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Abstract

In this paper we present the B-coder, an efficient binary arithmetic coder that per-
forms extremely well on a wide range of data. The B-coder should be classed as an
‘approximate’ arithmetic coder, because of its use of an approximation to multiplica-
tion. We show that the approximation used in the B-coder has an efficiency cost of
0.003 compared to Shannon entropy. At the heart of the B-coder is an efficient state
machine that adapts rapidly to the data to be coded. The adaptation is achieved by al-
lowing a fixed table of transitions and probabilities to change within a given tolerance.
The combination of the two techniques gives a coder that out-performs the current
state-of-the-art binary arithmetic coders.

1 Background
Arithmetic coding (AC) is a technique for data compression that theoretically allows us to
code data at Shannon entropy. The idea was first developed by Pasco[1], who was inspired
by a proof of Shannon’s theorem, and shortly after by Rissanen [2]. The first practical
implementation was by Langdon and Rissanen [3]. The basic idea in AC is to represent
a series of choices between events as a selection of intervals (or regions) on the real line.
Each choice can be viewed as a selection of a letter from an alphabet, α, and arithmetic
coding as a way of representing strings from α∗. For each letter in α, an initial interval is
allocated whose length is proportional to its probability. When the first letter is known, its
region is selected and re-divided according to suitable probabilities. Langdon and Rissanen
were the first to show that the issues of determining probabilities and performing the coding
can be dealt with separately [4]. Their suggestion is to use a modelling unit to partition the
data into conditioning classes or contexts, such that the members of a particular context
share similar characteristics and therefore similar probabilities. An arithmetic coder can
then exploit the similarity by coding the members of each class together. In this paper we
make contributions to both practical arithmetic coding and probability estimation.

Traditionally, implementations of arithmetic coding track two variables: C , the start
of the interval and A, the size of the interval, so at any point [C, C + A) represents the
current interval (alternative approaches exist, e.g. in [5] where the authors track L and H ,
the endpoints of the coding interval.) Initially we have C0 = 0 and A0 = 1. For an n-ary
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alphabet, where letter i ∈ 0...n − 1, has probability P(i), coding the event j proceeds as
follows. Let W ( j) be the alphabetic index of the j th character of the string to be encoded,
then C and A become: A j = A j−1× P(W ( j)) and C j = C j−1+S(W ( j)), where S(0) = 0
and S(k) =

∑k−1
l=0 P(l).

Binary arithmetic coding (BAC) is a special case of AC that allows for decisions be-
tween two events to be encoded. Conventionally we designate the two events MPS and
LPS, for more-probable and less-probable symbol, and let α = {0, 1}. The initial region is
the semi-open interval [0, 1), which is first divided into two regions L (for the less-probable
letter, assumed to be 1 in the equations below) and M (for the more-probable letter, assumed
to be 0 in the equations below), such that L + M = 1 covers the entire region. For each
event to be coded, the region corresponding to the event to be encoded is selected, and that
new region is again divided in to L ′ and M ′. Note that the division of the region at each
coding decision need not be the same, that is, it is not necessary for L

L+M =
L ′

L ′+M ′ . This
allows a modelling unit to provide a BAC with a different estimate for LPS for each symbol,
which coupled with the interval subdivision allows a BAC to achieve optimal compression
without alphabet extension. In terms of the coding variables described above, binary arith-
metic coding has a particularly simple implementation. Redefining A be a function from
strings of α i.e. (0, 1)∗ to interval size and C to be a function from strings of α to interval
start points, C and A can be defined using the following double recursion:

A(s0) = A(s) − A(s1) (1)

A(s1) = A(s) × P(1) (2)

C(s0) = C(s) (3)

C(s1) = C(s) + A(s0) (4)

In [3], Langdon and Rissanen developed a binary arithmetic coder, which we refer to
as the Skew Coder1. Their motivation was to find a simple implementation of binary arith-
metic coding that did not involve multiplication. (In the early days of arithmetic coding, the
time taken to perform multiplication in hardware was very high compared to other machine
operations.) In the skew coder, fixed-point arithmetic is carried out in n-bit registers. When
the left-most bit of A is a zero, both A and C are shifted to the left until the left-most bit of
A is a one, this overcomes the “growing precision” problem caused by the continual multi-
plication in step 2. The simplification in the skew coder is accomplished by approximating
the multiplication in equation 2 with a right-logical-shift (�). If P(LPS) = 2−Q , equation
2 then becomes A(s1) = A(S) � Q. The parameter Q is known as the skew value, and
is supplied to the arithmetic coder in lieu of the probability estimate for the event to be
coded. The skew coder performs surprisingly well on real data, given the crudeness of the
approximation.

