
Inhibition of Metal Dusting of Alloy 800H by Laser 
Surface Melting 

 

K.T. Voisey, Z. Liu and F.H. Stott 

Corrosion and Protection Centre,  

School of Materials,  

The University of Manchester,  

UK. 



Abstract 

 

Metal dusting is a catastrophic carburisation phenomenon that occurs at temperatures 

of 450-850°C in atmospheres of high carbon activity. The resistance of alloys to 

corrosion, including metal dusting, relies on the formation of a dense, adherent oxide 

layer that separates the alloy from the corrosive environment. For such an oxide layer 

to be protective, it must achieve full surface coverage, be crack-free and be 

established before significant material degradation has occurred. Formation of a 

protective oxide scale can be enhanced by increasing the population of rapid diffusion 

paths for the protective elements (e.g. Cr and Al) to reach the alloy surface. 

In this work, laser surface melting has been used to improve the metal dusting 

resistance of Alloy 800H by creating a rapid solidification microstructure and, 

thereby, increasing the density of rapid diffusion paths. Oxidation during laser 

processing has been found to be detrimental to metal dusting resistance. However, it 

has been demonstrated that the resulting oxide can be removed without compromising 

metal dusting resistance.  

Results of exposure to a metal dusting atmosphere (20% H2 80% CO at 650°C) are 

presented. Samples have been examined in plan and cross-section using optical and 

scanning electron microscopy. Selected samples were also examined by electron 

probe microanalysis and X-ray diffraction. 

 



Introduction 

Metal dusting is a catastrophic carburisation phenomenon that occurs at 450-850°C in 

atmospheres of high carbon activity, conditions typical of methanol, steam reformers 

and other chemical plants that use synthesis gas (H2 + CO). All Fe-, Ni- and Co-based 

alloys are susceptible to metal dusting. The alloys disintegrate into a dust of coke and 

metal particles, leading to two undesirable effects: metal wastage and coke 

accumulation. 

The generally accepted metal dusting mechanisms are summarised below [1-5]. In Fe-

based alloys, carbon deposits on the surface and diffuses into the alloy. The alloy 

becomes saturated with carbon and cementite, Fe3C, forms. The presence of cementite 

restricts carbon ingress. Subsequently, the metastable cementite decomposes into 

graphite and metal particles. In Ni-base alloys, there is no carbide intermediary; 

graphite forms directly from the carbon-saturated alloy. Inward growth of graphite 

disintegrates the alloy. Both these mechanisms lead to the formation of metal particles 

that catalyse further carbon deposition, promoting further metal dusting attack. 

Prevention of diffusion of carbon into the alloy should inhibit metal dusting. A dense, 

crack-free, adherent scale of alumina or chromia may be a suitable barrier, since 

carbon is insoluble in these oxides [6]. To create such a scale, sufficient amounts of 

the scale-forming elements (Cr and/or Al) must either be present at the surface or be 

able to diffuse to the surface to establish and maintain a protective oxide scale. The 

empirical relationships developed by Schueler and Schillmoller give a lower limit for 

the proportions of scale-forming elements required [7].  

At the relatively low temperature of metal dusting, diffusion of substitutional solute 

atoms along grain boundaries and other rapid diffusion paths, such as dislocations, is 

significant [8]. Therefore, the microstructure and extent of cold work influence the 



rate of diffusion and, hence, of scale formation [9]. Inhibition of metal dusting by the 

use of finer grained alloys [10-12] or cold working [11-14] has been reported.  

Two diffusion processes are of interest to this work: diffusion of chromium to the 

surface to form a protective scale and the inward diffusion of surface adsorbed 

carbon. It is important to note that chromium is a substitutional solute atom, requiring 

the presence of vacancies for diffusion. The introduction of microstructural features, 

such as dislocations or grain boundaries, essentially provides regions with high 

vacancy concentrations where the lattice is more open and substitutional diffusion is 

enhanced. However, carbon diffuses as an interstitial solute atom in Fe-base alloys. 

