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We define Landau quasi-particles within the Gutzwiller variational theory, and derive their dis-
persion relation for general multi-band Hubbard models in the limit of large spatial dimensions D.
Thereby we reproduce our previous calculations which were based on a phenomenological effective
single-particle Hamiltonian. For the one-band Hubbard model we calculate the first-order cor-
rections in 1/D and find that the corrections to the quasi-particle dispersions are small in three
dimensions. They may be largely absorbed in a rescaling of the total band width, unless the system
is close to half band filling. Therefore, the Gutzwiller theory in the limit of large dimensions provides
quasi-particle bands which are suitable for a comparison with real, three-dimensional Fermi liquids.
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I. INTRODUCTION

The calculation of the band structure of metals and
insulators is a central task in solid-state theory. A com-
monly accepted method for this purpose is the density-
functional theory (DFT) which provides surprisingly ac-
curate results for the band structure of many materi-
als1. Furthermore, the DFT is an ‘ab-initio’ theory, i.e.,
it starts from the full Hamiltonian of a real system and
does not require the introduction of any simplified mod-
els. The only competing ‘ab-initio’ theory was Hartree-
Fock theory, which has shown very many shortcomings as
compared to DFT, such as gross overestimation of band
widths and band gaps.

However, from a theoretical point of view, the suc-
cess of the DFT for band structures is rather astonish-
ing because this theory is a generic approach to ground-
state properties only. All results on energy bands are
extracted from auxiliary one-particle dispersions which
have no physical meaning at the outset. Indeed, some
shortcomings of the DFT energy bands have become ev-
ident very early, in particular the underestimation of
the fundamental gap in semiconductors. In semiconduc-
tors and insulators, the so-called GW approximation to
the one-particle Green function has been put forward2.
There, the single-particle self energy is calculated using
a Green function based on the DFT wave functions and
the screened Coulomb interaction. It turns out that the
GW quasi-particle bands are more or less rigidly shifted
against the DFT bands so that the band gap results of
GW calculations for semiconductors and insulators agree
much better with experiment.

For materials with strong electron-electron interac-
tions, the DFT results have not been too convincing,
in particular for magnetic insulators and other strongly

correlated electron systems. For the iron group met-
als the discrepancies of DFT results to experimental
data, e.g., angle-resolved photo-emission spectroscopy
(ARPES), increase towards the end of the series, i.e.,
towards nickel; for a detailed discussion on the discrep-
ancies between DFT results and experimental data on
nickel, see Refs. 3,4. For the iron group metals, GW cal-
culations did not yield significant improvements over the
DFT results; for nickel, see Ref. 5.

A proper description of solids with strong Coulomb
interactions requires true many-particle approaches. In
the past, the notorious difficulties of many-particle sys-
tems have restricted such theories to the study of rather
simplified model systems, e.g., the one-band Hubbard
model. Therefore, a comparison with experiments on
real materials could hardly be performed. Only recently,
new non-perturbative many-particle methods have be-
come available which have made possible the investiga-
tion of more realistic many-particle models; see, for ex-
ample, Refs. 3,4,6–8. In Ref. 8 we introduced a class
of Gutzwiller variational wave functions which allow us
to study general multi-band Hubbard models. Expecta-
tion values with these correlated electron states are eval-
uated exactly in the limit of large spatial dimensions,
D → ∞. When applied to nickel, the remaining min-
imization problem is numerically non-trivial because of
the large number of variational parameters; first results
are reported in Refs. 3,4.

The Gutzwiller variational theory provides an approxi-
mate picture of the ground state but, in principle, it lacks
any information about excited states. This drawback can
be overcome in two ways. First, if we take for granted
that the variational ground state is at least qualitatively
close to the true ground state, we may use the varia-
tional state as a starting point for the variational calcu-
lation of excited states. In Ref. 9 we have used this idea
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to determine the spin-wave dispersion in ferromagnetic
multi-band Hubbard models. We have successfully repro-
duced the experimental observation that the low-energy
spin excitations in itinerant ferromagnets are very simi-
lar to those of a system with localized spins. Second, the
calculation of the variational ground-state energy in the
limit of infinite dimensions8 naturally leads to the defi-
nition of an effective single-particle Hamiltonian which,
in some limits, can also be derived in Slave-Boson mean-
field theory10. Very much in the spirit of the DFT we
used the band structure of this effective Hamiltonian for
a successful comparison with ARPES data for nickel. We
have been able to resolve basically all of the LDA short-
comings.

Despite its success, the second approach still lacks a
sound theoretical basis. In this work we derive the (vari-
ational) quasi-particle dispersion referring back to Lan-
dau’s original ideas on Fermi liquids. The Gutzwiller
variational state is an illustrative example for a Fermi-
liquid ground state: the Gutzwiller many-body correlator
acts on the Fermi-gas ground state whereby energetically
unfavorable configurations are gradually reduced. In the
spirit of Fermi-liquid theory, a quasi-particle excitation is
readily viewed as a Gutzwiller-correlated single-particle
excitation of the Fermi-gas ground state. The energy of
this excitation is identical to the quasi-particle disper-
sion in our original work8. Therefore, no revision of our
previous numerical results on nickel3,4 is necessary.

The evaluation of the variational energy in our method
is exact only in the limit of infinite spatial dimensions.
Our application to realistic three-dimensional systems re-
quires that 1/D corrections are well controlled. As is
known from the one-band model, these corrections are
small for ground-state properties such as the (variational)
energy or the effective mass of the quasi-particles at the
Fermi surface. In this work we will present additional re-
sults on 1/D corrections of the quasi-particle dispersion
for the one-band Hubbard model.

