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SPECTRAL SYNTHESIS AND TOPOLOGIES ON IDEAL SPACES

FOR BANACH ∗-ALGEBRAS

J. F. Feinstein, E. Kaniuth, and D. W. B. Somerset

Abstract This paper continues the study of spectral synthesis and the topologies τ∞ and

τr on the ideal space of a Banach algebra, concentrating on the class of Banach ∗-algebras,

and in particular on L1-group algebras. It is shown that if a group G is a finite extension of

an abelian group then τr is Hausdorff on the ideal space of L1(G) if and only if L1(G) has

spectral synthesis, which in turn is equivalent to G being compact. The result is applied to

nilpotent groups, [FD]−-groups, and Moore groups. An example is given of a non-compact,

non-abelian group G for which L1(G) has spectral synthesis. It is also shown that if G is

a non-discrete group then τr is not Hausdorff on the ideal lattice of the Fourier algebra

A(G).

1991 Maths Subject Classification 46H10, 46K05, 43A45, 22D15

1. Introduction

The goal of ideal theory for Banach algebras is, on the one hand to describe the set

Id(A) of closed two-sided ideals of a Banach algebra A, and on the other hand to use

knowledge of the ideal structure to obtain information about the algebra itself. This usually

involves representing the algebra as a bundle of quotient algebras over a topological base-

space. Standard examples include the Gelfand theory for commutative Banach algebras

and the theory of continuous bundles of C∗-algebras. Another familiar example is the

representation of a C∗-algebra as a bundle of C∗-algebras over its primitive ideal space

with the hull-kernel topology.

In trying to describe the closed ideals of a Banach algebra A, the first question is

whether it is sufficient to know about the primitive ideals of A. This is the question of

‘spectral synthesis’, originally studied for commutative Banach algebras, then for L1-group

algebras and other Banach ∗-algebras, and more recently also for the Haagerup tensor

product of C∗-algebras [1], [13]. On the other hand, the representing of a Banach algebra

as a bundle of quotient algebras involves the study of topologies on the space Id(A), and

its subsets. This is an area which has received considerable attention in recent years, with

the work of Archbold [2], Beckhoff [6], [7], [8], and others [3], [19], [34].

The two main topologies that have been introduced are τ∞ and τr. The first, τ∞,

was defined by Beckhoff [6], using the various continuous norms and seminorms which the

algebra can carry. It is always compact on Id(A), but seldom Hausdorff. In fact, for a
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commutative Banach algebra A, τ∞ is Hausdorff on Id(A) if and only if A has spectral

synthesis [13; 1.8]. Since the topology τ∞ is also Hausdorff for C∗-algebras, and since

C∗-algebras also have a form of spectral synthesis, the third author was led to introduce

a definition of spectral synthesis for a general Banach algebra A, and to investigate the

relation between this and τ∞ [33], [13]. It is known that if A is a separable, unital PI-

Banach algebra then A has spectral synthesis if and only if τ∞ is Hausdorff on Id(A), and

that for a general Banach algebra A the Hausdorffness of τ∞ on Id(A) implies a weak

form of spectral synthesis. Conversely, if A is separable and has a strong form of spectral

synthesis then τ∞ is a T1-topology. Thus spectral synthesis and the Hausdorffness of τ∞
seem to be closely related, and possibly identical.

The second topology that has been introduced is τr [34]. This is also compact on

Id(A), and is Hausdorff whenever τ∞ is [34; 3.1.1]. It was shown in [34; 2.11] that if there

is a compact Hausdorff topology on a subspace of Id(A), which is related to the quotient

norms in a useful way, then that topology necessarily coincides with the restriction of τr.

Thus, for instance, τr coincides with the Gelfand topology on the maximal ideal space of

a unital commutative Banach algebra. There are a number of cases when τr is Hausdorff

but τ∞ is not, e.g. for TAF-algebras [34] and for the Banach algebra C1[0, 1] [12]. For

uniform algebras, however, it turned out that τr is Hausdorff if and only if τ∞ is Hausdorff

[12]. Thus for uniform algebras without spectral synthesis, such as the disc algebra, there

is no useful compact Hausdorff topology on the space of closed ideals.

The purpose of this paper is to continue the study of spectral synthesis and the

topologies τ∞ and τr, concentrating on the class of Banach ∗-algebras. We are interested

in the questions of whether spectral synthesis is equivalent to the Hausdorffness of τ∞ for

these algebras, and whether τr can be Hausdorff when spectral synthesis fails. In Section

2 we employ general techniques of Banach ∗-algebra theory. The main result of the section

is that spectral synthesis is equivalent to the Hausdorffness of τ∞ for a class of Banach
∗-algebras which includes the L1-algebras of [FC]−-groups. In Section 3 we employ group-

theoretic techniques. We give an example of a non-compact, non-abelian group G for

which L1(G) has spectral synthesis, but we show that for nilpotent groups, [FD]−-groups,

and Moore groups, spectral synthesis for L1(G) is equivalent to the compactness of G, and

furthermore that if G fails to be compact then τr fails to be Hausdorff on Id(L1(G)). We

also show that if G is a non-discrete group then τr is not Hausdorff on the ideal lattice of

the Fourier algebra A(G).

We now give the definitions of the various topologies on Id(A), starting with the lower

topology τw. Let A be a Banach algebra. A subbase for τw on Id(A) is given by the sets

{I ∈ Id(A) : I 6⊇ J} as J varies through the elements of Id(A). Thus the restriction

of τw to the set of closed prime ideals is simply the hull-kernel topology. Next we define

τ∞. For each k ∈ N, let Sk = Sk(A) denote the set of seminorms (‘seminorm’ means
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‘algebra seminorm’ in this paper) ρ on A satisfying ρ(a) ≤ k‖a‖ for all a ∈ A. Then Sk

is a compact, Hausdorff space [6]. We say that ρ ≥ σ, for ρ, σ ∈ Sk, if ρ(a) ≤ σ(a) for

all a ∈ A. The point of this upside-down definition is that if ρ ≥ σ then ker ρ ⊇ kerσ.

Clearly if ρ, σ ∈ Sk the seminorm ρ ∧ σ defined by (ρ ∧ σ)(a) = max {ρ(a), σ(a)} is the

greatest seminorm less than both ρ and σ in the order structure. Thus Sk is a lattice.

