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Summary

The selection of optimal set points is an important problem in modern process con-
trol. Fuzzy Cognitive Maps (FCMs) allow to construct models of complex processes
using expert knowledge, which is particularly useful in situations where measuring
the variables of interest online is problematic. These models can be used as con-
straints in optimization problems with the objective of determining optimal set points
for those processes. This paper presents a reformulation of the constraints imposed by
the FCM models that reduces the complexity of the resulting optimization problem
and enables the application of heuristic methods for its solution. Computational
results show that the use of separable programming on the reformulated problem
constitutes a very good alternative, both in terms of solution time and reliability in
finding the optimum, enabling the application of FCM modelling to larger systems
and easing the practical implementation of the approach.
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1 INTRODUCTION6

The selection of the set points of process variables is a key step in the operation of modern process industries, as this decision has7

a high impact on the quality characteristics of the final product and on the process performance metrics. This decision usually8

requires addressing the process from a global point of view, since the optimal values for these set points usually emerge from a9

careful consideration of the trade-offs between conflicting operation objectives. The trade-off between final product quality and10

operation cost is the most common example of this situation.11

Global process models, thus, are a fundamental tool to aid in the decision making process and are usually employed in the12

higher layers of multilayer control1,2, whose purpose is precisely to provide these set points. The development of these models,13

however, is not always an easy task due to the complexity of the processes or difficulties in obtaining measurements of the14
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involved variables. The food processing industry is a common example of this situation3,4,5, as it is usual to have variables of15

interest related to quality features of the produced goods that are hard to measure online. In this scenario, a plausible approach16

for the development of models relating these variables with the rest of process variables is via expert operator knowledge.17

Fuzzy Cognitive Maps (FCM)6,7,8,9 are a convenient tool for modeling complex systems with many involved variables. They18

provide an intuitive representation of the relations among the variables, allow to easily decompose the model into simpler parts19

and to use an incremental approach in the construction of the models. These features render them as a very useful tool for the20

construction of models that are based on expert knowledge. FCM can also be used in circumstances where data is available; in21

this case, the models can be constructed using these data via optimization techniques. In fact, many research efforts have been22

devoted to the use of optimization techniques to find the parameters for the FCM models10 11 12. These methods are conceptually23

similar to system identification approaches, since the objective is precisely to obtain a model relating a set of input and output24

variables. The techniques employed, however, are typically different from the ones used by traditional system identification25

approaches, and can be roughly classified into three groups: Hebbian-based learning, population-based learning and mixtures26

of these two approaches. A very recent work has proposed a reformulation of this problem that casts it as a convex optimization27

problem10, which significantly contributes to overcoming many of the shortcomings of previous approaches. The focus of this28

paper, however, is not the use of optimization techniques to obtain a model based on experimental data; but, assuming that a29

model is already available, to investigate the implications of the mathematical structure of the FCM models when they are used30

as constraints in optimization problems that aim to provide set points in an hierarchical control scheme, with a focus on aspects31

that influence the practical use of the approach.32

The use of FCM plus an optimization problem to provide and update global process set points was explored in Ref.13 with an33

application example of the methodology to an industrial food manufacturing process where the resulting nonconvex optimization34

problem was initially solved using a general purpose global solver. However, this solution method is slow and viable only for35

relatively small models. Solving optimization problems efficiently is a topic of clear practical interest, as demonstrated by recent36

research effort on the topic14,15,16. Furthermore, the possibility of solving relatively large problems quickly could boost the37

application of this type of modelling to larger production planning problems, such as the one presented in17.38

This paper elaborates on the work presented in13 and presents a reformulation of the constraints introduced by the FCM39

models that ease the complexity of the optimization problem and allows the use of simpler methods for its solution. This way,40

results of the application of convex-concave and separable programming to the reformulated problem are presented, showing41

that separable programming constitutes a very good alternative, both in terms of solution time and reliability in finding the42

optimum. The use of separable programming on the reformulated problem paves the way for the use of FCM models on larger43

systems, and enables the use of standard Mixed-Integer Linear Solvers for its solution, which eases the practical implementation44

of the approach. The remainder of the paper is organized as follows: Section 2 provides a brief overview of FCM and the45
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heuristic solution methods. In turn, Section 3 introduces the reformulation of the optimization problem and Section 4 shows46

the computational results obtained in experiments comparing the two different heuristic solution methods. Finally, Section 547

presents the conclusions of the work.48

2 BACKGROUND49

This Section provides a brief background on the modeling methodology and the solving methods for the nonconvex optimization50

problem.51

2.1 Fuzzy Cognitive Maps52

Fuzzy Cognitive Maps were initially proposed in6 and have evolved into many different variations of the original idea8,9. The53

modeling method employed in this work, detailed in13, is composed of a set of nodes 𝐕 that represent the process variables and54

a set of directed arcs 𝐀 that symbolize the relationships between these variables.55