Our work is organized as follows. In Sec. II we sum-
marize the basic ideas of Landau-Gutzwiller theory. In
Sect. III we discuss the variational ground state for multi-
band Hubbard models. In Sec. IV we define Landau-
Gutzwiller quasi-particles and derive their energy dis-
persion. In Sect. V we calculate 1/D corrections for the
quasi-particle dispersion of the one-band model. Our pre-
sentation closes with short conclusions. Some technical
details are deferred to the appendix.

II. LANDAU-GUTZWILLER THEORY

In second quantization the Hamilton operator for non-
interacting electrons reads

Ĥ1 =
∑

i 6=j;σ,σ′

tσ,σ′

i,j ĉ+
i;σ ĉj;σ′ +

∑
i;σ

ε̃σ ĉ+
i;σ ĉi;σ . (1)

Here, ĉ+
i;σ creates an electron with combined spin-orbit

index σ = 1, . . . , 2N (N = 5 for 3d electrons) at the

lattice site i of a solid with L lattice sites. The electron
density, n = N/L, is finite in the thermodynamic limit
N →∞, L →∞.

For a translationally invariant system, as considered
throughout this work, this single-particle Hamiltonian is
readily diagonalized in momentum space. Its eigenstates
are one-particle product states |Ψ〉. In particular, the
ground state |Ψ0〉 is the filled Fermi sea where all single-
particle states below the Fermi energy are occupied. All
other eigenstates can be understood as particle-hole ex-
citations of |Ψ0〉.

One essential idea behind Landau’s Fermi liquid the-
ory is the assumption that the Fermi-gas picture remains
valid qualitatively when electron-electron interactions are
switched on; for an introduction, see, e.g., Ref. 11. The
Fermi-gas eigenstates transform adiabatically into those
of the Fermi liquid while keeping their physical prop-
erties. For example, the momentum distribution dis-
plays a discontinuity at the Fermi energy both in the
Fermi gas and in the Fermi liquid. Naturally, the prop-
erties of the ground state and of the particle-hole exci-
tations change quantitatively. Therefore, the excitations
are called quasi-particles and quasi-holes in the Fermi
liquid.

Gutzwiller’s variational theory closely follows the idea
of an adiabatic continuity from the Fermi gas to the Fermi
liquid. Let us introduce a general class of Gutzwiller-
correlated wave functions via

|ΨG〉 = P̂G|Φ〉 . (2)

Here, |Φ〉 is any normalized one-particle product state.
The Gutzwiller correlator

P̂G =
∏

i

P̂i;G (3)

is a many-body operator which suppresses those configu-
rations which are energetically unfavorable with respect
to the electron-electron interaction. Therefore, the (ap-
proximate) Fermi-liquid ground state

|Ψ0
G〉 = P̂G|Φ0〉 (4)

evolves smoothly from a Fermi-gas ground state |Φ0〉
when the electron-electron interaction is switched on. In
fact, this concept has been used by Vollhardt12 to develop
a microscopic theory for the ground-state properties of
liquid 3He on the basis of Gutzwiller’s approach.

In this work, we use Landau’s idea to extend Gutzwil-
ler’s variational approach to quasi-particle excitations.
In principle, this does not pose a big problem. Instead of
a Fermi-liquid ground state |Φ0〉, we use single-particle
excitations |Φ〉 of the Fermi gas in (2) to define quasi-
particle states. In Sect. IV we will give a proper math-
ematical definition of a quasi-particle excitation. Here
we point out that all restrictions of Fermi-liquid theory
apply. For example, only the low-energy properties of
metals, close to the Fermi energy, ought to be described
in this way. Nevertheless, experiments on metals show
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that well-defined but life-time broadened quasi-particle
excitations can be found even for energies of about 10 eV
below the Fermi energy. Therefore, the concept of quasi-
particles and quasi-holes remains meaningful for those
parts of the valence and conduction bands which are rel-
evant in solid-state physics.

III. VARIATIONAL ENERGY

A. Multi-band Hubbard Hamiltonian and
Gutzwiller variational states

In the following we study multi-band Hubbard models
where the electron-electron interaction is purely local,

Ĥ = Ĥ1 +
∑

i

Ĥi;at . (5)

Here, the atomic Hamiltonian Ĥi;at contains all possible
Coulomb-interaction terms between electrons on site i,

Ĥi;at =
∑

σ1,σ2,σ3,σ4

Uσ1,σ2;σ3,σ4 ĉ+
i;σ1

ĉ+
i;σ2

ĉi;σ3
ĉi;σ4

. (6)

We assume that the eigenstates |Γ〉i of the atomic Hamil-
tonian have been determined

Ĥi;at =
∑
Γ

Ei;Γm̂i;Γ , m̂i;Γ = |Γ〉i i〈Γ| . (7)

This is possible in all cases of interest, at least numeri-
cally. In the following, the site index will often be sup-
pressed as we are primarily interested in translationally
invariant systems.

The Gutzwiller theory allows us to study the Hamil-
tonian (5) with an arbitrary number of orbitals8. In this
work, however, we will restrict ourselves to the special
case where non-degenerate orbitals belong to different
representations of the respective point-symmetry group.
For example, in cubic symmetry we allow for only one
set of s, p, d(eg) and d(t2g) orbitals.

The Gutzwiller correlator

P̂G =
∏

i

P̂i;G =
∏
i;Γ

λ
bmi;Γ
i;Γ (8)

is parameterized by 22N real numbers λi;Γ. For an ener-
getically unfavorable atomic configuration |Γi〉 the mini-
mization will result in λi;Γ < 1 whereby its weight in |Φ〉
is reduced.

