boundary has to satisfy φb = φ̄ + Ω−1/2ξ. Consequently, the boundaries of ξ are −Ω1/2φ̄ and (φb − φ̄)Ω1/2,
respectively, with φ̄ given by equation (6).
The mean first passage time depends strongly on the Ca2+ concentration (see e.g. equations (14) and (34)). The
results presented throughout the sections VIA - VI C are calculated with a constant base level concentration. The
number of open channels is an integer variable and there is no Ca2+ channel flux before the first channel opens. The
Ca2+ concentration remains at a steady value until a Ca2+ puff occurs. That leads to c1 ≡ 0 in equation (10) and to
coefficients linear in φ and ψ in equation (11).
Figure 2 depicts the mean first passage time as a function of the IP3 concentration for two different values of the
basal Ca2+ concentration.
The master equation and the two Fokker-Planck equations exhibit an increase of the mean first passage time with
decreasing IP3 concentration. This increment diverges for lower values of the IP3 concentration.
The nonlinear Fokker-Planck equation interpolates the master equation very efficiently. The results agree well with
experimental findings for puff periods, although the mean first passage time only constitutes its mean stochastic
fraction [8]. The discreteness of the master equation leads to discontinuities in the mean first passage time. The
plateaus correspond to ranges of φb that are mapped to a single integer for the absorbing boundary of the master
equation. Whenever that integer increases by 1, a jump occurs in the mean first passage time. Van Kampen’s
expansion yields good results for higher IP3 concentrations, but overestimates the escape times otherwise (figure 2).
Figure 3 depicts the influence of the base level on the mean first passage time. The higher the basal concentration
in this regime, the faster the first channel opens. Van Kampen’s expansion improves with increasing base level as
a comparison between the two panels in figure 2 and the right panel of figure 3 shows. The zigzag behavior of the
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FIG. 2: Mean first passage time for cb = 50nM (left) and cb = 80nM (right) computed from the master equation (solid), the
Ω expansion (dashed) and the nonlinear Fokker-Planck equation (dotted) for d1 = 0.13µM, d2 = 3µM, d3 = 0.9434µM, d4 =
0.4133µM, d5 = 0.24µM, a2 = a4 = 0.2 (µMs)−1 , a5 = 5 (µMs)−1 , N = 25. The dots in the left panel represent the variance of
the Ω expansion. The inset in the right panel shows a blow up of the plot for large IP3 concentration.

relative difference τ := (TvK − TME)/TME results from the discontinuities of TME , see figure 2. Additionally, this
quantifies the finding that the difference of the mean first passage time between the master equation and the Ω
expansion diminishes with increasing IP3 concentration.
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FIG. 3: Mean first passage time for the master equation (left) and the relative difference τ := (TvK − TME)/TME of the mean
first passage time between van Kampen’s method TvK and the master equation TME (right) in dependence on the base level
cb for different values of the IP3 concentration: I = 0.4µM (solid), 0.5 µM (dotted), 0.6 µM (dashed). Parameter values as in
figure 2 and a5 = 1 (µMs)−1 .

B. Role of fluctuations

The most important difference between the nonlinear Fokker-Planck equation (11) and van Kampen’s expansion (7)
is in the diffusion term. It is constant in van Kampen’s expansion - describing additive noise - and linear in φ and ψ in
the nonlinear Fokker-Planck equation thus describing multiplicative noise. As expected intuitively, the results in figure
2 show a better agreement between the nonlinear Fokker-Planck equation and the master equation than between van
Kampen’s expansion and the master equation. However, van Kampen’s expansion approximates the master equation
results rather well for high IP3 and high base level of Ca2+ . That is quantified in figure 3. Consequently, additive
noise is probably a good approximation in these parameter areas.
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C. Distribution of first passage time

Van Kampen’s expansion allows a direct computation of the probability density of the first passage time ρ(0, t).
ρ(0, t)dt is the probability that the absorbing boundary is reached between t and t + dt. The starting point of the
escape process in the Ω expansion is ξ = 0. The IP3R cluster is exactly in the macroscopic state φ̄ at t = 0, so
that the noise vanishes at t = 0. The results for ρ are depicted in figure 4. A convergence of the probability density
according to equation (23) requires less than 10 eigenvalues. The curves show the well known rising phase of ρ and
the exponential decay. We find a maximal probability that shifts toward shorter times for higher IP3 concentrations.
The two graphs in figure 4 illustrate again the influence of the base level. Lowering cb from 60nM to 40nM leads to
an extreme broadening of the probability distribution and hence to an increase of the mean first passage time (see
figure 3).

