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Abstract 26 

 27 

Aim 28 

Large databases of species records such as those generated through citizen science projects, archives or 29 

museum collections, are being used with increasing frequency in species distribution modelling (SDM) 30 

for conservation and land management. Despite the broad spatial and temporal coverage of the data, its 31 

application is often limited by the issue of  sampling bias and consequently, zero-inflation; there are 32 

more zeroes (which are potentially ‘false absences’) in the data than expected. Here, we demonstrate 33 

how pooling species presence data into a ‘pseudo-abundance’ count, can allow identification and 34 

removal of sampling bias through the use of zero-inflated (ZI) models, and thus solves a common SDM 35 

problem.  36 

 37 

Methods 38 

We present the results of a series of simulations based on hypothetical ecological scenarios of data 39 

collection using random and non-random sampling strategies. Our simulations assume that the locations 40 

of occurrence records are known at a high spatial resolution, but that the absence of occurrence records 41 

may reflect under-sampling. To simulate pooling of presence-absence or presence-only data, we count 42 

occurrence records at intermediate and coarse spatial resolutions, and use ZI models to predict the 43 

counts (species abundance per grid cell) from environmental layers. 44 

 45 

Results 46 

Our results show that ZI models can successfully identify predictors of bias in species data, and produce 47 

abundance prediction maps that are free from that bias. This phenomenon holds across multiple spatial 48 

scales, thereby presenting an advantage over presence-only SDM methods such as binomial GLMs or 49 

MaxEnt, where information about species density is lost, and model performance declines at coarser 50 

scales.  51 

 52 

Main Conclusions 53 

Our results highlight the value of converting presence-absence or presence-only species data to ‘pseudo-54 

abundance’ and using ZI models to address the problem of sampling bias. This method has huge 55 

potential for ecological researchers when using large species datasets for research and conservation.   56 
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Introduction 62 

Species distribution modelling (SDM) is widely used to address important ecological questions about 63 

species distributions and the environment (Dormann et al., 2007; Phillips et al., 2009; Elith et al., 2011). 64 

Species occurrence or abundance data from large, observational datasets such as citizen-science 65 

projects, museum or herbarium collections and record lists are increasingly being used in SDM (Pearce 66 

& Boyce, 2006; Schmeller et al., 2009; Tiago, Pereira & Capinha, 2017). The extensive spatial and 67 

temporal coverage of the data, as well as the growing ease of online access, provides numerous benefits 68 

over often costly and labour-intensive sampling methods employed in more focused scientific studies 69 

of distribution (Dickinson, Zuckerburg & Bonter, 2010; Dwyer, Carpenter, Bundhoo, Franklin & 70 

Campbell, 2016; Gouraguine et al., 2019). Nevertheless, although some collections of species records 71 

can be generated using hypothesis-led, systematic sampling protocols (Schmeller et al, 2009; Pocock 72 

& Evans, 2014), much of these data comprise presence-only occurrence records,  where there is often 73 

little information about the source or survey effort accompanying the records (Boakes et al., 2010; 74 

Rocchini et al., 2011). As a result sampling bias (also called sample selection or survey bias) is often 75 

present: certain temporal periods, geographical areas or taxa are sampled more intensively or frequently 76 

than others (Phillips et al., 2009; Dickinson et al., 2010; Bird et al., 2014).  77 

 78 

Sampling bias in SDM can lead to over- or under-estimation of important species-environment 79 

relationships (Syfert, Smith & Coomes, 2013), and predicted distribution maps may partly represent 80 

survey effort rather than species niche requirements (Phillips et al., 2009; Mair & Ruete, 2016). 81 

Proposed methods to correct for sampling bias generally rely on either spatial filtering of occurrence 82 

records, or on the manipulation of background data (‘pseudoabsences’) (Phillips et al. 2009; Kramer-83 

Schadt et al. 2013; Fourcade et al. 2014, Boria et al. 2014). Both of these techniques have limitations: 84 

the former results in a dataset of reduced sample size and statistical power (Wisz et al., 2008), whereas 85 

the latter usually requires some prior knowledge of the source of the bias (Dudík, Schapire & Phillips, 86 

2005; Phillips, 2008). A third option is the use of statistical models that can account for some of the 87 

causes of sampling bias (Bird et al., 2014; Isaac, van Strien, August, de Zeeuw, & Roy, 2014), for 88 

example Geographically Weighted Regression (GWR) (Brunsdon, Fotheringham & Charleton, 1998), 89 

or Maximum Entropy (MaxEnt) with a bias layer, although again, most of these require prior knowledge 90 

of the source of the bias.  91 

 92 

One specific problem relating to sampling bias that is particularly noticeable in species abundance 93 

databases is zero-inflation: the presence of more recorded zeroes or locations where data are absent than 94 

expected under standard distributions (binomial, Poisson, negative binomial etc.) (Martin et al., 2005). 95 

These excess zeros can arise from multiple processes. Some are considered to be ‘true zeros’, which 96 

result from either ecological processes that render a site unsuitable for occupancy, or stochastic 97 

processes, such as a sudden random extinction event in an otherwise suitable location (Cunningham & 98 



Lindenmayer, 2005; Martin et al., 2005). In contrast, ‘false zeros’ are locations where a species occurs 99 

but was not recorded because of errors or omissions in the sampling method (Dénes, Silveira & 100 

Beissinger, 2015). These errors are either systematic and occur repeatedly throughout the survey 101 

process (for example through a lack of detection or poor survey design), or are owing to sampling bias, 102 

because some geographical areas have not been sampled at all (Bird et al., 2014).  103 

 104 

Generalised Linear Models (GLMs) are a common method for analysing relationships between species 105 

occurrences or abundance and environmental variables, but excess zeros are problematic for GLMs, 106 

and if unaccounted for, can result in biased parameter estimates and poor predictive power (Lambert, 107 

1992). As a possible solution to this problem, zero-inflated (ZI) models and their components 108 

(extensions of GLMs) have been widely discussed in the literature (Lambert, 1992; Welsh, 109 

Cunningham, Donnelly & Lindenmayer, 1996; Zuur, Ieno, Walker, Saveliev & Smith, 2009). ZI models 110 

consist of two parts: a logistic component that models the probability of an observation being an excess 111 

zero (hereafter called the “zero component”), and a “count component” that models a count (e.g. species 112 

abundance) under an assumed distribution (Lambert, 1992). Both components of ZI models are capable 113 

of producing zeros, and a key feature is the ability to include different predictor combinations in each 114 

component. In other words, they can model the different sources of zeros independently (Wenger & 115 

Freeman, 2008; Zuur et al., 2009).  116 

ZI models, which require counts of occurrences (i.e. abundance), are rarely considered in SDM, because 117 

most large datasets record species presences, not abundance. SDM methods that can use presence-only 118 

data, such as MaxEnt, are therefore most commonly applied (Phillips & Dudík, 2008; Fitzpatrick, 119 

Gotelli & Ellison, 2013; Fourcade et al., 2014). However, the ability of ZI models to seperate the two 120 

processes underlying the generation of zeroes in a species dataset could provide an alternative method 121 

to model and account for sampling bias. ZI models can be used with any species database that records 122 

abundance directly, or by aggregating presence-only or presence-absence data into counts of 123 

occurrence. In this study, we therefore propose ZI models as a new, alternative method to address 124 

problems of sampling bias in SDM. We present here the results of a series of simulations, based on 125 

hypothetical ecological scenarios representing the large-scale collection of species occurrence data, that 126 

aim to address three particular research questions. 127 

 128 

Our first research question is to test our main theory of whether sampling bias (resulting in excess ‘false’ 129 

zeroes) can be modelled and accounted for using ZI models, in order to improve species distribution 130 

predictions. ZI models have been used effectively to model true and false zeros in ecological count data, 131 

such as when modelling the abundance of rare species (Welsh et al., 1996; Cunningham & 132 

Lindenmayer, 2005; Martin et al., 2005). They are also particularly prevalent in the field of occupancy-133 

abundance modelling (Sileshi et al., 2009; Smith, Anderson & Millar, 2012), especially when there are 134 



false zeros in the data owing to systematic sampling errors from imperfect detection (Wenger & 135 

Freeman, 2008; Sólymos, Lele & Bayne, 2012; Williams, Yates, Stock, Barrett & Finn, 2016). 136 