The topology τ∞ is defined on Id(A) as follows [6]: for each k let κk : Sk → Id(A) be the

map κk(ρ) = kerρ, and let τk be the quotient topology of κk on Id(A). Then τ∞ =
⋂
k τk.

Clearly each τk is compact, so τ∞ is compact.

Next we define the topology τr, which is the join of two weaker topologies. The first

is easily defined: τu is the weakest topology on Id(A) for which all the norm functions

I 7→ ‖a+ I‖ (a ∈ A, I ∈ Id(A)) are upper semi-continuous. The other topology τn can be

described in various different ways, but none is particularly easy to work with. A net (Iα)

in Id(A) is said to have the normality property with respect to I ∈ Id(A) if a /∈ I implies

that lim inf ‖a + Iα‖ > 0. Let τn be the topology whose closed sets N have the property

that if (Iα) is a net in N with the normality property relative to I ∈ Id(A) then I ∈ N . It

follows that if (Iα) is a net in Id(A) having the normality property relative to I ∈ Id(A)

then Iα → I (τn). Any topology for which convergent nets have the normality property

with respect to each of their limits (such a topology is said to have the normality property)

is necessarily stronger than τn, but τn itself need not have the normality property. Indeed

the following is true. Let τr be the topology on Id(A) generated by τu and τn. Then

τr is always compact [34; 2.3], and τr is Hausdorff if and only if τn has the normality

property [34; 2.12]. It is a useful fact that for I ∈ Id(A), Id(A/I) is τ∞– τ∞ and τr– τr

homeomorphic to the subset {J ∈ Id(A) : J ⊇ I} of Id(A) [6; Prop. 5], [34; 2.9].

The following simple lemma is taken from [12; 0.1].

Lemma 1.1 Let A be a Banach algebra. Let (Iα) be a net in Id(A), either decreasing or

increasing, and correspondingly either set I =
⋂
Iα or I =

⋃
Iα. Then Iα → I (τr).

Now let A be a Banach algebra and let Prim(A) be the space of primitive ideals of A

(i.e. the kernels of algebraicially irreducible representations of A) equipped with the hull-

kernel topology. Let Prime(A) be the space of proper closed prime ideals of A, and let

Prims(A) be the space of semisimple prime ideals of A (such ideals are automatically

closed), both spaces also being equipped with the hull-kernel topology. The notation, and

the importance of Prims(A), is explained in [13].

The paper [33] contained a definition of ‘spectral synthesis’, but unfortunately that

definition was slightly too restrictive, and was replaced in [13] by the following definition.

Definition of spectral synthesis A Banach algebra A has spectral synthesis if it has

the following properties:
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(i) Prims(A) is locally compact.

(ii) τw has the normality property on Prim(A) (or equivalently on Prims(A)).

(iii) Id(A) is isomorphic to the lattice of open subsets of Prim(A), under the corre-

spondence I ↔ {P ∈ Prim(A) : P 6⊇ I}. Equivalently, every proper, closed ideal of A is

semisimple.

Remarks (a) It was noted in [13], see [33; 1.1], that if A has spectral synthesis then τw

has the normality property on the whole of Id(A).

(b) The definition just given coincides with the standard one for the class of commu-

tative Banach algebras [13; 1.7]. Recall that a (possibly non-unital) commutative Banach

algebra A has spectral synthesis (usual definition) if the map I 7→ {P ∈ Prim(A) : P ⊇ I}
sets up a 1–1 correspondence between closed ideals of A and Gelfand closed subsets of

Prim(A). This is equivalent to requiring that the hull-kernel and Gelfand topologies co-

incide on Prim(A), and that every closed ideal of A is semisimple.

2. Banach ∗-algebras

In this section we consider spectral synthesis and the topologies τ∞ and τr within the class

of Banach ∗-algebras. We show that our definition of spectral synthesis coincides with the

usual definition for a large subclass which probably contains all the cases of interest. For

a smaller class, which contains the L1-algebras of [FC]−-groups, we are able to show that

spectral synthesis is equivalent to the Hausdorffness of τ∞.

Let A be a ∗-semisimple Banach ∗-algebra with C∗-envelope C∗(A) and self-adjoint

part Asa. Let Prim∗(A) be the set of kernels of topologically irreducible ∗-representations

of A on Hilbert space, with the hull-kernel topology (such representations are automatically

continuous [10; p.196]). The map P 7→ P ∩ A (P ∈ Prim(C∗(A))) maps Prim(C∗(A))

continuously onto Prim∗(A), but is not a homeomorphism in general. If it is a homeo-

morphism then A is said to be ∗-regular. A Banach ∗-algebra A is said to be hermitian (or

symmetric) if every self-adjoint element of A has real spectrum. This has the implication

that every primitive ideal of A is the kernel of a topologically irreducible ∗-representation

on a Hilbert space, or in other words, that Prim(A) ⊆ Prim∗(A), see [25; pp.50-51].

Let A be a ∗-semisimple Banach ∗-algebra. The ‘usual definition of spectral synthesis’

is that A has spectral synthesis if each closed subset of Prim∗(A) is the hull of a unique

closed ideal of A. We begin by showing that for a large class of Banach ∗-algebras, which

probably contains all the relevant examples, this ‘usual definition’ is equivalent to our

definition. Our method requires A to be hermitian and ∗-regular, but spectral synthesis

(in either sense) is a very strong property, and it seems unlikely that a Banach ∗-algebra

could have spectral synthesis but fail to be hermitian and ∗-regular.
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Theorem 2.1 Let A be a hermitian, ∗-regular, ∗-semisimple Banach ∗-algebra. Then A

has spectral synthesis in the sense of this paper if and only if A has spectral synthesis in

the usual sense for ∗-semisimple Banach ∗-algebras.

Proof. As we noted above, we have Prim(A) ⊆ Prim∗(A), since A is hermitian. We also

have that Prim∗(A) ⊆ Prims(A) since every P ∈ Prim∗(A) is prime and semisimple.

Now if A has spectral synthesis in our sense then, by condition (iii), the elements of

Prim(A) separate the closed ideals of A. Since Prim(A) ⊆ Prim∗(A), it follows that

the elements of Prim∗(A) separate the closed ideals of A, and thus that A has spectral

synthesis in the usual sense. Conversely, if A has spectral synthesis in the usual sense then

the elements of Prim∗(A) separate the closed ideals of A. Since each element of Prim∗(A)

is semisimple, it follows that the primitive ideals of A separate the closed ideals of A, and

thus condition (iii) of our version of spectral synthesis holds. It remains to show that

conditions (i) and (ii) of our definition of spectral synthesis are automatically satisfied.

