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1 Introduction

The evolution of chemical reactions between initially segregated reactants is

strongly influenced by the scale of segregation [1,2]. When the reactions take

place in a liquid phase that is stirred continuously, their progress correspond-

ingly depends strongly upon the details of the fluid mechanical mixing [1–9].

In this paper, we examine the influence of fluid mixing upon a competitive–

consecutive (or series–parallel) reaction, A + B → R, B + R → S [1], that

takes place in a two-dimensional, laminar, chaotic fluid flow. (Although in

applications mixing is often generated through turbulent flow, laminar flow is

more appropriate for highly viscous fluids or for delicate polymers or suspen-

sions, for instance [9].) We report numerical simulations of the simultaneous

advection, reaction and diffusion of the various chemical species. Accurate

simulations, even in two space dimensions, remain a significant computational

challenge, because the chaotic flow generates structures whose spatial scales

decrease exponentially with time, thereby rapidly reaching any fixed spatial

resolution used in the numerics, or forcing adaptive grid refinements which

correspondingly involve prohibitive computational expense. In the presence of

diffusion, this problem is somewhat mollified, because a balance eventually ob-

tains between the continual regeneration of the finest spatial scales by the flow

and their removal by diffusion [10]. Nevertheless, adequate resolution remains

a significant issue.

Since accurate two-dimensional simulations are computationally expensive,

various reduced descriptions are routinely used to model the progress of the

reactions [1,2,11,12]. The crudest of these ignore the segregation entirely, and

model the system as becoming instantaneously well mixed [1]. Such approxi-

mations are appropriate when the Péclet number P , the ratio of diffusive to

advective time scales, is small. A more sophisticated class of models proceeds

from the observation that chaotic fluid mixing generates a complex array of in-

tertwined striations, which, while exceedingly intricate, are well approximated

over significant portions of the flow domain as arrays of parallel lamellae. It is

then reasonable to replace the two-dimensional problem by a one-dimensional

problem for reactions taking place in a lamellar array, allowing significant

analytical and numerical progress [13–21]. In this paper, we compare full two-

dimensional simulations with corresponding one-dimensional simulations of

lamellar models (of varying degrees of sophistication), to evaluate the lat-
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ter. It is not a priori obvious how quantitatively accurate one should expect

the lamellar models to be, given that they generally ignore many details of

the striations generated by the flow, for instance: the curvature of the stria-

tions [22,23], the nonuniformity of the stretching [24], the nonuniformity of the

striation widths [16], the presence of islands in the flow [6,9], and the continual

regeneration of striations (by fluid mechanical stretching and folding, which

lead to more, thinner striations, which then recombine diffusively). One would

not be surprised to find that they perform well at low Péclet numbers, where

diffusion rapidly homogenises the reactant distribution, and poorly at high

Péclet numbers, where the flow details cited above become more significant.

The present paper aims to provide quantitative background to such intuition.

The flow adopted here is the well studied sine flow [25,26], which comprises

alternating shear flows in orthogonal directions. For an appropriate choice

of its parameters, the sine flow readily generates a chaotic flow with only

very small islands of regular motion. Although this flow is somewhat artifi-

cial, it combines the stretching and folding mechanisms of other more realistic

chaotic fluid flows, and permits a particularly convenient numerical implemen-

tation [10,27,28] of the governing advection–reaction–diffusion equations. For

these reasons, it is chosen as the basis for our computational work.

Numerical simulations of the two-dimensional problem tackled here have pre-

viously been carried out by Muzzio and Liu [6] but in the special case of

an infinitely fast primary reaction, rather than for the finite reaction rates

contemplated here (cf. [9], where finite reaction rates are considered, but for

a parallel–competitive reaction scheme). These simulations [6] have demon-

strated the influence of the mixing on the yield: in general a chaotic fluid

flow contains regions of both regular and chaotic motion, and each affect the

progress of the reactions in different ways. The regular regions act as poorly

mixed reservoirs for the reactants, allowing only a slow leakage out into the

chaotic region, through diffusion. In the chaotic region, by contrast, the mix-

ing is rapid. When diffusion is relatively weak (large P), the effects of the

fluid mixing upon the reaction are most marked. However, as pointed out

by Adrover, Cerbelli and Giona [27], the finite-difference space discretisation

used by Muzzio and Liu [6] introduces significant spurious numerical diffu-

sion, and its results are unreliable precisely in this limit, over a range of large

Péclet numbers reported. The pseudospectral approach adopted here is free

from such problems – the advantages are quantified by Adrover, Cerbelli and
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Giona [27], who explicitly demonstrate the errors in large-P finite-difference

simulations when compared with corresponding spectral simulations.

The structure of this paper is as follows. In §2 we set up the mathematical

formulation of the two-dimensional advection–reaction–diffusion problem to

be tackled. In §3 we describe the numerical method for solving the governing

equations, and present some numerical results. In §4 we present a variety of

reduced models, and compare their results with corresponding results from the

full two-dimensional problem. We close that section with a discussion of the

extent to which the present results are surprising. Our conclusions are drawn

in §5.

2 Mathematical formulation

We consider the evolution of the two-stage competitive–consecutive reaction [1]

A + B
K1−→ R, B + R

K2−→ S, (1)

from an initial state in which the reactants A and B are completely segregated

and the products R and S (which represent, respectively, the desired product

and waste) are absent. The reaction takes place in a liquid phase, and a two-

dimensional chaotic fluid motion stirs the reaction. It is straightforward to see

from (1) that in regions where A is locally in excess the fractional yield of R

will be greater than in regions where B is locally in excess, since in the latter

case the relative abundance of B will promote the secondary reaction [1,29].

Details of the way in which the reactants are introduced to one another (i.e.,

details of the mixing) thus affect the yield of the desired product R, and it

is this effect that we investigate in this paper. The four chemical species are

assumed to undergo Fickian diffusion, and to be passively advected with the

flow, i.e., the presence of reactants does not influence the flow, and all species

remain in the liquid phase (so there is no precipitation, for instance). The

chemical species are modelled as continua, rather than through, say, discrete

Monte Carlo simulation (cf. [5]).