In search of further speed improvements, the skew coder was refined in [6], where the
multiplication is replaced by assignment (and a corresponding shift of C). In this refinement

1In recent literature there is some confusion about which of Langdon and Rissanen’s coders is the ‘skew
coder’. Some authors refer to [3] and others (including IBM staff and some relevant US patents) cite [6].
However, [3] includes the first occurrence of the phrase ‘skew values’.
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Figure 1: Code length excess of Skew coder and B coder.

can be seen the beginning of the Q-coder [7] and its variants (Q, QM, MQ). In each of these
coders multiplication is replaced by assignment, which is possible when A is kept close to
one. This approximation comes with some cost to coding efficiency, but at the time it was
considered a worthwhile price to pay to avoid the costly multiplication. The secret weapon
of the Q-coder and its descendants lies in their probability estimation; rather than relying
on a modeller to supply the probability of each event to be coded, these coders estimate
probabilities internally via an efficient state machine.

In this work we describe a new coder, the B-coder, which is based on the skew coder
and in its simplest form has a worst case inefficiency of around 0.3% above entropy. The B-
coder incorporates an efficient state machine based loosely around the idea of ‘fast-attack’,
as used in JPEG [8]. However, unlike previous coders, our state machine allows the proba-
bilities and transitions to fluctuate within a given tolerance, which further improves perfor-
mance by between 0.1% and 4% depending on the statistics of the data being coded.

In section 2, we give the derivation of the B-coder. Its probability estimation is de-
scribed in section 3. Results are presented in section 4 by comparing the B-coder to two
other state-of-the-art coders. Finally, section 5 presents the conclusion.

2 Motivation and description of our code
Figure 1 shows a plot of entropy versus code length for the skew coder [3]. The main peaks
occur where the skew value does a poor job of approximating the true probability. Ideally,
what we seek is a low-cost improvement to the probability approximation. The skew coder
uses what is in effect a ‘one significant figure’ approximation to the actual LPS probability.
If we allow a two-bit approximation, P(l) = 2−Q

+ 2−R, R > Q the approximation gets
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slightly better, but this new approximation still has a noticeable peak near P(l) = 0.437
(see +Skew in figure 1.) Instead, we approximate using P(l) = 2Q

± 2−R, R > Q and
achieve a much tighter approximation. In terms of coding variables, this new approximation
requires a minor modification: equation 2 becomes A(s1) = A(s0) � Q ± A(s0) � R;
and the modelling unit now needs to supply two variables, Q and R, to the coding unit. For
simplicity, we allow the sign of R to determine whether A(s0) � R should be added or
subtracted from A(s0) � Q. In the description of the algorithm below, we use the signum
function, where signum(x) = 1 if(x > 0), −1 if(x < 0), 0 otherwise.

Encoding Algorithm
The inputs to the encoding are the bit, b, to be encoded, plus Q and R supplied by the
modeller.

1. (Initialise) Set C to 0 and A to all 1s.

2. Compute a1 := A � Q + signum(R) × (A � |R|)

3. Compute a0 := A − a1

4. If b = 0 set A := a1, else if b = 1 set A := a1 and C := C + a0.

5. (Renormalise) While the left-most bit of A is zero, set A := A � 1 and C := C � 1.

Note, in carrying out the addition of step 4 the quantity C + a0 may overflow the n-bit
register, so the output shifted from the left end of C in the renormalisation step should be
buffered, and if carry occurs, the carry should be propagated into the buffer. Additionally,
as observed in [3] this carry may propagate through the entire buffer, so a method to block
the carry must be used (e.g. bit-stuffing.)