B. Extrema of the variational energy

In the limit of large spatial dimensions, the expectation
value of the Hamiltonian (5) in the wave function (2) can
be expressed in terms of the one-particle product wave
function |Φ〉 and the expectation values

mΓ = 〈m̂Γ〉ΨG =
〈ΨG|m̂Γ|ΨG〉
〈ΨG|ΨG〉

; (9)

for all details, see Ref. 8. After a lengthy calculation one
obtains the following variational energy

Evar = 〈Ĥ〉ΨG =
∑
σ,σ′

∑
k

Sσ,σ′(k)〈ĉ+
k;σ ĉk;σ′〉Φ

+L
∑
Γ

EΓmΓ , (10a)

Sσ,σ′(k) =
√

qσ
√

qσ′εσ,σ′(k) + δσ,σ′ ε̃σ , (10b)

where

εσ,σ′(k) =
1
L

∑
l 6=m

tσ,σ′

l,m exp (−ik(Rl −Rm)) . (11)

The calculation only requires |Φ〉 to be a one-particle
product wave state; |Φ〉 need not be a filled Fermi sea.

For a given set of Coulomb parameters in (6) the renor-
malization factors

qσ = qσ(n0
σ,mΓ) (12)

only depend on the local spin-orbital densities

n0
σ = 〈n̂σ〉Φ (13)

and the variational parameters mΓ for states |Γ〉 with
more than one electron. An explicit expression for (12)
has been given in Ref. 8, but it is not needed for our
further considerations. Note that for our symmetry-
restricted orbital basis

n0
σ = nσ = 〈n̂σ〉ΨG (14)

holds.
Evar in (10) depends on the variational parameters mΓ,

the local densities nσ, and the wave function |Φ〉. How-
ever, the constraints

nσ = 〈Φ|n̂σ|Φ〉 ; n =
∑

σ

nσ (15)

have to be respected during the minimization as we work
for fixed nσ and n in the sub-space of normalized one-
particle product states, 〈Φ|Φ〉 = 1. We introduce La-
grange parameters ESP, λσ, and Λ for these constraints
which leads to the energy functional

Ec[Φ,mΓ, nσ, λσ,Λ] = Evar[|Φ〉 ,mΓ, nσ]

−L
∑

σ

λσ

[
nσ − 〈Φ| n̂σ |Φ〉

]
−LΛ(n−

∑
σ

nσ) (16)

+ESP(1− 〈Φ|Φ〉) .

Ec has now to be minimized with respect to all quantities
|Φ〉, ESP, mΓ, nσ, λσ, and Λ independently.

First, we use the condition that (16) is extremal with
respect to |Φ〉 and ESP. This gives us the following effec-
tive Schrödinger equation which has to be solved in the
sub-space of normalized states |Φ〉

Ĥ eff |Φ〉 = ESP |Φ〉 (17)
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with

Ĥ eff =
∑
σ,σ′

∑
k

(Sσ,σ′(k) + δσ,σ′λσ)ĉ+
k;σ ĉk;σ′ . (18)

The effective one-particle Hamiltonian Ĥ eff can be diag-
onalized,

Ĥ eff =
∑
k,r

E(k, r)ĥ+
k,rĥk,r (19)

by introducing proper creation and annihilation opera-
tors

ĥ+
k,r :=

∑
σ

Fk,σ,rĉ
+
k,σ ; ĥk,r :=

∑
σ

F ∗
k,σ,rĉk,σ . (20)

Note that the amplitudes Fk,σ,r, the energies E(k, r), and
the operators ĥ+

k,r, ĥk,r still depend on the parameters
mΓ, nσ, and λσ.

Solving the eigenvalue equation (17) is only a necessary
but not a sufficient condition for a state |Φ〉 to minimize
the original energy expression (10). In Sect. III we will
use this ambiguity to define quasi-particles excitations of
the variational Fermi-liquid ground state.

C. Variational Fermi-liquid ground state

In order to obtain our variational Fermi-liquid ground
state, it appears to be the most natural choice to proceed
with the filled Fermi sea for the effective Hamiltonian
Ĥ eff ,

|Φ0〉 =
∏

k,r;E(k,r)<EF

ĥ+
k,r |vacuum〉 . (21)

Here, the Fermi energy EF is determined by the condition

1
L

∑
k,r

Θ(EF − E(k, r)) = n . (22)

The corresponding eigenvalue ESP becomes

ESP =
∑
k,r

E(k, r)Θ(EF − E(k, r)) . (23)

It is difficult to prove rigorously that the state (21) leads
to the global minimum of (10). However, |Φ0〉 is at least
stable with respect to single-particle excitations and it is
difficult to conceive any other state which is consistent
with our underlying Fermi-liquid picture.

When we insert |Φ0〉 into (16) we are led to the energy
function

Ẽc[mΓ, nσ, λσ,Λ] = ESP + L
∑
Γ

EΓmΓ − L
∑

σ

λσnσ

−LΛ(n−
∑

σ

nσ) . (24)

In the variational ground state this expression is extremal
with respect to mΓ, nσ, λσ, and Λ,

∂

∂xi
Ẽc

∣∣∣∣
{xj}={xj}

= 0 with xi ∈ {mΓ, nσ, λσ,Λ} .

(25)
The optimum values mΓ, nσ, λσ, and Λ define the op-
timum values for the energies E(k, r), the amplitudes

Fk,σ,r, and the operators ĥ+
k,r, ĥk,r. Furthermore, we

can write the variational ground-state energy as

Evar
0 = Ẽc[mΓ, nσ, λσ,Λ] . (26)

The energy (26) depends on the particle density n
both implicitly, mediated by the optimum values mΓ(n),
nσ(n), λσ(n), and Λ(n), and explicitly, due to the term
−LΛ(n)n and the Fermi energy EF ≡ EF(n) in ESP

of (24). Therefore, the (variational) chemical potential

µ =
1
L

dEvar
0

dn
(27)

can be written as

µ =
1
L

∂ESP

∂n
− Λ (28)

+
1
L

∑
xi∈{mΓ,nσ,λσ,Λ}

∂

∂xi
Ẽc

∣∣∣∣
{xj}={xj}

∂xi

∂n
.