In deriving our mathematical formulation of the problem, we suppose that

the flow domain is a square of side L and the maximum fluid speed is U . We

denote a typical reactant concentration by C, and assume that all chemical
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species have equal diffusivity, D (equality is by no means essential for our nu-

merical work, although it greatly simplifies some of the associated analysis).

We then nondimensionalise the standard advection–reaction–diffusion equa-

tions using L, U , L/U and C as scales for length, velocity, time and chemical

concentration, respectively. The resulting governing equations are

∂A

∂t
+ u ·∇A =P−1∇2A− k1AB, (2)

∂B

∂t
+ u ·∇B =P−1∇2B − k1AB − k2BR, (3)

∂R

∂t
+ u ·∇R =P−1∇2R + k1AB − k2BR, (4)

∂S

∂t
+ u ·∇S =P−1∇2S + k2BR, (5)

where A, B, R and S denote the corresponding dimensionless chemical con-

centrations and u = (u, v) is the dimensionless velocity field, specified below.

The dimensionless parameters present here are the Péclet number P = UL/D

and two dimensionless reaction rates, k1 = K1CL/U and k2 = K2CL/U .

Note that each of k1 and k2 takes the form of the ratio of a second Damköhler

number to the Péclet number [6].

The initial conditions are of segregation, with

A(x, y, 0) =





A0 0 ≤ x < 1
2
,

0 1
2
≤ x < 1,

(6)

B(x, y, 0) =





0 0 ≤ x < 1
2
,

B0
1
2
≤ x < 1,

(7)

and with neither product initially present: R(x, y, 0) = S(x, y, 0) = 0. To

avoid the eventual consumption of all the desired product R in the secondary

reaction, we must take A0/B0 > 1/2.

The fluid motion takes place in a (dimensionless) square box given by 0 ≤ x ≤
1, 0 ≤ y ≤ 1. The sides x = 0 and x = 1 are identified with one another, so

that fluid escaping from the unit square through one reenters through the other

(and similarly for the sides y = 0 and y = 1). The flow is two-dimensional and

incompressible, and comprises a time-periodic shear flow, alternately parallel
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Fig. 1. Sine flow (8), (9). Left: flow during first half-period. Right: flow during second
half-period.

to the x- and y-axes. Denoting the period of the motion by T , we define the

velocity components to be

u =





sin 2πy νT ≤ t < (ν + 1
2
)T,

0 (ν + 1
2
)T ≤ t < (ν + 1)T,

(8)

v =





0 νT ≤ t < (ν + 1
2
)T,

sin 2πx (ν + 1
2
)T ≤ t < (ν + 1)T,

(9)

for ν = 0, 1, 2, . . . [25,26] – see Figure 1. For general values of T , the flow

domain contains islands of periodic or quasiperiodic motion surrounded by a

region of chaotic motion. We examine two cases: T = 0.8, in which the majority

of the flow domain is chaotic, but with four significant regions of regular

behaviour, and T = 1.6, in which the motion is predominantly chaotic, and

for which it is seen, by an examination of the Poincaré map, that any regular

islands are so small that they are indiscernible to the eye – see Figure 2 for

corresponding Poincaré maps. By investigating these two cases, we gain some

insight into the large-time influence of large islands (T = 0.8) on the mixing

compared with – to the eye, at least – a ‘globally chaotic’ flow (T = 1.6).
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Fig. 2. Poincaré maps for the sine flow with T = 0.8 (left) and T = 1.6 (right).

3 Two-dimensional numerical simulations

3.1 Numerical method

The governing equations (2)–(5) are solved using a pseudospectral method [10,27,28,30],

which permits simulations of high accuracy, even at large P , principally be-

cause it does not suffer from the spurious numerical diffusion associated with

alternative finite-difference or finite-element calculations [27].

In our implementation, we expand each dependent variable as a Fourier series

(truncated for numerical purposes): for example,

A(x, y, t) ∼
N∑

m=−N

N∑

n=−N

Amn(t) e2πi(mx+ny) .

These Fourier expansions are then substituted into the governing equations

(2)–(5) to yield a system of ordinary differential equations in time for Amn(t),

Bmn(t), Rmn(t) and Smn(t). To ensure that the code runs quickly, the nonlinear

reaction terms are computed in physical space, the transformations between

spectral and physical space being achieved through the Fast Fourier Trans-

form. The system of ordinary differential equations is stiff, and we use expo-

nential time-differencing [31] to solve it, specifically the second-order Runge–

Kutta method ETD2RK [32], since this method permits high accuracy even

with relatively large time steps.

To describe our implementation of exponential time-differencing, we note that

the equation for Amn, for instance, takes the form

dAmn

dt
= −4π2P−1(m2 + n2)Amn − πm(Am(n−1) − Am(n+1)) + NA

mn (10)
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for νT ≤ t < (ν + 1
2
)T , where the terms on the right-hand side represent,

in order, diffusion, advection and reaction. A corresponding expression holds

during the other half-period, but with the advection term in (10) replaced

by −πn(A(m−1)n − A(m+1)n). The stiffness of the system comprising (10) and

the corresponding equations for the other chemical species is evident from the

diffusion term, which generates widely differing time scales for the evolution

of the various modes – in particular, there is very rapid diffusive decay of

the high-wavenumber modes. The problems associated with linear stiffness

are obviated in the exponential time-differencing method because it treats the

linear terms exactly, the only approximation lying with the integration of the

nonlinear terms. Although alternative implementations are certainly possible,

we find it convenient to combine the advection and reaction terms, and treat

these as being ‘nonlinear’, with only the diffusion term treated as ‘linear’, and

hence integrated exactly. Thus we write (10) as

dAmn

dt
= −4π2P−1(m2 + n2)Amn +NA

mn, (11)

where the definition of NA
mn follows by comparison of (10) with (11).