0 50 100 150
t (s)

0

0.01

0.02

0.03

0.04

0.05

ρ(
0,

t)

0 2000 4000
t (s)

0

0.5

1

1.5

10
-5

ρ(
0,

t)
 

FIG. 4: Probability density ρ(0, t) for van Kampen’s expansion. Parameter values as in figure 2 and I = 0.5µM. Left panel:
cb = 0.06µM. Right panel: cb = 0.04µM.

The probability density ρ permits an efficient computation of all moments of t for the escape process. Since the
eigenvalues λn and the coefficients an are known, we immediately arrive at 〈tm〉 =

∑
nm!anλ

−m
n in analogy to

equation (26) due to vn(0) = 1 for all n. The dots in figure 2 depict the results for the variance. The first six
eigenvalues suffice for an excellent convergence. That is a direct consequence of the spectrum of the backward Fokker-
Planck operator in equation (15).
Figure 5 shows the ratio of the first two eigenvalues λ1/λ0. λ1 is only a few times larger than λ0 for large IP3 and
d5. However, the ratio increases with decreasing IP3 concentrations and spans more than one order of magnitude for
IP3 concentrations smaller than 1µM. Hence, already the second term in the expansion (23) is considerably damped
in the parameter range in which we are interested (IP3 < 1µM). Since the eigenvalues constitute a strictly increasing
series, i.e. λi < λj for i < j, the subsequent terms in the expansion decay even more rapidly. The prominent role of
the first term is additionally supported by the expansion coefficients ai. The ratio a1/a0 is depicted in the right panel
of figure 5. It decreases upon lowering the IP3 concentration and tends to zero for very little concentrations. a1 is
much smaller than a0 in parameter ranges where λ1/λ0 � 1 holds, i.e. where the second term of the series in equation
(23) decays much faster than the first one. Consequently, higher terms only contribute marginally in this parameter
regime. A detailed analysis of the spectrum and further implications will be provided in an upcoming report.

D. Continuous Ca2+ model

The results presented so far have been based on a discrete description of the number of open channels. The most
important consequence is that the Ca2+ concentration remains constant as long as no channel opens. In the past,
investigations on stochastic properties of IP3R clusters often employed a continuous model of the ratio of open channels
[29–31]. In these models, the Ca2+ concentration changes even for fractions of open channels corresponding to less
than one channel. Therefore, we have analyzed the impact of a continuously modulated number of open channels on
the mean first passage time. The nullclines of the deterministic dynamics for such an ansatz with the same parameter
values as before are displayed in the left panel of figure 6. There is only one stationary state, which is linearly stable
for all IP3 concentrations. A prerequisite for a puff is that a sufficient number of subunits can be activated during the
escape process from this fixed point. The value of ψ indicates that a large fraction of subunits is inhibited at already
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FIG. 5: Ratio of the first two eigenvalues (left panel) and ratio of the first two expansion coefficients (right panel) of equation
(23) in dependence on the IP3 concentration. Parameter values as in figure 3 and d5 = 0.08234µM (solid), 0.13234µM (dotted),
0.183234µM (dashed) and 0.23234µM (chain-dotted). Insets show a blow-up for small IP3 concentrations.

moderate IP3 concentrations. It turns out that the remaining fraction of subunits is too low to induce a Ca2+ puff.
The high degree of inhibition results from the large Ca2+ fluxes that occur at an open cluster [12]. These fluxes entail
Ca2+ concentrations already in the µM range for sizes of the conducting area that are much smaller than that of a
single channel. Since these concentrations exceed the dissociation constants for inhibition, most of the subunits are
inhibited. Lowering the IP3 concentration does not invoke puffs, either. Although the fraction of inhibited subunits
diminishes, the number of subunits that can be activated decreases as well.
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FIG. 6: Nullclines of equation (5). Parameter values as in figure 3 and kl = 0.002s−1, kc = 34500s−1, kp = 80s−1, E =
750µM, a0 = 0.03µm, D = 40µm2s−1, d5 = 0.1646µM, I = 0.06µM (left panel), d5 = 1.6468µM, I = 0.053µM (right panel).