The sum in (28) vanishes due to (25) whereas the deriva-
tive of ESP just gives the Fermi energy EF,

1
L

∂ESP

∂n
= EF . (29)

Therefore, the variational chemical potential reads

µ = EF − Λ . (30)

The strategy for the numerical minimization is not
important for our analysis of Landau-Gutzwiller quasi-
particles in the rest of our work. For further reference we
give a short summary of our most efficient procedure.

First, we note that the conditions (∂Ẽc)/(∂λσ) = 0
and (∂Ẽc)/(∂Λ) = 0 take us back to the original con-
straints (15),

nσ =
∂

∂λσ
ESP = 〈n̂σ〉Φ0

=
∑
k,r

|Fk,σ,r|2Θ(EF − E(k, r)) , (31a)

n =
∑

σ

nσ . (31b)

Therefore, we are left with two different sets of variational
parameters, the ‘internal’ parameters mΓ and the ‘exter-
nal’ parameters λσ. Optimizing the energy with respect
to both of these sets is time-costly, for different reasons.
The problem with the internal parameters is their large
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number which is of the order 22N (≈ 500 for d orbitals).
Compared to this there are only a few, 2N , external pa-
rameters λσ. However, each modification of one of these
external parameters demands for momentum-space inte-
grations according to the sums in (31a) and (23). We
found these integrations to be the most time-consuming
part of our numerical minimization. In principle, such in-
tegrals must also be calculated whenever we change the
parameters mΓ, because they determine the amplitudes
Fk,σ,r and the energies E(k, r). In order to avoid this
large number of integrations we write ESP in (24) as

ESP =
∑
σ,σ′

√
qσ
√

qσ′

∑′

k,r

εσ,σ′(k)F ∗
k,σ,rFk,σ′,r

+
∑

σ

(ε̃σ + λσ)
∑′

k,r

|Fk,σ,r|2 , (32)

where the prime on the sums implies E(k, r)) < EF.
Eqs. (24) and (32) show that the parameters mΓ enter
the energy Ẽc in two different ways: (i), indirectly, via
the amplitudes Fk,σ,r or the energies E(k, r) and, (ii),
directly, via qσ in (32) and the second term in (24).
This separation suggests the following numerical itera-
tion scheme:

1. Start with an initial guess for the parameters mΓ,
e.g., their statistical values in the uncorrelated
limit.

2. Minimize the energy with respect to the parame-
ters λσ while all mΓ are fixed. During this mini-
mization the constraint (31b) must be respected.

3. Minimize the energy with respect to the parame-
ters mΓ, while the parameters λσ, the amplitudes
Fk,σ,r, the energies E(k, r) and the wave function
|Φ0〉 remain fixed during step 3.

4. Go back to step 2 unless the reduction of Evar be-
comes sufficiently small.

The above procedure represents only a rough picture of
our numerical minimization. For example, in practice
one finds that some of the parameters λσ play only a mi-
nor role and, therefore, are fixed during the whole min-
imization. However, we are not going to discuss these
numerical details in this work because they depend on
the specific material under investigation.

IV. LANDAU-GUTZWILLER
QUASI-PARTICLES

A. Definition

The Gutzwiller theory provides |Ψ0
G〉, an approximate

description of the true many-body ground state. In or-
der to extend the variational description to quasi-particle
excitations, we closely follow Landau’s ideas. We seek

creation and annihilation operators ê+
p,t and v̂p,t which

must obey the same Fermi-Dirac distribution around the
Fermi surface as uncorrelated electrons, i.e., we postulate〈

Ψ0
G

∣∣ ê+
p,tv̂p,t

∣∣Ψ0
G

〉
〈Ψ0

G|Ψ0
G〉

= Θ(EF − E(p, t)) , (33)

at zero temperature. We will see below that it is actually
possible to define operators ê+

p,t and v̂p,t which obey (33)
in the whole Brillouin zone and not only around the Fermi
surface. This implies that our variational approach does
not capture the damping of quasi-particles.

1. Quasi-particles for a rigid Fermi-sea background

First, we adopt the viewpoint of a fixed Fermi-sea back-
ground, i.e., we assume that a quasi-particle is added
to the N -particle system whose variational parameters
have been fixed by the minimization of the energy expres-
sion (10), or equivalently, by the conditions (25). This
leads to the optimum one-particle product state for the
N -particle system∣∣Φ0

〉
=

∏
k,r;E(k,r)<EF

ĥ+
p,r |vacuum〉 , (34)

which actually is the ground state of the effective one-
particle Hamiltonian

Ĥeff =
∑
k,r

E(k, r)ĥ+
k,rĥk,r . (35)

The conditions (25) furthermore lead to optimum param-
eters mΓ and by these means define an optimum correla-
tion operator P̂G. Using the one-particle operators ĥ+

p,t

and ĥp,t we can now identify

ê+
p,t := P̂Gĥ+

p,t(P̂G)−1 , (36a)

v̂p,t := P̂Gĥp,t(P̂G)−1 (36b)

as those operators which obey the quasi-particle condi-
tion (33). Note that the inverse operator (P̂G)−1 in (36)
is well defined since we expect all parameters mΓ to be
finite in Fermi-liquid systems.