However, research into zero-inflation caused by spatio-temporal sampling bias in species occurrence 137 

data is scarce. A few studies have used ZI models to identify and quantify sources of bias in species 138 

data (Dwyer et al., 2016; Williams et al., 2016; Tiago, Ceia-Hasse et al., 2017), yet none have tested 139 

the ability of the models to produce accurate predictions of species distributions from biased data. We 140 

outline through our simulations how accurate distribution maps can be produced using ZI models in 141 

this way, and we describe the required criteria during model fitting and prediction for this to occur. In 142 

particular, our simulations also address our second research question: under what levels of zero-inflation 143 

is our ZI model method most appropriate? 144 

Our final research question considers the issue of scale, and the benefits of pooling fine-scale occurrence 145 

data to model occurrence density across coarser spatial scales. Species presence is normally modelled 146 

at the smallest spatial scale (grid cell size) possible, given the resolution of the records and 147 

environmental layers used to build the model. Counting or aggregating presences across grid cells at a 148 

larger spatial scale to generate “abundance” data intuitively seems to be a bad idea, because it throws 149 

away information about the precise location of the records. However, this may be inevitable if predictor 150 

layers have lower spatial resolution than occurrence location data, and we propose here that it may 151 

actually present considerable advantages. Aggregated counts of occurrences are commonly not a direct 152 

measure of true abundance (the total number of individuals of the target species), since each raw 153 

occurrence often represents a locality which is home to several or many individuals. Regardless, 154 

modelling ‘abundance’, and any zero-inflation therein, may give important clues to sources of bias in 155 

the data which are not obvious in the raw occurrences, and the benefits of being able to identify and 156 

eliminate bias could outweigh the costs of any loss of spatial resolution caused by aggregation. 157 

Therefore, counting occurrence records at larger spatial scales in order to model “occurrence density’ 158 

may be a better alternative to traditional presence-only SDM methods. Indeed, abundance models have 159 

been shown to perform better than presence-absence models fitted using the same data across multiple 160 

spatial scales (Howard, Stephens, Pearce-Higgins, Gregory & Willis, 2014; Johnston et al., 2015).  161 

 162 

Other methods do exist that propose aggregating occurrences into counts of ‘abundance’ that may also 163 

provide advantages when using spatially biased species data, including Poisson point models (Renner 164 

et al., 2015; Komori et al., 2020). These models can incorporate bias predictors when modelling 165 

intensity rather than occurrences across the study area. Nevertheless, they still require a-priori 166 

knowledge about potential bias predictors, whereas we show here that ZI models are able to provide an 167 

indication of potential sources of sampling bias in the data when the exact sources are unknown. 168 

 169 



We do not attempt to provide a detailed statistical summary of ZI models and theory (there is much 170 

associated literature already available), but aim to draw attention to the main modelling methods and 171 

usefulness of ZI models for ecological researchers and species distribution modellers dealing with large, 172 

biased databases. We argue that ZI models can provide insight into, and correction methods for, the 173 

bias in large species databases, and that they can be powerful and effective SDM tools.  174 

 175 

Materials and Methods 176 

Our general approach was to use ZI models to predict the observed number of species occurrences per 177 

grid cell for a series of simulated species using predictors of either the biology of the species and/or 178 

sampling bias in the data. We envisaged a large species for which it is theoretically possible to survey 179 

all individuals in a landscape (e.g. trees, large animals). The true distribution of all individuals was 180 

simulated for each species, and this distribution was then sampled incompletely, with or without spatial 181 

sampling bias. Before sampling, the true abundance of the species could be calculated by summing 182 

occurrences per grid square. But with incomplete sampling, the observed or “sampling abundance” per 183 

grid cell is an underestimate. An alternative way to view our simulations, which is more realistic for 184 

species which are small or hard to enumerate (e.g. smaller plants, most insects), is to consider each 185 

occurrence in the raw data to represent a recorded encounter with the species at a local site which may 186 

contain many individuals. In such cases, the models do not strictly predict abundance, but instead they 187 

predict what we might call “occurrence density”.  188 

 189 

As a result of the two-part nature of ZI models, two types of abundance predictions can be produced. 190 

Assuming that all excess zeros arise from incomplete sampling, the first type of prediction is of true, 191 

biological abundance (or occurrence density) across the study area, created only from the count 192 

component of the model, which we call here the ‘count abundance prediction’. This is likely to be the 193 

desired modelling outcome, especially for conservation and land-management planning. The second 194 

type of prediction, which we here call the ‘sampling abundance prediction’, comes from the whole 195 

model (combining both the count and zero component) and therefore represents the predicted 196 

abundance (or occurrence density) that would be recorded if sampling were carried out in the same way 197 

as when collecting the data that were used to fit the model. Bias in sampling will be reflected in this 198 

second prediction. However, if some excess zeros arise also from biological zero-inflation, for example 199 

if a species is clustered, the zero component will reflect some of the underlying biological processes as 200 

well as the sampling bias. In this case, the count abundance prediction will only partially reflect the true 201 

species abundance. The best type of prediction to use will therefore depend on the estimated strength 202 

of biological zero-inflation versus the bias in the data.  203 

 204 

 205 

 206 



Simulation study area and predictor variables 207 

We simulated the occurrence of a hypothetical species in a study area that consisted of a 100 x 100 cell 208 

grid at 1-km2 resolution placed randomly within the boundary of England (Fig. 1a). The total area 209 

covered by the grid is therefore 10,000 km2 and there are 10,000 individual grid cells. Two predictor 210 

variables were selected across this area. The first was a ‘biological predictor’ that we chose to be 211 

‘altitude’, which we used to define the relationship between the simulated species occurrences and 212 

environment (Meynard et al., 2019). Real values for altitude (m) across the study area were obtained 213 

from WorldClim DEM (accessed 10/05/18) at a 1-km2 resolution and ranged from 0 to 284 m above 214 

sea level (Fig. 1b). The choice of biological predictor for a simulation study of this sort is necessarily 215 

somewhat arbitrary, but we chose altitude because it is both a plausible predictor of occurrence for a 216 

range of organisms, and it is quite strongly spatially auto-correlated, an important possible source of 217 

biological zero inflation in the abundance data formed when occurrences are counted across grid cells 218 

at intermediate spatial scales. The actual biological mechanism underlying the relationship between 219 

altitude and species occurrences is not important for this study, but altitude is a good proxy for a suite 220 

of environmental variables such as temperature or precipitation commonly used in SDM which have 221 

direct effects on species distributions.  222 

 223 

Because altitude is spatially autocorrelated, and so is the sampling bias we wanted to investigate (see 224 

below), there was a risk that biological and sampling bias predictors in our simulations could correlate:  225 

depending on the positions of the simulated towns on our map, there could be a strong correlation 226 

between real altitude and sampling effort. Thus, in order to allow us to investigate the impact of 227 

sampling bias completely independently of the biological predictor, we also generated an alternative 228 

‘biological predictor’ with no autocorrelation: a spatially random control variable. This control variable 229 

(henceforth labelled ‘altitude_randomised’) was created by randomising the real altitude values across 230 

the study area at a 1-km2 resolution (Fig. 1b), and hence removed any correlation between altitude and 231 

distance from town.  232 

 233 

The second predictor of observed species occurrence was a ‘bias predictor’ (‘distance from nearest 234 

town’) which affected the virtual sampling of the simulated species. We assumed that the greater the 235 

distance from a town, the lower the feasibility and likelihood of sampling occurring, as has previously 236 

been seen in ecological studies (Reddy & Dávalos, 2003; Parnell et al., 2003; Kadmon, Farber & Danin, 237 

2004). Unlike with altitude, we chose to simulate a hypothetical bias layer rather than use values based 238 

on the locations of real towns, in order to ensure the lowest possible correlation between the two 239 

predictors, although some correlation between them was likely because of spatial autocorrelation in 240 

both. Within the study area, 10 points representing ‘town centres’ were randomly placed, and the 241 

distance from the nearest town (m) was calculated for each grid cell, creating a continuous predictor 242 

layer at 1-km2 resolution across the study area. To reduce the influence of collinearity between 243 



predictors, the process of generating the ‘town centres’ was repeated 10 times, creating 10 sets of 244 

randomly placed ‘town centres’ (Fig. S1.1). As a result, mean Pearson’s correlation coefficients across 245 

the 10 repetitions show weak correlations between the bias predictor ‘distance from nearest town’ and 246 

the biological predictor ‘altitude’ (r = -0.0499, SD ±0.228), and even weaker correlations with the 247 

biological predictor ‘altitude_randomised’ (-0.0044, SD ±0.012). 248 

 249 

To summarise, we had three variables in total across the simulation study area: two biological predictors 250 