Since there is already a high probability of empty neighbouring interstitial sites to 

move to, negligible advantage is gained by an increased density of so-called rapid 

diffusion paths. Therefore, increasing the density of rapid diffusion paths should 

enhance the outward diffusion of chromium whilst having negligible effect on the 

inward diffusion of carbon.  

As is well known, rapid solidification produces fine microstructures. Laser irradiation 

can melt a thin surface layer, generating high thermal gradients. Quenching of this 

layer by the cooler bulk material causes rapid solidification and, hence, a refined 

microstructure [15-17]. Due to the increased density of rapid diffusion paths in such 

refined microstructures, laser surface treatment can promote formation of a protective 

oxide scale [18]. 

Paul et al [19] used the radioactive tracer technique to determine experimentally 

expressions for bulk and grain boundary diffusion of Cr in Alloy 800; their results for 

Dbulk are used in the present calculations. Previous work on the effects of 

microstructure on diffusion in similar systems includes the use of SNMS (Secondary 

Neutral Mass Spectroscopy); this provides diffusion coefficients that average out the 



effect of differently-orientated grains within the sampled area [9]. The results 

obtained illustrate the beneficial effects of the presence of additional rapid diffusion 

paths on the resistance to metal dusting.  

Alloy 800H is a Fe-Ni-Cr alloy known to be susceptible to metal dusting [13, 20-23]. 

The present research uses laser surface melting to refine the microstructure of the 

alloy surface in order to promote formation of a protective chromia scale, hence 

inhibiting metal dusting.  

Experimental Procedure 

Materials 

Cubic samples of ~ 1 cm
3
 were cut from the supplied Alloy 800H plate. Each face of 

the sample was ground with 240 grit SiC grinding paper in order to remove the as-

received rolled surface and to ensure each surface was equivalent. Reference samples 

that did not undergo laser treatment were ground to a 600 grit finish prior to exposure. 

Laser treated samples were subsequently ground with 600 grit SiC in order to remove 

laser-induced oxides. The composition of Alloy 800H is shown in Table 1.  

Laser Treatment 

Laser treatment was carried out using a 2 kW CW CO2 slab laser (ROFIN DC020). 

X-Y sample motion was achieved by a computer-controlled table. Flowing argon was 

used as a shield gas to protect the sample surfaces from (excessive) oxidation during 

treatment.  

Reaction tube dimensions constrained the sample sizes to the order of 1 cm. Such 

samples are large enough to self-quench and induce the desired rapid solidification. 

However, they are also small enough that effects due to progressive heating of the 

sample during laser processing can be seen. An 80% overlap was used which resulted 



in each point of the surface being laser melted five times. This technique eliminated 

effects due to progressive sample heating and produced a constant depth for the 

remelted layer as opposed to the normally observed approximately sinusoidal depth 

variation that results from a 50% overlap. All six sides of each sample were laser 

treated in turn, with the same laser processing condition being used for each side of 

any one sample. 

Laser melting of uncoated Alloy 800H was performed using a 40 mm raster, much 

larger than the sample size, in order to ensure that beam turning occurred well away 

from the sample and, thus, to avoid generation of hot spots and associated excessive 

melting.  

Initially, laser power (185 W- 2kW) and sample translation velocity (1.5 mm s
-1

 -

 200 mm s
-1

) were varied in order to produce rapidly solidified microstructures with 

different degrees of microstructural refinement (Figure 2). A beam diameter of 

~ 1.5 mm was used with one exception: a 0.5 mm beam diameter was used for the 

250 W 1.5 mm s
-1

 condition in an effort to generate a thicker oxide during laser 

processing. The laser processing parameters selected to treat the samples exposed to 

the metal dusting environment are given in Table 2. 