Since A is ∗-regular, Prim∗(A) is locally compact, which implies that Prims(A) is

locally compact, by Remark (a) after [13; Definition 1.2]. Thus property (i) of spectral

synthesis holds.

For property (ii), first observe that if the normality property fails on Prim(A) for

an element a ∈ A, then it also fails for a∗a. For suppose that (Pα) is a net in Prim(A)

converging to P ∈ Prim(A), and that a /∈ P , but that limα ‖a+ Pα‖ = 0. Then a∗a /∈ P ,

because P is the kernel of a topologically irreducible ∗-representation of A on Hilbert space,

but limα ‖a∗a+Pα‖ = 0. Thus it is enough to establish that the normality property holds

for self-adjoint elements. Let a ∈ Asa and let P ∈ Prim∗(A). Then the quotient norm of

a+P in A/P dominates the spectral radius of a+P in A/P . Let C be the completion of

A/P in the C∗-norm from the corresponding topologically irreducible ∗-representation of

A/P . Then the spectral radius of the canonical image of a+P in C is less than or equal to

the spectral radius of a+P in A/P . But the C∗-norm of a+P is equal to the spectral radius

in C. Thus we have shown that, for self-adjoint elements, the quotient norm dominates the

corresponding C∗-norm, for each P ∈ Prim∗(A). On the other hand, the norm functions

are lower semicontinuous on Prim∗(A) for the C∗-norms, since Prim∗(A) ∼= Prim(A), and

it is straightforward to show from this that the normality property holds for the quotient

norms on Prim∗(A). This establishes (ii). Q.E.D.

If G is a locally compact group G, then A = L1(G) is a ∗-semisimple Banach ∗-algebra,

and C∗(A) is the (full) group C∗-algebra C∗(G) of G. The class of locally compact groups

for which L1(G) is hermitian and ∗-regular includes all nilpotent groups and all connected

groups of polynomial growth [27], [9]. It also includes all groups in [FC]− [17], where a

group belongs to [FC]− provided that each conjugacy class has compact closure.
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For a locally compact abelian group G, L1(G) has spectral synthesis if and only if

G is compact. This classical theorem is chiefly due to Malliavin. In the next section we

exhibit a non-compact, non-abelian group G for which L1(G) has spectral synthesis.

It is not difficult to see that an algebra A in the class of hermitian, ∗-regular, ∗-semisimple

Banach ∗-algebras has spectral synthesis if and only if every closed ideal of A is semisimple.

Thus from [13; 1.15] we have the following useful extension result.

Proposition 2.2 Let A be a hermitian, ∗-regular, ∗-semisimple Banach ∗-algebra, and let

J ∈ Id(A). If both J and A/J have spectral synthesis then A has spectral synthesis.

Proof. It follows from the remarks after [13; 1.15] that every closed ideal of A is semisim-

ple. Hence A has spectral synthesis, as we have just observed. Q.E.D.

We are interested in showing that spectral synthesis is equivalent to the Hausdorffness of

τ∞ on Id(A). The next result establishes one direction of this, for a particular class of

Banach ∗-algebras.

Theorem 2.3 Let A be a ∗-semisimple Banach ∗-algebra, and suppose that Prim(C∗(A))

is Hausdorff. If τ∞ is Hausdorff on Id(A) then A has spectral synthesis (in the sense of

this paper).

Proof. By [13; 1.11] it is enough to show that every proper, closed, prime ideal of A

belongs to Prim∗(A) ⊆ Prims(A). Thus let P be a proper, closed, prime ideal of A.

Since
⋂{Q : Q ∈ Prim∗(A)} = {0}, Prim∗(A) is τw-dense in Prime(A). Thus there is a

net (Pα) in Prim∗(A) converging to P (τw). Let (qα) be the corresponding net of quotient

norms in the compact space S1(A). By passing to a subnet, if necessary, we may assume

that (qα) converges to some seminorm q, say, in S1(A). Set Q = ker q. Then Pα → Q (τ∞),

and the normality property for τw [33; 2.5] implies that Q ⊆ P . Set B = C∗(A). For each

α, let P̃α ∈ Prim(B) such that P̃α ∩ B = Pα. By the τ∞-compactness of Id(B) we may

assume that the net (P̃α) is τ∞-convergent in Id(B), with limit R̃ say. Since Prim(B)

is Hausdorff, the set Prim(B) ∪ {B} is τ∞-closed in Id(B), by [6; Proposition 8] and [2;

3.3(b), 4.3(b)]. Hence either R̃ = B, or R̃ ∈ Prim(B). But since P̃α∩A = Pα → R̃∩A (τ∞)

(the restrictions to A of the quotient C∗-seminorms converge), we have that R̃∩A = Q, by

the Hausdorffness of τ∞ on Id(A). Hence R̃ 6= B so R̃ ∈ Prim(B). Thus P ∈ Prim∗(A),

as required. Q.E.D.

It was shown in [20] that if G is an [FC]−-group then Prim(C∗(G)) is Hausdorff.

Now we work in the other direction, trying to show that spectral synthesis implies

that τ∞ is Hausdorff. The following definition is taken from [13].
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Let A be a Banach algebra, and suppose that there is a continuous norm γ on A such

that B, the γ-completion of A, is a C∗-algebra (in this paper A will be a Banach ∗-algebra

with B = C∗(A), so γ will be the maximal C∗-seminorm on A). Extending the definition

from the Haagerup tensor product of C∗-algebras [1; §6], we refer to those closed ideals

in A of the form J ∩ A (J ∈ Id(B)) as upper ideals. The set of upper ideals is denoted

Idu(A). Note that if I is an upper ideal of A then in fact I = J ∩A where J is the closure

of I in B.

Definition [13; 2.4] Let A be a Banach algebra. We shall say that A has property (P) if

A satisfies the following conditions:

(a) there is a continuous norm γ on A such that B, the γ-completion of A, is a

C∗-algebra;

(b) every primitive ideal of A is an upper ideal, i.e. Prim(A) ⊆ Idu(A);

(c) there is a subset R of A ∩ Bsa such that each a ∈ R is contained in a completely

regular, commutative Banach ∗-subalgebra Aa of A (where the norm and the involution

on Aa are those induced by B), and such that if I ∈ Idu(A) and J ∈ Id(A) with J 6⊆ I

then there exists a ∈ R such that Aa ∩ J 6⊆ I.

