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The standard vacuum bounce formalism suffers from inconsistencies when applied to thermal bubble
nucleation, for which ad hoc workarounds are commonly adopted. Identifying the length scales on which
nucleation takes place, we demonstrate how the construction of an effective description for these scales
naturally resolves the problems of the standard vacuum bounce formalism. Further, by utilising high-
temperature dimensional reduction, we make a connection to classical nucleation theory. This offers a clear
physical picture of thermal bubble nucleation, as well as a computational framework which can then be
pushed to higher accuracy. We demonstrate the method for three qualitatively different quantum field
theories.
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I. INTRODUCTION

Since the hot big bang, the Universe may have passed
through a number of different phases. The dramatic
possibility of a strong first-order phase transition arises
in many theories beyond the Standard Model. In particular
such a transition is a necessary ingredient for successful
electroweak baryogenesis [1–4].
Since the discovery of gravitational waves by LIGO [5],

the subject of cosmological first-order phase transitions has
gathered fresh interest due to the stochastic gravitational
wave background which they would produce (for recent
reviews see Refs. [6–8]). The stochastic gravitational wave
background may be observable by current and near-future
gravitational wave detectors [9–13]. This offers a new
window into the early Universe, including dark sectors
uncoupled to the Standard Model [14–16].
First-order phase transitions proceed through the nucle-

ation of bubbles of a stable phase, which grow until they
eventually supplant a preexisting metastable phase. As a
consequence, the study of bubble nucleation lies at the
heart of the theory of first-order phase transitions. The rate
of bubble nucleation determines many important physical
properties of first-order phase transitions. In particular, the

peak frequency and amplitude of the gravitational wave
spectrum depend directly on the rate of bubble nucleation.
From an observation of a stochastic gravitational wave

background and its spectrum it is possible to learn about the
process which produced it. In principle one could extract
quantitative information about the underlying particle
physics models. For this, accurate and reliable predictions
of the bubble nucleation rate and related phase transition
parameters are essential. Yet typically, calculations of these
parameters are subject to huge theoretical uncertainties: a
multiplicative uncertainty in the gravitational wave peak
amplitude of many orders of magnitude [17,18]. By
pushing to higher-perturbative orders, it is possible to
dramatically reduce these uncertainties for purely equilib-
rium quantities, such as the critical temperature and latent
heat [19–21]. However, for the bubble nucleation rate this
possibility is still out of reach, and as a consequence it is a
limiting source of uncertainty in the gravitational wave
spectrum. Thus, a better understanding of how to calculate
the rate of thermal bubble nucleation is critical.
The modern theory of bubble nucleation was initiated by

Langer in the late 1960s [22–24], in the context of classical
statisticalmechanics.This built upon earlierworkbyKramers
[25] regarding the escape rate of a particle trapped in a
potential well (see also related work by Zel’dovich [26,27]).
An important development was made by Coleman in 1977
[28], who derived an analogous formalism for vacuum decay
in relativistic quantum field theory (QFT) at zero temperature.
Shortly afterwards, Linde outlined how vacuum decay would
generalize to nonzero temperature [29,30].
However, a lack of clarity on the details of this

generalization to nonzero temperature has meant that
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concrete calculations are plagued by internal inconsisten-
cies, as has been observed by many authors [17,24,31–46]
(see also Refs. [45,47] for related issues at zero temper-
ature). In short, there is an apparent catch-22 because one
must integrate out thermal fluctuations in order to solve for
the bubble configuration, and yet one must already know
the bubble configuration in order to integrate over the
fluctuations about it. Naive attempts to resolve this appar-
ent catch-22 lead to erroneously double counting degrees of
freedom (d.o.f.), stray imaginary parts and an uncontrolled
derivative expansion; see Sec. 3.5 of Ref. [17] for a fuller
explanation. We note that the same problem arises in a
variety of other contexts, typically where the effective
action, rather than the effective potential, is involved.
An important clue to solving these problems is the

classical nature of nucleation for high-temperature phase
transitions which are dictated by long-wavelength physics.
In a study of the quantum mechanical escape rate, it was
shown by Affleck [48] that, as the temperature rises, the
process changes (relatively abruptly) from quantum tun-
nelling to thermal overbarrier escape, with the latter given
by a classical thermal calculation. This behavior is also
expected to occur for the bubble nucleation rate in QFT, a
suggestion reinforced by the known classicalization of
long-wavelength modes at high temperatures (see for
example [49–53]). Therefore, when it is the long-wave-
length modes which undergo nucleation, the quantum
tunnelling picture should be supplanted by an effective
classical picture of bubble nucleation.
Nonetheless, the precise link has remained obscure

between Langer’s classical formalism and the study of
thermal bubble nucleation within QFT. We aim to clarify
this link here, demonstrating it explicitly. However, we will
leave one notable missing piece—the calculation of the
dynamical prefactor (discussed in Sec. II), for future work.
Our work utilizes insights from E. Weinberg’s work on
radiatively-induced vacuum transitions [47], as well as the
literature on the application of effective field theory to the
thermodynamics of QFTs, high-temperature dimensional
reduction [54–57]. There are also connections between our
work and Ref. [58], which recast Langer’s formalism for a
scalar field Langevin equation. Finally, we would like to
highlight Refs. [59,60] in which a lattice formulation of
bubble nucleation was presented, based on similar under-
lying ideas.
Effective field theory (EFT) plays a central role in our

thesis, for two apparently distinct reasons. First, EFT
resolves the aforementioned catch-22. To do this, there
must be a split between the shorter wavelength modes
which contribute to the background for the critical bubble,
and the longer wavelength fluctuations of the critical
bubble itself. Further, there must be a hierarchy of scales
between these two sets of modes if a local description of
bubble nucleation is to exist, in which case EFT is the
natural tool to make the split. Thus EFT provides a solution

to the problems and inconsistencies present in existing
calculations of the thermal bubble nucleation rate.
Secondly, high-temperature EFTs [54–57] provide a