Metal Dusting Exposure 

Samples were located in quartz boats during exposure. Prior to initial exposure 

samples and quartz boats were ultrasonically cleaned in ethanol and dried by a hot air 

blast. The quartz boats containing the samples were inserted into the horizontal 

reaction tube and exposed to a mixed-gas atmosphere of 20% H2 and 80% CO at 

650°C with a flow rate of 50 cm
3
 min

-1
. A double-walled, quartz reaction tube ensured 

that the reaction gases were mixed and raised to temperature before reaching the 



samples. The reaction tube was heated to temperature in flowing H2. CO was only 

mixed with the flowing H2 when the exposure temperature had been reached. After a 

given exposure time, the CO supply was shut off and the reaction tube cooled to room 

temperature in flowing H2. 

Sample Examination 

At intervals, the exposure to the mixed gas was interrupted, the furnace was cooled 

and samples were removed, weighed and examined by optical and scanning electron 

microscopy (SEM). Selected samples were examined by electron probe microanalysis 

(EPMA) and X-ray diffraction (XRD).  

Mass Difference Measurements 

Each sample plus quartz boat was weighed prior to exposure. A Sartorius 

microbalance was used which, with repeated measurements and control samples, can 

measure to ± 250 μg. The quartz boats, still containing the samples, were removed 

from the furnace and weighed after the various exposure times. During weighing, 

samples were not removed from the quartz boats, nor was any carbon deposit cleaned 

from the samples. The increase in mass was, therefore, a measure of the total mass of 

carbon deposited on each quartz boat and the specimens it contained, plus any oxygen 

taken up to form oxide on the sample surfaces. 

Results and Discussion 

The laser treatment produced an epitaxially solidified microstructure, the depth of 

which varied from ~ 100 – 500 μm depending on laser processing parameters (Table 

2). Microstructural refinement was achieved by cellular solidification within each 

grain (Figure 1). It should be noted that cellular (non-branching), as opposed to 

dendritic, solidification occurred. The microstructural feature measured and referred 



to as the cell size is the average cell diameter or cell spacing, as distinct from the 

commonly measured secondary dendrite arm spacing. The cell size depends on the 

conditions at the solidification front, primarily the cooling rate, GR, the product of the 

thermal gradient, G, and the solidification rate, R. The cell size increases as the 

cooling rate decreases [24]. The cell size is also reported to be inversely proportional 

to the square root of the thermal gradient [25, 26].  

Microstructures with a range of average cell sizes (1 μm – 5 μm) were produced by 

varying the laser power (185 W – 2kW) and translation speed (1.5 mm s
-1

 –

 200 mm s
-1

) (Figure 2). The results have been plotted against the ratio of laser power 

and velocity as this produces an approximately straight line plot which was useful 

experimentally. The observed overall trend of average cell size increasing with the 

ratio of laser power and velocity is as expected from the known dependence of cell 

size on GR and is consistent with observations made elsewhere for similar processes 

[27, 28]: for a given velocity, the cell size increases as the power increases, due to the 

decreased thermal gradient and, hence, decreased cooling rate.  

Due to incomplete shielding, some laser-induced oxides were produced during laser 

processing. The surface was covered with a continuous oxide layer, which, dependent 

on the laser processing parameters used, generally thickened in discrete locations. 

XRD showed that Cr2O3 and a spinel phase were formed. Laser processing parameters 

were selected to produce a series of samples with average cell sizes of 1.5, 

2.0 and 4.0 μm and different laser-induced oxide scale morphologies (Table 2) which 

were exposed to the metal dusting environment. 

Preliminary experiments showed the presence of such laser-induced oxides to have no 

beneficial and, possibly, some detrimental effects on the metal dusting resistance of 

Alloy 800H. This is attributed to the reduction of non-protective Fe-containing spinel 



oxides to Fe, which can then catalyse carbon deposition [29]. The laser-induced oxide 

layer, though continuously covering the surface, was cracked and, hence, did not act 

as a protective scale. 