We compensate for the elevated Ca2+ concentrations with an increase in the dissociation constant for Ca2+ activation,
d5. The ensuing nullclines are depicted in the right panel of figure 6. The left stationary state is linearly stable and
corresponds to a low degree of inhibition. The motion of φ in phase space proceeds along an almost horizontal line
through this fixed point during puff initiation. These dynamics are bistable as the potential in figure 7 highlights. A
Ca2+ puff parallels an escape process from the left well over the barrier to the first channel opening.
The time for such an escape process depends on the position of the absorbing boundary with respect to the barrier of
the potential. Figure 7 shows the mean first passage time in dependence on the location φ of this boundary. φ varies
from the value of the potential maximum (see inset) to the value of the first channel opening φb (see section VI A).
The steep increase of T for small φ reflects the influence of the left well. As long as the absorbing boundary is close
to the maximum of the potential, reentrance in the left well is possible. That becomes less dominant with increasing
φ, so that the mean first passage time reaches the plateau. For the upper range of IP3 concentrations in figure 7,
the value of the plateau equals the mean first passage time. Consequently, the time scale of the puff is set by the
properties of the left well. The strong increase of the mean first passage time for smaller IP3 concentrations is due to
two reasons. On the one hand, the left well of the bistable potential becomes broader and deeper with lower values
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of I. On the other hand, the absorbing boundary increases in a disproportionally high manner and moves higher on
the right branch of the potential.
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FIG. 7: Left: Potential U(φ) for I = 0.0483µM. The inset depicts an enlarged view for φ ≈ 0. Note the difference in scale for the
axis. Right (Color): Mean first passage time computed from the master equation (solid lines) and the nonlinear Fokker-Planck
equation (dotted lines) for I = 0.0553µM (black), 0.0513µM (red), 0.0473µM (green) and 0.0433µM (blue) in dependence on
the position of the absorbing boundary φ. Parameter values as in figure 6, right panel.

We exclude van Kampen’s expansion in the above analysis, because its validity requires a single stationary state
throughout the stochastic motion [18]. In contrast to a constant Ca2+ concentration, the nonlinear Fokker-Planck
equation underestimates the results of the master equation. Nevertheless, the results in figure 7, which correspond to
the stochastic fraction of the puff frequency, are in the same range as experimentally determined puff periods [8].