bridge to classical nucleation theory. In fact, an effective
description is assumed as the starting point of classical
nucleation theory [23] (as explained in Ref. [24]), hence
EFT provides the possibility to derive this starting point from
an underlying QFT. We inspect the classical nucleation
theory and note that the exponentially large contributions
are contained in its statistical part, calculable with a classical
equilibrium description. The same structure can be identified
within the imaginary time formalism of thermal QFT, by
constructing anEFT for the nucleatingdegrees of freedom. In
sum, high-temperature EFTs provide the correct classical
effective description for thermal bubble nucleation.
In addition to self-consistency (or perhaps following in

consequence), the approach presented in this paper yields
important benefits. First, dependence on the renormaliza-
tion scale is minimal, as the dependence cancels order by
order. This is noteworthy because typical computations in
the literature generally show a strong unphysical scale
dependence [17,18]. Second, although we do not explicitly
study a model involving gauge fields here, the approach
will in general yield order by order gauge-invariant results,
as both dimensional reduction and the calculation within
the three-dimensional EFT are gauge invariant [17]. The
latter follows because the calculation within the EFT is
equivalent to that of the vacuum decay rate for a QFT in
three spacetime dimensions, and hence its gauge invariance
is guaranteed by the Nielsen-Fukuda-Kugo identities
[61,62]; see for example Refs. [63–66].
In Sec. II we review the general theory of thermal bubble

nucleation, showing how the bubble nucleation rate splits
into dynamical and statistical parts. Following Langer, we
start from an effective description of the nucleating degrees
of freedom. In Sec. III we outline a general formalism for
the derivation of this effective description from an under-
lying QFT. In this we work from first principles, drawing
from the literature on effective field theory. The formalism
is then applied in Sec. IV to a simple Yukawa theory in
which only one scale separates the microscopic QFT from
the effective description of the nucleating degrees of
freedom. In Sec. V we demonstrate the formalism in a
more complicated two-scalar theory, in which there are two
scale hierarchies. A third example follows in Sec. VI, the
cubic anisotropy model, which demonstrates an important
complication to the EFT method which is present in, for
example, gauge-Higgs theories. Finally, in Sec. VII, we
compare our formalism to others in the literature, and
suggest directions for future progress.

II. CLASSICAL NUCLEATION THEORY

In this section we review classical nucleation theory, as
put forward by Langer [22–24]. In addition, we will draw
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attention to a key result; the factorization of the nucleation
rate into dynamical and statistical parts. Classical nuclea-
tion theory can be justified from an underlying QFT when
the low-energy modes are the ones undergoing nucleation,
which is natural in a weakly-coupled theory. Bosonic
modes with energies much lower than the temperature
E ≪ T are Bose enhanced and become highly occupied
nB ¼ 1=ðeE=T − 1Þ ≈ T=E ≫ 1, leading to their classical-
ization [49–53]. Unequal time-correlation functions of
these modes can be computed equally well in either a
classical or a quantum theory, up to some order in the
couplings. This justifies the use of classical nucleation
theory in the saddle-point approximation (at one-loop order
within the classical EFT). Quantum corrections to the
nucleation rate should also be expected to be calculable
classically, by matching to the quantum theory (see for
example [53]).
Those readers who are familiar with classical nucleation

theory, or who are willing to take on faith the split of the
nucleation rate into a product of statistical and dynamical
parts, may wish to skip ahead to Sec. III.
A metastable phase decays into a stable phase via the

nucleation and growth of bubbles. As the phase is only
metastable, some thermal fluctuations are large enough to
escape into the stable phase and begin to grow. These large
enough fluctuations, which interpolate between the two
phases, are the bubbles.
We will focus on the calculation of the rate of bubble

nucleation. It is well defined only if the timescale for
nucleation is much longer than the timescales of particle
scatterings in the metastable phase. This is necessary for the
system to be able to thermalize in the metastable phase. As
we will see below, this hierarchy of timescales can follow
naturally from the Boltzmann suppression of bubble
configurations.
Following Langer [22–24], we will begin by assuming

that there exists some effective, coarse-grained description
of the nucleating system. In particular, we will assume that
it can be described via an effective classical field, ϕðxÞ, and
an effective free energy, Feff ½ϕ�, which describes its
dynamics. Here, in principle, the effective field may have
any number of degrees of freedom at each spatial point, x,
though we will suppress any corresponding internal indi-
ces. The effective free energy is given schematically by [24]

e−βFeff ½ϕ� ¼
Xh

constrained
microscopic variables

ie−βH; ð1Þ

where H is the Hamiltonian describing the system at the
shortest scales.1 The main focus of this paper, and the task
for Sec. III, is to outline how to carry out this schematic

sum starting from an underlying description in terms of a
relativistic QFT.
The effective description should describe the dynamics

of the system on the length and time scales relevant for
bubble nucleation. Admissible choices are such that the
effective free energy exhibits the correct phase structure,
with two phases separated by a potential barrier, and that
the effective field can describe bubble configurations. The
former condition states that the fluctuations inducing the
transition have been integrated out, and the latter states that
the bubbles themselves have not been coarse-grained out of
the description.
In Langer’s analysis [23] the dynamical equations for