Laser-induced oxides form on a molten alloy surface that is in continual motion, 

driven by Marangoni forces. Hence, there was no localised depletion of scale-forming 

elements beneath this oxide, rather the entire laser-melted layer was slightly, but 

uniformly, depleted (Figure 3). The extent of this depletion is calculated to be at most 

3 %, i.e. Cr content decreased to 18 wt% from 21 wt%, based on assuming a “worst 

case scenario” of a 30 μm uniformly thick Cr2O3 laser-induced oxide formed on a 

440 μm laser-melted layer. Removal of the oxide scale did not, therefore, expose 

material that was depleted significantly in the oxide-forming elements, particularly 

Cr. The laser-melted samples used in this work were tested after removal of the 

laser-induced oxide by 600 grit SiC paper; this action also removed the outermost 

~ 50 μm of the laser-melted layer.  

The formation of carbon deposits occurred rapidly on reference samples of non-

treated Alloy 800H; within 100 h, the surface was blackened by carbon and there was 

widespread growth of carbon filaments, up to ~ 2 mm long (Figure 4a). With further 

exposure to 221 h, there was an increase in the number of carbon filaments. 

The extent of carbon filament growth on the laser surface melted samples was less 

than that which occurred on non-treated Alloy 800H during a similar exposure time 

(Figure 5). While there was some scatter in the mass difference results measured for 

non-treated Alloy 800H (Figure 6), it is clear that the laser treated samples were more 

resistant to metal dusting than the non-treated Alloy 800H. The 1.5 μm cell size 

sample gave the best resistance, this is to be expected as this sample has the smallest 

cell size, and, hence, highest density of rapid diffusion paths. However, the expected 



correlation between cell size, i.e. density of rapid diffusion paths, and metal dusting 

resistance was not evident: the 4.0 μm sample outperformed the 2.0 μm sample. The 

poor performance of this sample is possibly due to incomplete removal of the 

laser-induced oxide.  

Examination in cross-section of the exposed samples revealed severe uniform attack 

on one face of the 250 W sample, and no individual pits could be distinguished. Four 

distinct pits were observed on the 730 W sample and only one on the 1.5 kW sample. 

Each of the four pits on the 730 W sample were within the laser-melted layer whereas 

the pit on the 1.5 kW sample penetrated into the underlying bulk material (Figure 7a 

and b). However, it should be noted that these observations were each from a single 

cross-section that did not necessarily pass through the mid point of the pit. Further 

measurements are needed before quantitative assessments of put densities and sizes 

can be made. A thin, ~ 1 μm, thermally grown oxide layer was observed on the 

surface of each sample (Figure 7c and Figure 8b).  

The benefit of laser surface treatment can be seen in the EPMA elemental profiles 

(Figure 8). No evidence of a protective oxide scale was observed on the non-treated 

Alloy 800H whereas a thermally grown Cr-rich surface oxide scale, and associated 

depletion profile for Cr in the alloy, can be seen on the laser-treated material. 

However, numerous EPMA profiles have also shown that such an oxide scale is not 

present over the entire sample surface, indicating incomplete protection of the alloy.  

Quantitative EPMA spot analyses were used to calibrate the linescans. The average Cr 

concentration in the laser-treated layer, CL, and at the alloy / oxide scale interface, CI 

were determined from EPMA linescans. Fitting of the depletion profiles to Eqn (1), 

where z is the distance from the metal / oxide scale interface and t is the exposure 

time, allowed the effective diffusion coefficient, Deff, of Cr to be determined. 
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Hart’s expression [30] was then used to determine the cell boundary diffusion 

coefficient, Dcb, as shown in Eqn (2): 
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where, f, is the fractional area occupied by cell boundaries. This was calculated (Eqn 

3) by assuming square cells of edge length, g, and assigning 0.5 nm as the width of 

the cell boundaries, , a value previously used for similar work in the open literature 

[9, 19]. Eqn (3) takes account of the fact that each grain boundary is shared between 

two grains and it was assumed that g >> . Following the work of Paul et al on 

diffusion of Cr in Alloy 800 [19], a value of 1.76  10
-20

 m
2 

s
-1

 was used for the bulk 

diffusion coefficient, Dbulk. 