We now denote by Al
mn the mode amplitude Amn at t = lh, where h is the

time step. To execute a single time step using the ETD2RK scheme [32], we

first compute

Āl
mn = ech Al

mn +
ech−1

c
N l

mn, (12)

(and, correspondingly, B̄l
mn, R̄l

mn and S̄l
mn) and then complete the time-stepping

through

Al+1
mn = Āl

mn +
ech−1− ch

c2h

(
N̄ l

mn −N l
mn

)
, (13)

where c = −4π2(m2 + n2)/P , and where the advection–reaction term N̄ l
mn is

evaluated using Āl
mn, B̄l

mn, R̄l
mn and S̄l

mn. The scheme (12), (13) is applied

to all modes except those for which m = n = 0, where we instead use the

second-order standard Runge–Kutta scheme

Āl
00 = Al

00 + hN l
00, (14)

Al+1
00 = Āl

00 + 1
2
h

(
N̄ l

00 −N l
00

)
. (15)
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Fig. 3. Concentration field of R after ν periods of the sine flow for ν = 1, 2, . . . , 12
(reading along rows, from top left to bottom right) at T = 0.8 and P = 104.

Fig. 4. Kinematic evolution of the interfaces x = 0 and x = 1/2 after, from left to
right, one, two and three periods of the sine flow (T = 0.8) – cf. the first three plots
of Figure 3.

We choose N and h to obtain solutions that have converged to the precision

quoted. The adequacy of the resolution in time and space is checked by re-

peating sample runs at a smaller time step or with more Fourier modes. We

have also noted the quantitative results on the accuracy of spectral schemes

obtained for the case k2 = 0 by Adrover, Cerbelli and Giona [27].

3.2 Numerical results

Numerical simulations of (2)–(5) subject to (6)–(9) are now presented. In most

simulations a resolution of N = 256 and time step of h = 1.6 × 10−4 proved

adequate. In all simulations we take A0 = B0 = 2. We describe in this section

detailed, largely qualitative, results for P = 104 and for ‘fast’ reactions, with
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k1 = 10 and k2 = 1 (thus the secondary reaction is an order of magnitude

slower than the primary reaction). This choice of parameters ensures that

the fluid mechanical mixing has a significant influence upon the yield of the

reaction – the simulations presented here represent a compromise between

studying large P , where the effects of mixing are most marked, and numerical

manageability. Summary quantitative results are presented later in §4.4 for a

wide range of other Péclet numbers.

3.2.1 T = 0.8

Figure 3 shows grey-scale plots of the concentration of R after 1, 2, . . . , 12

periods of the sine flow with T = 0.8 and P = 104. In each plot, black

corresponds to zero concentration and white to the maximum concentration

in that plot; thus the scale changes between plots. However, the figure is little

altered by adopting the same grey-scale for all plots, because the minimum

concentration of R remains close to zero (in two of the islands, in later plots)

and the maximum concentration of R varies by less than 10% between plots.

Initially, R is produced in a thin region around material lines whose initial

locations are the interfaces x = 0 and x = 1/2 between the reactants A and B,

and which are passively advected by the flow: the evolution of such material

lines after one, two and three periods of the flow is shown in Figure 4 for

comparison. The rapid generation of a complicated pattern of striations of R

can clearly be seen in Figure 3, as can the emergence of four islands of less well

mixed fluid, corresponding to the islands of regular motion in Figure 2. Also

apparent is the rapid merging of the finest spatial scales through diffusion. This

is particularly evident when the first three plots in Figure 3 are compared with

corresponding plots in Figure 4 (diffusion being absent in the latter figure).

The markedly different behaviour in the chaotic and regular regions is evident

in the later plots of Figure 3. In the chaotic region, the chemical species are es-

sentially homogeneously distributed in space through the repeated kinematic

generation of small scales and their subsequent smoothing by diffusion. Fur-

thermore, after 12 periods the reaction is essentially complete – the total yield

〈R〉 ≡ ∫ 1
0

∫ 1
0 R(x, y, t) dy dx has reached 99.3% of its ultimate value, even while

four islands of poor mixing remain. Of the four islands shown after 12 periods

of the flow, the left-hand pair contain significant amounts of S (they were

initially B-rich); the right-hand pair contain significant amounts of R (they
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Fig. 5. Concentration field of R after 1, 2, . . . , 12 periods of the sine flow (reading
along rows, from top left to bottom right) at T = 1.6 and P = 104. In each plot,
white and black correspond, respectively, to maximum and minimum concentrations
in that plot.

were initially A-rich). The mechanism by which these islands of inhomogeneity

are ultimately removed is primarily through slow diffusive leakage across the

boundary between regular and chaotic regions. Note, from Figure 3, that the

concentration field of R (and of the other chemical species – not shown) settles

to a persistent oscillation at twice the period of the sine flow itself (cf. [33]).

3.2.2 T = 1.6

When T = 1.6, the sine flow generates a fluid motion containing no discernible

regular islands (by which we mean that none are clearly visible in a Poincaré

map – see Figure 2). Corresponding concentration fields of R and S are shown,

again for P = 104, in Figures 5 and 6, respectively. In contrast to the case

T = 0.8, these figures look rather different if all sub-plots are given the same

concentration scale – see Figure 7. Again, note the persistent period-two os-

cillations that become established in the concentration fields. As Figure 8

indicates, the evolution of 〈R〉 is identical to the previous case (T = 0.8)

until the first ‘flip’ of the velocity field (which takes place at t = 0.4 in the

case T = 0.8). Thereafter two significant differences between the yield with

T = 0.8 and T = 1.6 are apparent: first, that the rate of production of R is

enhanced, and second that the ultimate yield is greater in the more globally
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Fig. 6. Concentration field of S after 1, 2, . . . , 12 periods of the sine flow (reading
along rows, from top left to bottom right) at T = 1.6 and P = 104. In each plot,
white and black correspond, respectively, to maximum and minimum concentrations
in that plot.