ϕðxÞwere assumed to be stochastic Hamiltonian equations,
and in Ref. [58] an equivalent description in terms of
Langevin equations was adopted. A Langevin-like descrip-
tion is in fact formally equivalent to the Schwinger-Dyson
equations [67] for the time evolution of correlation func-
tions with a good classical limit (i.e., for expectation values
of anticommutators of operators), though generically such
descriptions are nonlocal in both space and time. Markovian
(andhence local in time) Langevin equations are nevertheless
applicable to the slowest evolving d.o.f., for which the faster
d.o.f act as a thermal bath, and a source of stochasticity and
damping [50,68] (see also Refs. [69–73]). For the longest
wavelength fluctuations, these Langevin equations may also
be local in space [68]. In principle one could extend classical
nucleation theory to alternative dynamical descriptions, such
as the hard thermal loops effective description for soft gauge
fields [74,75]. However, in the following wewill assume the
existence of generalized stochastic Hamiltonian equations of
the form given inRef. [23] for the dynamics of the fieldϕðxÞ.
Classicality entails a probabilistic or statistical descrip-

tion of the system. The calculation of the bubble nucleation
rate can then be formulated as a statistical initial value
problem, in which the system starts in the metastable
region, and one is interested in the rate at which the
probability distribution leaks over into the stable region.
From the effective free energy one can define the

transition surface in the space of field configurations. It
can be defined as the separatrix between gradient flows on
Feff ½ϕ� which lead to the two different phases, marking the
high point between them, illustrated in Fig. 1. The
transition surface bifurcates the space of field configura-
tions, separating the two phases.
Physically, crossing the transition surface means nucleat-

ing a bubble. This must happen locally in space, as the
exponential suppression of the Boltzmann factor grows
linearly with volume. In fact, from the assumption that
bubble nucleation is slow, one need only consider the
nucleation of a single bubble, as the probability of producing
two bubbles near each other is additionally exponentially
suppressed. This can be formalized with a virial expansion
(see for exampleRef. [76]), in this context sometimes called a
dilute instanton approximation [77].

1Note that Eq. (1) assumes that there are no relevant chemical
potentials. Otherwise, they would enter the formula.
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The critical bubble, denoted with ϕCB, is the gatekeeper
to the stable phase, being the least suppressed effective field
configuration on the transition surface, shown in Fig. 1.
Consequently, it is also a stationary point of the effective
free energy,

δFeff

δϕ

����
ϕ¼ϕCB

¼ 0: ð2Þ

The boundary conditions are such that the field is in the
metastable state at spatial infinity. Arbitrary effective field
configurations on the transition surface are typically much
more exponentially suppressed. Therefore, one expects that
all nucleating bubbles can be handled as slightly deformed
critical bubbles.
This idea can be formulated as a saddle-point approxi-

mation over the transition surface, in which the effective
free energy is approximated to second order in deviations
about the critical bubble,

Feff ½ϕCB þ φ� ≈ Feff ½ϕCB�

þ 1

2

Z
x

Z
y
φðxÞF00

eff ½ϕCB�ðx; yÞφðyÞ; ð3Þ

F00
eff ½ϕCB�ðx; yÞ ¼

δ2Feff

δϕðxÞδϕðyÞ
����
ϕ¼ϕCB

; ð4Þ

where we have introduced
R
x ≡

R
d3x for integration over

space, and the linear term is zero due to Eq. (2).
The fluctuation operator, F00

eff ½ϕCB� from Eq. (4), plays an
important role in the saddle-point approximation, but also
in understanding the transition surface and the direction of

growth for a bubble within configuration space. Crucially,
the operator has one and only one negative eigenvalue.2

The direction in configuration space corresponding to the
negative eigenmode gives the direction of decreasing
effective free energy, and hence the direction of bubble
growth. This direction is orthogonal to the transition
surface, shown in Fig. 1.
In addition to the negative eigenvalue F00

eff ½ϕCB� has one
zero eigenvalue for each symmetry of Feff ½ϕ� broken by the
critical bubble. Translational symmetry is necessarily
broken by the critical bubble, resulting in the rate being
proportional to the volume of the system. Broken internal
symmetries also lead to zero eigenvalues. The remaining
eigenvalues are positive.
Mathematically, Langer defined the rate of bubble

nucleation, Γ, as the flux of probability over the transition
surface [23],

Γ ¼
Z
TS

J · dS⊥; ð5Þ

following earlier work by Kramers [25] on the escape
problem.3 Here J denotes the probability current, a vector
field in the phase space of the effective description, and dS⊥
denotes the surface element perpendicular to the transition
surface, TS. The probability current can be defined by the
continuity equation for the probability density.
This definition differs from −2ImF, which has also been

suggested as a definition for the thermal nucleation rate
[29,30], by analogy with the rate of vacuum decay at zero
temperature Γvac ¼ −2ImEvac. However, while ImEvac can
be directly linked to the process of time evolution in the
false vacuum state [79], this is not the case for ImF and
time evolution near thermal equilibrium, for which the
necessary analytic continuations are more subtle [80]. On
the other hand, within an effective classical description, the
interpretation of Eq. (5) is unambiguous. Reference [48]
found that the quantum mechanical escape rate of a particle
is given by −2ImF at low temperatures, and by Eq. (5) at
high temperatures, where an effective classical description
indeed applies.
To determine the probability distribution and current,

one must solve the appropriate coarse-grained dynamical
equations. In the saddle-point approximation, the problem
can be formulated in the vicinity of the critical bubble,
where Eq. (3) holds. The relevant boundary conditions are
such that, far from the transition surface, the metastable

FIG. 1. Diagram showing a two-dimensional slice of the
configuration space of a nucleating system in the vicinity of
the saddle point. The dot on the transition surface corresponds to
the critical bubble, which is the lowest point on the transition
surface.

2The dimensionality of the transition surface is one less than
the configuration space. The critical bubble is the lowest point
on the surface, therefore only one negative eigenmode orthogonal
to the surface is admitted [78].