(‘altitude’ and ‘altitude_randomised’), and one bias predictor (‘distance from nearest town’). All 251 

predictors were centred (the mean of each predictor was subtracted from each value of the predictor) 252 

and scaled (the centred values were divided by the standard deviation of the predictor values) so that 253 

the differences in units of the predictors was removed. 254 

 255 

Simulating the virtual species 256 

To obtain counts of ‘abundance’ to use in ZI models, we first simulated species occurrences across the 257 

study area and then aggregated them into counts of  “abundance” (alternatively interpreted as 258 

occurrence density – see above). Because we assumed that the simulated distribution of occurrences 259 

was the complete true distribution, all other locations are assumed to be ‘true absences’. Therefore, 260 

when aggregating the raw occurrence points into ‘abundance’ counts, a value of 0 represented a true 261 

absence and any value greater than 0 a true presence.  262 

 263 

The recommended first step in a simulation study is to define the relationship between the environment 264 

and occurrence points (Meynard et al., 2019). We modelled the distributions of three simulated species 265 

each with 5,000 occurrence points (Fig. 1c). The occurrence points of the first species (‘random 266 

species’) were simulated randomly across the study area, and show no preference for any environmental 267 

condition. The second and third species were simulated based on the two biological predictors 268 

(‘altitude’ and ‘altitude_randomised’) and were assumed to favour high altitudes; these species were 269 

named ‘altitude species’ and ‘altitude_randomised species’ respectively. We chose these three scenarios 270 

in order to create datasets in which different kinds of zero-inflation occur. For the random species, zero-271 

inflation can only occur as a result of sampling (where sites which are not sampled might be incorrectly 272 

recorded as zeros), whilst for the altitude species and altitude_randomised species, zero-inflation can 273 

result both from sampling and from the fact that grid cells are potentially not suitable for the species 274 

because of environmental conditions. 275 

 276 

We then simulated the effect of the relationship between our biological predictors and species 277 

occurrences by creating layers of the probability of occurrence which varied according to altitude or 278 

altitude_randomised (see Meynard and Kaplan 2013; Meynard et al., 2019). Initially we tried using a 279 

linear relationship between the altitude predictor layers and probability of occurrence, but this 280 



introduced relatively little zero-inflation in the data. For the purposes of investigating sampling bias 281 

and zero-inflation we therefore chose to use a logarithmic relationship, whereby probability of 282 

occurrence rapidly increases initially with small increases in altitude, but gradually tapers off at higher 283 

altitudes. This heavily disfavours low altitude values, and the majority of these will be assigned low 284 

probability values close to zero. Hence, biological aggregation of the occurrence points was effectively 285 

increased, yielding greater zero-inflation. Each biological predictor was resampled to a 100 m x 100 m 286 

resolution across the study area, and were then rescaled using the ‘rescale by function’ tool in ARCGIS 287 

version 10.3.1 (ESRI, 2013), such that the new probability of occurrence layers (ranging between 0 and 288 

1) were logarithmically related to the biological predictors.  289 

 290 

Five thousand occurrence points were placed across the study area (using the ArcGIS tool: ‘Create 291 

Spatially Balanced Points’) based on these altitude and altitude_randomised occurrence probability 292 

layers. Due to computation limitations of the ‘Create Spatially Balanced Points’ tool, only one 293 

occurrence point can be placed within a single raster cell. Therefore a resolution of 100 m x 100 m was 294 

chosen for the probability layers so that up to 100 species occurrences could be placed in each 1-km2 295 

grid cell. Although visually the altitude_randomised species appears to be randomly distributed across 296 

the study area, it is actually the underlying altitude grid square values that are randomised: occurrences 297 

of the altitude_randomised species still occur at higher densities in grid squares with higher altitude 298 

values. As we used a logarithmic species response to the altitude_randomised layer, significant 299 

(biological) zero-inflation still occurs in the raw data: occurrences are unlikely in low altitude grid cells, 300 

generating lots of true zeros when occurrences were counted per grid cell (Tab. 1). Only the random 301 

species distribution is completely random across the study area.  302 

 303 

Finally, true (raw) species abundance (total number of occurrence points) was calculated for each 1-304 

km2 grid cell. We felt the chosen grid scale was appropriate because, although the maximum abundance 305 

per grid cell is strictly 100, no grid cells reached this value (the maximum was six occurrences per 1-306 

km grid cell), and we therefore assumed that it was unlikely that the shape of the distribution of 307 

abundances would be significantly affected by the upper bound (i.e. unbounded distributions such as 308 

Poisson or negative binomial were likely to be appropriate). In addition, using this grid scale sets up a 309 

situation where location data are available at a higher resolution than the environmental predictors. 310 

Hence, we are simulating a situation in which modellers must make a decision about how to aggregate 311 

high resolution data across grid cells to create models which predict species distributions based on lower 312 

resolution environmental predictors. 313 

 314 

Simulating the sampling strategies 315 

We considered two sampling strategies across the study area to represent alternative scenarios of 316 

ecological data collection. The first is random sampling, where every 1-km grid cell has an equal chance 317 



of being visited and sampled. If visited, we assume all species occurrences in the cell are recorded (i.e. 318 

there is no detection error) and the result is the true (raw) abundance (count of all occurrences) for each 319 

visited grid cell. The second sampling strategy is affected by spatial sampling bias and relates to the 320 

‘bias predictor’, where the probability of a grid cell being sampled decreases as distance from the nearest 321 

‘town centre’ increases. The grid cells selected for this strategy were chosen based on a probability 322 

layer created using a logarithmic scaler of the ‘distance from nearest town’ predictor, again using the 323 

‘rescale by function’ ArcGIS tool. This time high probability values close to one were assigned to cells 324 

with small numerical values i.e. cells closer to towns and more likely to be sampled, whereas low 325 

probability values close to zero were assigned to cells with large ‘distance from nearest town’ values. 326 

For each strategy, 2,000 grid cells (20% of the total) were sampled and species abundance was noted 327 

for each one. All other (unsampled) squares were assigned an observed abundance of zero, creating a 328 

zero-inflated dataset. All sources of zero-inflation in the simulated species abundance data before and 329 

after sampling are shown in Tab. 1. 330 

 331 

Simulation 1: Investigating the accuracy of species distribution maps from ZI models 332 

To address our first question regarding the accuracy of ZI model predictions of abundance, we focused 333 

initially on the performance of ZI Poisson models, and how this compared with equivalent conventional 334 

Poisson GLMs. We include comparisons between a) ZI and GLM models, b) count and sampling 335 

abundance predictions from ZI models, and c) alternative ZI models fitted using different combinations 336 

of biological and bias predictors.  337 

 338 

We chose to fit four GLMs and six ZI models for each of the three sets of species abundances per 1-339 

km2 (random, altitude and altitude_randomised), all fitted with a Poisson distribution but with different 340 

combinations of the biological or bias predictors (Tab. 2). These included combinations where different 341 

predictors were tested in the count and zero components of the ZI models. Where the biological 342 

predictor was included, models for the “altitude species” were fitted using altitude as a predictor, and 343 

models for the altitude_randomised species were fitted using altitude_randomised. Model fitting was 344 

repeated 10 times, each time using a different set of simulated ‘town centres’ (Fig. S1.1). Thus, there 345 

are three species (random, altitude, altitude_randomised), two sampling strategies (random and biased) 346 

and 10 repeats, resulting in 60 total simulation runs. All ZI and GLM models were fitted in R version 347 

3.6.3 (R Core Team, 2019) using packages ‘stats’ (R Core Team, 2019) and ‘pscl’ (Zeileis et al., 2008). 348 