Recall that a ∗-semisimple Banach ∗-algebraA is said to be locally regular if there is a dense

subset R of Asa such that each a ∈ R generates a completely regular commutative Banach
∗-subalgebra Aa [5; §4]. A locally regular, ∗-semisimple Banach ∗-algebra is automatically
∗-regular [5; Theorem 4.3]. It is shown in [5; Theorem 4.1] that if a locally compact group

G has polynomial growth then L1(G) is locally regular. Furthermore, if ω is a polynomial

weight and either G is compactly generated and of polynomial growth [5], or G ∈[SIN]

[32], then the Beurling algebra L1(G,ω) is also locally regular.

Theorem 2.4 Let A be a hermitian, locally regular, ∗-semisimple Banach ∗-algebra. Then

A has property (P). Hence every upper ideal of Id(A) is τ∞-closed in Id(A), and if A has

spectral synthesis then τ∞ is Hausdorff on Id(A). If Prim(C∗(A)) is Hausdorff then Id(A)

is τ∞-Hausdorff if and only if A has spectral synthesis.

Proof. First we show that A has property (P). Condition (a) is immediate (see [10; p.223]

if need be). Condition (b) follows from the fact that A is hermitian, see [25; pp.50-51]. It

is shown in [17; Lemma 1.2] that if A is a hermitian, locally regular, ∗-semisimple Banach
∗-algebra then for each closed subset E of Prim(A) there is a smallest ideal J(E) of A with

hull equal to E. Furthermore, J(E) is generated by elements from the set
⋃{Aa : a ∈ R}.

Let I be an upper ideal of A and let J be a closed ideal of A not contained in I. Set

E = {P ∈ Prim(A) : P ⊇ I} and F = {P ∈ Prim(A) : P ⊇ J}. Then E 6⊆ F , so [17;
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Lemma 1.2] shows that J(F ) 6⊆ I. Hence there exists a ∈ R such that Aa ∩ J(F ) 6⊆ I.

Since J(F ) ⊆ J , we have established that condition (c) holds.

It now follows from [13; Proposition 2.6] that every upper ideal of Id(A) is τ∞-closed

in Id(A), and if A has spectral synthesis then τ∞ is Hausdorff on Id(A). If, furthermore,

Prim(C∗(A)) is Hausdorff then it follows from [13; Proposition 2.6] and Theorem 2.3. that

Id(A) is τ∞-Hausdorff if and only if A has spectral synthesis. Q.E.D.

Corollary 2.5 Let G be an [FC]−-group. Then τ∞ is Hausdorff on Id(L1(G)) if and only

if L1(G) has spectral synthesis.

Proof. L1(G) is hermitian and locally regular, and Prim(C∗(G)) is Hausdorff [20], so the

result follows from Theorem 2.4. Q.E.D.

In the same way it also follows from Theorem 2.4 that if G is a connected group of

polynomial growth then every upper ideal of L1(G) is τ∞-closed in Id(L1(G)).

It is unknown, for the class of [FC]−-groups, whether spectral synthesis for L1(G) is

equivalent to the compactness of G. Indeed very little is known about spectral synthesis

for [FC]−-groups. It is not even known whether singletons in the primitive ideal space are

sets of synthesis.

3. L1-group algebras and Fourier algebras

In this section we employ group-theoretic techniques, concentrating mainly on L1-group

algebras. We begin with an example of a non-compact, non-abelian group G for which

L1(G) has spectral synthesis. Next we show that if G is a finite extension of an abelian

group then the topology τr is Hausdorff on Id(L1(G)) if and only if L1(G) has spectral

synthesis, which occurs if and only if G is compact. General results allow one to apply this

to the classes of nilpotent groups, [FD]−-groups, and Moore groups (where [FD]− denotes

the class of locally compact groups for which the commutator subgroup has compact

closure, and a locally compact group G is a Moore group if every irreducible unitary

representation of G is finite dimensional). Finally we show that if G is a non-discrete

group then τr fails to be Hausdorff on the ideal space of the Fourier algebra A(G).

Example 3.1 A non-compact group with spectral synthesis. Let p be a prime and let N

be the field of p-adic numbers. Let K be the subset of elements of N of valuation 1. Then

K is a compact subgroup under multiplication. Let G = K ∝ N , where K acts on the

additive group N by multiplication. The group G is often referred to as Fell’s non-compact

group with countable dual.
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The dual group N̂ is canonically isomorphic to N . More precisely, there is a character

χ of N such that χ(x) = 1 if and only if x is a p-adic integer, and then the mapping y 7→ χy,

where χy(x) = χ(xy), is a topological isomorphism between N and N̂ . The irreducible

representations of G are easy to determine using Mackey’s theory. For y ∈ Nj , the K-orbit

of χy is equal to {χt : t ∈ Nj}. Let πj = indGNχy, for y ∈ Nj . Then Ĝ = K̂ ∪ {πj : j ∈ Z}.
The topology of Ĝ has been described in [4; 4.6]. Both K̂ and Ĝ\K̂ are discrete, and a

sequence (πjk )k converges to some (and hence all) σ ∈ K̂ if and only if jk → −∞.

Now let E be a closed subset of Ĝ, and let JE = {j ∈ Z : πj ∈ E} and

F = {0} ∪
⋃

j∈JE
{χy : y ∈ Nj} ⊆ N̂.

Then F is closed and G-invariant, and since the Nj are open and closed in N̂ , the boundary

of F is contained in the singleton {0}. Thus F is a spectral set for L1(N). The projection

theorem for spectral sets [18] shows (in the notation of [18]) that

h(eN (k(F ))) = K̂ ∪E

is a spectral set for L1(G). Since K̂ is discrete, E is open (and closed) in K̂ ∪E, so since

L1(G) has the Wiener property [27], it follows that E is a spectral set for L1(G), see [17;

Remark 1.3].

This example is hermitian by [26] and ∗-regular, so the two possible versions of spectral

synthesis coincide, by Theorem 2.1. The group G also has polynomial growth, so L1(G) is

locally regular. Hence the topologies τ∞ and τr are Hausdorff on Id(L1(G)), by Theorem

2.4 and [34; 3.1.1].

Another strategy for showing that L1(G) above has spectral synthesis might be to

proceed as follows. Let J be the ideal of A = L1(G) given by J = ker K̂. Then J is a

semisimple Banach algebra with discrete primitive ideal space. If it could be shown directly

that J has spectral synthesis then since A/J ∼= L1(K) also has spectral synthesis (because

K is compact), it would follow from Proposition 2.2 that A has spectral synthesis.