3There is freedom in choosing the integration surface in the full
phase space, but this definition utilising the transition surface is
the most convenient for the split into statistical and dynamical
parts which follows.
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state is in thermal equilibrium while the stable state is
unpopulated. This problem was solved by Langer [23],
building on earlier work by Kramers [25]. The solution
describes a small constant flow of probability from the
metastable phase to the stable phase, with the boundary
conditions acting as source and sink.
Crucially, the solution for the phase space probability

distribution, ρ, splits into a product of the equilibrium
distribution and a nonequilibrium factor which depends
only on a single direction in phase space,

ρ ¼ σðuÞ e
−βFeff

Zmeta
; ð6Þ

where σ is the deviation from the thermal distribution. The
parameter u is a linear combination of directions in phase
space,

u ¼ ðU; ŪÞ ·
�
ϕ − ϕCB

π

�
: ð7Þ

Here we are using the notation of Ref. [58], in which ϕ
describes the configuration space of the effective theory, π
denotes the momentum conjugate to ϕ and ðU; ŪÞ denotes
a vector of coefficients in the space of linear fluctuations
about ðϕ; πÞ ¼ ðϕCB; 0Þ. The vector ðU; ŪÞ gives the single
direction, in which the probability distribution is out of
equilibrium. It also carries information on the direction of
the net probability flow in the phase space.
The quadratic approximation to the effective free energy,

Eq. (3), is symmetric under the following transformation

�
ϕ − ϕCB

π

�
→ −

�
ϕ − ϕCB

π

�
: ð8Þ

This symmetry is also satisfied by the corresponding
equations of motion, including noise and damping (see
e.g., Eq. (3.1) in Ref. [58]).4

The symmetry is broken by the boundary conditions,
which ensure that the probability is flowing from the
metastable state to the stable state. In the quadratic
approximation, the only distinction between the stable
and the metastable phases are the boundary conditions:
σ → 1 on the metastable side and σ → 0 on the stable side.
The negative eigenmode determines the direction to the
phases in the quadratic approximation. Hence, the sym-
metry is broken in a direction which is a linear combination
of the negative eigenmode and its conjugate momentum,
whose subspace we will refer to as the negative

eigensubspace. Due to the symmetry, the vector ðU; ŪÞ
can only lie in the negative eigensubspace.
As the probability distribution is out of equilibrium only

in the negative eigensubspace, it behaves thermally

ρ ∝ e−βFeff ð9Þ

within the transition surface, as well as within other
surfaces perpendicular to the negative eigensubspace,
shown as white lines in Fig. 2. Further, as there is no
net probability flux in thermal equilibrium, the probability
current must also lie in the negative eigensubspace. It splits
into an analogous product of terms,

J ¼ σJðuÞ
e−βFeff

Zmeta
; ð10Þ

where σJðuÞ is a vector with constant direction in the
negative eigensubspace of the phase space.5

The nucleation rate, Eq. (5), is given by the integral of
the probability flux over the transition surface, which can
be written as

Γ ¼
Z

DπDϕδðϕ−ÞJϕ−
: ð11Þ

The variable ϕ− is the coefficient of the negative eigenmode
in the expansion ϕ ¼ P

n ϕnfn, where the functions fn are

FIG. 2. Diagram building upon Fig. 1, showing additionally
lines of constant u, along which the stationary probability
distribution is in thermal equilibrium; see Eqs. (6) and (7).

4A multiplicative noise term, such as appears in
Refs. [50,70,71,73], would break this symmetry. However, this
occurs beyond the order of the discussion as at leading order such
a term is given by ϕξ ≈ ϕCBξ.

5It is instructive here to compare Eq. (10) with the approach of
Ref. [48] (see also Ref. [81] for the field theory case). In that
reference, the author did not solve any underlying dynamical
equation for σJðuÞ. Instead an ansatz for the perpendicular
component was proposed, amounting on the transition surface
to σJ;ϕ−

ðuÞjTS ¼ θðπ−Þπ−, (cf. below Eq. (11) for notation). This
ansatz agrees with the solution of Kramers and Langer only in the
limit of all dissipation constants being zero (cf. Ref. [81]).
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the normalized eigenmodes of F00
eff ½ϕCB�. Thus, ϕ− is zero

on the transition surface in the saddle-point approximation
and the delta function in Eq. (11) enforces the integration
over the transition surface. The notation Jϕ−

refers to the
component of the probability current vector in the direction
of the negative eigenmode, perpendicular to the transition
surface.
From Eqs. (7), (10), and (11), we can see that the only

nonequilibrium integral is over the momentum conjugate to
the negative eigenmode. Hence, the nucleation rate formula
splits into a product of statistical (equilibrium) and dynami-
cal (nonequilibrium) parts,

Γ ¼ κ

2π
Σ; ð12Þ

Σ ¼ N
Zmeta

Z
Dϕδðϕ−Þe−βFeff ½ϕ�: ð13Þ

Here, the statistical part, denoted by Σ, is the Boltzmann
weighted transition surface area normalized relative to the
metastable phase, a purely equilibrium quantity. To match
the standard convention in the literature (see e.g.,
Ref. [82]), we have multiplied it by a normalization factor,
N ¼ ðβjλ−j=2πÞ−1=2, where λ− is the negative eigenvalue
of the fluctuation operator in Eq. (4). Also, the dynamical
part, denoted by κ, now has a definite physical interpre-
tation as the exponential growth rate of the critical bubble
[23]. The split in Eq. (12) is the main result of this section,
and finding Σ will be the focus of Sec. III.
The exponential suppression of the nucleation rate

comes from the Boltzmann suppression of the configura-
tions on the transition surface, whereas the more compli-
cated nonequilibrium physics affects only the dimensionful
prefactor, κ. The result of integration over the conjugate
momentum of the negative eigenmode is hidden into the
dynamical part, κ, in Eq. (12) along with other information
in σJðuÞ. All the purely equilibrium behavior is contained
in Σ.
Actually, there is a slight mismatch between the free

energies, Feff , and partition functions, Zmeta, entering
Eqs. (11) and (13). In the former equation, we have not
yet performed the conjugate momentum integrals and the
free energy contains quadratic dependence on them; see for
example Refs. [51,52]. In the latter, they have been
integrated over, and no conjugate momentum dependence
is left. As discussed above, the contribution from the
nonequilibrium integral over the momentum conjugate to
the negative eigenmode is included in the dynamical part, κ.
The rest of the conjugate momentum integrals, unaffected
by the critical bubble background, cancel against the
corresponding ones in Zmeta. The free energy obtained in
Sec. III, via the imaginary time formalism, is akin to
Eq. (13), containing no conjugate momenta, only field
dependence.