Fig. 7. As first two rows of Figure 5, except that all plots have common grey-scale,
with black corresponding to zero concentration and white to the concentration at
large time. Note the loss of contrast with time.

chaotic flow. The curve of 〈R〉 against t is also rather smoother for T = 1.6

than for T = 0.8 (this is more obvious when the data are plotted on a lin-

ear rather than a logarithmic scale), since in the former case the reactants are

more smoothly distributed, while in the latter there are slow events associated

with diffusion from the persistent regular regions.
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Fig. 8. Plot of total amount 〈R〉 against t for P = 104. Upper and lower curves
correspond, respectively, to T = 1.6 and T = 0.8.

4 Reduced models

In this section we describe various reduced models of the full two-dimensional

system in the ‘fully chaotic’ regime with T = 1.6; their success in describing the

behaviour of the full system will be evaluated in §4.4. Our aim is not to develop

the most sophisticated possible versions of these models, but to illustrate the

type of models that might commonly be used to describe reaction in laminar

mixing flows. Not all of these models were developed for application in the

present context. The first model, described in §4.1, assumes that the reactants

are instantaneously perfectly mixed by the flow, and that the reaction then

proceeds in a spatially homogeneous fashion. The second, described in §4.2,

follows the evolution of the reaction at an interface; this interface remains

planar, and does not feel the effects of the chaotic ‘folding’, although the

effects of fluid-mechanical stretching may be modelled. The final models, in

§4.3, describe the evolution of the reaction in a one-dimensional system of

lamellae.

4.1 Well mixed model

Perhaps the crudest model for the evolving chemical reaction involves ignoring

completely the segregation, and considering instead the much simpler spatially

uniform problem [1]. One might expect such an approximation to apply when

diffusion acts rapidly to homogenise the initially segregated state, i.e., in the

limit P → 0 (for fixed k1 and k2).

13



The well mixed model thus comprises the ordinary differential equations ob-

tained by omitting spatial derivatives from (2)–(5) together with initial condi-

tions of spatially uniform concentrations A = 1
2
A0, B = 1

2
B0, R = S = 0. (The

factors of 1
2

reflect the mean initial concentrations of A and B corresponding

to (6), (7).) This system can readily be reduced to a single ordinary differential

equation for A(t) (see, for example, [1,15]), and the large-time state of the sys-

tem then deduced to be as follows. If A0/B0 < 1/2, all of A is consumed and

it is a simple matter to determine the ultimate state of the system in terms

of the initial stoichiometry: at large times A → 0, B → 1
2
B0−A0, R → 0 and

S → 1
2
A0. If A0/B0 > 1/2, it is necessary to consider the time evolution of the

reactants in order to determine the final state; this case is of more practical

interest than the previous one because some of the desired product remains

at large time: in this limit A → 1
2
A∞, B → 0, R → A0 − 1

2
B0 − A∞ and

S → 1
2
(B0 − A0 + A∞), where A∞ satisfies [1], for k2 6= k1,

(1− 2k2/k1)A∞/A0 + (A∞/A0)
k2/k1 = (1− k2/k1)(2−B0/A0). (16)

A corresponding result for k2 = k1 is given by Levenspiel [1], but it is not of di-

rect interest here, since we assume that the reaction scheme has been designed

so that the secondary reaction producing waste has a smaller rate constant

than the primary reaction. In the special case k2 = k1/2, (16) is readily solved

to give the explicit solution A∞ = 1
4
(2A0−B0)

2/A0, but otherwise it possesses

no straightforward analytical solution, and requires numerical solution.

4.2 Single, planar interface

Clearly, in view of the influence of reactant segregation upon yield, it is de-

sirable to adopt a more sophisticated approach than the well mixed model,

as demonstrated explicitly in our evaluations in §4.4. A first step in mod-

elling the advection, reaction and diffusion that takes place in an initially

segregated two-dimensional system is to consider these processes in one space

dimension [34–39], corresponding to ignoring the kinematic distortion of the

interfaces x = 0 and x = 1
2

under the flow. In this model, the reactants A and

B initially lie on either side of a single infinite planar interface. Although such

a one-dimensional model clearly cannot account entirely for the effects of fluid

mechanical mixing, the exponential stretching of material line elements under
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the flow may be mimicked by imagining the one-dimensional problem to take

place in a straining flow. We shall take a simple, commonly adopted model

for this straining flow (although a more sophisticated approach is certainly

feasible). This single-interface model might be expected to be valid at suffi-

ciently early times [2], before neighbouring interfaces influence one another,

and before curvature of the interface is significant.

In this model, the reactants A and B lie initially on either side of x = 0; all

chemical concentrations remain independent of the y-coordinate for all time.

The chemical species diffuse (in the x-direction) and react; they are also ad-

vected by a straining flow (u, v) = (−µx, µy), which allows us to retain the

effect of mixing in stretching the interface exponentially in time, but without

the corresponding folding [2,12,13,16–18,40–42]. The appropriate dimension-

less governing equations are then

At − µxAx =P−1Axx − k1AB, (17)

Bt − µxBx =P−1Bxx − k1AB − k2BR, (18)

Rt − µxRx =P−1Rxx + k1AB − k2BR, (19)

St − µxSx =P−1Sxx + k1BR, (20)

for −∞ < x < ∞, where µ > 0 characterises the rate of stretching of the

interface. It is debatable what value should be adopted for µ in the model, for

a number of reasons. First, there are two obvious candidates: an (averaged)

Lyapunov exponent, which represents local stretching, and the topological en-

tropy, which represents the growth rate of finite material lines, and which

generally exceeds the Lyapunov exponent [43–45]. Second, the distribution of

stretch rates along any material line is nonuniform [24], which causes diffi-

culties in choosing a single value for µ. Third, it is not clear that exponential

(rather than linear) growth of the interface is appropriate at early times, when

this model is intended to be valid [46]. We note that in any case it is com-

mon to investigate the effects of segregation separately from those of mixing,

i.e., most attention has been addressed to the special case µ = 0, where the

question of the correct value of µ does not arise [11,14–16,18–21,35–39,47–49].