Adding/removing a quasi-particle to/from the ground
state generates the excited states

|Ψ(p,t)

G 〉qp = ê+
p,t|Ψ

0

G〉 = P̂Gĥ+
p,t|Φ0〉 , (37a)

|Ψ(p,t)

G 〉qh = v̂p,t|Ψ
0

G〉 = P̂Gĥp,t|Φ0〉 (37b)

with fixed Fermi-liquid background. As described in
Sect. II, these equations constitute an explicit example
for Landau’s ideas. The Gutzwiller correlator P̂G in (2)
adiabatically transforms Fermi-gas eigenstates |Φ〉 into
(approximate) eigenstates of the Fermi liquid.
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The energy of quasi-particles or quasi-holes is defined
as

Eqp(p, t) = ±(E
var

0 (p, t)− Evar
0 )− µ (38)

where

Evar
0 = 〈Ĥ〉ΨG

= (26) , (39a)

E
var

0 (p, t) = 〈Ĥ〉
Ψ

(p,t)
G

. (39b)

The ±-sign refers to quasi-particle or quasi-hole states,
respectively. We define the quasi-particle energy (38) in
reference to the (variational) chemical potential of the
system, see (27). Note that the energy in (38) is of order
unity whereas those in (39) are of O(L).

2. Quasi-particles with background relaxation

When we add a particle to the N -particle system we
may expect that the variational parameters will adjust
to the presence of the additional particle. Therefore, we
may want to work with

|Ψ(p,t)
G 〉qp = P̂Gĥ+

p,t|Φ0〉 , |Ψ(p,t)
G 〉qh = P̂Gĥp,t|Φ0〉 ,

(40)
where the N -particle Fermi sea |Φ0〉 is defined according
to (21). Note that the operators ĥ+

p,t, ĥp,t still depend on
the parameters mΓ, nσ, and λσ for a system with N ± 1
particles. Then,

Eqp(p, t) = ±(Evar
0 (p, t)− Evar

0 )− µ (41)

with

Evar
0 (p, t) = Min

mΓ,nσ,λσ,Λ

[
〈Ĥ〉

Ψ
(p,t)
G

−LΛ(n± 1
L
−

∑
σ

nσ)
]

(42)
is the definition of the quasi-particle and quasi-hole en-
ergy with background relaxation.

One may wonder whether the two definitions (38)
and (41) will lead to different results for the energies of
quasi-particles and quasi-holes. Fortunately, this is not
the case in the thermodynamic limit, i.e.,

Eqp(p, t) = Eqp(p, t) +O(1/L) , (43)

as we will show explicitly in appendix A. The addi-
tion/subtraction of one particle leads to a change in the
optimized variational parameters to order (1/L), and, in
principle, this could result in a change of the variational
energy Evar

0 to order unity. However, this quantity is ex-
tremal with respect to the variational parameters, so that
it changes only to order (1/L) for parameter variations
around their optimal values. Therefore, the change of the
quasi-particle energies due to the background relaxation
vanishes in the thermodynamic limit.

B. Quasi-particle dispersion

In the following we focus on Eqp(p, t) because the eval-
uation of (38) is more involved. The energy (42) is given
by

Evar
0 (p, t) = Min

mΓ,nσ,λσ,Λ

[
Ẽ(p,t)

c [mΓ, nσ, λσ,Λ]
]

(44)

where

Ẽ(p,t)
c [mΓ, nσ, λσ,Λ] = E

(p,t)
SP +

∑
Γ

EΓmΓ − L
∑

σ

λσnσ

−LΛ(n± 1
L
−

∑
σ

nσ) (45)

and

E
(p,t)
SP = ±E(p, t) +

∑
k,r

E(k, r)Θ(EF − E(k, r)) . (46)

The (±) sign in (45) and (46) correspond to a quasi-
particle and quasi-hole state, respectively.

Adding or removing a particle changes the parameters
mΓ, nσ, λσ, and Λ and the energies E(k, t) only by terms
of the order (1/L) compared to their values in the N -
particle ground state,

xi = xi +
δxi

L
with xi ∈ {mΓ, nσ, λσ,Λ} ,

(47a)

E(k, t) = E(k, t) +
δE(k, t)

L
. (47b)

Thus we may expand (45) in terms of (1/L) up to order
unity,

Ẽ(p,t)
c [mΓ, nσ, λσ,Λ] = Ẽc[mΓ, nσ, λσ,Λ]

±(E(p, t)− Λ) + δẼc (48)

δẼc =
∑

xi∈{mΓ,nσ,λσ,Λ}

∂

∂xi
Ẽc

∣∣∣∣
xi=xi

δxi

L
.

(49)

The sum in (49) vanishes according to (25). Using (29)
the quasi-particle dispersion (41) becomes

Eqp(p, t) = E(p, t)− EF . (50)

This result does not come as a surprise since the Fermi
surfaces, as defined by the conditions E(p, t) = EF and
Eqp(p, t) = 0, must coincide. In addition, eq. (50) shows
that the quasi-particle dispersion is given by the eigen-
values E(p, t) of the effective Hamiltonian (35) not only
around the Fermi surface but in the whole Brillouin zone.

Note that there are two important differences between
the effective Hamiltonian (35), or, equivalently, (18), and
the bare one-particle Hamiltonian Ĥ1 in (5). First, the
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bands are narrowed in Ĥeff because the Coulomb inter-
action reduces the mobility of the electrons. Second, the
fields λσ which were originally introduced as auxiliary La-
grange parameters act as observable shifts of the energy
bands, e.g., in terms of a magnetic exchange splitting.
Our detailed numerical investigations on Nickel3,4 showed
that both effects, i.e., band-narrowing and band-shifts,
are relevant for a proper description of quasi-particles in
real materials.