 349 

Abundance predictions from each model were created using 10-fold cross-validation, where the data 350 

were split into 10 subsets and each subset was used iteratively as the test data for which predictions 351 

were created and the other nine subsets as training data. For the ZI models both count abundance and 352 

sampling abundance predictions were evaluated. Model predictions were evaluated using a novel metric 353 

based on the probability of obtaining the model predictions, that we named ‘deviation from the best 354 



model’ (D) (See Appendix S3 for more information). We used this metric, rather than conventional 355 

measures of performance (e.g. root mean square) typically employed in presence-only or presence-356 

absence modelling, because it produces a measure of fit for count or abundance predictions which is 357 

independent of the mean. D ranges from a minimum of one for a perfect model where model predictions 358 

are equal to the true raw abundance data, and increases without limit as model predictive performance 359 

decreases. Spearman’s rank correlation coefficients (rs) were also used to compare model abundance 360 

predictions to the original model covariates. 361 

 362 

To check that our results were not overly sensitive to the choice of predictor, simulations using average 363 

temperature (oC) (WorldClim, accessed 10/05/18) at a 1-km2 resolution, as an alternative biological 364 

predictor, were also carried following the same methodology (see Appendix S2): the results parallel 365 

those of altitude, and so were omitted from the main results and discussion. 366 

 367 

Simulation 2: Examining the impact of the extent of zero-inflation in the data 368 

To address our second question, about the effect of varying the extent of zero-inflation in the data (both 369 

as a result of biological processes and sampling bias) on the effectiveness of the ZI models, we carried 370 

out a second simulation. In our first simulation, we assumed 20% of grid cells were sampled, but in 371 

Simulation 2 zero-inflation resulting from sampling bias was adjusted by varying the number of cells 372 

sampled from the grid, ranging from 1000 (10%) to 10,000 (100%) at 10% increments. Therefore, the 373 

highest level of zero-inflation occurred when 1000 cells were sampled, and thus 9000 cells were 374 

assigned an abundance of zero simply because they were not sampled, and the lowest level of zero-375 

inflation occurred when 10,000 cells were sampled and none were assigned an abundance of zero for 376 

this reason. At the same time zero-inflation resulting from biological processes was adjusted by adding 377 

a threshold below which the altitude species can no longer survive, but keeping constant the number of 378 

true occurrence points generated each time. With higher altitude thresholds, the species occurrences 379 

were increasingly aggregated, and more cells were classified as true zeros. Altitude across the study 380 

area ranged from 0 to 284 m, so we tested threshold values of 0 m, 50 m, 100 m, 125 m, 150 m, 175 m 381 

and 200m (see Tab. S1.1 for number of cells above each threshold). Above these thresholds, species 382 

occurrences were placed in a similar way based on weighted probability calculated from a logarithmic 383 

scaler of the original altitude predictor as described previously. Both the random species and altitude 384 

species were examined in scenarios with varying sample sizes, but obviously only the latter was tested 385 

using the altitude threshold method.  386 

 387 

Based on the results of Simulation 1, we selected three predictor combinations to fit the models and 388 

create predictions. These included the GLM with both the bias and biological predictor (GLM4) and 389 

two of the ZI models which differ only in the inclusion (ZI6) or exclusion (ZI2) of the bias predictor 390 

from the zero component (Tab. 2). Although theoretically a ZI model that has only the biological 391 



predictor in the count component, but both the biological and bias predictor in the zero component (as 392 

with ZI3), would be the most obvious choice, in the real world the bias predictor may also have some 393 

biological influence on the species distribution, and the researcher may not be sure whether it is a better 394 

predictor of bias or biology. We therefore chose to use ZI6 rather than ZI3, to simulate better a real 395 

world modelling scenario in which the causes of bias are unknown. 396 

 397 

Model performance (D) was calculated for each simulation run with a particular combination of sample 398 

size and altitude threshold. Finally, in order to evaluate the improvement in model performance created 399 

by adding predictors of zero inflation, the difference in ‘D’ was calculated between each model (GLM4 400 

and ZI2, GLM4 and ZI6, and ZI2 and ZI6). This was repeated using both count abundance and sampling 401 

abundance predictions for the ZI models. Again, model fitting was repeated 10 times each with two 402 

sampling strategies (random and biased). Therefore, there were 200 simulation runs for the random 403 

species (10 repeats, two sampling strategies and 10 levels of sampling zero-inflation), and 1,400 404 

simulation runs for the altitude species (10 repeats, two sampling strategies, 10 levels of sampling zero-405 

inflation and seven altitude thresholds (levels of biological zero-inflation)). 406 

 407 

Simulation 3: Comparing abundance versus presence-absence when aggregating spatial data 408 

Often when fitting distribution models the only data available are presence-only, and multiple species 409 

occurrences within a grid cell are usually classified as a single presence. Often the predictors are only 410 

available at a coarser spatial scale than the species occurrence data, forcing the modeller to aggregate 411 

occurrences into coarser scale presence-only or presence-absence estimates.  The coarser the resolution 412 

at which the distribution is modelled, the more information is lost about both the precise location of 413 

species occurrences, and species abundance (or occurrence density). However, if occurrences are 414 

instead aggregated into count data, information about abundance or occurrence density is retained at all 415 

scales, which may be more beneficial for conservation purposes. Therefore, even if only presence-only 416 

data are available, ZI models fitted at a larger spatial scale using the summed counts of occurrence may 417 

provide a better modelling method than traditional presence-only SDM that aggregate multiple 418 

occurrences into presence-absence data. This effect is likely to be more pronounced when the species 419 

data are biased, because ZI models attempt to model the excess zeroes from sampling bias, whereas 420 

other methods, unless they explicitly incorporate bias correction, make no attempt to model or remove 421 

the bias.  422 

 423 

Our final simulation study addressed this question by comparing the performance of Poisson GLM and 424 

ZI models predicting abundance of the altitude species (as was carried out in Simulation 1) with two 425 

commonly used modelling methods that predict presence-absence: presence-absence binomial GLMs, 426 

and presence-only MaxEnt models. This represents a scenario where the raw species occurrences 427 



(simulated at a 100m resolution) are available at a greater resolution than the predictors (at a 1-km 428 

resolution), so the modeller is required to make a decision on how to aggregate the data.  429 

 430 

To fit the binomial GLM presence-absence models, the source data for which need to be in the form of 431 

presence-absence rather than abundance, simulated 1-km cells that received an abundance count of zero 432 

based on either the random or biased sampling strategy for the ZI models in Simulation 1 (i.e.  80% of 433 

cells that were not considered to have been sampled) were classified automatically as an absence, and 434 

any cell with species occurrences that was sampled was classified as a presence. All binomial GLMs 435 

were fitted using the package ‘stats’ in R. As with Simulation 1, two GLMs were fitted, one with only 436 

the biological predictor (‘Binomia-GLM1’ equivalent to GLM3) and one with the biological and bias 437 

predictor (‘Binomial-GLM2’ equivalent to GLM4). Binomial occurrence predictions (i.e. predicted 438 

probability of presence) were estimated across the study area from each model using 10-fold cross-439 

validation.  440 

 441 

Two MaxEnt presence-only models were also fitted to the altitude species occurrence data, one with 442 

altitude as the only predictor (‘Maxent1’), and one with both altitude and distance from nearest town as 443 

predictors (‘Maxent2’). To produce presence-only data collected under a random or biased sampling 444 

strategy, only occurrence points at a 100m resolution that fell within a 1-km cell that had been sampled 445 

for the ZI models in Simulation 1 were retained; only these cells would be classified by MaxEnt as a 446 

presence. Each model was fitted using the ‘dismo’ package (Hijmans, Phillips, Leathwick & Elith, 447 

2017) in R, at a 1-km resolution with 10,000 randomly selected background ‘pseudo-absences’ and 10 448 

repetitions across each set of town centres.  449 

Comparing the performance of count/abundance models (Poisson GLM and ZI models) and 450 

presence/presence-absence models (MaxEnt and binomial GLMs) required evaluation metrics which 451 

could work with both types of model. As it is less feasible to convert presence-absence predictions to 452 

abundance to use ‘D’, two other evaluation metrics were selected: Area Under the Curve (AUC) and 453 

the Spearman’s Rank correlation coefficient (rs) between the model predictors (‘altitude’ and/ or 454 

‘distance from town’) and each of the model predictions of count/abundance (GLM/ ZI) or habitat 455 

suitability (MaxEnt/ binomial GLM). In order to calculate AUC for the ZI and GLM models, abundance 456 

predictions were converted to binary presence-absence predictions, using an abundance threshold above 457 

which the species was considered to be predicted to be present. Because some models produced 458 

predicted abundances that all fell below one, the threshold for conversion was chosen to be the mean 459 

abundance prediction across all grid cells for each individual model i.e. the threshold varied across each 460 