The appropriate initial conditions are of segregated reactants in the following

form: for x < 0, A(x, 0) = A0 and B(x, 0) = 0; for x > 0, A(x, 0) = 0 and

B(x, 0) = B0; for all x, R(x, 0) = S(x, 0) = 0. The boundary conditions are:

as x → −∞, A → A0 and B, R, S → 0; as x →∞, B → B0 and A,R, S → 0.
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Although some analytical progress is possible for chemical species having

different relative rates of diffusion [35,37,38,48,49], greatest progress can be

achieved when, as here, all four species have identical diffusivities. Then it

follows immediately by taking linear combinations of (17)–(20) that the quan-

tities

α = 2A−B + R, β = A + R + S (21)

satisfy the linear equations αt − µxαx = P−1αxx and βt − µxβx = P−1βxx,

which are readily solved (see below) given the initial and boundary conditions

appropriate here. For analysis of (17)–(20), it is useful to introduce the new

independent variables X = x eµt and T = 1
2
P−1(e2µt−1)/µ, corresponding

to the ‘warped time transformation’ of Ranz [12] (cf. [34], Eqs (2) and (3)).

Under this transformation, the problem for the evolution of α and β simplifies

to αT = αXX and βT = βXX . These equations are readily solved subject to

the relevant initial and boundary conditions to give

α = A0(1− erf η)− 1
2
B0(1 + erf η), β = 1

2
A0(1− erf η), (22)

where η = 1
2
XT−1/2, and these solutions apply for T > 0 (i.e., for t > 0). Once

α and β are found, A and B may then be determined by solving

AT = AXX − P
2PµT + 1

k1AB, (23)

BT = BXX − P
2PµT + 1

[(k1 − 2k2)AB + k2(α + B)B] ; (24)

the concentrations of R and S are then recovered from (21).

4.2.1 Early time

The present single-interface model should hold most accurately at early time,

and so we now focus on this limit. In order to compute, for instance, the

yield of R at early time, it is useful to reformulate (23), (24) in terms of the

independent variables η and T , giving

Aηη + 2ηAη − 4TAT =
4PT

2PµT + 1
k1AB, (25)
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Fig. 9. Plot showing agreement between early-time prediction of 〈R〉 (dotted line
µ = 0; dashed line µ = 1.2) and value computed from full two-dimensional simula-
tions (solid line) for T = 1.6 and P = 1.

Bηη + 2ηBη − 4TBT =
4PT

2PµT + 1
(k1 − 2k2)AB +

4PT

2PµT + 1
k2(α + B)B.(26)

At early time, we may expand the solution to (25), (26) in powers of T as

A ∼ Â0(η)+TÂ1(η)+· · · and B ∼ B̂0(η)+TB̂1(η)+· · ·, with the corresponding

expansion for the product R being R ∼ TR̂1(η)+T 2R̂2(η)+· · · (cf. [11,15,36]).

Since we have elsewhere presented the early-time analysis in the absence of

fluid mixing [15] (i.e., for µ = 0), we relegate a sketch of the calculation to

the Appendix, highlighting those parts that are required for a computation of

the mixing effects. Such effects are found by continuing the expansion for R

to O(T 2), from which we deduce the total amount of R produced, per unit

initial length in y, to be

〈R〉≡ eµt

∞∫

−∞
R dx

∼ 2k1PA0B0IT 1/2
{

1
6
T −PT 2

[
1
30

(k1A0 + (k1 + k2)B0) + 1
5
µ

]}
, (27)

where I ≈ 1.5958. Thus the fluid mixing (µ > 0) tends to suppress the early

net production of R, regardless of the initial stoichiometry or relative reaction

rates. Note from (25), (26) that this small-time expansion is in powers of PT ,

and so is of particularly limited utility when P is large.

In Figure 9 we compare the early-time prediction (27) with the true value

obtained from the full two-dimensional simulations (we take µ to be either

zero or the Lyapunov exponent of the sine flow). Inclusion of fluid mixing

effects seems to worsen the single planar interface model, in two respects.

First, the magnitude of the coefficient of PT 2 in (27) is increased, leading to
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divergence of this truncated power series at earlier time. Second, the fit at

moderate times seems worse. This result suggests that modelling the effects

of the fluid mixing with an exponential normal contraction is inappropriate

for the single-interface model (for the times involved in Figure 9, considerably

less than one period of the flow, the growth rate of an interface is clearly not

exponential).

4.3 Lamellar models

A more sophisticated model of the segregation involves not a single interface,

but a finite array of lamellae [2,11], to model the striations generated in a

chaotic flow such as the sine flow. Most analytical and computational advan-

tage is gained by considering the lamellar array to be one-dimensional [3,4,11–

21,35–42,47–50], although clearly in reality the striations possess significant

curvature where they are folded over by the flow, and this curvature can im-

pact on the yield. As with the single-interface model above, the effects of fluid

mixing in compressing and stretching the lamellae in (approximately) normal

and parallel directions may be considered or not. Lamellar models thus gen-

erally resemble the single-interface model described above, except that they

take place over a finite extent in x and possess a different initial distribution

of reactants. Usually the domain is assumed to be periodic in space, which

can lead to considerable simplifications in numerical simulation. As with the

two-dimensional simulations described above in §3.2, we use a pseudospec-

tral method for carrying out the numerical integration of the various one-

dimensional lamellar models below, again with exponential time-differencing.

There have been many previous studies of the laminar lamellar model. An early

analytical and numerical treatment in the absence of fluid mechanical mixing

is that of Pearson [11]. Chella and Ottino [4] performed numerical simulation

of combined advection, reaction and diffusion in a periodic array of lamellae for

a range of reaction schemes, and analysis of various limiting cases (see also [3]).