Utilising the analysis in Ref. [58], we can find the
exponential growth rate of the bubbles in terms of the
friction coefficient, η,

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλ−j þ η2=4

q
− η=2; ð14Þ

when the equation of motion is the standard Langevin
equation for a real scalar field. Here, we have continued to
use the notation of Ref. [23] for the negative eigenvalue,
which differs from the convention in Ref. [58].
Performing the saddle-point approximation for the stat-

istical part, one finds

Σ ¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� detðβF00
eff ½ϕmeta�=2πÞ

det0ðβF00
eff ½ϕCB�=2πÞ

����
s

e−βΔFeff : ð15Þ

The prime on the determinant denotes that the zero modes
are excluded from the determinant. The ΔFeff in the
exponent is defined as Feff ½ϕCB� − Feff ½ϕmeta�. The negative
eigenvalue, which is eliminated by the delta function in
Eq. (13), reappears in the determinant due to the normali-
zation factor, N . The factor V denotes the contribution
from zero modes, or deviations of the critical bubble which
do not modify the effective free energy. In three spatial
dimensions, there are generically three zero modes due to
the breaking of translation invariance, which give

V ¼ V
Y3
i¼1

�Z
x
ð∂iϕÞ2

�
1=2

ð16Þ

¼ VΔF3=2
eff ; ð17Þ

where V is the volume of space, and on the second line we
have assumed that the kinetic term of the field ϕ is
canonically normalized. There may be additional zero
modes related to the breaking of internal symmetries,
and their contribution can be solved for using the method
of collective coordinates [83]. In general their contribution
is the volume of the zero-mode subspace of the configu-
ration space.
The inclusion of the normalization factor N in Eq. (13),

and consequently of the negative eigenvalue in the deter-
minant in Eq. (15), means that − logΣ takes the form of the
analytic continuation of an effective action [22]. As a
consequence, for a gauge theory the gauge invariance of Σ
can be demonstrated order by order using the Nielsen-
Fukuda-Kugo identities [61,62].
Finally, let us discuss the region of validity of the

semiclassical results presented here. As mentioned in the
beginning of this section, there needs to be a hierarchy
between the particle scattering and nucleation time scales,
and this separation comes from the Boltzmann suppression
of nucleating bubbles. Thus, there are two ways for the
expression to break down. The first one is that the critical
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bubble is not exponentially suppressed by its effective free
energy. Physically, this corresponds to the bubble being
comparable to a typical thermal fluctuation of the effective
field. Another possibility is for the fluctuation determinants
to become exponentially large and to cancel the exponential
suppression from the critical bubble. This can happen in
phase transitions which are weakly first order, i.e., close to
being second-order transitions, and was discussed in
Ref. [41]. Physically this corresponds to wildly distinct
bubbles contributing to the transition—an exponential
variety of configurations.

III. EFFECTIVE THEORIES FOR THERMAL
BUBBLE NUCLEATION

In this section we present the EFT approach to calculat-
ing the statistical part of the bubble nucleation rate, Σ in
Eq. (12), which contains all the exponential contributions to
the rate. As discussed in the previous section, Σ is the
Boltzmann weighted transition surface area in the saddle-
point approximation around the critical bubble. The crucial
step left out of classical nucleation theory is the derivation
of the effective free energy from an underlying QFT, in
essence to substantiate Langer’s schematic Eq. (1), repeated
here,

e−βFeff ½ϕ� ¼
Xh

constrained
microscopic variables

ie−βH:

This is the step that we will focus on in Sec. III.
We will outline the general principles of how to construct

the effective free energy, from which can be derived all the
quantities which enter Σ; the Boltzmann factor, the tran-
sition surface, and the critical bubble. This will entail a
general discussion of EFTs at high temperature, and of
dimensional reduction, as well as a discussion of the
specific features that are pertinent to bubble nucleation.
We will see how the use of EFT solves the double counting
issue and uncontrolled derivative expansions. Some rel-
evant subtleties are discussed in appendixes; the thin-wall
regime in Appendix B and lower temperature transitions in
Appendix C.
In thermal first-order phase transitions, the global mini-

mum of the free energy shifts discontinuously with temper-
ature. Hence, their description requires taking thermal
fluctuations into account. In many thermodynamic com-
putations, one integrates out all nonconstant thermal and
quantum fluctuations to obtain the free energy for a flat,
homogeneous background.6 However, this cannot be the
correct approach for describing bubble nucleation, because

the configurations along the transition surface are not
homogeneous configurations, but rather different bubbles.
Therefore, we need to leave some inhomogeneous modes
unintegrated so that we can still describe the transition
surface. This leads to the schematic Eq. (1) for finding the
effective free energy that describes nucleation. There,
enough of the fluctuations have been integrated out so
that the effective free energy has the correct phase structure,
but also enough have been left unintegrated so that it can
still describe nucleating bubbles.
EFT is exactly the tool we need to implement Eq. (1). A

top-down construction of an EFTamounts to mapping a full
theory to a corresponding effective theory that can describe
its infrared (IR) behavior, i.e., the long-distance and low-
energy scales of the full theory. The Lagrangian of the EFT
should respect the unbroken symmetries of the full theory,
and will be local if there exists a scale hierarchy. The
mapping can be carried out via matching the coefficients of
the EFT Lagrangian so that its behavior coincides with the
IR behavior of the full theory. This matching effectively
integrates out the higher-energy scales, their contributions
to IR physics manifest only through these coefficients.