GLM or ZI model. Mean AUC was calculated across the 10 repetitions for each model based on the 461 

presence-absence predictions for all models compared to the true presence-absence based on all 462 

occurrence locations across the study area. It should be noted that neither of these metrics offer a perfect 463 



measure of model performance. AUC causes a loss of information from the Poisson GLMs and ZI 464 

models, which are designed to predict abundance, while Spearman’s rank retains more of the 465 

information in the predictions of both types of model, but is necessarily relatively crude.   466 

 467 

Finally, in order to assess the impact of the scale of data aggregation on the performance of abundance 468 

and presence-absence models, additional models were fitted and compared across two other scales of 469 

increasing coarseness: 2-km and 5-km. The larger the grid cell, the larger the mean count of occurrences 470 

per cell, and hence the more data potentially lost by converting to presence-absence. ZI count abundance 471 

predictions at a 2-km and 5-km scale were obtained following the methodology of Simulation 1 using 472 

the ZI6 model structure and again converted to presence-absence predictions. MaxEnt and binomial 473 

GLM presence-absence predictions at a 2-km and 5-km scale were obtained following the methodology 474 

outlined previously in Simulation 3. Model predictors (altitude and distance from town) were converted 475 

to coarser scales by calculating the mean values of each predictor at a 1-km resolution for each 2-km or 476 

5-km cell. As before, all predictions were evaluated using AUC and Spearman’s Rank correlation 477 

coefficient (rs). 478 

 479 

Results  480 

Simulation 1: Investigating the accuracy of species distribution maps from ZI models 481 

The results from Simulation 1 confirm that count abundance predictions from the ZI models provide 482 

the most accurate estimates (according to the metric D) of true species abundance (Fig. 2 & S1.2). 483 

Estimating true abundance based purely on the biology of the species rather than sampling processes is 484 

usually the aim of ecological research, and these results suggest the count abundance predictions are 485 

most likely able to fulfil these aims. In contrast, all GLMs are poor at predicting true abundance because 486 

they do not separately model the excess (false) zeros generated by grid cells that have not been sampled. 487 

The problem is exaggerated when sampling is not just incomplete, but is also biased; if the GLM 488 

includes a predictor which is correlated with sampling effort (distance from nearest town), the model 489 

performs even less well (compare pink and blue bars for GLM3 (without bias predictor) and GLM4 490 

(with bias predictor) in Fig. 2) because it detects a spurious negative association between this predictor 491 

and abundance (top panels, Fig. S1.3). Similarly, ZI sampling abundance predictions (predictions from 492 

the whole model that potentially include the influence of sampling bias) perform poorly; rather than 493 

estimating true abundance, reflecting the species niche, they predict abundance as it would appear to 494 

observers employing each sampling strategy (Fig. 2 & S1.2). Again, these predictions are particularly 495 

poor when sampling is biased (compare pink and blue bars for ZI2 and ZI6 in Fig. 2). These findings 496 

hold true for all three species (altitude, altitude_randomised and random) (Fig. S1.2 & S1.3).  497 

 498 

The ability to model excess zeros separately led to dramatically improved predictive power of true 499 

abundance for all ZI models (see count abundance predictions in Fig. 2 and Fig. S1.2), although one 500 



(ZI2) performed relatively less well than the others when sampling was biased (Fig. 2 & S1.2). In ZI2, 501 

the bias predictor was included in the count component but not the zero component, meaning that like 502 

the GLMs it detected a spurious negative association between abundance and distance from the nearest 503 

town (middle panels, Fig. S1.3); if they included the bias predictor, the other ZI models (e.g. ZI3 or 504 

ZI6) correctly detected that it was positively associated with the probability of an excess zero being 505 

recorded (lower panels, Fig. S1.3).  506 

 507 

Predicted distribution maps based on both the count abundance predictions and sampling abundance 508 

predictions also support these findings (Fig. 3 & S1.4). Maps produced using ZI count abundance 509 

predictions that account for bias where necessary (i.e. including predictors of bias in the zero component 510 

when sampling is biased), correlate strongly with the biological predictor layer (altitude) (rs > 0.9) and 511 

show little influence of bias (distance from towns) (Fig. S1.5). When sampling is biased, both neglecting 512 

to account for the bias in the zero component, or using the sampling abundance predictions, results in 513 

low accuracy distribution maps that correlate more strongly with the bias predictor (rs value between -514 

0.64 to -0.71) and less strongly with the biological predictor (rs values between 0.60 to 0.74) (Fig. S1.5). 515 

Distribution maps produced by the GLMs were also less accurate when sampling was biased and 516 

predictors correlating with bias were included (Fig. 3 & S1.4). Maps from the GLMs which include the 517 

bias predictor (GLM4) show a strong influence of sampling bias similar to that seen in the ZI sampling 518 

abundance predictions. These maps show relatively weak correlations to the altitude predictor (rs = 0.60) 519 

compared to their counterpart GLMs that do not include the bias predictor (GLM3) (rs = 0.99) (Fig. 520 

S1.5). The prediction map from the GLM including both the biological and bias predictors (GLM4) 521 

with biased sampling also shows a strong correlation to the bias predictor (rs = -0.72). 522 

 523 

Additional maps that depict the probability of each grid cell being an excess zero (i.e. predictions from 524 

the zero component of a ZI model) further highlight the ability of ZI models to model separately the 525 

biological and sampling processes, as well as providing insight into the nature of bias in the species 526 

data (Fig. 3 & S1.4). This means that in real studies in which the sources of sampling bias are unknown, 527 

inclusion of predictors that may correlate with sampling bias (e.g. distance to towns or roads, 528 

accessibility, land-use etc.) in both the count and zero components of ZI models can help to both model 529 

and identify likely causes of bias. This is a unique feature of the ZI models, and is something which the 530 

GLMs are unable to reproduce; these models cannot provide insight into the bias or prediction maps 531 

that eliminate sampling effects within the data. 532 

 533 

Simulation 2: Examining the impact of the extent of zero-inflation in the data 534 

Real species occurrence or abundance data will suffer from variable levels of zero inflation resulting 535 

from both biological and sampling processes. Therefore, the better performance of ZI models compared 536 

with GLMs described in Simulation 1 may not occur in all circumstances, so exploring this issue was 537 



our aim of Simulation 2. As anticipated, ZI count abundance predictions and GLM abundance 538 

predictions have similar accuracy when the data are not zero-inflated: when the whole study area is 539 

surveyed, all absences are ‘true absences’, the species is randomly distributed with no biological zero-540 

inflation, and the difference in performance is zero (Fig. 4, see random species (R) in left and middle 541 

panels). When considering the random species only (i.e. with no biological zero-inflation), as less of 542 

the study area is surveyed, zero-inflation as a result of sampling increases, and therefore the 543 

effectiveness of ZI model count abundance predictions improves in comparison to GLMs. Although 544 

this phenomenon occurs under both sampling strategies, it is most noticeable when both sampling is 545 

biased and that bias is accounted for in the model (by including the bias predictors in the ZI zero 546 

component as in ZI6 for example). 547 

  548 

As with the random species, when there are high levels of incomplete sampling for the altitude species 549 

(e.g. ~20% or fewer cells are sampled), ZI model count abundance predictions are consistently better 550 

than GLM predictions, regardless of biological zero-inflation (Fig. 4, left and middle panels). However 551 

as more of the area is surveyed (> 20%), the difference in performance decreases. At low levels of 552 

biological zero-inflation, this difference tends towards zero. However, at higher levels of biological 553 

zero-inflation, GLM predictions are actually more accurate than the ZI model count abundance 554 

predictions under both random and biased sampling scenarios. This can best be understood by looking 555 

at Fig. S1.6 showing the results based on sampling abundance predictions from the ZI model, rather 556 

than count abundance predictions: in contrast to the count abundance predictions, as biological zero-557 

inflation increases, ZI sampling abundance predictions increasingly outperform those of the GLM. This 558 

is because the zero component, which is combined with the count component to create the sampling 559 

abundance prediction, is able to predict the excess zeroes caused by the biological driver, while the 560 

GLM cannot. Therefore, if high levels of biological zero-inflation are suspected in the data, both the 561 

count and sampling abundance predictions should be considered and evaluated before choosing the best 562 

predictions of species abundance.  563 

 564 

Reiterating our results from Simulation 1, when sampling is random there is no benefit of including the 565 

bias predictor in the zero component under any levels of sampling or biological zero-inflation (Fig. 4 566 