Subsequent calculations [50] for the reaction scheme considered in this paper

were facilitated by use of the warped time transformation [12], and show good

agreement with the well mixed limit and with experiment, as appropriate (see

also [40]). A related set of simulations of the lamellar model for polymerisation

was carried out by Fields and Ottino [16–18]. The utility of the lamellar model

was demonstrated by Clifford et al. [13], who found reasonable agreement
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with results from two-dimensional simulations of the full advection–reaction–

diffusion problem [6], although, as we have already remarked, at large Péclet

number the latter simulations are known to be inaccurate [27]. Of particular

note are the works of Sokolov and Blumen [41,42], who analysed a single

reaction taking place in a lamellar structure, with special emphasis on ‘fast’

reactions, for which a great deal of analytical progress is possible, and of

Muzzio and Ottino [19,20], who examined the evolution of a lamellar structure

in which only the primary reaction takes place (i.e., the case k2 = 0), at

infinite rate. The latter focused on the evolution of the distribution of striation

thicknesses, which is not our direct concern here, and commented that it would

be interesting to include fluid mechanical mixing effects into their lamellar

model. In [21], their work was extended to the case of finite primary reaction

rate, this time with a more general form of reaction term than k1AB.

Here we adopt a simple form of the lamellar model, which follows the evolu-

tion of a single pair of lamellae. A more sophisticated variant of the model

represents a more realistic set of lamellae, which have a range of different

initial widths matching the striation width distribution measured from full

two-dimensional simulations [14,19–21]. This latter approach clearly builds in

more information from the full simulations, and might therefore be expected

to provide a more accurate lamellar model, but is not considered here. Fur-

thermore, it should be noted that for both of these variants of the lamellar

model, the initial distribution of lamellae is ‘frozen in’, and so neither can

accommodate the continual generation of new lamellae (achieved by folding

in the two-dimensional flow). It should also be noted that it is not only the

lamellar widths that are important: the order in which a given set of lamellae

are arranged can also strongly influence the yield [14].

4.3.1 Lamellar model with continuous stretching

Our first lamellar model is identical to the single-interface model, except in its

initial and boundary conditions, and in the specification of the flow domain.

Thus we solve (17)–(20) subject to the initial conditions

A(x, 0) =





A0 0 ≤ x < 1
2
,

0 1
2
≤ x < 1,

(28)
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B(x, 0) =





0 0 ≤ x < 1
2
,

B0
1
2
≤ x < 1,

(29)

again with R(x, 0) = S(x, 0) = 0. We assume that the domain shrinks ex-

ponentially in the x-direction (and correspondingly grows in the y-direction

with the same exponential factor, µ). For numerical purposes it is then most

convenient to solve the system as expressed with X and T as the independent

variables, since then the domain in X is of fixed size, and we solve

AT = AXX − P
2PµT + 1

k1AB,

BT = BXX − P
2PµT + 1

(k1AB + k2BR),

RT = RXX − P
2PµT + 1

(−k1AB + k2BR)

for 0 ≤ X ≤ 1, with periodic boundary conditions. In evaluating the necessity

of including µ > 0 to parametrise the fluid mixing, we shall consider below

results for both µ > 0 and µ = 0; these results are presented in §4.4 below.

4.3.2 Lamellar model with discrete stretching and ‘folding’ (baker map)

As we have indicated above, a potentially significant shortcoming of the usual

lamellar models is that although they are able to mimic the stretching aspect

of the full two-dimensional chaotic fluid motion, they fail to model the folding

back of flow structures upon themselves, which serves continually to regenerate

the lamellar structure. Sokolov and Blumen [42] recognised this shortcoming

and suggested the use of a baker transformation to regenerate the lamellar

structure; such an approach has recently been adopted by Neufeld et al. [7]

in the context of an advection–reaction–diffusion system with multiple steady

states. In the related lamellar model described below there is continuous re-

action and diffusion of chemical species in a one-dimensional lamellar array,

subject to periodic episodes of discrete stretching and folding to simulate the

corresponding continuous processes in the two-dimensional flow. Clearly there

is in reality no such separation between the processes of reaction–diffusion on

the one hand and stretching-and-folding on the other, and so it is of particular

interest to attempt to evaluate the predictive capabilities of such models (or

at least a simplified form of such models, as presented below).
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Fig. 10. Application of the baker map to the lamellar array, carried out at discrete
times t = ντ (ν = 1, 2, 3, . . .). First the lamellae are squashed to half their width,
then a mirror image set of lamellae is adjoined along x = 1/2.

The governing equations for the chemical species are thus (17)–(20), subject

to the initial conditions (28) and (29), in the flow domain 0 ≤ x ≤ 1. Stretch-

ing and folding are implemented at times t = ντ (ν = 1, 2, 3, . . .) by means of

the baker map [7,42] – see Figure 10 – where τ is determined below to match

the rate of stretching in the sine flow. To be explicit, at time t = nτ we set

A(x, nτ+) = A(2x, nτ−) for 0 ≤ x < 1
2
, and A(x, nτ+) = A(2(1− x), nτ−) for

1
2
≤ x < 1, with corresponding expressions for the other chemical concentra-

tions. Then to determine τ , we note that all fluid elements are stretched by a

factor of 2 at each application of the baker map. Thus if a typical stretch rate

in the sine flow to be modelled is λ then to match the net average stretch of

fluid elements, we should take τ = (log 2)/λ.

In our simulations of this model, we shall choose to take λ to be the Lyapunov

exponent of the sine flow, although it can be argued that it is more appro-

priate to take instead the (slightly larger) topological entropy [43,44]. Our

justification for this choice is that clearly the separation of reaction and diffu-

sion on the one hand, and stretching and folding on the other is itself a crude

device, and so the impression of precision in the specification of τ = (log 2)/λ

is illusory; and, of course, many features of the two-dimensional flow are not

captured at all by any of our lamellar models (the nonuniformity of stretching

in the sine flow; the presence of regular islands; the curvature of the stria-

tions, for instance). Note that if we set τ = ∞ then we recover the no-stretch

lamellar model from the previous section (i.e., for µ = 0).

The piecewise implementation of stretch in this model has the consequence

that for fast reactions, if only a few stretching periods are required for reaction

to go to completion, then the quantised nature of the stretching will be felt,

and will tend to reduce the effective applied stretch rate.
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Fig. 11. Final yield of product R as a function of Péclet number P. Curves represent:
‘2D’ full two-dimensional simulations (§3.2); ‘well mixed’ well mixed model (§4.1);
‘µ = 0’ and ‘µ = 1.2’, respectively, lamellar model with no stretch, µ = 0, and
with stretch rate µ = 1.2 (§4.3.1); ‘baker’ baker map model with τ = (log 2)/1.2
(§4.3.2).