We now go on to show that the failure of spectral synthesis implies that the topology τr

is non-Hausdorff, at least for a large class of groups. We are grateful to Colin Graham for

informing us about the following proposition, which he can prove by tensor methods. Here

we provide an alternative proof, in keeping with the methods of this paper.

Proposition 3.2 Let G be a non-compact locally compact abelian group. Then every

non-empty open subset of Ĝ contains a closed subset which is non-spectral.
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Proof. Notice first that for α ∈ Ĝ and I ∈ Id(L1(G)), the mapping f 7→ αf is an

automorphism of L1(G) and h(αI) = α−1h(I). It is enough therefore to show that every

open neighbourhood V of 1 contains a closed non-spectral set.

Since the topology on Ĝ is the topology of uniform convergence on compact subsets

of G, we can assume that V is of the form

V = {α ∈ Ĝ : |α(x) − 1| < ε for all x ∈ C},

where ε > 0 and C is a compact subset of G. Let H be any compactly-generated (open)

subgroup of G containing C, and let φ : Ĝ → Ĥ denote the restriction map α 7→ α|H .

Then

V = φ−1
(
{γ ∈ Ĥ : |γ(x)− 1| < 1 for all x ∈ C}

)
.

In particular, when H is compact, Ĝ/H is open in Ĝ and Ĝ/H ⊆ V . Since, in this case,

G/H is non-compact, Ĝ/H has a closed subset which is non-spectral for L1(G/H), and

hence is non-spectral for L1(G) by the injection theorem for spectral sets. Thus we can

henceforth assume that H is non-compact.

By the projection theorem for spectral sets, for any closed subset F of Ĥ , F is a

spectral set for L1(H) if and only if φ−1(F ) is a spectral set for L1(G). Therefore it

suffices to treat the case whenG is non-compact and compactly generated. By the structure

theorem,

G = Rm × Zn ×K,

whereK is a compact group andm+n ≥ 1. Whenm ≥ 1, pass to H = G/Rm−1×Zn×K =

R, and when m = 0 pass to H = G/Zn−1 × K = Z. Suppose that we know that every

neighbourhood of 1 in Ĥ contains a closed non-spectral set. Then applying the injection

theorem for spectral sets once more, the same follows for Ĝ. Thus we are reduced to the

two cases G = R and G = Z.

Consider G = R first. It is well-known that R̂ = R contains a compact non-spectral

set, although we have not been able to find a specific reference for this fact (in fact such a

set can be formed as a finite union of translates by integers of a suitable compact subset E

of [0, 1], where E is such that the set {exp(2πis) : s ∈ E} is a non-spectral set for L1(Z)).

Thus it is enough to show that if E ⊆ R is non-spectral then so is sE for every s > 0.

Now it is easily verified that the mapping θ : L1(R) → L1(R) given by

(θf)(x) =
1

s
f
(x
s

)
, x ∈ R,

is an (isometric) isomorphism of L1(R) and satisfies

θ̂f (y) = f̂ (sy), y ∈ R.

10



It follows that sE is non-spectral whenever E is.

Finally, let G = Z. Identifying R̂ with R and Ẑ with T, the restriction map p : R̂→ Ẑ

is given by p(y) = e2πiy . Now if V is any neighbourhood of 1 in T, choose 0 < δ < 1
2

such that p((−δ, δ)) ⊆ V . Let E be a closed subset of R such that E is non-spectral

for L1(R) and E ⊆ (−δ, δ), and let F = p(E) ⊆ V . Then E is open (and closed) in

p−1(F ) =
⋃
m∈Z(m+E). Since a clopen subset of a spectral set is itself spectral, it follows

that p−1(F ) is not spectral. Hence the projection theorem implies that F is non-spectral.

Q.E.D.

In order to exploit the existence of non-spectral sets, we need some information about

quotient norms. The following definition is useful.

Let A be a completely regular, natural Banach function algebra on its maximal ideal

space Max(A). Recall that a Gelfand compact subset X of Max(A) is a Helson set if

A|X = C(X) (where C(X) is the algebra of continuous complex functions on X). Letting

I be the closed ideal consisting of elements of A which vanish on X, the least constant k

such that

k sup{|f(x)| : x ∈ X} ≥ ‖f + I‖ for all f ∈ A

is called the Helson constant of X. We say that a Banach function algebra A has the

Helson property (with constant K) if there is a constant K such that whenever U is a

non-empty Gelfand open subset of Max(A) there is an increasing net (Fα)α of Helson sets

of constant bounded by K contained in U such that
⋃
α Fα is Gelfand dense in U .

A subset E of an abelian group G is said to be an independent set [31; 5.1.1] if it has

the following property (following [31] we use additive notation): for every choice of distinct

points x1, . . . , xk of E and integers n1, . . . , nk, either

n1x1 = n2x2 = . . . = nkxk = 0

or

n1x1 + n2x2 + . . .+ nkxk 6= 0.

The importance of this definition is that if G is a locally compact abelian group and F ⊆ Ĝ

is a finite independent set then F is a Helson set with Helson constant bounded by 2 [31;

5.6.7].

A locally compact abelian group is an I-group [31; 2.5.5] if every neighbourhood of the

identity contains an element of infinite order. A simple argument shows that this implies

that every non-empty open subset contains an element of infinite order—indeed the set of

elements of finite order is meagre. The next lemma is similar to [31; 5.2.3].

Lemma 3.3 Let N be a locally compact, second countable abelian group and suppose

either that N is an I-group or that N is an uncountable group in which every non-trivial
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element has order q with q prime. Let U be a non-empty open subset of N . Then there

exists an increasing net (Fα) of finite independent sets contained in U , such that
⋃
α Fα is

dense in U .

Proof. Suppose first that N is an I-group. Let U be a non-empty open subset of N and

let (Xi) be a base of non-empty open sets for the topology on U . Choose x1 ∈ X1 of

infinite order. Suppose, for an inductive hypothesis, that we have chosen an independent

set {x1, . . . , xk} with each xi ∈ Xi and of infinite order. Let S be the countable set

S = {m1x1 + . . . + mkxk : mi ∈ Z}. Let s ∈ S and let m ∈ Z \ {0}. Let solm(s) =

{x ∈ Xk+1 : mx = s}. Then either solm(s) is empty (hence meagre) or else there exists

y ∈ solm(s). In this case

solm(s) = {z ∈ Xk+1 : m(y − z) = 0}
= {x ∈ N : y + x ∈ Xk+1, mx = 0}.