A. Scales of interest

In a first-order phase transition driven by the change of
temperature, there are always at least two energy scales; the
thermal scale, Λtherm, and the nucleation scale, Λnucl
(cf. Fig. 3). The former scale contains the thermal fluctua-
tions and consequently the dominant thermal effects. It is of
order Λtherm ∼ πT. The latter scale contains the dynamics of
nucleation. Thus, it is the length scale of the bubble radii,
which can be given in terms of the mass of the nucleating
effective field, Λnucl ∼mnucl. This point is discussed further
around Eq. (28), where the identification is made.
Note, that the creation of the EFT for the nucleation

scale, with the thermal contributions integrated out, is only
possible if Λnucl ≪ Λtherm. This is actually also the con-
dition for applying the classical effective picture from
Sec. II, as in this case the nucleation scale modes are
Bose enhanced. The condition is quite natural in perturba-
tive QFTs. This is because the phase transition occurs when

FIG. 3. The energy scales, Λ, of particular interest in thermal
bubble nucleation. Thermal and nucleation scales are always
present and must be separated by a scale hierarchy,
Λnucl ≪ Λtherm, for a local nucleation scale EFT to be able to
capture the thermal corrections and for classicalization to occur.
The intermediate scale Λint arises naturally in some theories and
can have a nontrivial effect on nucleation. Note that in the thin-
wall regime Λnucl ∼mnucl no longer holds, and is replaced by
Λnucl ≪ mnucl.

6For a discussion of the interpretation of such (complex)
effective potentials for homogeneous backgrounds see Ref. [84],
and for further discussion of their inappropriateness for bubble
nucleation by the same author see Ref. [47].
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coupling-suppressed thermal corrections balance against
tree-level terms. For example, the effective mass squared is
the sum of the tree-level mass squared and a term of the
form (coupling)×T2. Balancing these two terms yields a
natural scale hierarchy [cf. Eqs. (42) and (64) below], with
the temperature parametrically larger than the mass, as long
as the theory is perturbative. However, this reasoning can
be violated, for example, when at zero temperature there are
two phases with very similar vacuum energies, then only a
small thermal correction is needed to cause a phase
transition. In this case, the EFT is out of reach. Methods
for handling nonhigh-temperature phase transitions with
Λnucl=≪Λtherm are briefly discussed in Appendix C.
An additional scale may arise between the thermal scale

and the nucleation scale, which we will call the inter-
mediate scale,Λint (cf. Fig. 3). While some first-order phase
transitions contain only the thermal and nucleation scales,
an intermediate scale may be present and have a decisive
effect on the dynamics of the transition. Examples of the
latter are given in Secs. V and VI.
Even if the intermediate scale contributions to nucleation

are not of leading order, they can still give significant
contributions to the masses of the nucleation scale, due to
Λint enhancements. These contributions are straightforward
to quantify and account for using EFT.
The emergence of an intermediate scale may happen in

theories with an intrinsic hierarchy of couplings or masses,
through the resulting effects on the behavior of thermal
effective masses. One possibility is that a field is relatively
strongly coupled to a field undergoing a symmetry break-
ing transition. This can happen, for example, in the cubic
anisotropy model and gauge-Higgs models. The cubic
anisotropy model is studied in Sec. VI.
Lastly, we want to note that in the thin-wall regime

Λnucl ∼mnucl no longer holds. This happens because the
critical bubble radius becomes large due to the smallness of
the free energy difference between the phases. Hence,
Λnucl ≪ mnucl, and the scale of mnucl becomes an inter-
mediate scale.

B. Nucleation scale EFT from the imaginary-time
formalism

The statistical part of the nucleation rate, Σ in Eq. (13), is
a static equilibrium quantity. Hence we may compute it
using the imaginary-time formalism of QFT at finite
temperature (cf. Refs. [85,86]), which captures the equal
time correlation functions of a theory at finite temperature.
Here, we will discuss the structure of the imaginary-time
formalism relevant for obtaining the nucleation scale EFT.
This EFTwill be identified with the effective description at
the heart of classical nucleation theory; the link is elabo-
rated in the next subsection.
The partition function in the imaginary-time formalism is

given by

ZðTÞ ¼ Tr½e−βĤ�

¼
Z
BCs

DΦ exp

�
−
Z

β

0

dτ
Z
x
LE

	
; ð18Þ

where Ĥ is the Hamiltonian of the theory,Φ denotes the full
field content, LE is the Euclidean Lagrangian, and τ is
called the Euclidean or imaginary time. The physical equal
time correlators are given by the equal imaginary-time
correlators of this formalism.
The Euclidean time in Eq. (18) has finite extent equal to

the inverse temperature, β, and the boundary conditions
(BCs) are such that bosonic fields are periodic in the
Euclidean time and fermionic fields are antiperiodic. This
gives rise to a discrete set of Fourier modes in the Euclidean
time direction, the Matsubara frequencies; ωb

n ¼ 2πTn for
bosons and ωf

n ¼ 2πTðnþ 1
2
Þ for fermions. We define the

Matsubara mode decomposition as

Φb=fðτ;xÞ ¼
X
n∈Z

Φb=f
n ðxÞeiωb=f

n τ; ð19Þ

so that the dimensionalities of the Matsubara modes match
those of the full fields.
The peculiar structure of the Euclidean time implies that

the effective theory for energy scales much below the
thermal scale (distance scales much longer than β) no
longer contains the Euclidean time dimension, and hence is
purely three dimensional. This high-temperature dimen-
sional reduction was first studied in Refs. [87–90] and was
developed and systematized in Refs. [54–57], so facilitating
higher-order calculations. It has since been used in a
plethora of calculations—for example, to calculate the
thermal bubble nucleation rate on the lattice [59,60], to
calculate the phase diagram of the electroweak sector
[91,92], and to calculate the pressure of QCD to
Oðg6 log gT4Þ [93]. For reviews, see Refs. [55,86,94–96].
Dimensional reduction can be understood as creating an

EFT for the light bosonic-zero Matsubara modes, Φb
0ðxÞ,

which are Bose enhanced. It can be seen from the bare
momentum space bosonic and fermionic propagators,