For each node 𝑣𝑖 ∈ 𝐕 of the network, the following elements are defined:56

• 𝑈𝑖: the universe of discourse of the node, i.e., the range of possible crisp values that the associated process variable may57

take.58

• 𝐻𝑖: a collection of fuzzy sets (FS) 𝐿𝑘
𝑖 defined in 𝑈𝑖:

𝐿𝑘
𝑖 = {⟨𝑡, 𝜇𝐿𝑘

𝑖
(𝑡)⟩ ∶ 𝑡 ∈ 𝑈𝑖}, (1)

𝐻𝑖 = {𝐿𝑘
𝑖 , 𝑘 = 1, 2,⋯ , 𝐾𝑖}. (2)

• 𝑦𝑖: the crisp value assigned to the node (𝑦𝑖 ∈ ℝ).59

• 𝐱𝑖: an array holding the membership value of 𝑦𝑖 to each fuzzy set 𝐿𝑖 (𝐱𝑖 ∈ ℝ𝐾𝑖).

𝐱𝑖 = [𝜇𝐿1
𝑖
(𝑦𝑖) 𝜇𝐿2

𝑖
(𝑦𝑖) ⋯ 𝜇𝐿𝐾𝑖

𝑖
(𝑦𝑖)]𝑇 . (3)

In turn, the properties assigned to the arcs are:60

• 𝜌𝑖𝑗 : intensity of the relation between the nodes 𝑣𝑖 and 𝑣𝑗 (𝜌𝑖𝑗 ∈ ℝ).61

• 𝑅𝑖𝑗 : a matrix that defines the relationships between the fuzzy sets of the nodes connected by the arc. This matrix is roughly62

equivalent to the rules in an Fuzzy Logic System (FLS). The size of this matrix is given by the cardinality of 𝐻𝑖, denoted63

𝐾𝑖 and the cardinality of 𝐻𝑗 , denoted 𝐾𝑗 . This way, 𝑅𝑖𝑗 ∈ ℝ𝐾𝑖×𝐾𝑗 .64
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FIGURE 1 Generic multi-input single output model for traditional, singleton FCM. A more complex model can be built by
composition of this elementary structure.

Figure (1) depicts a two-layer network. The tail nodes of the arcs (𝑣1, 𝑣2, ⋯ , 𝑣𝑛) act as antecedents in a fuzzy rule, in the65

sense that their value is supposed to be known and influence the value of the head node. The head node, therefore, acts as the66

consequent part of a fuzzy rule, and its value is determined by the tail nodes and the properties of the arcs, according to the67

following algorithm:68

1. For each tail node 𝑣1, 𝑣2, ⋯ , 𝑣𝑛, the evaluation of the membership degree of 𝑦𝑖 to each FS defined in 𝑈𝑖 provides the

entries of the corresponding vector 𝐱𝑖:

𝐱𝑖 = [𝜇𝐿1
𝑖
(𝑦𝑖) 𝜇𝐿2

𝑖
(𝑦𝑖) ⋯ 𝜇𝐿𝐾𝑖

𝑖
(𝑦𝑖)]𝑇 . (4)

2. The impact received by the head node 𝑚 is computed as:

𝐰𝑚 = [𝑤1
𝑚 𝑤2

𝑚 ⋯ 𝑤𝐾𝑚
𝑚 ]𝑇 =

𝑛∑
𝑗=1

𝜌𝑚𝑗𝑅𝑚𝑗𝐱𝑗 . (5)

3. The crisp value of the head node 𝑦𝑚 is computed combining the peak values of the FS defined in 𝑣𝑚, denoted 𝑞𝑘𝑚, using

𝐰𝑚 as weight (effectively, height defuzzification):

𝑦𝑚 =
∑𝐾𝑚

𝑘=1 𝑤
𝑘
𝑚 𝑞𝑘𝑚∑𝐾𝑚

𝑘=1 𝑤
𝑘
𝑚

. (6)

Multilayer models can be built by combining multiple simple models like the one depicted in Figure (1). In particular, con-69

structing a multilayer model where 𝑣𝑚 is also the predecessor of other nodes just requires considering the previously computed70

𝑦𝑚 as the crisp input to node 𝑣𝑚, and performing the steps 1 – 3 to compute the crisp value of the associated head node. More71

details on the methodology can be found in13,18,19.72
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2.2 Optimization Problem Solution Methods73