VII. DISCUSSION

We have derived a master equation and two Fokker-Planck equations for channel cluster behavior in IP3 mediated
Ca2+ dynamics. Among the different approaches to approximate a master equation by a Fokker-Planck equation we
have chosen van Kampen’s Ω expansion and an ansatz based on the Kramers-Moyal expansion. Master equations and
corresponding Fokker-Planck equations for intracellular Ca2+ dynamics have been investigated in the past [29–31],
but the study at hand is founded on different ideas. Most of the previous contributions employ the Li-Rinzel model
[32] for the dynamics of a single subunit of an IP3 receptor. It describes the time evolution of the fraction of subunits
that are not inhibited yet, taking advantage of the time scale separation between IP3 activation, Ca2+ activation and
Ca2+ inhibition. We have used a state scheme for one subunit that only eliminates the IP3 dynamics adiabatically. It
focuses on Ca2+ activation, which is the driving force behind puff initiation. Therefore, we consider Ca2+ activation
as the fluctuating variable, whereas Ca2+ inhibition is the random variable in the Li-Rinzel model.
The Ca2+ concentration plays a pivotal role in the initiation of Ca2+ puffs. On the one hand, it fixes the resting state
of a cluster, i.e. the starting point of the escape process. On the other hand, it determines the transition rates. The
present work has demonstrated that the Ca2+ concentration needs to stay at base level until the first channel opens.
Theory provides Ca2+ puffs that are in agreement with experimental results [8] at physiological parameter values only
if the Ca2+ concentration remains constant during the entire escape process. These findings underline the discrete
character of IP3R channels in a cluster [13, 14].
We use a realistic value for the channel flux constant kc in difference to earlier studies [29–31]. That value is based on
detailed simulations [12] and leads to Ca2+ concentrations 2-3 orders of magnitude larger than base level at an open
channel. That causes models with a continuous number of open channels to fail. The non-vanishing Ca2+ flux at
fractions of open channels smaller than 1 resulted in highly elevated Ca2+ concentrations at a cluster due to the large
flux density [12]. In turn, that induced a high degree of inhibition. Decreasing the IP3 concentration reduced the level
of inhibition, but the number of subunits that could be activated decreased, too. The lack of Ca2+ puffs was resolved
by increasing the dissociation constant for Ca2+ activation d5. The ensuing mean first passage times again complied
with experimental results, but at unphysiological values of d5. These results demonstrate that parameter values may
decide upon the underlying mechanisms. The large Ca2+ fluxes demand a discrete modeling of the Ca2+ release
channels. This discrete modelling is one of the aspects of this study setting it apart from previous investigations of
stochastic cluster dynamics [29, 31].
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At a constant Ca2+ concentration, the main difference between van Kampen’s expansion and the nonlinear Fokker-
Planck equation is in the character of fluctuations. They correspond to additive noise for the Ω expansion and to
multiplicative noise in the latter approach. Although the noise is intrinsically multiplicative, van Kampen’s expansion
provides a reasonable approximation, which improves with increasing base level and growing IP3 concentration. It
opens up the opportunity for further studies since the Ω expansion is the only method that yields analytic expressions
for the probability density and all higher moments. That distinguishes it from the master equation and the nonlinear
Fokker-Planck equation, for which only the first moment is directly accessible.
The dependencies of the mean first passage time on the Ca2+ concentration as well as on the IP3 concentration comply
with physiological findings. An increase of the basal Ca2+ concentration enhances the open probability of the IP3R
channel [16]. Consequently, the mean first passage time is to decrease with growing Ca2+ concentration. Our results
fully agree with this activating role of Ca2+ (see figure 3). The same tendency was observed when we increased the
IP3 concentration, which agrees with the activating role of IP3.
The present study has provided a framework for a quantitative determination of Ca2+ puff frequencies. The
mean first passage times correspond to the stochastic fraction of the inter-puff interval, which is governed by the
activation of the IP3Rs . The second contribution to the inter-puff interval is a deterministic part controlled by
puff duration, inhibition and recovery from it. Taking into account that Ca2+ puffs represent the fundamental
building blocks of global Ca2+ patterns, our calculations may serve as a starting point to compute periods of Ca2+

waves. Experiments and theoretical studies suggest that the initiation of Ca2+ waves occurs by a nucleation process.
Therefore, knowledge of the frequency of Ca2+ puffs is the first step in the calculation of wave frequencies and leads
to a deeper understanding of intracellular Ca2+ dynamics.

Acknowledgement: This work was supported by the Deutsche Forschungsgemeinschaft, SFB 555, TP B9.

VIII. APPENDIX A: COMBINATORICS FOR SUBUNITS

Measurements on the IP3 receptor have revealed that a minimum number of subunits hm needs to be activated for
the channel to open [16]. A single IP3R possesses a non zero open probability only if at least hm subunits are in
the state 10. Activation in the cell occurs of course for a subunit already associated with a certain receptor. With
our model, the number of open channels depends on the arrangement of n10 activatable subunits on the receptors.
Here, we derive the distribution of open channels resulting from such a random scattering of activatable subunits and
its properties, whereas the mean was used earlier. To this aim we consider N receptors with h subunits each. Let
ni, i = 1, . . . , h denote the number of receptors with i activatable subunits, then the number of possible configurations
for a given set {ni} := {n1, . . . , nh} that satisfies

n0 + . . .+ nh = N , n1 + 2n2 + . . .+ hnh = n10 (35)

is

M ({ni}) :=
N !

n0! · · ·nh!

(
h

0

)n0
(
h

1

)n1

. . .

