
Bumps, breathers, and waves in a neural network with spike frequency adaptation

S. Coombes and M.R. Owen
School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK

(Dated: March 2, 2005)

In this Letter we introduce a continuum model of neural tissue that include the effects of so-called
spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity
that depends upon the non-local network connectivity, synaptic response, and firing rate of a single
neuron. A phenomenological model of SFA is examined whereby the firing rate is taken to be
a simple state-dependent threshold function. As in the case without SFA classical Mexican-Hat
connectivity is shown to allow for the existence of spatially localized states (bumps). Importantly
an analysis of bump stability using recent Evans function techniques shows that bumps may undergo
instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar
analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather.
Direct numerical simulations both confirm our theoretical predictions and illustrate the rich dynamic
behavior of this model, including the appearance of self-replicating bumps.

PACS numbers: 87.10.+e, 05.45.-a,

Neural field models of Wilson-Cowan [1] or Amari [2]
type have been intensively studied since the 1970’s with
regard to the dynamics of large scale brain activity. This
has had a major impact in helping not only to understand
the dynamics seen in brain slice preparations [3], but also
in understanding EEG rhythms [4], visual hallucinations
[5, 6], short term memory [7], motion perception [8], rep-
resentations in the head-direction system [9] and feature
selectivity in the visual cortex [10]. For a recent review of
the dynamics of neural fields we refer the reader to [11].
Typically, however, such models do not incorporate any
of the slow intrinsic processes known to modulate single
neuron response. In this Letter we focus on the effects
of one such process, namely spike frequency adaptation
(SFA). SFA is a commonly observed property of many
single neurons and has been linked to the presence of a
Ca2+ gated K+ current, IAHP [12]. The generation of
an action potential leads to a small calcium influx that
increments IAHP, with the end result being a decrease
in the firing rate response to persistent stimuli. Both
biophysical and phenomenological models of this process
have been studied in the context of neural computation
at the single cell level (see for example the work of Liu
and Wang [13]). In this Letter we show that SFA can
also lead to novel dynamic instabilities at the network
level. To illustrate this we focus on a one-dimensional
neural field model with short-range excitation and long
range inhibition, and consider a simple model of SFA.

In more detail we analyze a neural field model with
synaptic activity u = u(x, t), x ∈ R, t ∈ R+, governed by
the integral equation

u = η ∗ w ⊗H(u− h). (1)

Here, the symbol ∗ represents a temporal convolution in
the sense that

(η ∗ f)(x, t) =
∫ t

0

η(s)f(x, t− s)ds, (2)

and ⊗ represents a spatial convolution such that

(w ⊗ f)(x, t) =
∫ ∞

−∞
w(y)f(x− y, t)dy. (3)

The function η(t) (with η(t) = 0 for t < 0) represents a
synaptic filter, whilst w(x) is a synaptic footprint describ-
ing the anatomy of network connections. The function H
represents the firing rate of a single neuron, and we shall
take it to be a Heaviside function such that H(x) = 1
for x ≥ 0 and is zero otherwise. Hence, we identify h
as a firing threshold. In the absence of an SFA current
we would recover the standard model (without SFA), by
setting h to be a constant, say h0. To mimic the effects
of SFA we consider an adaptive threshold that changes
most when synaptic input to a neuron is large. One such
simple adaptive scheme, in the spirit of that discussed in
[13], can be written

ht = −(h− h0) + κH(u− θ), (4)

for some SFA threshold θ and positive κ. In fact a lin-
ear threshold dynamics has previously been considered in
[10], and can be traced all the way back to work by Hill
in 1936 [14]. However, the form of nonlinear threshold
dynamics chosen here leads to interesting new phenom-
ena. For the rest of this paper we work with the choice
η(t) = αe−αtH(t) and w(x) = (1− |x|)e−|x|. The exten-
sion to other synaptic filters and footprints is straight-
forward [15].