V. 1/D CORRECTIONS FOR THE ONE-BAND
HUBBARD MODEL

The energy expression (10) for the wave function (2) is
exact in the limit of infinite spatial dimensions D. There-
fore, its evaluation for real, finite-dimensional systems
constitutes an additional approximation. For the one-
band model it has been shown13 that 1/D corrections of
ground-state properties are actually small in most cases
of interest. An exception is the half-filled Hubbard model
where, in infinite dimensions, the Gutzwiller theory pre-
dicts the so-called Brinkman-Rice transition where all
electrons become localized at some finite critical interac-
tion strength UBR. This metal-insulator is known to be
an artifact of the limit D →∞ because it is absent in all
finite dimensions14. Consequently, 1/D corrections must
become important in this special case.

A. First order corrections: analytical results

In the case of only one orbital per lattice site, the gen-
eral Hamiltonian (5) reduces to

Ĥ =
∑
k

∑
σ=↑,↓

ε(k)ĉ+
k,σ ĉk,σ + U

∑
i

n̂i↑n̂i↓ . (51)

We consider a hyper-cubic lattice with only nearest-
neighbor hopping-terms where the bare dispersion in (51)
is given by

ε(k) = −
√

2
D

D∑
l=1

cos(kl) . (52)

The Gutzwiller wave function will be evaluated in its
original form13, i.e., the variational parameter λ(↑↓) for
the doubly occupied state |Γ〉 = |↑↓〉 is replaced by the
parameter g. For the one-band model both definitions
are equivalent.

The variational ground-state energy of the Hamilto-
nian (51) in infinite dimension reads

E∞(g, n) = L
[
q(g, n)ε0 + Ud(g, n)

]
, (53)

where

ε0 :=
1
L

∑
k,σ

n0
k,σε(k) (54)

is the mean kinetic energy of the non-interacting system.
Here, the renormalization factors q(g, n) and the average
double occupancy per lattice site d(g, n) are given by

q(g, n) =
4

n(2− n)

(n

2
− d(g, n)

)
×

(√
1− n + d(g, n) +

√
d(g, n)

)2

,(55a)

d(g, n) =
n

2
G + n− 1

G + 1
(55b)

with

G =
√

1 + n(2− n)(g2 − 1) . (56)

The momentum distribution of the non-interacting sys-
tem,

n0
k,σ = Θ(EF − ε(k)) , (57)

and the electron density,

1
L

∑
k,σ

n0
k,σ = n , (58)

determine the Fermi energy EF.
We set up the 1/D expansion of a function A(g, n) in

the form

A(g, n) = A∞(g, n) +
1
D

A(1)(g, n) + . . . . (59)

Then, the first-order correction of the ground-state en-
ergy reads

E(1)(g, n) = L
[
t(1)(g, n) + Ud

(1)
(g, n)

]
, (60)

where the corrections to the average kinetic energy and
the double occupancy can be written as

t(1)(g, n) =
1
L

∑
k,σ

n
(1)
k,σεσ(k) , (61)

n
(1)
k,σ(g, n) = f(g, n)

[
(n− 1)(G− 1)

n(2− n)G
ε0 + εσ(k)

]
(ε0)3

×[n(G + 1− n) + 2(1− n)(G− 1)n0
k,σ] ,

(62)

and

d
(1)

(g, n) = h(g, n)(ε0)4 . (63)

Here, we introduced the factors

f(g, n) = −
(

1
1 + g

)2 (
G− 1
G + 1

)2 (
1

n(2− n)

)3

,

(64a)

h(g, n) =
(G + 1− n)(G + n− 1)(G− 1)

2G(G + 1)3n2(2− n)2
. (64b)
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The total ground-state energy to first order in 1/D,

E(g, n) = E∞(g, n) +
1
D

E(1)(g, n) , (65)

has to be minimized with respect to g. However, the
optimum value g of this minimization differs from the
respective value g∞ in infinite dimensions only by terms
of the order 1/D,

g = g∞ +
1
D

g(1) . (66)

Therefore, we can expand the optimum ground-state en-
ergy in terms of 1/D as

E(g, n) = E∞(g∞ +
1
D

g(1), n)

+
1
D

E(1)(g∞ +
1
D

g(1), n) (67a)

≈ E∞(g∞, n) +
g(1)

D

∂E∞(g, n)
∂g

∣∣∣∣
g=g∞

+
1
D

E(1)(g∞, n) , (67b)

which leads to

E(g, n) ≈ E∞(g∞, n)+
1
D

E(1)(g∞, n) = E(g∞, n) (68)

because the derivative in (67b) vanishes. From (68) we
see that the optimum ground-state energy is determined
by the optimum parameter g∞ in infinite dimensions and
no minimization of the total energy (65) is required.

In order to determine the quasi-particle dispersion as
defined in (38), we evaluate (39a) and (39b) to order 1/D.
The energy (39a) is given by (68). The expression (68)
also yields the energy (39b) when we perform the replace-
ments

n → n± 1
L

(69a)

n0
k,σ → n0

k,σ ± δk,pδσ,τ (69b)

for a quasi-particle state (+ sign) or quasi-hole state
(− sign) with momentum p and spin τ . A straightfor-
ward expansion of (39b) in terms of 1/L leads to the
quasi-particle energy

Eqp(p, τ) = E
∞
qp(p, τ) +

1
D

E
(1)

qp (p, τ) . (70)

Here, we recover the quasi-particle dispersion in infinite
dimensions,

E
∞
qp(p, τ) = ±q(g∞, n)(ε(p)− EF) , (71)

as already derived in Sec. IV. The first-order correction
reads

E
(1)

qp (p, τ) = ±
[
ε(p)− EF

]
Ẽ

[
ε(p)

]
(72)

with

Ẽ
[
ε(p)

]
= f(g∞, n)(ε0)2

{
− 10

(n− 1)2(G
∞ − 1)2

n(2− n)G
∞ (ε0)2

+6n(G
∞

+ 1− n) + 6(1− n)(G
∞ − 1)ε2

0

+(ε(p) + EF) 2(1− n)(G
∞ − 1)ε0

}
(73)

+4Uh(g∞, n)(ε0)3 .