1

p2 þ ðωb
nÞ2 þm2

b

;
−iPþmf

p2 þ ðωf
nÞ2 þm2

f

; ð20Þ

that the Matsubara frequencies yield an additive correction
to the effective mass. Thus, the bosonic-nonzero Matsubara
(n ≠ 0) modes and all the fermionic modes become much
heavier that the bosonic-zero Matsubara mode, when the
temperature is much larger than the mass of the bosonic
field, ðπTÞ2 ≫ m2

b. The zero-Matsubara mode is indepen-
dent of the Euclidean time, and thus, this dimension is
absent in the EFT. The EFT contains only the three
physical, spatial dimensions.
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The partition function of the full theory is related to that
of the EFT by [56,57]

ZðTÞ ¼ e−VβfthermðΛÞ
Z ðΛÞ

Dϕ exp−
Z
x
Leff ; ð21Þ

where Λ is the factorization (or the matching) scale, which
separates the thermal scale from the lower scales and acts as
the UV cutoff for the dimensionally-reduced theory. The
field-independent factor in Eq. (21), which has been pulled
out of the path integral, is the free energy contribution
purely from the thermal scale, fthermðΛÞ. It will cancel from
the nucleation rate, as this only depends on the difference
between the action evaluated on the bubble and on the
metastable phase [cf. Eq. (15)], so fthermðΛÞ is irrelevant for
us. Here, ϕ denotes all the light (bosonic) fields of the EFT,
which correspond to the zero-Matsubara modes of the full
theory with m2

b ≪ ðπTÞ2.
Let us assume for now that only the thermal and

nucleation scales are present. In this case, the steps from
Eqs. (18) to (21) accomplish the schematic coarse-graining
of Eq. (1). This yields a path integral for the Bose-enhanced
modes of the nucleation scale, which corresponds precisely
with the classical path integral structure of Eq. (13). Thus,
we can identify

βFeff ≡ Snucl ¼
Z
x
Leff ; ð22Þ

forming the bridge from QFT to classical nucleation theory.
With this identification, we can utilize the analysis of
Sec. II to compute the statistical part of the nucleation rate
to one-loop accuracy within the EFT, Eq. (15).
In theories with additional intermediate scales, the

partition function for the nucleation scale EFT still has
the general structure of that given in Eq. (21). One only has
to lower the factorization scale, Λ, so that it separates the
nucleation scale, Λnucl ∼mnucl, from all higher scales. This
can be carried out by creating a chain of EFTs, with each
link matched to its neighbors. Note that the nucleating d.o.f.
remains dynamical in the nucleation scale EFT due
to Λnucl ∼mnucl.
Creating the chain of EFTs, from the thermal down to the

nucleation scale, organizes powers of ratios of scales, and
permits one to construct a description of the nucleation
scale which is accurate up to corrections of known
magnitude, and which is systematically improvable. We
will show an example with one scale hierarchy in Sec. IV,
examples with two scale hierarchies in Sec. V and VI, and
the thin-wall regime, where there is an additional hierarchy
Λnucl ≪ mnucl, in Appendix B.
In this EFT framework, we can now see how the catch-22

discussed in the Introduction is resolved. The factorization
scale, Λ, divides the fluctuations into two groups, based on
their energy E, which are respectively counted only once,

Σ ¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� detðS00nucl½ϕmeta�=2πÞ
det0ðS00nucl½ϕCB�=2πÞ

����
s

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
modesE<Λ

e−Snucl½ϕCB�|fflfflfflfflffl{zfflfflfflfflffl}
modesE>Λ

: ð23Þ

First, the fluctuations with energies higher than Λ are
integrated out, yielding the effective action of the nucleation
scale, Snucl. The critical bubble is then solved for, as the
saddle point of Snucl [Eqs. (2) and (22)]. Finally, the
fluctuations with energies lower than Λ are integrated over,
in the background of the critical bubble, resulting in the
fluctuation determinant. This can be identified as the con-
tributions from differently shaped bubbles.7 Altogether, this
process avoids uncontrolled gradient expansions (cf. Sec. 3.5
ofRef. [17]) bymakinguse of the natural hierarchies of scale.
Further, all quantities are completely real, there are no stray
imaginary parts, because fluctuations below Λ are not
integrated out before solving for the critical bubble.
Finally, we would like to make a remark concerning loop

orders and the construction of the nucleation scale EFT.
The classical formalism of Sec. II, and crucially the
factorization of the nucleation rate into statistical and
dynamical parts [Eq. (12)], is based upon a one-loop,
saddle-point approximation within the nucleation scale
EFT, identified as the classical effective description. This
means that the calculation of higher-loop corrections to the
nucleation rate coming from within the nucleation scale
EFT goes beyond the scope of this article. On the contrary,
there is no impediment to incorporating higher-loop correc-
tions from the higher-energy scales into the nucleation scale
EFT, which then gives the classical description. The con-
struction only relies upon general principles of EFT. This is
important because, at low-loop order, the higher-energy
scales typically give parametrically larger contributions.
Secs. V and VI provide examples at two-loop order.

C. Subtleties of matching classical nucleation theory

The EFT framework resolves many complications in the
calculation of the thermal nucleation rate, and offers an
intuitive physical picture of the nucleating bubbles.
However, the framework is built on an implicit assumption;
that the structure of the transition surface (the background
for the bubbles) is dominated by contributions due to the
higher-energy scales, and not the nucleation scale nor a
lower-energy scale. This is requisite for a local description
of the transition surface. In the following, we discuss the
range of validity of this assumption, and related subtleties.
To set the scene, we will suggest a suitable definition of a

local description, and discuss its relationship with EFT.