(
h

h

)nh

. (36)

The fraction represents the number of permutations for the set {ni}, whereas the binomial coefficients take into
account the number of ways how to distribute i activatable subunits on a single receptor. The total number of
configurations is given by

Γ :=
∑?

{ni}

M({ni}) (37)

The asterisk indicates the summation with the restrictions of equation (35). To evaluate equation (37), we introduce
a generating function

f1(z) :=
∑′

{ni}

M({ni})zl , l = n1 + . . .+ hnh . (38)

The prime refers to the restriction n0 + . . .+ nh = N . Therefore, the total number of configurations follows from the
generating function as

Γ =
1
n10!

dn10

dzn10
f1(z)

∣∣∣
z=0

. (39)
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Due to the identity

f1(z) =
N∑′

ni=0

N !
n0! · · ·nh!

(
h

0

)n0
[(
h

1

)
z1

]n1

. . .

[(
h

h

)
zh

]nh

=
[(
h

0

)
+ . . .+

(
h

h

)
zh

]N

= (1 + z)hN =
hN∑
j=0

(
hN

j

)
zj ,

(40)

we finally arrive at Γ =
(

hN
n10

)
, which complies with the combinatorics of choosing n10 subunits from a total of hN

subunits. Consequently, the probability distribution of nj for a fixed value of j ∈ {0, . . . , h} is given by

p(nj) =
1
Γ

∑?

{ni}
i 6=j

N !
n0! · · ·nh!

(
h

0

)n0
(
h

1

)n1

. . .

(
h

h

)nh

=
1
Γ

(
N

nj

)(
h

j

)nj ∑?

{ni}
i 6=j

(N − nj)!
h∏

l=0
l 6=j

1
nl!

(
h

l

)nl

.

(41)

Equation (41) is most conveniently computed as

p(nj) =
1
Γ

(
N

nj

)(
h

j

)nj 1
n10!

dn10

dzn10
f2(z)

∣∣∣
z=0

, (42)

where we used the generating function

f2(z) :=
∑′

{ni}
i 6=j

Ñ !
h∏

l=0
l 6=j

1
nl!

[(
h

l

)
zl

]nl

=
Ñ∑

i=0

hi∑
l=0

(
Ñ

i

)(
hi

l

)[
−
(
h

j

)]Ñ−i

zl+j(Ñ−i) .

(43)

Here, the prime denotes the restriction

n0 + . . .+ nj−1 + nj+1 + · · ·+ nh = N − nj =: Ñ . (44)

In the case j = 0 the derivatives in equation (42) can be performed explicitly, so that

p(n0) =
1
Γ

(
N

n0

) Ñ∑
j=0

(
Ñ

j

)(
jh

n10

)
(−1)Ñ−j . (45)

The above analysis remains valid, when we interchange the number of activatable subunits n10 and the number of
the remaining Nh − n10 subunits. Such a transition corresponds to the exchange of balls and voids in classical
combinatorics. In that picture, equation (45) would represent the probability distribution of fully occupied receptors,
i.e.

p(nh) =
1
Γ

(
N

nh

) Ñ∑
j=0

(
Ñ

j

)(
jh

Nh− n10

)
(−1)Ñ−j . (46)

Equation (46) arises from equation (45) by substituting n10 by Nh− n10 and n0 by nh.
To gain further insight into the probability distributions we calculate the first two moments. For the average we start
with

〈nj〉 =
1
Γ

∑?

{ni}

njM ({ni}) , (47)
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because a closed expression for the probability distribution is only available for the two cases presented above. Defining
the corresponding generating function

f3(z) :=
1
Γ

∑′

{ni}

njM ({ni}) zl , l = n1 + . . .+ hnh , (48)

we find

〈nj〉 =
1
n10!

dn10

dzn10
f3(z)

∣∣∣
z=0

=
N

Γ

(
h

j

)(
h(N − 1)
n10 − j

)
. (49)

In the limit N →∞, n10 →∞ we recover the result from [33]. Analogously evaluation of the second moments results
in

〈nlnk〉 =
N(N − 1)

Γ

(
h

l

)(
h

k

)(
h(N − 2)
n10 − l − k

)
+ δk,l

N

Γ

(
h

l

)(
h(N − 1)
n10 − l

)
. (50)

Applying these general expressions to IP3Rs requires values for h, hm and N . The tetrameric structure of the receptor
ensues h = 4. However, previous results by different groups are based on h = 3. We therefore compute the statistics
for both cases. Experiments on a single channel have shown four conductance levels, each a multiple of 20pS, with a
predominance of opening to the third level [16, 17]. Thus, we set hm = 3. The number of receptors in a cluster has
not been measured yet. We employ N = 25 following recent estimates by Swillens and Dupont [7].