But {x ∈ N : mx = 0} is a closed set, with no interior since N is an I-group, so once again

solm(s) is meagre. Thus
⋃{solm(s) : s ∈ S,m ∈ Z \ {0}} is also meagre, so

⋃
{solm(s) : s ∈ S,m ∈ Z \ {0}} ∩Xk+1

is meagre in Xk+1. Since the set of elements of finite order is also meagre, there ex-

ists xk+1 ∈ Xk+1\
⋃{solm(s) : s ∈ S,m ∈ Z \ {0}} with xk+1 of infinite order. It is

straightforward to check that {x1, . . . , xk, xk+1} satisfies the inductive hypothesis. Evi-

dently
⋃∞
i=1{xi} is dense in U .

Now suppose that N is uncountable and that every non-trivial element of N has order

q with q prime. As before, let U be an open subset of N and let (Xi)i≥1 be a base of non-

empty open sets for the topology on U . Choose 0 6= x1 ∈ X1. Suppose, for an inductive

hypothesis, that we have chosen an independent set {x1, . . . , xk} with each 0 6= xi ∈ Xi.

Let S be the countable set S = {m1x1 + . . . + mkxk : mi ∈ Z}. Let s ∈ S and let

m ∈ Z \ qZ. Let solm(s) = {x ∈ Xk+1 : mx = s}. Then either solm(s) is empty or else

there exists y ∈ solm(s). In this case

solm(s) = {z ∈ Xk+1 : m(y − z) = 0} = {y}

since q does not divide m. Thus
⋃{solm(s) : s ∈ S,m ∈ Z \ qZ} is finite or countably

infinite, so

Xk+1 \
⋃
{solm(s) : s ∈ S,m ∈ Z \ qZ}

is uncountable. Let 0 6= xk+1 ∈ Xk+1\
⋃{solm(s) : s ∈ S,m ∈ Z\qZ}. It is straightforward

to check that {x1, . . . , xk, xk+1} satisfies the inductive hypothesis. Evidently
⋃∞
i=1{xi} is

dense in U . Q.E.D.
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It follows from Lemma 3.3 that if N is a locally compact abelian group such that N̂

is either a second countable I-group or a second countable, uncountable group in which

every non-trivial element has order q with q prime then L1(N) has the Helson property

(with constant 2). In the case of the second countable I-groups, the independent set F

constructed in Lemma 3.3 consists of elements of infinite order. This implies that F is

actually a Helson set with Helson constant 1 [31; 5.1.3 Corollary, and 5.5.2].

For the next lemma, let Dq be the compact group obtained as the direct product of

countably many copies of the cyclic group of order q, where q is an integer, q ≥ 2.

Lemma 3.4 Let G be a locally compact group with an abelian, non-compact, closed,

normal subgroup N of finite index m. Then G has a quotient G′ which has a non-compact

closed normal subgroup N ′ of finite index, such that N̂ ′ is either a second countable I-

group or a second countable, uncountable group in which every non-trivial element has

order q where q is a prime.

Proof. We begin by reducing to the case where G is discrete. Since G has an abelian

subgroup of finite index, G is a projective limit of Lie groups. Thus, passing to a quotient

modulo some compact normal subgroup, we may assume that G is a Lie group. Let N0

denote the connected component of N containing the identity. Then N0 is open in G.

Suppose first that N/N0 is finite. Then, by the structure theory of locally compact,

abelian groups, N is isomorphic to Rn×M where M is a compact group and n ≥ 1 (since

N is non-compact). Then M is normal in G, and N̂/M is isomorphic to Rn, which is a

second countable I-group. Thus we are left with the case where N/N0 is infinite, and so,

passing to G/N0 we may assume that G is discrete.

By [31; 2.5.5] there is a closed subgroup H of N such that either N̂/H is a second

countable I-group or such that N̂/H is isomorphic to Dq for some prime q. However H

may not be normal in G, so set H̃ =
⋂
x∈G x

−1Hx. Then H̃ is normal in G. Choose

coset representatives x1, . . . , xm for G/N , and for 1 ≤ i ≤ m set Hi = x−1
i Hxi. Then the

homomorphism

N̂/H1 × · · · × ̂N/Hm → N̂/H̃

from the product of the subgroups N̂/Hi of N̂/H̃ given by (α1, . . . , αm) 7→ α1 . . . αm is

continuous and has dense range in N̂/H̃ , since this range separates the points in N/H̃ .

Since N is discrete, all of the N̂/Hi are compact and hence the above homomorphism is

surjective. Thus N̂/H̃ is a quotient of the product N̂/H1 × · · · × ̂N/Hm. Note also that

N̂/H̃ is compact and infinite, so is certainly uncountable.

Now if N̂/H is isomorphic to Dq, then every N̂/Hi is isomorphic to Dq and this implies

that N̂/H̃ is second countable, and that every non-trivial element of N̂/H̃ has order q.
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Finally, if N̂/H is a second countable I-group, then N̂/H1 × · · · × ̂N/Hm is also a second

countable I-group. Clearly, then, N̂/H̃ is second countable. Since the homomorphism

above is continuous and each N̂/Hi is an I-group which is a subgroup of N̂/H̃, the latter

is an I-group as well. Q.E.D.

We now introduce some further notation. For a locally compact group G and a closed

subset X of Ĝ, let K(X) denote the kernel of X in L1(G). Then K(X) is the largest ideal

of L1(G) with hull equal to X. Ludwig has shown that if G has polynomial growth and

L1(G) is hermitian then there is a smallest closed ideal j(X) whose hull is equal to X [28].

Now let G be a locally compact group and suppose that G has an abelian, closed,

normal subgroup N of finite index. Let G act on N̂ in the usual way by (x, α) 7→ x · α
(x ∈ G,α ∈ N̂), where x ·α(n) = α(x−1nx) (n ∈ N). Let N̂/G be the set of G-orbits in N̂ ,

with the quotient topology, and let q : N̂ → N̂/G be the quotient map. Let φ : Ĝ→ N̂/G

be the map defined φ(π) = G · α, where α ∈ N̂ and ker(α) ⊇ ker(π|N ). Then q and φ are

both continuous and both open. For a set C ⊆ N̂ , let C̃ = φ−1(q(W )).