First we construct time-independent solutions (u, h) =
(q(x), p(x)) that satisfy

q = w ⊗H(q − p), p =

{
h0 q < θ

h0 + κ q ≥ θ
. (5)

A localized bump solution is one that satisfies q(x) >
h0 + κ for x ∈ [0, x1], θ < q(x) < h0 + κ for x ∈ (x1, x2),
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FIG. 1: (Color online). Analytical bump solution (q, p) (as
solid and dashed lines respectively) with h0 = 0.04 θ = 0.1,
κ = 0.16. Here x1 = 1.48, x2 = 1.60 and x3 = 1.67. The inset
shows a blowup of the solution around the window containing
the points x1, x2 and x3. At these parameter values this type
of solution exits for κ < 0.32.

h0 < q(x) ≤ θ for x ∈ [x2, x3) and q(x) < h0 other-
wise. Furthermore, we restrict attention to symmetric
solutions for which q(x) = q(−x) with x3 > x2 > x1 > 0.
An explicit solution may be constructed as

q(x) =
(∫ −x2

−x3

+
∫ x1

−x1

+
∫ x3

x2

)
w(x− y)dy. (6)

The unknowns x1, x2, and x3 are found by the simulta-
neous solution of

q(x1) = h0 + κ, q(x2) = θ, q(x3) = h0. (7)

A plot of an analytical bump solution constructed in this
fashion is shown in Fig. 1. It appears that for κ less than
some critical value there is only ever one solution of this
type. To assess the linear stability of this solution we
study perturbations of the form u(x, t) = q(x) + δu(x, t),
and h(x, t) = p(x)+δh(x, t). An expansion of (1) and (4)
and working to first order generates the pair of equations

δu = η ∗ w ⊗H ′(q − p)[δu− δh], (8)
δh = ηh ∗ κH ′(q − θ)δu, (9)

where ηh(t) = e−tH(t). Here H ′ is the derivative of
H, i.e. H ′(x) = δ(x). For perturbations of the form
(δu(x, t), δh(x, t)) = (u(x), h(x))eλt we have that

u

L[η](λ)
= w⊗H ′(q−p) [1− κL[ηh](λ)H ′(q − θ)]u, (10)

where we have eliminated the equation for h using
(9) and introduced the Laplace transform L[η](λ) =∫∞
0

dse−λsη(s). Making use of the fact that

δ(q(x)− p(x)) =
∑

y=±x1,±x3

δ(x− y)
|q′(q−1(y))|

, (11)

and

δ(q(x)− p(x))δ(q(x)− θ) =
1
κ

∑
y=±x2

δ(x− y)
|q′(q−1(y))|

, (12)

means that (10) takes the form

u(x)
L[η](λ)

=
6∑

j=1

Aj(x, λ)uj , (13)

where uj = u(xj) and (x4, x5, x6) = −(x1, x2, x3),
A1(x, λ) = w(x − x1)/|q′(x1)| = A4(−x, λ), A2(x, λ) =
−L[ηh](λ)w(x−x2)/|q′(x2)| = A5(−x, λ), and A3(x, λ) =
w(x − x3)/|q′(x3)| = A6(−x, λ). The derivative of q is
easily calculated from (6) as q′(x) = W (x) − W (−x),
where W (x) = w(x+ x1)− w(x+ x2) + w(x+ x3). De-
manding that the perturbations at xj be non-trivial gen-
erates an eigenvalue problem of the form E(λ) = 0, where
E(λ) =

∣∣L[η](λ)−1I6 −A(λ)
∣∣, In is the n×n identity ma-

trix and A(λ) has components

A(λ)ij = Aj(xi, λ), i, j = 1, . . . , 6. (14)

We identify E(λ) as the Evans function for the bump,
such that solutions are stable if Re λ < 0. A recent dis-
cussion of the use of Evans function techniques in neural
field theories can be found in [16]. Using the fact that
L[ηh](0) = 1 = L[η](0) a direct calculation shows that
E(0) = 0 (with corresponding eigenfunction q′(x)), as
expected for a system with translation invariance. By
determining the zeros of the Evans function we are now
in a position to probe the manner in which a bump may
go unstable. One natural way to find the zeros of E(λ) is
to write λ = ν+iω and plot the zero contours of Re E(λ)
and Im E(λ) in the (ν, ω) plane. The Evans function is
zero where the lines intersect. There are basically two
different routes to instability: i) for sufficiently small κ
an eigenvalue crosses to the right hand complex plane on
the real axis, and one sees a bump go unstable in favor
of a traveling pulse with increasing α, and ii) for larger
κ a pair of complex-conjugate eigenvalues cross through
the imaginary axis to the right hand complex plane and
a bump goes unstable in favor of a breathing solution,
with increasing α. These two scenarios are illustrated in
Fig. 2 and Fig. 3 respectively.

It is possible to extend this analysis to traveling wave
solutions, and in particular the type of solution shown
in Fig. 2. Following the approach in [16] we introduce
the coordinate ξ = x − ct and seek functions ũ(ξ, t) =
u(x− ct, t) and h̃(ξ, t) = h(x− ct, t) that satisfy (1) and
(4). In the (ξ, t) coordinates we have that

ũ(ξ, t) =
∫ ∞

−∞
dyw(y)

∫ ∞

0

dsη(s)

×H(ũ(ξ − y + cs, t− s)− h̃(ξ − y + cs, t− s)),
(15)

h̃(ξ, t) = h0 + κ

∫ ∞

0

dsηh(s)H(ũ(ξ + cs, t− s)− θ).