& S1.6, top right panels). Under biased sampling scenarios, models accounting for bias (by including 567 

the bias predictor in the zero component as in ZI6 for example) are most effective when there are high 568 

levels of sampling-related zero-inflation and low levels of biological zero-inflation. As either the area 569 

surveyed or biological zero-inflation increases, the effectiveness of these models reduces compared to 570 

models that fail to account for bias (Fig. 4, bottom right panel). Nevertheless, the majority of differences 571 

seen between ZI models are relatively small compared to those between the ZI models and GLMs.  572 

 573 

 574 



Simulation 3: Comparing abundance versus presence-absence data across multiple spatial scales 575 

The results from Simulation 3 support our hypothesis that, when dealing with biased species data, 576 

modelling aggregated count data using ZI models is a better choice than modelling aggregated presence-577 

absence or presence-only data, as is commonly done in traditional SDM studies, using approaches such 578 

as binomial GLMs or MaxEnt (Fig. 5). The only model to perform consistently well across all spatial 579 

scales when dealing with the biased species data was the ZI model, which maintained strong correlations 580 

to the biological predictor (rs > 0.9) and low correlations to the bias predictor (-0.12 < rs < 0.07) across 581 

all scales (Fig. 5). Predicted maps of the altitude species distribution also show that the ZI model count 582 

abundance predictions provide the most accurate reflection of the true species distribution as the scale 583 

of data aggregation increases (Fig. S1.7). Binomial-GLM2 and MaxEnt2 models, which  incorporate 584 

the bias predictor, produced predictions that are heavily influenced by sampling bias at a 1-km scale, 585 

with strong correlations to the bias predictor (rs < -0.75) (Fig. 5 & S1.7). These increase in strength as 586 

scale increases to 2-km and 5-km, so that both model predictions produce correlations to the bias 587 

predictor close to one (rs < -0.92). Both MaxEnt1 and binomial-GLM1 (which do not include the bias 588 

predictor) were able to produce accurate predictions with the biased data at a 1-km resolution, although 589 

performance declined as the scale became coarser. Even when the species data was collected using a 590 

random sampling strategy, the performance of the presence-absence models declined as the scale 591 

became coarser and more information was lost with data aggregation (Fig. 5); this phenomenon was not 592 

seen in the ZI models and performance remained high as scale increased.  593 

 594 

Model evaluation using mean AUC based on the presence-absence predictions also supports these 595 

findings (Fig. 6 & S1.8). Across all three scales, the ZI model was best suited to model the biased 596 

species data compared to the MaxEnt and binomial GLM models that were fitted using the bias predictor 597 

(Fig. 6). The presence-absence models have a much larger variance in performance than the ZI 598 

abundance models, especially at coarser scales, with some repetitions producing AUC values below 0.5 599 

and above 0.9 (Fig. 6 & S1.8). The ZI model also outperformed several of the MaxEnt and binomial 600 

GLMs fitted without the bias predictor, including the MaxEnt1 model at a 2-km scale and the binomial-601 

GLM1 at a 5-km scale (Fig. S1.8), although it produced slightly lower mean AUC values than some of 602 

the presence-absence models when the bias predictor was excluded. Nevertheless, if the sampling bias 603 

source is unknown, it might be difficult to exclude completely predictors correlating with the bias, so 604 

choosing a ZI model is still likely to be the safest option to produce the best, most robust predictions 605 

least affected by sampling bias.  606 

 607 

 608 

 609 

 610 

 611 



Discussion 612 

Sampling bias in species data is problematic for SDM, and many researchers call for greater awareness 613 

and development of correction methods to deal with this issue (Araújo & Guisan, 2006; Bystriakova, 614 

Peregrym, Erkens, Bezsmertna, & Schneider, 2012; Kramer-Schadt et al., 2013). Our simulations using 615 

ZI models highlight a novel approach for dealing with sampling bias and zero-inflation in SDM, which 616 

we believe can be applied to a wide variety of ecological and conservation research questions that use 617 

large databases of species records. Our results reveal that ZI models have the potential both to reduce 618 

the impact of bias on predictions which are used for biological inference, and to provide insights into 619 

previously unknown causes or correlates of sampling bias. This method can be used with both raw 620 

abundance data, and with abundance data created by summing occurrences from presence-only data 621 

across a larger spatial scale, and therefore offers an alternative to traditional presence-only SDM 622 

methods. As spatial occurrence data is often present at a finer scale than the environmental predictors, 623 

decisions about data aggregation have to be made when fitting distribution models. We found that even 624 

though information about the precise location of species occurrences is sacrificed, aggregating species 625 

occurrences into counts of abundance and fitting ZI models produces better estimates of a species 626 

distribution, especially when the species data is biased by sampling methods, than aggregating 627 

occurrences into presence-absence form at a coarser spatial scale, as is common with traditional SDM 628 

methods such as binomial GLMs or MaxEnt.  629 

 630 

Species distribution maps are an important resource for conservation planners (Rodríguez, Brotons, 631 

Bustamante & Seoane, 2007), yet there is often little consideration of inaccuracies or uncertainty in 632 

these maps or associated models (Elith, Burgman & Regan, 2002; Zuquim et al., 2014). Our results 633 

show how the biological information value of maps based on GLM, MaxEnt and ZI sampling abundance 634 

predictions can be reduced by sampling bias. In contrast, the distribution maps produced from the 635 

predictions from the count component of ZI models are accurate reflections of the species niche and 636 

true abundance, even when species data are spatially biased, providing that the bias influence is 637 

accounted for in the model by included all predictors suspected of capturing or correlating with the bias 638 

in both ZI count and zero components. If in doubt about whether a predictor is likely to be a source of 639 

bias, inclusion in both parts will not only alleviate the problem of bias, but will also provide insight into 640 

whether it actually is a introducing a large number of excess (‘false’) zeros. Additionally, ZI model 641 

coefficients allowed examination of potential causes of bias; in ZI6 (the model including both the bias 642 

and biological predictor in the zero component) from Simulation 1, ‘distance from nearest town’ was 643 

influential only in the zero component, and was not spuriously identified as influencing true abundance. 644 

Currently, there are few statistical models that allow post-modelling identification of bias sources. 645 

Many SDM techniques rely on prior understanding and some form of quantification of the bias in order 646 



to remove it (Phillips, 2008), so ZI models provide an advantage over these traditional bias correction 647 

methods in their ability to shed light on potential causes of bias.  648 

 649 

If all excess zeros are false zeros, count abundance predictions from ZI models should always reflect 650 

the true species niche, and the zero component will be modelling only excess zeros from non-biological, 651 

sampling processes. However, this scenario is unlikely in ecological systems. In reality, as in our 652 

simulations with the altitude and altitude_randomised species, the excess zeros will result from a 653 

combination of biological zero-inflation and sampling zero-inflation. Therefore, the count abundance 654 

prediction may not always be predicting true abundance, and the zero component may actually be 655 

dominated by biological processes, as we suggest is the case for the results from Simulation 2. In this 656 

case, the sampling abundance prediction will actually be a more accurate reflection of true species 657 

abundance. Nevertheless, by examining the significance and influence of predictors in both 658 

components, their plausibility as causes of bias can be inspected: biological predictors of abundance are 659 

likely to be significant in both parts of the ZI model, whereas sampling predictors are unlikely to appear 660 

influential in the count component.  661 

 662 

After identifying potential bias predictors, modellers can make more informed choices about whether 663 

to eliminate these predictors from either ZI component, whether the zero component is more heavily 664 

dominated by biological or sampling processes, and if the count abundance or sampling abundance is 665 

more likely to reflect true species abundance. A good understanding of the biology of the species being 666 

modelled is therefore key. Additionally, despite the post-model-fitting ability of ZI models to 667 

distinguish bias, beginning any analysis of a zero-inflated dataset, it is important also to try and identify 668 

the source of excess zeros as either from biology or sampling processes (Martin et al., 2005). 669 

Consequently, although one benefit of ZI models is the ability to use different sets of covariates in the 670 

count and zero components (Lambert, 1992; Zuur et al., 2009), it is important only to include 671 

appropriate, relevant predictors in each part where possible.  672 

 673 

The collection of species data varies widely in its scale and standardisation, from single museum 674 

specimens collected by natural history experts, to more local, standardised recording schemes (Pocock 675 

& Evans, 2014) and to international, opportunistic recording schemes such as eBird (Sullivan et al., 676 