0 5 10 15 20 25
n

o

0.2

0.4

0.6

0.8

p(
n o)

FIG. 8: (Color) Probability distribution p(no) for no = n3, h = 3 (solid) and no = n3 + n4, h = 4 (dotted) for N = 25 and
different n10. Values of n10 are 25 (black), 50 (red), 60 (green) and 70 (blue).

The probability distributions p(n3 + n4) with h = 4 and p(n3) with h = 3 are depicted in figure 8. They both agree
very well. This is also supported by their mean and variance as shown in figure 9. In the left panel we also include the
position of the maxima of the distributions indicated by dots. They closely follow the average. Due to the narrowness
of the distributions demonstrated by the small variance as well as the accordance between the mean and the maximum
we calculate the number of open channels nc from the average for a given value of n10:

n(3)
a =Nr3

n10

3N
n10 − 1
3N − 1

n10 − 2
3N − 2

, (51)

n(3,4)
a =Nr3

n10

4N
n10 − 1
4N − 1

n10 − 2
4N − 2

[
n10 − 3
4N − 3

(4− 3r) + 4
(
1− n10

4N

)]
(52)

Here r := I/(I+d1) denotes the fraction of subunits in the activatable state 10 that are activated. The subscripts (3)
and (3, 4) indicate that we used p(n3), h = 3 and p(n3 + n4), h = 4 for averaging, respectively. Note that in the limit
N → ∞, n10 → ∞ equations (51), (52) reduce to the well known expressions of the deterministic description. All
results in section VI are based on equation (52), which can be further simplified by approximating all denominators
by 4N due to 4N � 1.
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FIG. 9: Mean (left) and variance (right) of no for no = n3, h = 3 (solid) and no = n3 + n4, h = 4 (dotted). The left panel
shows the position of max p(no) as dots and scares, respectively.

IX. APPENDIX B: PROOF OF EQUATION (32)

This section deals with the proof of equation (32). It is based on the identity

j∑
k=0

(
j

k

)
(−1)k

2k + 1
=

22j (j!)2

(2j + 1)!
, (53)

which we now proof. We transform the left hand side of equation (53) according to

j∑
k=0

(
j

k

)
(−1)k

1∫
0

t2kdt =

1∫
0

j∑
k=0

(
j

k

)
(−t2)kdt =

1∫
0

(
1− t2

)j
dt . (54)

It can be simplified with Euler’s Beta function B(z, w). From its definition

B(z, w) :=

1∫
0

tz−1(1− t)w−1dt (55)

follows

b∫
a

(t− a)z−1(b− t)w−1dt = (b− a)z+w−1B(z, w) . (56)

Hence we express the integral in equation (54) through

1∫
0

(
1− t2

)j
dt =

1
2

1∫
−1

(t+ 1)j(1− t)jdt = 22jB(j + 1, j + 1) . (57)

According to [27] the Beta function is related to the Gamma function Γ(z) via B(z, w) = Γ(z)Γ(w)/Γ(z + w), so that
we find

j∑
l=0

(
j

l

)
(−1)l

2l + 1
= 22j Γ(j + 1)2

Γ(2j + 2)
=

22j (j!)2

(2j + 1)!
(58)

due to n! = Γ(n+ 1), which proofs equation (53). Expanding the right hand side yields

22j (j!)2

(2j + 1)!
=

2 · 1
2

· 2
3
· 2 · 2

4
· 2
5
· 2 · 3

6
· · · 2 · j

2j
· 2
2j + 1

j! =
j!(
3
2

)
j

. (59)
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This proofs equation (32) when we use j! = (1)j .
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