4.4 Comparison between two-dimensional simulations and reduced models

We have carried out two sets of simulations, corresponding to moderate and

fast reaction rates. In the former, we set k1 = 1 and k2 = 0.1, and find

the effects of fluid mixing to be comparatively slight, at least over the range

1 ≤ P ≤ 105 – for example, while the ultimate yield of R appears to be a

monotonically decreasing function of P , it falls by less than 8% as the Péclet

number is increased from 1 to 105. Therefore, rather than present both sets of

results in detail, we focus on the results for fast reactions, where the effects

of fluid mixing are more significant, and note briefly corresponding results for

moderate reaction rates.

Results for fast reactions (k1 = 10 and k2 = 1) are presented in Figure 11,

where we show the ultimate yield as a function of P , as computed from our

two-dimensional simulations. Accompanying these results are predictions of

the yield from the well mixed model and from three variants of the lamellar

model. The latter are: the lamellar model with no stretch (i.e., µ = 0), the

continuous-stretch model with µ = 1.2 (the Lyapunov exponent) and the baker

map model with τ = (log 2)/1.2.
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Consider first the limit P → 0, corresponding physically to rapid spatial

homogenisation through diffusion. In this limit, the results of the well mixed

model are approached by all our simulations (i.e., simulations of the two-

dimensional problem, and of the various one-dimensional lamellar models)

– cf. [6,9]. The results from the no-stretch and baker map lamellar models

agree extremely closely with one another in this limit. Such agreement is a

consequence of the discrete nature of the stretching and folding in the baker

map – diffusion is so powerful that by t = log 2/1.2 (the first application

of the baker map) the homogenisation is essentially complete, and hence the

stretching and folding has little effect. We find that the true yield (from the

two-dimensional simulations) lies between that obtained from the continuous-

stretch and baker map lamellar models, and is closer to the former than to

the latter.

For P above around 30, the no-stretch lamellar model is a poor predictor

of the yield, although the continuous-stretch and baker map lamellar models

remain reasonably accurate (within approximately 7%) for P up to and slightly

exceeding 300. It should be noted that there is a monotonic fall in the yield

for both the two-dimensional simulations and the continuous-stretch lamellar

model (such a trend agrees with Chella and Ottino [4], although the details are

not directly comparable due to the different parameter values in that study

and ours), whereas the baker map lamellar model has a (shallow) minimum

yield around P = 200. We find that for P < 300 the yield from the baker map

lamellar model is less than that from the full two-dimensional simulation,

which in turn is less than that from the continuous-stretch lamellar model.

(We find similar trends in our simulations at moderate reaction rate, although

the ‘threshold’ Péclet numbers are approximately three times greater than

those given above.)

In the limit of large P , the yields from the continuous-stretch and baker map

lamellar models appear to tend towards the same limit: since diffusion is slow

in this limit, the reaction proceeds only slowly and many periods are required

in order to obtain a significant amount of product. Thus the discrete nature

of the mixing in the baker map model is effectively averaged, and mimics

well the continuous stretching in the other lamellar model. However, results

from the two-dimensional simulations do not appear to approach those of the

lamellar models in this large-P limit. It might thus appear that the lamellar

models as we have described them are of limited use in capturing accurately

23



the behaviour of the full two-dimensional system. One might attempt to im-

prove the fit of the lamellar models by noting that the no-stretch lamellar

model, with µ = 0, underestimates the yield (significantly so for P greater

than around 30), while the other lamellar models, with stretch rate µ = 1.2

corresponding to a Lyapunov exponent, overestimate the yield. The yield from

the lamellar models can therefore be brought into line with the true yield by

the device of adopting a reduced value of µ. However, we have found that with

such a reduced value of µ the lamellar models give a poor prediction of the

time evolution of the reactants, despite getting the ultimate yield right. It is

therefore not clear that the artificial reduction of µ is appropriate or justified

in improving the predictive power of these lamellar models. (Note that the

topological entropy is generally greater than the Lyapunov exponent, and we

find that using the topological entropy for µ leads to even worse agreement

between lamellar models and full two-dimensional simulations.)

4.5 Discussion

One might ask to what extent the present results are surprising: certainly none

of the reduced models incorporate all aspects of the two-dimensional problem

(as we indicated in the Introduction), and, consequently all begin to fail as the

effects of the fluid mixing become more pronounced (i.e., in the limit P → ∞).

This failure of the reduced models can surely come as no surprise. Neither

can the indifference of the yield to the exact nature of the reduced model

in the opposite limit, P → 0, where homogenisation becomes instantaneous,

for reasons outlined above. The contribution of the present article is certainly

not in demonstrating the success of any of the described models as P → 0

and none as P → ∞. Rather, its contribution is two-fold. First, we give for

the first time accurate simulations of the two-stage reaction scheme (1) in a

chaotic flow, across a range of Péclet numbers. Second, we give in quantitative

terms an indication of the range in Péclet number over which one might hope

that the reduced models correspond to the full two-dimensional simulations.

It is not our thesis that those reduced models described here should ever be

wholly adopted as a proxy for the full system. But reduced models similar to

those evaluated here are used as a test-bed for theoretical advances, apparently

on the tacit assumption that the insights gained will ‘scale up’. The present

results are offered as a quantitative ‘reality check’ on the extent to which such
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aspirations might hold good.