(16)
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FIG. 2: (Color online). Top: A plot of the Evans func-
tion for a localized bump solution at κ = 0.16, and other
parameters as in Fig. 1. Zeros of the Evans function oc-
cur at the intersection of the solid and dashed lines where
Re E(λ) = 0 = Im E(λ). As α increases through αc ∼ 1.55 an
eigenvalue crosses to the the right hand complex plane along
the real axis, signaling the onset of an instability. Bottom: a
space-time plot showing an example of a traveling pulse seen
just after the point of instability.

The traveling wave is a stationary solution
(ũ(ξ, t), h̃(ξ, t)) = (q(ξ), p(ξ)) that satisfies

q(ξ) =
∫ ∞

0

dsη(s)ψ(ξ + cs), (17)

ψ(ξ) =
∫ ∞

−∞
dyw(y)H(q(ξ − y)− p(ξ − y)), (18)

p(ξ) = h0 + κ

∫ ∞

0

dsηh(s)H(q(ξ + cs)− θ). (19)

We now consider traveling pulse solutions of the form
q(ξ) ≥ θ for ξ ∈ [ξ1, ξ3] and q(ξ) < θ otherwise. In this
case the solution for p(ξ) is easily calculated from (19) as

p(ξ) = h0 + κ


[1− e−(ξ3−ξ1)/c]e(ξ−ξ1)/c ξ < ξ1

1− e(ξ−ξ3)/c ξ1 ≤ ξ ≤ ξ3

0 ξ > ξ3

.

(20)
We further restrict our attention to traveling pulse solu-
tions where q(ξ) > p(ξ) for ξ ∈ (ξ2, ξ4), and q(ξ) < p(ξ)
otherwise, with ξ1 < ξ2 < ξ3 < ξ4. In this case (18) takes
the simple form

ψ(ξ) =
∫ ξ4−ξ

ξ2−ξ

dyw(y). (21)

Hence the solution for q(ξ) is parameterised by the five
unknowns ξ1, ξ2, ξ3, ξ4, c. By choosing an origin such that
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FIG. 3: (Color online). Top: A plot of the Evans function for
a localized bump solution at κ = 0.3, and other parameters
as in Fig. 1. As α increases through αc ∼ 3.0 an eigen-
value crosses to the the right hand complex plane through
the imaginary axis, signaling the onset of a dynamic insta-
bility. Bottom: a space-time plot showing an example of a
breathing solution seen just after the point of instability.

ξ1 = 0 the simultaneous solution of the four threshold
crossing conditions

q(ξ1) = θ q(ξ2) = p(ξ2) q(ξ3) = θ q(ξ4) = p(ξ4),
(22)

may be used to determine the remaining four unknowns.
Linearising (15) and (16) about the travelling pulse and
seeking solutions of the form (u(ξ), h(ξ))eλt gives

u(ξ) = A2(ξ, λ)[u(ξ2)− h(ξ2)] +A4(ξ, λ)[u(ξ4)− h(ξ4)],
(23)

h(ξ) = A1(ξ, λ)u(ξ1) +A3(ξ, λ)u(ξ3), (24)

where Ai(ξ, λ) = −H(ξi − ξ), λ)/|q′(ξi)| for i = 1, 3 and
Ai(ξ, λ) = U(ξi− ξ, λ)/|F ′(ξi)| for i = 2, 4. Here, F (s) =
q(s)− p(s) and

cU(ξ, λ) =
∫ ∞

0

dyw(y − ξ)η(y/c)e−λy/c, (25)

cH(ξ, λ) = κηh(ξ/c)e−λξ/c. (26)

The derivatives q′ and p′ are easily calculated as α(q −
ψ)/c and (p − h0 − κH(q − θ))/c respectively. Follow-
ing along identical lines to the construction of the Evans
function for a bump we obtain E(λ) = |I3 − A(λ)| = 0,
where the 3× 3 matrix A(λ) has components [A(λ)]ij =
Aj(ξi, λ). A straightforward calculation establishes that
(u, h) = (q′, p′) is an eigenfunction with λ = 0 as ex-
pected. Interestingly, our analysis shows that stable trav-
eling pulses co-exist with stable bump solutions for a wide
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FIG. 4: (Color online). Analytically determined width x3 of
a traveling pulse solution as a function of the synaptic rate
constant α (solid line is stable, dashed is unstable). As α
increases through α ∼ 1.52 the Evans function shows that
a pair of complex-conjugate eigenvalues crosses to the right
hand complex plane. At α ∼ 1.64 they cross back to the
left hand complex plane. This leads to a branch of trav-
eling breather solutions whose width oscillates between the
indicated maximum and minimum values (circles). The inset
shows an example of such a traveling breather, at α = 1.58.