Lemma 3.5 Let G be a locally compact group and suppose that G has an abelian, closed,

normal subgroup N of finite index. Suppose that X is a G-invariant compact subset of N̂

and that Y is a G-invariant closed subset of N̂ such that X is contained in the interior of

Y and such that the complement ot Y in N̂ is relatively compact. Then K(Ỹ ) ⊆ j(X̃).

Proof. Let f ∈ K(Ỹ ). By [28] it is enough to find g ∈ K(X̃) such that gf = f . Let

h ∈ L1(N) such that h ∈ K(X) and ĥ takes the constant value 1 on the closure of the

complement of Y . Such a function exists because L1(N) is completely regular and the

complement of Y is relatively compact. Since N is an open subset of G we may extend h

to an element g ∈ L1(G) by setting h(x) = 0 for x ∈ G\N . The element g has the required

property. Thus f ∈ j(X̃). Q.E.D.

Part of the argument of the next theorem adapts a method used in [12; 1.2].

Theorem 3.6 Let G be a locally compact group and suppose that G has an abelian,

non-compact, closed, normal subgroup N of finite index m. Then L1(G) does not have

spectral synthesis, and τr is not Hausdorff on Id(L1(G)).

Proof. The properties of spectral synthesis and of τr being Hausdorff both pass to quo-

tients [34; 2.9]. Thus by Lemma 3.4 we may suppose that the dual N̂ of the abelian

subgroup N is either a second countable I-group or a second countable, uncountable group

in which every non-trivial element has order q, with q prime. (This reduction step is not

required for the proof that L1(G) does not have spectral synthesis).
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For α ∈ N̂ , let Gα denote its stabilizer in G. The lengths of orbits of elements of N̂ are

bounded by m. Let d be the maximal orbit length, and set N̂d = {α ∈ N̂ : |G : Gα| = d}.
Then N̂d is non-empty and open. Let H be the set of subgroups of G of index d. Then

N̂d =
⋃
H∈H N̂H , where the union is disjoint, and N̂H := {α ∈ N̂ : Gα = H}.

Fix H ∈ H. Then there exists a non-empty open set W ⊆ N̂H such that the sets

x ·W (x ∈ G/N) are pairwise disjoint. By Proposition 3.2, W contains a non-spectral

set F for L1(N). Set X = G · F = {x · F : x ∈ G/N}. Then X is G-invariant, and is

also non-spectral since it has F as a non-spectral non-empty clopen subset. Hence X̃ is

also non-spectral by the projection theorem [18; 2.6], which we may use because G has

polynomial growth and L1(G) is hermitian. This shows that L1(G) does not have spectral

synthesis.

Now let (Vα)α be a net of G-invariant, decreasing, open neighbourhoods of X, each

having compact complement in N̂ , such that
⋂
αNα = X (where for each α, Nα is the

closure of Vα). Then (Ṽα)α is a net of decreasing open subsets of Ĝ, and
⋂
α Ñα = X̃.

Hence (K(Ñα))α is an increasing net in Id(L1(G)), and K(Ñα) ⊆ j(X̃) for all α by Lemma

3.5. Hence

I :=
⋃

α

K(Ñα) ⊆ j(X̃).

By Lemma 3.3 there is for each α an increasing net (Hβ(α))β(α) of Helson sets in

Vα, each of Helson constant bounded by 2, such that
⋃
β(α)Hβ(α) is dense in Vα. Then

Fβ(α) := G · Hβ(α) is a G-invariant Helson set, with a bound K dependent on m, but

independent of α, and of course
⋃
β(α)Fβ(α) is also dense in Vα. Hence (K(F̃β(α)))β(α) is

a decreasing net in Id(L1(G)), and
⋂
β(α)K(F̃β(α)) = K(Ñα). Hence K(F̃β(α))

β(α)−→K(Ñα)

(τr) by Lemma 1.1. But K(Ñα)→ I (τr), also by Lemma 1.1, so if (K(F̃γ))γ denotes the

‘diagonal’ net, see [24; §2, Theorem 4], then K(F̃γ)→ I (τr).

Now we show that K(F̃γ) → K(X̃) (τr). First we establish convergence for τn.

Suppose that f /∈ K(X̃). Then there exists P ∈ X̃ such that f /∈ P . For each Q ∈
Prim∗(L1(G)), let Q∗ be the primitive ideal of C∗(G) whose intersection with L1(G) is

equal to Q. Set ε = 1
2‖f+P∗‖∗, where ‖ · ‖∗ denotes the C∗-norm on C∗(G). By the lower

semicontinuity of norm functions for C∗-algebras, there is a hull-kernel neighbourhood

M∗ of P∗ in Prim(C∗(G)) such that ‖f + Q∗‖∗ > ε for all Q∗ ∈ M∗. Let M = {Q ∈
Prim∗(L1(G)) : Q∗ ∈ M∗}. Then M is an open neighbourhood of P in Prim∗(L1(G)),

because G is ∗-regular, so eventually there is for each γ and element Qγ ∈ F̃γ ∩M . Hence

eventually

‖f +K(F̃γ)‖ ≥ ‖f +Qγ‖ ≥ ‖f + (Qγ)∗‖∗ > ε.

This shows that K(F̃γ)→ K(X̃) (τn).

Finally we show that K(F̃γ)→ K(X̃) (τu). By [34; 2.1] it is enough to show that for

each f ∈ K(X̃) and ε > 0 there is a neighbourhood M̃ of X̃ in Ĝ such that ‖f+K(F̃γ)‖ < ε
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whenever F̃γ ⊆ M̃ . Since N is an open subgroup of G there is a projection P : L1(G) →
L1(N) given by P (g) = g|N (g ∈ L1(G)). Then for each coset representative x ∈ G/N ,

P (Lxf) ∈ L1(N), and in fact P (Lxf) ∈ K(F ). Thus there exists a neighbourhood Mx of

F in N̂ such that |P (Lxf)(s)| < ε/(Km) for each s ∈Mx. Hence by the Helson property,

‖P (Lxf) + K(Fγ)‖ < ε/m whenever Fγ ⊆ Mx. Set M =
⋂
x∈G/NMx. Then whenever

Fγ ⊆ M , there is, for each coset representative x ∈ G/N , an hx ∈ K(Fγ) such that

‖P (Lxf) − hx‖ < ε/m. Define h ∈ K(F̃γ) by h(xn) = hx(n) (n ∈ N). Then

‖f − h‖ =

∥∥∥∥∥∥
∑

x∈G/N
f1xN − h1xN

∥∥∥∥∥∥

=
∑

x∈G/N
‖f1xN − h1xN‖

=
∑

x∈G/N
‖P (Lxf) − hx‖ < ε.