Decoding Algorithm
The inputs to the algorithm are the code string plus skew parameters Q and R, supplied by
the modeller. The output is the decoded bit, b.

1. (Initialise) Fill register C with the first n bits of the code string and fill A with 1s.

2. Compute a1 := A � Q + signum(R) × (A � |R|)

3. Compute a0 := A − a1

4. If a0 > C then set b := 0 and A := a0. Go to 6.

5. Otherwise a0 ≤ C , set b := 1, C := C − a1 and A := a0.

6. (Renormalise) While the left-most bit of A is zero, set A := A � 1 and C := C � 1.

Figure 1 shows the efficiency of the B-coder versus the binary entropy function. The
B-coder’s worst-case efficiency is 0.3%, which occurs near P(LPS)=0.346.
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3 Probability estimation
In the previous section we described the B-coder without giving any consideration to prob-
ability estimation. For efficient compression a coder needs to have an accurate estimate of
the probability of each symbol as it is compressed. A computationally ‘cheap’ approach is
to use renormalisation-driven probability estimation, first used in the Q-coder (see [9] for a
detailed analysis.) The basic idea is that the renormalisation step in the encoding algorithm
can be used as a criterion to decide when to perform adaptation. When an LPS event causes
a renormalisation (‘LPS-renorm’) we should increase the LPS probability estimate and for
an MPS invoked renormalisation (‘MPS-renorm’) we should decrease it.

In the Q-coder and its descendants, the probability estimates are used directly when
dividing the intervals during the coding process. The B-coder takes a similar approach.
In the B-coder, we have constructed a set of Q and R values that that can be used to
estimate a range of LPS probabilities. Our table is arranged in a similar fashion to the ‘fast-
attack’ (FA) tables of JBIG/JPEG. A table is ‘fast-attack’ when an uninterrupted sequence
of MPS-renorms rapidly decreases the LPS probability, faster than would be warranted
by the equations in [9]. In our tables, an early LPS-renorm moves the coder into a less
confident state and two LPS-renorms move the coder into the steady-state mode, where the
analysis from [9] is valid.

One characteristic shared by many table-driven probability estimators is that they are
inherently static in nature. The estimated probabilities and transitions are drawn from the
table and are always used. In the B-coder we break this paradigm and allow the table
entries to fluctuate. The coder keeps track of the quantity MPS-renorms−LPS-renorms for
each entry in the probability table and uses this figure as a confidence estimate about that
probability. If a table entry has a positive confidence estimate, we can be sure that P(LPS) is
lower than the table suggests (because we have had a net-positive number of MPS-renorms
at this entry before), so we should compensate in some way. One method is to decrease
P(LPS) by a small amount. The necessary adjustments can be achieved by letting the skew
values change in some controlled manner.

Effective
Probability

Occupancy Confidence
Estimate

0.503 (1,-8) 183484 1358
0.492 (1,-7) 183722 -2515
0.484 (1,-6) 178534 -4026
0.375 (2,3) 170421 -16069
0.313 (2,4) 138650 -22321
0.266 (2,6) 93217 -22460

Effective
Probability

Occupancy Confidence
Estimate

0.109 (3,-6) 103682 9917
0.094 (3,-5) 151080 7556
0.064 (4,10) 155777 5982
0.059 (4,-8) 147105 3360
0.047 (4,-6) 122792 -321
0.030 (5,-10) 92726 -2389

Table 1: An sub-section of the effective probabilities used during the single-context
coding of a pseudo-random distribution of binary events P(LPS)=P(MPS)=0.5 (left) and
P(LPS)=0.05 (right)
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In the B-coder we use the following approach. Compare the confidence estimate with
the number of times the context has been used (context occupancy), if the magnitude of
the confidence estimate is at least 5% of context occupancy then suitably adjust both Q and
R. This technique was motivated by observing the distribution of the probability states that
were used during single-context coding (see table 1.) For data distributed with P(LPS) =

0.5, the probabilities used (effective probability) ranged from 2−1 to 2−3. A similar
phenomenon was observed during single-context coding of any fixed-probability file, as
expected according to the analysis in [9]. In this method, the confidence estimate allows
the coder to detect when it using an inappropriate effective probability and compensate
proportionally. We found that letting Q and R assume the values from the entry 1 states
away in the ‘right’ direction worked best. (The ‘right’ direction is forward if the confidence
estimate is positive and backwards if the confidence estimate is negative.) We used the
update schedule shown in equation 5 (arrived at experimentally), where confidence level
(cl) is confidence estimate/context occupancy.