Two approaches have been investigated for the solution of the optimization problem: Difference of Convex Programming20 and74

Separable Programming21. The following Subsections briefly present the main features of both approaches.75

2.2.1 Convex-Concave Programming76

Convex-Concave Programming is a heuristic method that provides local solutions to problems where nonconvex terms are

expressed as differences of convex functions:

minimize 𝑓0(𝐱) − 𝑔0(𝐱)

subject to 𝑓𝑖(𝐱) − 𝑔𝑖(𝐱) ≤ 0, 𝑖 = 1, ..., 𝑚.
(7)

Here, 𝐱 ∈ ℝ𝑛 and 𝑓𝑗 and 𝑔𝑗 , 𝑗 = 0, 1,⋯ , 𝑚 are all convex functions.77

The main idea of the method is to iteratively solve convex approximations of the original problem obtained by linearizing the

functions 𝑔𝑖, thus dropping the concave part of the problem:

�̂�𝑖(𝐱) = 𝑔𝑖(𝐱𝑘) + ∇𝑔𝑖(𝐱𝑘)𝑇 (𝐱 − 𝐱𝑘). (8)

The basic method requires a feasible starting point for the algorithm22, however an extension of the method exists that intro-78

duces slack variables and a penalty on the violations of the constraints, and thus does not require an initial feasible point for the79

algorithm. Further details can be found in20,23 and the references therein.80

2.2.2 Separable Programming81

Separable programming deals with problems where the nonconvex constraints are separable, i.e., can be expressed as sums of

functions of individual decision variables21:

𝑓 (𝐱) =
∑
𝑖
𝑓𝑖(𝑥𝑖).

As will be shown in Section 3, the nonconvex constraints in the optimization problem of interest can be expressed as separable82

constraints. This formulation has the advantange that each function causing a nonconvex constraint can be easily approximated83

by a piecewise linear function, yielding a program that can be solved as a Mixed-Integer Linear Program with a standard solver84

or as a Linear Program using a restricted entry simplex method21. In this paper, both inner and outer linearization methods were85

considered, and the results that were obtained using each of these methods were also compared. Figure 2 depicts the linearization86

of 𝑥2 according to both methods.87
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FIGURE 2 Inner and outer linearization of 𝑥2. Both methods were employed in the piecewise-linear solution of the optimization
problems.

3 PROBLEM REFORMULATION88

The formulation of the constraints of an optimization problem is known to have a considerable impact on the difficulty of its89

solution24. It is thus of interest to analyze the characteristics of Eqs. (4) – (6) when these are constraints of an optimization90

problem, and to consider alternative formulations that might reduce the complexity of the problem.91

Equation (4) transforms 𝑦𝑖 into 𝐱𝑖 by means of the membership functions defined for each label. Typical membership functions92

are not linear – in fact, they are usually concave or pseudo-concave functions, e.g. triangular, trapezoidal or gaussian –, so93

expressing these constraints as equalities immediately yields the optimization problem as non-convex25. This equality constraint94

can be relaxed to an inequality if two additional linear constraints are introduced:95

1. The weighted combination of the peaks of the FS (𝑞𝑘𝑖 ) using the elements of 𝐱𝑖, denoted 𝑥𝑘𝑖 , must equal 𝑦𝑖:

𝑦𝑖 =
𝐾𝑖∑
𝑘=1

𝑥𝑘𝑖 𝑞
𝑘
𝑖 . (9)

2. Since the FS are chosen to yield a fuzzy partition of the universe of discourse, the sum of the elements of 𝐱𝑖 must equal 1:

𝐾𝑖∑
𝑘=1

𝑥𝑘𝑖 = 1. (10)

Introducing these constraints, Equation (4) can be relaxed to:

𝑥𝑘𝑖 ≥ 𝜇𝐿𝑘
𝑖
(𝑦𝑖). (11)
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FIGURE 3 Triangular membership functions for two contiguous Fuzzy Sets. The arrows mark the sign of the inequality in Eq.
(11).