Hence K(F̃γ)→ K(X̃) (τu), so

K(F̃γ)→ K(X̃) (τr).

Since I ⊆ j(X̃) and j(X̃) is a strict subset of K(X̃), we have I 6= K(X̃), so τr is not

Hausdorff. Q.E.D.

Note, for the next result, that if a group G has a compact normal subgroup K such

that G/K is a finite extension of a nilpotent group then L1(G) is hermitian and G has

polynomial growth [29], and hence L1(G) is ∗-regular [5]. Thus Theorem 2.1 applies.

Theorem 3.7 Let G be a locally compact group. Suppose that G has a compact normal

subgroup K such that G/K is a finite extension of a nilpotent group. Then the following

are equivalent:

(i) τr is Hausdorff on Id(L1(G)),

(ii) τ∞ is Hausdorff on Id(L1(G)),

(iii) τr and τ∞ coincide on Id(L1(G)),

(iv) G is compact,

(v) L1(G) has spectral synthesis.

Proof. (iv)⇒(ii) is proved in [7; p.72]. The equivalence of (ii) and (iii), and hence the

implication (ii)⇒(i), is proved in [34; 3.1.1]. The implication (iv)⇒(v) is well-known. It

remains to prove that (i)⇒(iv) and that (v)⇒(iv). First we show that (i)⇒(iv).

Suppose that τr is Hausdorff on Id(L1(G)), and suppose too, to begin with, that G is

a finite extension of an [FD]− group, so that G has a closed normal subgroup N of finite
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index with N ∈[FD]−. Let K be the closure of the commutator subgroup of N . Then K

is compact, and K is normal in G. Hence G/K is a finite extension of the abelian group

N/K, and τr is Hausdorff on Id(L1(G/K)). Thus G/K is compact by Theorem 3.6, so G

is compact.

Now we consider the general case when G has a compact normal subgroupK such that

G/K is a finite extension of a nilpotent group. It is enough to show that G/K is compact,

and hence we may suppose that G itself has a nilpotent closed normal subgroup N of finite

index. We proceed by induction on the length l(N) of nilpotency of N . If l(N) = 1 then

N is abelian, so it follows from Theorem 3.6 that G is compact. Now suppose that we

have established the result for l(N) = k ≥ 1, and that l(N) = k + 1. Let Z(N) be the

centre of N . Then Z(N) is normal in G, so G/Z(N) is a finite extension of N/Z(N),

and l(N/Z(N)) = k, so G/Z(N) is compact. Hence N/Z(N) is compact, so N ∈[Z], i.e.

N is a central group. But [Z]⊆[FD]− [16], so we have that G is a finite extension of an

[FD]−-group. Hence G is compact by the previous paragraph.

Finally we show that (v)⇒(iv). This follows by exactly the same argument used for

(i)⇒(iv), replacing the hypothesis that τr is Hausdorff by the hypothesis that L1(G) has

spectral synthesis. This property also passes to quotients, and the appeals to Theorem 3.6

are still valid. Q.E.D.

Theorem 3.7, of course, covers the classes of nilpotent groups and [FD]−-groups. Every

Moore group is a finite extension of an [FD]−-group [30], so Theorem 3.7 also covers Moore

groups.

For the final result of the paper, we apply Theorem 3.5, in the abelian case, to the situation

of Fourier algebras.

Theorem 3.8 Let G be a non-discrete locally compact group with Fourier algebra A(G).

Then τr is not Hausdorff on Id(A(G)).

Proof. Suppose that τr is Hausdorff on Id(A(G)). Then τr is Hausdorff on Id(A(H)) for

every closed subgroup H of G, because A(H) is isomorphic to A(G)/I(H), where I(H) is

the ideal consisting of all functions in A(G) which vanish on H [14; Lemma 3.8].

Suppose first that G is totally disconnected. Then because G is not discrete, G has an

infinite, compact open subgroup K. By [35; Theorem 2], K has an infinite closed abelian

subgroup H. Then τr is Hausdorff on Id(A(H)), and A(H) = L1(Ĥ), so Ĥ is compact by

Theorem 3.6. Hence H is discrete, contradicting the fact that it is infinite and compact.

It remains therefore to show that if τr is Hausdorff on Id(A(G)) then G must be

totally disconnected. Suppose, for a contradiction, that G0, the connected component of

the identity, is non-trivial. A connected group is a projective limit of Lie groups, so there
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is a compact normal subgroup K of G0 such that G0/K is a non-trivial Lie group. But

A(G0/K) is a quotient of A(G0). Indeed the mapping u 7→ u̇, where

u̇(xK) =

∫

K

u(xt)dt

(with normalized Haar measure on K) is a continuous homomorphism of A(G0) onto

A(G0/K) [11]. Thus τr is Hausdorff on Id(A(G0/K)). On the other hand, G0/K is a

connected Lie group, so it is generated by its one parameter subgroups, i.e. images of

analytic homomorphisms of R into G0/K. Hence G0/K contains numerous non-discrete

closed abelian subgroups. As in the previous paragraph, this contradicts the fact that τr

is Hausdorff on Id(A(F )) for each closed abelian subgroup F of G0/K, which forces each

such F to be discrete. Q.E.D.

It was shown in [22] that if G is a discrete group then A(G) has spectral synthesis (and

hence τ∞ and τr are Hausdorff) provided that A(G) satisfies an additional weak condition.

This additional condition is satisfied whenever G is an amenable discrete group, and is

probably satisfied for all discrete groups.

We close this section by observing that the Hausdorffness of τr is not equivalent

to spectral synthesis for general Banach ∗-algebras. The Banach algebra C1[0, 1] is a

hermitian, (locally) regular, ∗-semisimple Banach ∗-algebra without spectral synthesis,

but τr is Hausdorff on Id(C1[0, 1]) [12].
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[9] BOIDOL, J.; LEPTIN, H.; SCHÜRMAN J.; VAHLE, D., Rämme primitiver Ideale

von Gruppenalgebren, Math. Ann. 236 (1978) 1-13.

[10] BONSALL, F.F.; DUNCAN, J., Complete Normed Algebras, Springer-Verlag, New

York, 1973.
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