1 =


0, cl < 5
1, 5 ≤ cl < 15
2, 15 ≤ cl < 35
3, 35 ≤ cl < 55
4, 55 ≤ cl

(5)

Even though this schedule and method were derived from single-context coding, we
show in the next section that it improves performance even in mixed-context coding.

4 Coding Results and Analysis
To assess the performance of the coder we performed a number of tests on real world data
ranging from single context coding through to multi-context bi-level image coding. We
present the results in this section. Additionally, for comparison purposes, we include in
each test results from the Augmented-ELS coder [10] and the Z-Coder [11]. In the tables
of results that follow the entry labelled “B-coder + dynamic state” gives the performance
of the coder with the probability model as from section 3. The entry labelled “B-coder +
static state” gives the performance of the B-coder with the adaptation disabled, i.e. using
only the probabilities and transitions defined by the initial state machine. In each table the
best result in each row is underlined.

4.1 Single context coding
To test the efficacy of the coder, we compressed a million ‘random’ bits generated according
to a fixed probability distribution. The results are presented in table 2. Overall, the Z-
coder fares well in these tests, which is to be expected. The Z-coder is developed from
Golomb’s run-length code [12], and these files follow precisely the geometric distribution
that Golomb’s code was designed for. In all but two tests, the B-coder outperforms the
Augmented ELS coder. In the first four tests, the B-coder outperforms the Z-coder.
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P(LPS) Entropy B-coder +
static state

B-coder +
dynamic state

ELS Coder Z-Coder

0.50 1000000 2.79 1.32 8.38 2.99
0.40 970951 3.04 2.32 8.12 2.52
0.30 881291 2.80 1.77 7.07 2.54
0.20 722656 3.12 1.14 5.13 2.23
0.10 468996 4.85 3.42 3.22 2.17
0.01 80794 4.42 4.28 5.67 3.14

Table 2: A comparison of the B-coder against the ELS- and Z-coder for single context
with fixed less probably symbol probabilities. Entropy column is number of bits, coder
performance figures are percentage over entropy.

4.2 Bi-level image coding
Bi-level images are a natural source of data for BAC. We developed a simple test suite that
modelled images using the JBIG 10-pixel context. Each pixel was assigned a context ac-
cording to the values of the pixels “underneath” the template, giving rise to 1024 possible
contexts. For the B-coder, each context was allowed its own Q and R values, and main-
tained its own set of confidence estimates of the probabilities in the state-machine. Four
collections of document images were used:

1. The eight ITU test images (known previously as the “CCITT suite”);

2. 520 pages selected at random from the BBC research and development archive [13]
from 1970-1992;

3. 155 pages selected at random from journals available on the JSTOR archive [14];

4. 210 pages selected at random from theses recently completed in the author’s depart-
ment.

With the exception of collection 4, the images were all from scanned sources and contained
varying levels of noise. The results are presented in table 3.

The B-coder performs best on the first three collections. On the ‘perfect’ images, gen-
erated from the theses, the ELS coder does best. For these very clean images, the B-coder
isn’t able to adapt to the data as well as the ELS coder; one possible reason for this lies in
the results from the previous section. In table 2, we see the ELS coder is able to out-perform
the B-coder for LPS probabilities near to 0.10. The context statistics for the clean images
involve LPS probabilities near to this value. Overall, the Z-coder is the worst performer.