2009). The more standardised and directed the protocols, the lower the likelihood of sampling bias and 677 

‘false zeros’ in the data. In these cases, a simple Poisson or negative binomial GLM may suffice rather 678 

than a ZI model; at very low levels of zero-inflation the performance of the GLMs was shown to be 679 

equal to that of the ZI models in Simulation 2. Nevertheless, our findings from Simulation 2 suggest 680 

that, regardless of biological zero-inflation, when sampling is suspected to be very incomplete 681 

(estimated coverage of total study area < ~20%), ZI models will always the optimum choice. At low 682 

levels of biological zero-inflation, we found ZI models to be more effective than GLMs even when 683 



sampling coverage approached levels as high as 90%, as might be the case for species with broad ranges 684 

that have been extensively documented, such as important or conspicuous species in countries with long 685 

histories of species record keeping.  686 

 687 

As well as the Poisson distribution, the negative binomial distribution is also often used for count data, 688 

which can also be applied within a zero-inflated modelling framework (Ridout, Hinde & Demétrio, 689 

2001; Minami, Lennert-Cody, Gao, & Román-Verdesoto, 2007; Zuur et al., 2009). The negative 690 

binomial distribution is able to model an extra proportion of the excess zeros compared to the Poisson 691 

distribution through the use of an extra model parameter (ϴ) (Fisher, 1941) and can therefore account 692 

for biological aggregation and overdispersion in ecological data (Lindén & Mäntyniemi, 2011). We 693 

chose not to investigate a ZI negative binomial model in these simulations to remove confusion when 694 

communicating our main message, although we acknowledge that under high levels of biological zero-695 

inflation (as in Simulation 2), such models may well be more effective that the ZI Poisson models. 696 

Therefore, when analysing presence-only species data suffering from high levels of sampling bias, a ZI 697 

Poisson model will usually be effective, but it is valuable to know that there are different ZI model 698 

types that can be used to address ecological or statistical issues that may arise in species data.  699 

 700 

The majority of SDM research to date has focused on producing presence-absence or presence-only 701 

distribution maps of species or communities (Brotons, Thuiller, Araújo, & Hirzel, 2004; Phillips, 702 

Anderson & Schapire, 2006; Lyashevska, Brus & van der Meer, 2016). Species abundance maps are 703 

produced more infrequently, often due to the practical difficulty of measuring absolute abundance 704 

(Lyashaveska et al., 2016). However, their ability to display extra information about density means they 705 

are often more informative and preferred (Pearce & Ferrier, 2001; Barry & Welsh, 2002; Johnston et 706 

al., 2015).  707 

 708 

Although count data are known commonly to suffer from zero-inflation, ZI models have been used to 709 

produce accurate species abundance maps from systematically collected species data in very few studies 710 

(Bouyer et al., 2015; Lyashaveska et al, 2016), and none have acknowledged or explored bias in their 711 

data. It is also not recommended to use SDM to predict species abundance from presence-only or 712 

presence-absence data (Jiménez‐Valverde, Aragón & Loboet, 2020), so ZI models that fit abundance 713 

by default should be able to cover this methodology gap in the field of SDM. Additionally, scale is 714 

hugely important in SDM. Species distributions are often modelled at coarse resolutions across national 715 

or international scales due to the availability of predictors, even though occurrences relate more to 716 

localised environmental factors (Guisan et al., 2007; Kuemmerlen et al., 2014). The coarser the grain 717 

size used in presence-absence or presence-only SDM, the more the raw occurrences are aggregated into 718 

a binary variable and density information is lost. Therefore, it is likely that at coarse resolutions, using 719 



abundance rather than occurrence data preserves more information and will produce more accurate 720 

maps of habitat suitability. 721 

 722 

Our findings from Simulation 3 suggest that when having to decide how to aggregate data to match the 723 

coarser resolution of the environmental predictors, the best method is to aggregate species occurrences 724 

into counts of abundance and fit using a ZI model, rather than aggregate into presence-absence data and 725 

fit using a traditional SDM method such as MaxEnt. This provides two main benefits over presence-726 

absence methods in that a) ZI models are able to identify and account for bias without prior knowledge 727 

of the bias sources and b) extra information about species abundance is retained and modelled. We 728 

found that as scale became increasingly coarser, only the ZI models retained a high level of predictive 729 

power and were an accurate reflection of species niche compared to MaxEnt or binomial GLMs, 730 

especially when the data suffered from sampling bias. We believe that ZI models have an advantage 731 

over other statistical methods in that they can be used with either presence-absence data or abundance 732 

data collected from citizen science projects: presence-absence data can just be aggregated into a count 733 

at a particular resolution. Furthermore, scale was shown to have little influence on the predictive power 734 

of ZI models providing bias was accounted for. Nevertheless, this was only simulated across relatively 735 

small resolutions (up to 5-km) due to the limitations of the study area and requirement for zero-inflated 736 

data, whereas many studies map distributions at larger scales (> 10-km) (Thuiller, Lavorel, Sykes, & 737 

Araújo, 2006; Luoto, Virkkala, & Heikkinen, 2007). It is uncertain therefore whether this pattern holds 738 

true across more coarse scales of analysis.  739 

 740 

In this paper, we have investigated the performance of ZI models under a relatively restricted set of 741 

scenarios. We acknowledge that our findings may therefore be case-specific and we are addressing this 742 

with on-going research (Nolan et al., unpubl.). For example, we chose to use a simple scenario in which 743 

only two predictors, a biological predictor and a bias predictor, generate patterns in the species 744 

distribution. The altitude species was assigned a simple preference for high altitudes, when in fact, there 745 

are likely several different environmental influences on the species niche. Furthermore, some of these 746 

biological predictors of species presence will also predict sampling bias. Therefore, it is important that 747 

prior consideration is given to the possible influences of any predictor included in the model on both 748 

ecological processes and sampling behaviour before it is decided whether to include it in either part of 749 

the ZI model. 750 

 751 

GLMs, and by extension ZI models, have been criticised for their inability to capture the complex, non-752 

linear relationships which may often characterise species responses to the environment, in contrast with 753 

more modern methods such as MaxEnt or other machine learning techniques which are more flexible 754 

(Austin, 2002). Nevertheless, GLMs and ZIs also have some clear benefits, such as the ease with which 755 

they can be applied, and the transparency of their design. Here, we have shown an additional benefit of 756 



ZI models not yet available with any other modelling approach: the ability to simultaneously account 757 

for bias and to make inferences about it, when predicting distributions from incomplete sampling. We 758 

believe that our approach using ZI models has broad applicability to a variety of scenarios when bias is 759 

present, and there are suspected predictors of bias available. ZI models should be especially valuable 760 

when species abundance is of interest to the modeller, such as when modelling distributions of 761 

individual large animals or trees. Although we acknowledge that GLMs and ZI models have limitations, 762 

there is a range of options for more complex versions of these models, such as those incorporating 763 

polynomial terms, interactions and LASSO variable selection (Hastie et al., 2009; Vollering et al., 764 

2019), which might allow such models to capture non-linear/complex responses to the environment at 765 

the same time as modelling the causes of excess zeroes. 766 

  767 

In our simulations, we assume that all ‘false absences’ are due to sampling bias, but it is likely that in 768 

many cases, particularly for rare or cryptic species, they are also generated by detection errors 769 

(Fitzpatrick, Preisser, Ellison, & Elkinton, 2009; Dickinson et al., 2010; Kosmala, Wiggins, Swanson,  770 