Results from analysis of the observed depletion profiles are shown in Table 3. The 

measured values of CI and CL have been inserted into Eqn (1). The Cr profile 

predicted by this equation was fitted to that experimentally determined by varying the 

values of Deff. The actual value of Deff reported for each laser condition is that which 

gave the best fit to the experimentally-observed profile. In each case, Deff is 

significantly larger than the literature value of Dbulk, indicating that the laser- refined 

microstructure has had the desired effect on the diffusion characteristics of the alloy.  

The fractional area occupied by cell boundaries, f, increases in inverse proportion to 

the cell size (Eqn 3). Cell boundaries are rapid diffusion paths, i.e. Dcb >> Dbulk; 

therefore, Deff is expected to increase with decreasing cell size (Eqn 2). However, this 



was not observed. Repeated EPMA scans on the 2.0 μm sample produced calculated 

values of Deff which varied over two orders of magnitude. 

As seen in Figure 1, the angle between the cell axis and the sample surface can vary 

by up to at least 45°. This would decrease the density of intersections between cell 

boundaries and the surface, thereby decreasing the density of rapid diffusion paths to 

70 % of the maximum value, which would occur when the cell boundaries are 

perpendicular to the sample surface. However, such an effect cannot explain the 

extent of variation observed. 

The procedure used to determine Deff actually fits the product (Deff   t) to the 

experimentally-measured Cr depletion profiles. This approach assumed that the oxide 

scale examined was growing from the beginning of the exposure. However, if there 

was a delay before nucleation of the oxide, a smaller value of t would be appropriate, 

due to the shorter length of time during which the scale had been growing. Therefore, 

for the results presented above, an artificially high value for t may have been used, 

resulting in an artificially low value of Deff. The error introduced by this effect would 

be greater for later nucleating and, hence, thinner scales, where the scale growth time 

would be a smaller fraction of the exposure time. Hence, if such a nucleation effect is 

relevant, the calculated values of Deff would be smaller for thinner scales. 

A plot of calculated Deff values against the measured half scale thickness for the 

repeated EPMA scans performed on the same, 2.0 μm sample, does show such a 

correlation. The large variation in Deff results obtained is, therefore, attributed to this 

nucleation effect.  

The half scale thickness is measured from the Cr peak in the thermally grown scale to 

the trough of the Cr depletion profile which corresponds to the metal/oxide scale 



interface. This measurement is used in preference to the scale thickness as it can be 

difficult to determine accurately the location of the outer surface of the scale from the 

EPMA elemental profiles. 

To obtain the true value of Deff, such a nucleation effect needs to be minimised. This 

would be possible using longer exposure times, so that the delay until nucleation 

became negligible. Another method would be to expose the samples in conditions 

where there is a higher partial pressure of oxygen. Though this would move away 

from metal dusting conditions, results from the study of the effect of the laser-treated 

microstructure would still be of relevance to the inhibition of metal dusting. 

Conclusions 

1. The metal dusting resistance of Alloy 800H has been successfully improved 

by laser surface melting. 

2. Laser surface melting creates a refined microstructure that increases the 

effective diffusion coefficient for Cr in the alloy by introducing a higher density of 

rapid diffusion paths and, hence, promoting formation of a protective oxide scale. 

3. The extent of microstructural refinement can be controlled by varying laser 

processing parameters. 

4. Laser-induced oxidation is detrimental to metal dusting resistance due to 

reduction of Fe-containing oxides. However, since laser-induced oxides form with no 

underlying depletion layer, they may be removed without compromising metal 

dusting resistance. 

5. A nucleation effect is proposed to account for the large variation in Deff values 

determined by repeated examination of a single sample. 
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Tables 

 

 

 Al C Co Cr Cu Fe Mn Mo Nb Ni S Si Ti P 

Alloy  

800H 
0.22 0.067 0.06 19.67 0.16 45.34 0.76 0.29 0.02 33.05 <0.001 0.08 0.27 0.012 

Table 1 Composition (wt%) of Alloy 800H, as supplied by the manufacturers for the 

specific batch of material used. 