range of parameter values. Moreover, it is possible that a
pulse can undergo a dynamic instability with increasing
α and then restabilize via the reverse mechanism. Direct
numerical simulations in such parameter windows show
the emergence of stable traveling breathers. We illustrate
this phenomenon in Fig. 4. In fact direct numerical simu-
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FIG. 5: (Color online). An example of a self-replicating bump
in a regime where single bumps do not exist. Parameters are
h0 = 0.02, θ = 0.1, κ = 0.34 and α = 0.5.

lations (for Heaviside, sigmoidal and threshold linear fir-
ing rate functions) show a whole host of exotic solutions
including asymmetric breathers, multiple bumps, multi-
ple pulses, periodic traveling waves, and bump-splitting
instabilities that appear to lead to spatio-temporal chaos.
An example of a such a splitting is shown in Fig. 5. It
is interesting to note that similar bifurcations have been
seen in other dissipative systems that support localized

structures, in particular those of coupled cubic complex
Ginzburg-Landau equations [17]. Moreover, the travel-
ing pulses in our model exhibit particle like properties,
and are reminiscent of the dispersive solitons observed
in some three component reaction-diffusion systems [18].
Although such behavior may well be generic in inhomo-
geneous neural field models with external forcing, as in
the work of Bressloff et al. [19], to our knowledge this is
the first time that exotic solutions, such as stable travel-
ing breathers, have been found in a homogeneous neural
field model. We attribute this interesting new physics
directly to the choice of nonlinear threshold accommo-
dation model, since linear models, of the type studied
by Hansel and Sompolinsky [10], have only shown bump
instabilities leading to traveling pulses. Full details of
the calculations in this paper, and further explorations
of parameter space, including results in two-dimensions,
will be published elsewhere.

[1] H. R. Wilson and J. D. Cowan, Biophysical Journal 12,
1 (1972).

[2] S. Amari, Biological Cybernetics 17, 211 (1975).
[3] X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing,

S. J. Schiff, and J. Wu, The Journal of Neuroscience 24,
9897 (2004).

[4] P. l Nunez, Neocortical Dynamics and Human EEG
Rhythms (Oxford University Press, 1995).

[5] G. B. Ermentrout and J. D. Cowan, Biological cybernet-
ics 34, 137 (1979).

[6] P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J.
Thomas, and M. Wiener, Philosophical Transactions of
the Royal Society London B 40, 299 (2001).

[7] C. R. Laing, W. C. Troy, B. Gutkin, and G. B. Ermen-
trout, SIAM Journal on Applied Mathematics 63, 62
(2002).

[8] M. A. Geise, Neural Field Theory for Motion Perception
(Kluwer Academic Publishers, 1999).

[9] K. Zhang, Journal of Neuroscience 16, 2112 (1996).
[10] D. Hansel and H. Sompolinsky, Methods in Neuronal

Modeling, From Ions to Networks (2nd Edition) (MIT
Press, 1998), chap. Modeling Feature Selectivity in Lo-
cal Cortical Circuits, pp. 499–567.

[11] S. Coombes, Biological Cybernetics to appear (2005).
[12] D. V. Madison and R. A. Nicoll, Journal of Physiology

345, 319 (1984).
[13] Y. H. Liu and X. J. Wang, Journal of Computational

Neuroscience pp. 25–45 (2001).
[14] A. V. Hill, Proceedings of the Royal Society of London.

Series B, Biological Sciences 119, 305 (1936).
[15] S. Coombes, G. J. Lord, and M. R. Owen, Physica D

178, 219 (2003).
[16] S. Coombes and M. R. Owen, SIAM Journal on Applied

Dynamical Systems 34, 574 (2004).
[17] H. Sakaguchi and B. A. Malomed, Physica D 154, 229

(2001).
[18] M. Bode, A. W. Liehr, C. P. Schenk, and H. G. Purwins,

Physica D 161, 45 (2002).
[19] P. C. Bressloff, S. E. Folias, A. Prat, and Y. X. Li, Phys-

ical Review Letters 91, 178101 (2003).