The quantity G
∞

is given by (56), evaluated at g = g∞,
and ε2

0 is defined by

ε2
0 =

1
L

∑
k,σ

n0
k,σε(k)2 . (74)

Note that in deriving (73) we have used the relations∑
k

ε(k) = 0 ,
1
L

∑
k

[ε(k)]2 = 1 , (75)

which hold for the dispersion relation (52).

B. First-order corrections: numerical results

We are interested in the relative size of the 1/D cor-
rections compared to the result in D = ∞ dimensions.
For this purpose we introduce

m(p) =
Eqp(p, τ)
E
∞
qp(p, τ)

− 1 (76)

as a measure for the deviations from the result in infinite
dimensions.

In the half-filled case, n = 1, the ratio m(p) is inde-
pendent of the wave vector p,

m = m(p) =
1

2D

g − 1
g + 1

ε2
0

[
ε0U − 3(g − 1)

g + 1

]
. (77)

The inset of Fig. 1 shows m = m(p) as a function of
s = 4d/n2 for spatial dimensions D = 1, 2, 3. Here,
0 ≤ s ≤ 1 provides a measure for the correlation strength
in the system. The value s = 1 corresponds to U = 0
and s = 0 is realized at the Brinkman-Rice transition,
U = UBR = 8|ε0|. As seen from the inset of Fig. 1,
1/D corrections are not negligible over a wide range of
interactions, especially in one dimension. In three di-
mensions, these corrections are much smaller but still
about 25% close to the Brinkman-Rice transition.

Since this transition is spurious in finite dimensions,
1/D corrections have to be large in the half-filled Hub-
bard model. For an application of our method to real
Fermi-liquid systems it is more reasonable to study
cases of non-integer band filling. Fig. 1 shows the ra-
tio m(pF) at the Fermi surface for different band fill-
ings n = 1, 0.99, 0.95, 0.9, 0.8, 0.5, 0.2 in three dimensions.
The respective results for band-fillings n′ = 2− n follow
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FIG. 1: Renormalization factor m(pF) for the quasi-particle
dispersion at the Fermi energy as a function of s = 4d/n2

for band fillings n = 1, 0.99, 0.95, 0.9, 0.8, 0.5, 0.2 (from top to
bottom at s = 0.2) in three dimensions. Inset: special case of
half band-filling for dimensions D = 1 (dashed line), D = 2
(dotted line), and D = 3 (full line).

identically due to particle-hole symmetry. As expected,
the corrections in Fig. 1 become much smaller away from
integer filling.

The data in Fig. 1 show m(pF) at the Fermi energy.
However, for n 6= 1, there also is a momentum depen-
dence of m(p) which can become significant close to half
band filling. In Fig. 2 we show the width of first order
contributions,

∆m = Max
p

|m(p)−m(pF)| , (78)

on a logarithmic scale for the same band fillings as in
Fig. 1. Although ∆m strictly vanishes for n = 1 we
see from Fig. 2 that ∆m can become relatively large for
n <∼ 1. This means that around the half-filled case we
find 1/D corrections which strongly depend on the wave
vector.

As long as ∆m � m(pF), a finite value of m(p)
amounts to a rescaling of the overall band width. When
we apply our theory to real materials3,4 the band width
is basically controlled by the Racah-parameter A which
we adjust to fit the experimental band width. There-
fore, 1/D corrections without a significant momentum
dependence will not modify the band structure in our
variational approach.

As shown in Figs. 1, 2 the results for D → ∞ be-
come questionable only close to integer filling and for
very strong correlations. Therefore, we have reasons to
believe that the quasi-particle dispersions as calculated
in D = ∞ in Sect. IV provide a good starting point for
a sensible comparison with experimental data. The good
agreement between experiments and our theoretical re-
sults on nickel3,4 supports such an optimistic point of
view.
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FIG. 2: Maximal width of the renormalization factor ∆m for
the quasi-particle dispersion as a function of s = 4d/n2 for
band fillings n = 1, 0.99, 0.95, 0.9, 0.8, 0.5, 0.2 in three dimen-
sions, shown on a logarithmic scale; notation as in Fig. 1.

VI. CONCLUSIONS

In this work we used Landau’s Fermi-liquid picture to
define quasi-particle excitations in terms of Gutzwiller-
correlated wave functions. Starting from the opti-
mum variational ground state of a general multi-band
Hubbard-model we identified operators which describe
the creation and annihilation of quasi-particles in this
state. We calculated the quasi-particle dispersion analyt-
ically in the limit of infinite dimensions. Our variational
states provide an illustrative example for Landau quasi-
particles. They are also suitable for numerical investiga-
tions, e.g., with variational Monte-Carlo techniques.

We gave two definitions of quasi-particle operators,
with and without a relaxation of the Fermi-sea back-
ground. It turns out that it is more convenient to allow a
(small) change of the variational parameters of the Fermi-
sea background in the presence of the quasi-particles. We
showed that both cases lead to the same result for the
quasi-particle dispersion. This absence of a orthogonal-
ity catastrophe is characteristic for Fermi liquids.