 

Power 

(W) 

Velocity 

(mm s
-1

) 

Beam 

diameter 

(mm) 

Power 

density 

(W cm
-2

) 

Melt depth (μm) 
Oxide  

morphology 

Cell size 

(μm) 

1500 100 1.5 8.49  10
4
 135 

discrete 8 μm 

continuous 2 μm  
1.5  0.4 

250 1.5 0.5 1.27  10
5
 225 continuous 13 μm 2.0 0.4 

730 12.5 1.5 4.13  10
4
 440 

discrete 63 μm 

continuous 12 μm 
4.0  0.5 

Table 2 Summary of the laser processing conditions used in this work. 

 

Laser conditions Cell size 

(μm) 

Deff  

(m
2
 s

-1
) 

Dcb  

(m
2
 s

-1
) 

730W 12.5 mm s
-1

 4.0 ± 0.5 1.8  10
-18

 7.13  10
-15

 

250W 1.5 mm s
-1

 2.0 ± 0.4 2.5  10
-18

 4.96  10
-15

 

1.5kW 100 mm s
-1

 1.5 ± 0.4 5.0  10
-19

 7.24  10
-16

 

Table 3 Experimentally-determined effective and cell boundary diffusion coefficients. 



Figure legends 

Figure 1 Rapid solidification microstructure generated by laser surface melting of 

Alloy 800H (1.5 kW 100 mm s
-1

). 

Figure 2 Solidification cell size as a function of laser processing parameters for a 

beam size of 1.5 mm. 

Figure 3 EPMA elemental profile of laser induced oxide and underlying laser-melted 

layer. Alloy 800H, 250 W, 1.5 mm s
-1

. 

Figure 4 Non-laser treated Alloy 800H, (a) 96 h (b) 221 h. 

Figure 5 Laser-treated samples after 185 h. Measured cell sizes are as indicated. 

Figure 6 Measured mass differences for laser-treated Alloy 800H. 

Figure 7 SEM micrographs of samples of laser-treated Alloy 800H after 329 h 

exposure to the carbon-containing gas at 650°C (a) 730 W 12.5 mm s
-1

 (b & c) 1.5 

kW 100 mm s
-1

. 

Figure 8 EPMA elemental profiles for Alloy 800H (a) non-treated (b) laser treated, 

1.5kW 100 mm s
-1

. 

Figure 9 Correlation between the calculated effective diffusion coefficient and scale 

thickness. 

 



Figures 

 

Figure 1 Rapid solidification microstructure generated by laser surface melting of 

Alloy 800H (1.5 kW 100 mm s
-1

). 
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Figure 2 Solidification cell size as a function of laser processing parameters for a 

beam size of 1.5 mm. 



 

Figure 3 EPMA elemental profile of laser induced oxide and underlying laser-melted 

layer. Alloy 800H, 250 W, 1.5 mm s
-1

. 

 

 

 
 

(a) (b) 

Figure 4 Non-laser treated Alloy 800H, (a) 96 h (b) 221 h. 

 

 

  
 

4.0 μm ± 0.5 2.0 μm ± 0.4 1.5 μm ± 0.4 

Figure 5 Laser-treated samples after 185 h. Measured cell sizes are as indicated. 
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Figure 6 Measured mass differences for laser-treated Alloy 800H. 

 

 

 
 

(a) (b) 

 

(c) 

Figure 7 SEM micrographs of samples of laser-treated Alloy 800H after 329 h exposure to the 

carbon-containing gas at 650°C (a) 730 W 12.5 mm s
-1

 (b & c) 1.5 kW 100 mm s
-1

. 



  

(a) (b) 

Figure 8 EPMA elemental profiles for Alloy 800H (a) non-treated (b) laser treated, 1.5kW 100 mm s
-1

.  
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Figure 9 Correlation between the calculated effective diffusion coefficient and scale thickness. 

 

 