& Simmons, 2016). The species range size and the scale of detectability of the individuals is likely to 771 

influence the interpretation of the model “abundance” predictions. For example under-estimation of 772 

true abundance could occur when modelling small organisms which appear frequently during the 773 

survey, and will be more representative of the likelihood of successfully sampling the species. On the 774 

other hand, over-estimation could occur when modelling large, mobile organisms that cover multiple 775 

sampling locations, so prediction abundance might be a proxy of the probability of encountering one of 776 

a small number of individuals. Hence, there may be three sources of excess zeros: true zeros from 777 

unsuitable habitat, false zeros from lack of sampling and false zeros from detection error. When 778 

detection errors are significant, ZI models will not be able to distinguish between the different types of 779 

false zeros; but by including predictors in both the count and zero components of the model that capture 780 

the processes generating all types of zeros, we believe that ZI models will still be able (mostly) to 781 

account for these excess ‘false’ zeros, and combined with expert knowledge can provide some 782 

information about their sources. 783 

 784 

Conclusion  785 

Large collections of species data are extremely useful for SDM and conservation, and yet are limited 786 

by issues associated with the recording processes, including sampling bias and zero-inflation. Our 787 

simulations show that ZI models can fit biased data and identify sources of bias. Most importantly for 788 

conservation, by using only predictions from the count component of the ZI model (i.e. the count 789 

abundance predictions), biased species data can be used to produce distribution maps comparable to 790 

those using unbiased data. We also highlight the importance of considering the use of abundance data 791 

in SDM, especially at large spatial scales, when valuable ecological information about density is lost if 792 

data in each cell are converted to presence-absence or presence-only. ZI models are advantageous 793 



compared to other commonly used SDM techniques such as MaxEnt owing to their ability to retain 794 

information about abundance and also to identify and remove bias without prior knowledge of the bias 795 

sources. We believe ZI models have been largely overlooked in ecological research, even though they 796 

have a huge potential to be useful in SDM, and could have great benefits for conservation and our 797 

environment.  798 
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Tables 1019 

 1020 

Table 1. Sources of zero-inflation in the simulated species occurrence data.  1021 

 

Source of zero-inflation 

True abundance 

(before sampling) 
Random sampling Biased sampling 

Species    

Random No zero-inflation Sampling Sampling 

Altitude Biological Biological and sampling Biological and sampling 

Altitude 2 Biological Biological and sampling Biological and sampling 

 1022 

 1023 

Table 2. Ten predictor combinations were considered when modelling the simulated species distributions. Four 1024 

Generalised Linear Model (GLM) and six Zero-Inflated (ZI) model structures were considered using 1025 

combinations of the biological predictors (either altitude or altitude_randomised) and the bias predictor (distance 1026 

from nearest town), including different combinations in the count and zero components of the ZI models.   1027 

Model  
Predictors (GLM/ ZI 

Count component) 

Predictors (ZI 

Zero component) 

GLM1 Null (No predictors) N/A 

GLM2 Biased   N/A 

GLM3 Biological N/A 

GLM4 Biological + bias N/A 

ZI1 Null (No predictors) Null 

ZI2 Biological + bias Biological 

ZI3 Biological  Biological + bias 

ZI4 Biological  Biological  

ZI5 Bias   Bias   

ZI6 Biological + bias Biological + bias 
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 1035 



Figures 1036 

 1037 

Figure 1a) Simulation study area consisting of a group of 100 x 100 grid squares of 1 km2 size randomly placed 1038 

within England covering a total area of 10,000 km2 (outlined in red) (left). b) The biological predictors used to 1039 

fit the models: altitude (m) (top) and altitude_randomised (m) (randomised altitude layer with no spatial 1040 

autocorrelation, labelled here as ‘altitude_2’) (bottom) shown for the study area. c) A simulated species with 1041 

5,000 occurrence points showing no preference for altitude (random species) (top), a preference for high altitudes 1042 

based on a logarithmic scaler of altitude (altitude species) (middle), and a preference for high altitudes based on 1043 

a logarithmic scaler of  altitude_randomised (altitude_randomised species) (bottom). Although the occurrence 1044 

points in this bottom map appear randomly distributed across the study area (similar to that of the ‘random 1045 

species’ in the top map), it is actually only the altitude values that are randomly distributed (in the ‘altitude 1046 

randomised’ layer): species occurrences are still placed based on preferring high altitude values, so are not 1047 

actually random with respect to the environmental predictor.  1048 

 1049 

 1050 

 1051 



 1052 

 1053 

Figure 2. Evaluation of abundance predictions (based on D = ‘deviation from the best model’) for a hypothetical 1054 

organism with occurrences simulated based on a preference for high altitudes (altitude species). Mean D values 1055 

(± SE and data range) are shown for each sampling strategy (random or biased) across the 10 model repetitions. 1056 

Panel a) (left) shows the evaluation of the count abundance predictions (from the zero-inflated (ZI) model count 1057 

component only) from one model that accounts for sampling bias in the zero component (ZI6) and one model that 1058 

does not (ZI2). Panel b) (right) shows the evaluation of the sampling abundance predictions (predictions from the 1059 

whole model, and thus can be obtained from both ZI models and Generalised Linear Models (GLMs)) for four 1060 

models: the same two ZI models as in Panel a), along with two GLMs: GLM3 including only the biological 1061 

predictor and GLM4 including the biological and bias predictor. Only sampling abundance can be obtained from 1062 

the GLMs, hence why Panel a) only shows results from the ZI models.  1063 

 1064 



 1065 

Figure 3. Example maps of abundance for a hypothetical species (‘altitude species’) whose occurrence is 1066 

positively influenced by altitude, produced from two generalised linear models (GLMs) and two Zero-Inflated (ZI) 1067 

models. Models were built with either data collected by randomly sampling grid cells (random) or with sampling 1068 

bias (biased). Abundance maps from GLM3 (including the biological predictor only) and GLM4 (including both 1069 

the biological and bias predictor) are produced using sampling abundance predictions (i.e. from the whole 1070 

model). Both count abundance and sampling abundance predictions can be produced from the ZI models along 1071 

with a map of the probability a cell is an excess zeros (zero). Both ZI models include a biological predictor 1072 

(altitude) of both abundance and excess zeros, and bias predictor (distance from the nearest town) of abundance. 1073 

ZI6 also includes ‘distance from the nearest town’ as a predictor of excess zeros. Individual cells are colour-1074 

coded based on abundance for the abundance predictions or on probability of being an excess zero for the zero 1075 

predictions (high = red, low = blue). 1076 
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 1082 

 1083 

Figure 4. Comparisons of model predictive power of true abundance between a generalised linear model (GLM) 1084 

and two zero-inflated (ZI) models across varying levels of biological and sampling bias zero-inflation. Values 1085 

represent the mean difference in D (‘deviation from the best model’) between GLM4 (containing both biological 1086 

and bias predictor), ZI2 (excludes the bias predictor from the zero component) and ZI6 (includes the bias 1087 

predictor in the zero component). Biological zero-inflation was increased by introducing a minimum altitude 1088 

threshold below which the species cannot survive and therefore reducing its environmental niche. Sampling-1089 

related zero-inflation was increased by increasing the number of grid cells sampled across the study area in 1090 

increments of 10%. Negative (red) values show scenarios where the ZI model performs better than the GLM (left 1091 

and middle panels) or where ZI6 performs better than ZI2 (right panel), whereas positive (blue) values show 1092 

scenarios where GLM4 outperforms the ZI models or ZI2 outperforms ZI6. ‘R’ represents the values for the 1093 

random species whose occurrence is not related to altitude. 1094 

 1095 



 1096 

Figure 5.  Mean spearman’s Rank correlation coefficients (rs) (±SE) between the model predictors (altitude and 1097 

distance from nearest town) and model predictions for altitude species across three modelling scales: 1-km, 2-km 1098 

and 5-km and two sampling strategies (random and biased). Three types of model are compared: 1) binomial 1099 

generalised linear models (GLMs) that predict the probability of occurrence, 2) Maximum Entropy (MaxEnt) 1100 

models that predict the probability of occurrence and 3) zero-inflated (ZI) models that predict the true (count) 1101 

abundance of the species. Binomial-GLM1 and MaxEnt1 include only the biological predictor in the model, 1102 

whereas Binomial-GLM2 and MaxEnt2 include both the biological and bias predictor. ZI6 model includes the 1103 

bias and biological predictor in both the count and zero component.  1104 

 1105 

 1106 

 1107 
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Figure 6. Evaluation of MaxEnt, generalised linear model (GLM) and zero-inflated (ZI) model predictions of 1111 

altitude species presence-absence sampled using a biased strategy across the study area. Mean Area under the 1112 

Curve (AUC) (± SE and data range) across the 10 model repetitions is used to evaluate predictions across three 1113 

scales of data aggregation: 1-km, 2-km and 5-km. Three models are compared: 1) a ZI model able to account for 1114 

the bias in the zero component (ZI6) (see Methods for more information on the conversion of ZI abundance 1115 

predictions to presence-absence), 2) a MaxEnt model (MaxEnt2) that includes altitude and distance from town as 1116 

predictors and 3) a binomial GLM (Binomial-GLM2), also including altitude and distance from town as 1117 

predictors. 1118 
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