4.3 Audio residual coding
For the final measurement of efficacy of the B-coder, we turned to a non-typical source:
integers generated by coding residuals in audio coding. Following the approach used in
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Test Set B-coder +
static state

B-coder +
dynamic state

ELS Z-Coder

CCITT 1672944 1670960 1678944 1688856
BBC 234551072 233959512 235396960 238096048
JSTOR 34025504 33998744 34146880 34459920
Theses 28562992 28522296 27845664 29558608

Table 3: A comparison of the B-coder against the ELS- and Z-coder coder for bi-level
images. File sizes are in bits.

c.0

{0}

c.1

c.2
{1}

{2,3}

c.3

c.4
{4–7}

{8–15}

c.5
c.6

{16–31}

{32–63}

{64–127}

Figure 2: An example decision tree, suitable for coding 7-bit integers.

[15], we developed a coder for monaural audio files. The audio data were split into frames,
each 1192 samples long, and 4 finite impulse response predictors were used to predict the
contents of each frame. Next, for each frame, the predictor that minimised the difference
between the actual frame and the predicted frame was selected and the “residual” values (the
difference between a predicted sample and its corresponding actual value) were coded using
a BAC. The residuals follow approximately a Laplacian distribution and in the case of 16-
bit sampling range from −32768 to +32767 (the range of signed 16-bit integers.) Efficiently
coding the residuals using a BAC involved exploiting the distribution of residuals.

To encode the values, we used a tree structure similar to that shown in figure 2. Notice
that the leaves of the tree are sets, S. The BAC was used to encode the decisions (at each
c.n) that select the set and a log2(#(S)) number was used to encode the position within S,
where #(S) denotes the number of elements in S. The signs of the residuals were passed-
through the encoder as a 1-bit number. Each of the arithmetic coders was incorporated into
this scheme and was used to code audio files from six different genres. The results are
presented in table 4.

The results show that the B-coder fares best over the different types of music, although
in each case the performance of the Z-coder is very close. Interestingly, in this set of tests,
the Z-coder and the ELS-coder have traded places for worst performer. One possible reason
for this is that the Z-coder performs better than the ELS coder in range of P(LPS) ≥ 0.1;
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Audio File B-coder +
static state

B-coder +
dynamic state

ELS Z-Coder

Rock 13057278 13052245 14149493 13046911
Pop 23080175 23068182 25852924 23073038
Jazz 12198492 12186563 13150655 12190307
Spoken 19888302 19861438 21033058 19888255
Electronic 14166508 14159275 15507239 14163875
Classical 21949666 21927481 23258411 21924458

Table 4: A comparison of the B-coder against the ELS- and Z-coder for audio residual
coding. File sizes are in bytes.

the decision tree structure used to code the residuals results in the context nodes dealing
with probabilities in this range.

5 Conclusion and Further work
We have presented the B-coder, an approximate binary arithmetic coder that out-performs
other comparable coders on a range of data. Additionally we have demonstrated an im-
provement of table-based probability estimation, which allows a probability estimator to
better track the source probabilities.

The improvement made in the B-coder’s probability estimation makes a considerable
difference in single-context coding (see table 2); where previous coders’ effective prob-
ability fluctuated over a large range, the B-coder is able to keep the effective probability
under much tighter control. There are in effect two methods of improving the estimators
performance, both using the confidence estimate: (1) allow the probabilities themselves to
fluctuate; (2) allow the transitions between the states to fluctuate. In the B-coder, for speed
we use technique (1) to achieve technique (2).

The B-coder has reasonable time performance, but our initial implementation was not
totally optimised for speed. Our tests show it to be a little faster than the ELS coder, but
somewhat slower than the Z-Coder. Possible speed improvements include taking advantage
of word size by shifting out blocks of 32-bits at a time. We feel it is necessary to add the
following caveat to our work. Recent advances in CPU technology mean that multiplication
no longer has the massive cost disadvantage compared with shifts and additions (e.g. for
a Pentium-4: IMUL 15µops, ADD+SHIFT 6 µops.) However, in a dedicated hardware
device, i.e. when not using a general-purpose CPU, we believe our coder would be an
excellent choice. For example, even at the micro-code level, because R is always greater
than Q, the shift of R includes the shift of Q and this can be exploited.

Further research might include investigating the update schedule (equation 5.) Although
our schedule works well over a range of applications, we found that for each file there was a
different set of thresholds that gave much better results. This poses the question of whether
it is possible to learn suitable thresholds from the data.
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