Our results confirm our earlier calculations in which
the quasi-particle dispersion had been extracted phe-
nomenologically from an effective one-particle Hamilto-
nian3,4,8. In contrast to density-functional theory, our
quasi-particle dispersions correspond to mathematically
well-defined (variational) states in realistic multi-band
Hubbard models. In general, our quasi-particle bands are
narrower than the DFT bands because of the hopping-
reduction factors qσ in (10). Moreover, as seen in (18),
the Gutzwiller theory has the flexibility for the adjust-
ment of the orbital energies through the parameters λσ

so that the DFT bands are shifted and mixed into the
Landau-Gutzwiller quasi-particle bands.

Our derivation of the Gutzwiller theory uses approxi-
mations which become exact in the limit of infinite spa-
tial dimensions, D → ∞. For this reason, we calculated
first-order corrections in 1/D for the quasi-particle dis-
persion of the one-band Hubbard model. Apart from
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the special case close to half band-filling, these correc-
tions were found to be relatively small. Consequently,
the quasi-particle bands as derived in D = ∞ for multi-
band Hubbard models contain the essential information
of the Gutzwiller states in three dimensions, and are thus
suitable for a meaningful comparison with real, three-
dimensional Fermi liquids.
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APPENDIX A: QUASI-PARTICLE DISPERSION
FOR A RIGID FERMI-SEA BACKGROUND

In this appendix we evaluate the quasi-particle disper-
sion (38) and thereby prove that it is identical to the
energy (50).

The variational ground state
∣∣∣Ψ0

G

〉
in (39a) is given as∣∣∣Ψ0

G

〉
= P̂G

∣∣Φ0

〉
, (A1)

where
∣∣Φ0

〉
is the state (21) evaluated for the optimum

values mΓ, nσ, λσ, and Λ. The variational ground-state
energy (39a) therefore reads

Evar
0 =

∑
σ,σ′

∑
k

Sσ,σ′(k;nσ,mΓ)〈ĉ+
k;σ ĉk;σ′〉Φ0

+L
∑
Γ

EΓmΓ . (A2)

Here, we made it explicit that the numbers Sσ,σ′(k)
in (10) depend on nσ and mΓ. The state (37), which
determines the expectation value (39b) can be written as

|Ψ(p,t)

G 〉 = P̂G|Φ
(p,t)〉 , (A3)

where ∣∣∣Φ(p,t)
〉

= ĥ
(+)
p,t

∣∣Φ0

〉
. (A4)

The densities nσ and the parameters mΓ for the state∣∣∣Φ(p,t)
〉

differ from those of the N -particle ground state
only by terms of the order 1/L,

nσ = nσ +
1
L

δnσ , (A5a)

mΓ = mΓ +
1
L

δmΓ , (A5b)

where, for example,

δnσ = ±|Fp,σ,t|2 . (A5c)

Here, the signs ± refer to a quasi-particle or quasi-hole
state, respectively. Using (A4)–(A5) we can write the
energy (39b) as

E
var

0 (p, t) =
∑
σ,σ′

∑
k

Sσ,σ′(k;nσ +
1
L

δnσ,mΓ +
1
L

δmΓ)

× 〈ĉ+
k;σ ĉk;σ′〉Φ(p,t) (A6)

+L
∑
Γ

EΓ(mΓ +
1
L

δmΓ) .

For the expectation value in (A6) we find

〈ĉ+
k;σ ĉk;σ′〉Φ(p,t) = 〈ĉ+

k;σ ĉk;σ′〉Φ0
± δk,pF

∗
p,σ,tFp,σ′,t .

(A7)

An expansion of (A6) in terms of 1/L up to and including
terms of order unity leads to

E
var

0 (p, t) = Evar
0 ±

∑
σ,σ′

Sσ,σ′(p;nσ,mΓ)F
∗
p,σ,tFp,σ′,t

+
∑

γ

δnγ
1
L

∑
σ,σ′

∑
k

〈ĉ+
k;σ ĉk;σ′〉Φ0

× ∂

∂nγ
Sσ,σ′(k;nσ,mΓ)

∣∣∣∣
nσ=nσ

(A8)

+
∑
Γ′

δmΓ′

[
EΓ′ +

1
L

∑
σ,σ′

∑
k

〈ĉ+
k;σ ĉk;σ′〉Φ0

× ∂

∂mΓ′
Sσ,σ′(k;nσ,mΓ)

∣∣∣∣
mΓ=mΓ

]
.

With the help of equations (17) and (18) we find

∂

∂nγ
ESP =

〈
∂

∂nγ
Ĥeff

〉
Φ0

(A9a)

=
∑
σ,σ′

∑
k

〈ĉ+
k;σ ĉk;σ′〉Φ

× ∂

∂nγ
Sσ,σ′(k;nσ,mΓ)

∣∣∣∣
nσ=nσ

(A9b)

= L(λγ − Λ) (A9c)

where the third line (A9c) follows from (24) and (25). In
the same way we can show that∑

σ,σ′

∑
k

〈ĉ+
k;σ ĉk;σ′〉Φ0

∂

∂mΓ′
Sσ,σ′(k;nσ,mΓ)

∣∣∣∣
mΓ=mΓ

=

−L · EΓ′ . (A10)

Therefore, the energy difference in (38) becomes

E
var

0 (p, t)− Evar
0 = ±

∑
σ,σ′

(
Sσ,σ′(p;nσ,mΓ)F

∗
p,σ,tFp,σ′,t

+δσ,σ′(λσ − Λ)|Fp,σ,t|2
)

. (A11)
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The first two terms in this expression just give the eigen-
values E(p, t) of the effective Hamiltonian (35), which
leads to

E
var

0 (p, t)− Evar
0 = ±(E(p, t)− Λ) . (A12)

Thus, by use of (30), the quasi-particle dispersion (39b)

finally becomes

Eqp(p, t) = E(p, t)− EF , (A13)

in agreement with our result for Eqp(p, t) as derived in
Sec. IVB.
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