5 Conclusions

We have carried out accurate simulations of a two-stage competitive–consecutive

chemical reaction in the liquid phase, chaotically mixed from an initially seg-

regated initial state. We have computed the effect of fluid mixing on the yield

for a range of Péclet numbers, and have compared these two-dimensional sim-

ulations with a variety of reduced models, to evaluate the predictive power

of the latter, focusing on fast reactions. For such reactions, the well mixed

model holds in the limit P → 0, as one might expect. For P > 10 the well

mixed performs poorly, and for P > 30 so does a lamellar model that does

not account for the fluid mixing. In order to model the effects of fluid mixing,

a lamellar model requires some estimate of a typical stretching rate generated

by the flow, and there can be wide variations in the predicted yield, depend-

ing on how this quantity is specified. The variation is greatest at large P .

The lamellar models give broadly the correct trend, that the yield diminishes

as the effects of segregation and fluid mixing become more significant (i.e.,

as P increases), and give reasonable quantitative estimates of the yield for

moderate P , up to around 300. For larger P , though, the lamellar models sig-

nificantly overestimate the yield. However, the lamellar models that we have

considered are relatively simple variants, and it remains to be seen whether

more sophisticated lamellar models might improve over the versions presented

here. These might involve modelling the effects of curvature of the lamellae,

simulating a greater number of lamellae, with a nonuniform distribution of

widths (reflecting the corresponding distribution of striation widths generated

by the chaotic fluid flow).

Appendix

A Early time behaviour at a single interface

At O(T 0) in (25)–(26), we find that Â′′
0 + 2ηÂ′

0 = 0 and B̂′′
0 + 2ηB̂′

0 = 0,

for which the solutions satisfying the appropriate boundary conditions are
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Â0 = 1
2
A0(1 − erf η) and B̂0 = 1

2
B0(1 + erf η). There are no products formed

at this order.

At O(T 1) in (25)–(26), we find that

Â′′
1 + 2ηÂ′

1 − 4Â1 = k1PA0B0(1− erf 2η), (A.1)

B̂′′
1 + 2ηB̂′

1 − 4B̂1 = k1PA0B0(1− erf 2η), (A.2)

subject to Â1, B̂1 → 0 as η → ±∞. Thus Â1 = B̂1 = −k1PA0B0φ(η), where

φ(η) is the (positive, even) function satisfying

φ′′ + 2ηφ′ − 4φ = −(1− erf 2η), (A.3)

subject to φ → 0 as η → ±∞. In computing the leading-order effects of the

mixing upon the reaction yield, we shall not need to compute φ(η) itself [15],

although it will prove useful to note that integration of (A.3) over the interval

−∞ < η < ∞ yields

∞∫

−∞
φ(η) dη = 1

6
I, where I =

∞∫

−∞
1− erf 2η dη ≈ 1.5958.

From (21) and (22), it follows that

R̂1 = k1PA0B0φ(η) [= −Â1 = −B̂1].

Although this expression gives the leading-order generation of R at small

times, it carries no information about the initial effects of the mixing upon

the yield, so we turn to the next order in T to determine this.

At O(T 2), we find that R̂2 satisfies

R̂′′
2 + 2ηR̂′

2 − 8R̂2 = 4P(k1Â0 + (k1 + k2)B̂0)R̂1 + 8k1P2µÂ0B̂0, (A.4)

where we have used the result that R̂1 = −Â1 = −B̂1. Integration of this

expression over the interval −∞ < η < ∞, gives

∞∫

−∞
R̂2(η) dη = − 1

30
k1P2A0B0(k1A0 + (k1 + k2)B0)I − 1

5
k1P2µA0B0I.
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The first term on the right-hand side of this expression reflects reduced pro-

duction of R due to two factors: first, the depletion of A and B; second, the loss

of R in the secondary reaction with B. The second term provides information

about the effects of the fluid mixing. Thus the total amount of R produced,

per unit initial length in y, is

〈R〉 ∼ 2k1PA0B0IT 1/2
{

1
6
T −PT 2

[
1
30

(k1A0 + (k1 + k2)B0) + 1
5
µ

]}
,

where 〈R〉 ≡ eµt
∫∞
−∞ R dx. The exponential factor in the definition of 〈R〉

reflects the exponentially growing nature of the interface in the y-direction.
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Figure captions

(1) Sine flow (8), (9). Left: flow during first half-period. Right: flow during

second half-period.

(2) Poincaré maps for the sine flow with T = 0.8 (left) and T = 1.6 (right).

(3) Concentration field of R after ν periods of the sine flow for ν = 1, 2, . . . , 12

(reading along rows, from top left to bottom right) at T = 0.8 and P =

104.

(4) Kinematic evolution of the interfaces x = 0 and x = 1/2 after, from left

to right, one, two and three periods of the sine flow (T = 0.8) – cf. the

first three plots of Figure 3.

(5) Concentration field of R after 1, 2, . . . , 12 periods of the sine flow (reading

along rows, from top left to bottom right) at T = 1.6 and P = 104. In

each plot, white and black correspond, respectively, to maximum and

minimum concentrations in that plot.

(6) Concentration field of S after 1, 2, . . . , 12 periods of the sine flow (reading

along rows, from top left to bottom right) at T = 1.6 and P = 104.

In each plot, white and black correspond, respectively, to maximum and

minimum concentrations in that plot.

(7) As first two rows of Figure 5, except that all plots have common grey-

scale, with black corresponding to zero concentration and white to the

concentration at large time. Note the loss of contrast with time.

(8) Plot of total amount 〈R〉 against t for P = 104. Upper and lower curves

correspond, respectively, to T = 1.6 and T = 0.8.

(9) Plot showing agreement between early-time prediction of 〈R〉 (dotted line

µ = 0; dashed line µ = 1.2) and value computed from full two-dimensional

simulations (solid line) for T = 1.6 and P = 1.

(10) Application of the baker map to the lamellar array, carried out at discrete

times t = ντ (ν = 1, 2, 3, . . .). First the lamellae are squashed to half their

width, then a mirror image set of lamellae is adjoined along x = 1/2.

(11) Final yield of product R as a function of Péclet number P . Curves rep-

resent: full two-dimensional simulations (§3.2); well mixed model (§4.1);

lamellar model with no stretch, µ = 0, and with stretch rate µ = 1.2

(§4.3.1); and baker map model with τ = log 2/1.2 (§4.3.2).
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