Figure 3 shows two triangular membership functions (MF) for two generic FS defined in the universe of discourse of a node.96

According to Eq. (11), the membership value can be anything equal or greater than the membership value defined by the MF.97

However, since the MFs are chosen to yield a fuzzy partition and Eq. (10) applies, Eq. (11) is guaranteed to be satisfied as an98

equality. Unfortunately, the fact that 𝜇𝐿𝑘
𝑖
(𝑦𝑖) is typically a concave function still yields the constraint as non-convex. If triangular99

membership functions are used, this constraint can be modeled as a Special Ordered Set of type 2 (SOS2) constraint26 on the100

elements of 𝐱𝑖. It is easy to see that if the FS in 𝐻𝑖 are defined to yield a fuzzy partition of 𝑈𝑖, then at most two consecutive101

elements must be nonzero, and the sum of all the elements of 𝑈𝑖 must be one.102

In turn, Eq. (5) provides 𝐾𝑖 linear equality constraints that do not pose any complications for the solution of the optimization

problem. On the other hand, Eq. (6) supplies a nonconvex equality constraint per node. In order to reformulate this constraint

into a milder set of constraints, we define a variable 𝑐 equal to the sum of the impact components:

𝑐𝑖 =
𝐾𝑖∑
𝑘=1

𝑤𝑘
𝑖 . (12)

Then, we can rewrite Eq. (6) as:

𝑦𝑖 𝑐𝑖 =
𝐾𝑖∑
𝑘=1

𝑤𝑘
𝑖 𝑞

𝑘
𝑖 . (13)

Once in this form, we can use the following standard reformulation trick to transform Eq. (13) into a linear constraint plus

two separable quadratic equality constraints21. Two additional variables per node (𝑎𝑖 and 𝑏𝑖) are introduced and defined by the

constraints:
𝑎𝑖 =

1
2
(𝑐𝑖 + 𝑦𝑖),

𝑏𝑖 =
1
2
(𝑐𝑖 − 𝑦𝑖).

(14)
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so that the following relation holds:

𝑦𝑖 𝑐𝑖 = 𝑎2𝑖 − 𝑏2𝑖 . (15)

We further introduce two extra variables (𝑧𝑖 and 𝑡𝑖), along with the constraints:

𝑧𝑖 = 𝑎2𝑖 ,

𝑡𝑖 = 𝑏2𝑖 .
(16)

Then, using Eq. (15) and Eq. (16), we can rewrite Eq. (13) as:

𝑧𝑖 − 𝑡𝑖 =
𝐾𝑖∑
𝑘=1

𝑤𝑘
𝑖 𝑞

𝑘
𝑖 , (17)

which is a linear equality constraint. This way, the nonconvex constraint given by Eq. (6) has been recast into the nonconvex103

separable constraints defined by Eq. (16) and the three additional linear equality constraints contained in Eqs. (14) and (17).104

4 COMPUTATIONAL RESULTS105

This Section presents a comparison of the performance of each of the considered solution methods for the reformulated problem,106

both in terms of reliability in finding the optimum and solution time. The experiments were carried out using the four models107

included in Figure 4, that were generated according to the following algorithm:108

1. Choose (randomly or not):109

• Number of input and output nodes.110

• Total number of nodes and relations.111

• Number of layers and whether arcs may only influence nodes of their contiguous layer or not.112

• Frequency of the different type of relations113

2. Randomly assign the free number of nodes into the intermediate layers of the model.114

3. Connect each node in the network with a random node of the subsequent layer.115

4. Connect isolated nodes with a random node of the previous layer.116

5. Randomly connect nodes until the total number of relations is met, forcing them to be contiguous or not, as defined in117

step 1.118

As shown in the Figure, models of different sizes were considered to evaluate the impact of model size in the solution time. For119

each model topology, four different assignments of relations and two cost allocations were considered, providing eight different120

optimization problems per topology.121
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FIGURE 4 Models used in the experiments that were conducted to compare the solution time between the different solution
approaches depicted in Figures 5 and 6. The color of the arrows denote de type of relation (univalent, bivalent or sweet point),
dashed line denote nonlinear relations, while the thickness indicates the value of 𝜌𝑖𝑗 .

In order to test the influence of the initial points in finding the optimum, four different random initial points were considered122

for each problem and solution method. Feasible starting points are easy to find, since the only constraints are those imposed123

by the FCM model. This way, feasible points can be found choosing appropriate values for the input nodes (nodes without any124

incoming arcs) and computing the values of the rest of nodes of the model.125

In turn, the objective functions used in the tests were composed of 𝑙1 deviation penalization and linear terms:

minimize 𝐽 =
𝑁−2∑
𝑖=1

𝐶𝑖 𝑦𝑖 +
𝑁∑

𝑖=𝑁−1
𝐶𝑖|𝑦𝑖 − 𝑟𝑖|, (18)

where 𝐶𝑖 represents the cost assigned to each term, and 𝑟𝑖 symbolizes the target value for the variable. This type of functions126

capture well the typical requirements of penalizing the control effort while allowing the values of a variable to match a specific127

reference.128
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FIGURE 5 Solution time (𝑦-axis) and optimal objective values (𝑥-axis) obtained for models I, II and III (see Figure 4) for the
different solution methods. Horizontal spread of markers denotes variability in the solutions provided by the solution method.
Vertical spread designate variability in the solution time. Different markers stand for different relations between nodes for the
same model topology. Please, note the different scales both in 𝑥 and 𝑦 axis for the different models.

The computational experiments were carried out in a mid-2012 MacBook Pro equipped with an Intel Core i7 and 8 GB RAM.129

The optimization problems were defined using CVXPY27 and the DCCP extension for the convex-concave approach20. The130

solver used was Gurobi Optimizer version 6.5.128 for the mixed-integer problems and ECOS29 for the convex subproblems.131

Figure 5 shows the objective values obtained (𝑥-axis) and the solution time required (𝑦-axis) for the first three models and all132

the solution methods. The fourth model is not shown as the solution time required by the dccp method was prohibitely high and133

the experiments were aborted before completion. The first important conclusion that can be drawn from the inspection of this134

Figure, is the clear superiority of the separable programming methods over the convex-concave approach (marked as dccp in the135

Figure). For all three models, the solution time is much higher for the dccp method. Although the dccp method solves very fast136

the convexified subproblems, a large number of these subproblems needs to be solved, thus requiring a large time to solve the137

problem. Furthermore, for models II and III, the horizontal spread of the markers denotes the high variability in the objective138

values provided by the dccp method, as opposed to the concentration of the values provided by the separable programming139

methods. The theoretical lack of guarantee of global optimality of the solution found by the dccp method is in fact practically140

noticeable in this spread of values.141

Figure 6 offers a closer look at the solutions obtained using the separable programming methods, including also the results142

obtained for model IV. As depicted in this Figure, the points corresponding to the same experiment tend to be fairly close, both143

in terms of objective value and solution time. This means that the initial points do not have a large influence on the optimal144

solution, nor on the computation time required to find it. This is very desiderable for optimization problems where obtaining a145

global optimum is not guaranteed, as a common practice in that scenario is to solve the problem several times using different146

starting points. This concentration of values alleviates the need to use multiple starting points, as the separable programming147

methods are shown to perform consistently for this problem reformulation.148

It can be observed that the outer linearization method, denoted as pwl in the plots, tends to provide lower solution times149

than the inner approach, with this difference increasing with the size of the model. The average solution time for the different150
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FIGURE 6 Solution time (𝑦-axis) and optimal objective values (𝑥-axis) obtained for models I, II, III and IV (see Figure 4) for
the piecewise-linear methods. Horizontal spread of markers denotes variability in the solutions provided by the solution method.
Vertical spread designate variability in the solution time. Different markers stand for different relations between nodes for the
same model topology. Please, note the different scales both in 𝑥 and 𝑦 axis for the different models.

TABLE 1 Average solving time in seconds and standard deviation for the different models and solution methods.

Method
Model dccp pwl pwl_inner

I 20.22 (6.93) 0.48 (0.13) 0.59 (0.19)
II 127.63 (69.30) 2.78 (1.14) 3.09 (1.12)
III 301.01 (122.13) 9.80 (5.15) 15.21 (7.08)
IV 205.31 (144.17) 427.05 (477.46)

models and solution methods can be found in Table 1, and shows the fast increase of the solution time as the model size grows,151

particularly between models III and IV. The order of magnitude of these computation times, however, renders them viable for152

their application in hierarchical control schemes, even for model IV, as set point update is typically performed at sample times153

that are larger than the values included in the table, and much larger than the sampling times used at the low-level control layers.154

5 CONCLUSIONS155

This paper has introduced a reformulation of the nonlinear constraints provided by FCM and a comparison of two heuristic156

solution methods for the resulting problem. The reformulation introduced in Section 3 allowed to pose the problem as separable,157

which, in turn, allowed to use separable programming methods. The experiments have shown that the outer linearization method158

is the one that performed the best, providing reliability in finding the optimum from different starting points and reasonable159

solution times for moderate-sized models (25 nodes) and larger times, although still useful, for larger problems (50 nodes).160
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The reduction of the time required to solve an optimization problem provided by the proposed reformulation and solu-161

tion method facilitates the use of FCM models in the upper layers of hierarchical control schemes. Also, the fact that only a162

Mixed-Integer Linear solver is needed for the problem, also expedites the practical implementation of the approach, be it with163

commercial solvers, such as Gurobi, or with open source ones, such as GLPK or lp_solve. This way, FCM becomes an inter-164

esting approach for the modeling of the relations between the high-layer variables in situations where data-driven approaches,165

based on access to online measurements of the involved variables, are not possible.166
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