7The negative eigenvalue in Σ does not arise as a result of
integrating over the negative eigenmode via analytical continu-
ation, as is the case in the vacuum decay rate. Here, it is simply
included as a conventional normalization [cf. Eq. (13)]. Hence,
the determinants can truly be identified with contributions from
differently shaped nucleating bubbles, up to this normalization.
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Following this, we will consider the effects of lower-energy
scale fluctuations on the critical bubble. These will reveal
whether a local description is possible. Finally, we will
discuss some difficult cases and ways to proceed in them.
By a local description of the transition surface, we mean

that there exists a local free energy functional [Eq. (1)],
containing a finite number of spatial derivatives, whose
extremum gives a systematically improvable approxima-
tion for the critical bubble [Eq. (2)]. The requirement of
systematic improvability is important. It means that by
including higher-order terms, perhaps involving a larger,
but finite, number of spatial derivatives, one can system-
atically improve the approximation to the critical bubble,
with higher-order terms being successively smaller.
The EFTapproach is built upon the derivative expansion:

by integrating out only short-wavelength modes, higher
derivative terms in the effective description are small.
Going beyond the EFT approach and integrating out any
modes from the nucleation scale or lower inevitably
violates the derivative expansion, yielding a nonlocal
description. Physically, this is because the integrated
fluctuations take place on the same length scales as the
nucleating bubbles. Consequently, if a local description of
the transition surface exists, the nucleation scale EFT
implements it.
In the EFT approach, the critical bubble lives in the

background of shorter wavelength fluctuations; it is deter-
mined by the tree-level action of the EFT. The (nonlocal)
effects on the critical bubble due to fluctuations within the
EFT are not included. These take the form of loop-level
tadpole diagrams (see for example Ref. [62]), induced by
integration over the d.o.f. of the EFT. Being loop induced,
these should be small corrections to the tree-level terms, as
long as the nucleation scale EFT is perturbative.
Diagrammatically, the correction to the critical bubble

from a degree of freedom in the nucleation scale EFT can
be understood as follows: At one-loop level, integration
over the d.o.f. results in a fluctuation determinant repre-
sented as

ð24Þ

At leading order (LO), this affects the critical bubble
configuration through

ð25Þ

where the solid line is the propagator of the nucleating
d.o.f. This correction to the critical bubble by itself leads to
the following contribution to the exponent of the statistical
part of the nucleation rate,

ð26Þ

This two-loop dumbbell diagram must be small com-
pared to the tree-level action terms, if the nucleation scale
EFT is to give a local description for the critical bubble,
admitting a saddle-point approximation. The dumbbell is
naturally small if the nucleation scale EFT is perturbative,
being suppressed by the loop-expansion parameter of the
EFT. In this case, so too are higher-order corrections to the
critical bubble, which arise at higher-loop orders.
One should be mindful also to account for potential

enhancements by ratios of scales, yet these only serve to
reinforce the validity of the EFT approach. If the degree of
freedom of the dotted lines is lighter than the nucleation
scale, then the dumbbell diagram is even further suppressed
than its loop counting would suggest. On the other hand,
the effects of heavier d.o.f., which could potentially give
large corrections, have already been accounted for through
the construction of the nucleation scale EFT.
The above considerations leave only one possibility for

the nucleation-scale fluctuations to give LO contributions
to the critical bubble, and hence for a nonlocal description
to be necessary; the loop expansion within the EFT must
break down. This can happen either due to strong coupling,
or due to a sufficiently large number of weakly-coupled
degrees of freedom, both of which cases we discuss below.
We also discuss two other subtle cases, for which local
descriptions are nevertheless possible; the thin-wall regime,
and models in which the mass of a field changes so
drastically that it is associated with parametrically different
scales on different parts of the critical bubble.
When the nucleating degree of freedom is strongly

coupled, the loop expansion breaks down altogether, and
therefore so too does the tadpole expansion. In three
dimensions, the loop-expansion parameter contains an
inverse power of the field mass. Hence, the self-coupling
of the nucleating field increases if the transition approaches
a spinodal decomposition, at which point the mass van-
ishes. Too near to the spinodal decomposition, or in too
weak a first-order transition, the only possibility is thus to
resort to nonperturbative lattice Monte Carlo simulations.
If the nucleation scale EFT contains a sufficiently large

number N of weakly coupled fields, the dumbbell term,
which scales as N2, can become of LO. In this case
however, some higher-loop diagrams are also of LO, such
as the triple dumbbell at three-loop order, showing the
breakdown of the vanilla-loop expansion. As before, this
case can be studied on the lattice. Another possibility, if the
LON dependence can be resummed to produce a consistent
perturbative expansion, is to adopt the iterative nonlocal
approach [39,45,97,98]. In this case, the construction of the
nucleation scale EFT still plays an important role, as it
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accounts for the higher-energy scales, and helps to give a
suitable starting point for the iterative procedure.
In the thin-wall regime, there are near-perfect cancella-

tions amongst the tree-level terms such that the free energy
difference between the phases is anomalously small.
Therefore, deep enough in the thin-wall regime, loop-level
contributions from the scale of mnucl can become of the
same order as the tree-level free energy difference.
Consequently, these loop-level contributions cannot be
treated perturbatively in the background of the usual
tree-level critical bubble. However, the nucleation scale
is now its own IR scale, Λnucl ∼ 1=R ≪ mnucl, where R is
the bubble radius. Thus, one can integrate out the now-
intermediate scale of mnucl to obtain a description valid in
the thin-wall regime. This is discussed in Appendix B.
Lastly, we consider the case where the effective mass of a

field shifts so drastically between the phases that the scale
to which it is associated changes, being much heavier than
the nucleation scale in at least one part. We refer to these
kinds of fields as scale-shifters. Seemingly, they are
difficult to accommodate within EFT, because they are
associated with different scales on different parts of the
critical bubble. Cosmologically perhaps the most relevant
case, is that in which a light field jumps to the intermediate
scale in a symmetry breaking transition. This kind of
behavior is, for example, exhibited in gauge-Higgs theories
by the spatial components of the gauge field. In Sec. VI, we
show how this situation can be handled perturbatively,
while keeping the residual errors clear. In fact, the errors
can even be eliminated entirely from the exponential order
with techniques for evaluating fluctuation determinants or
with the iterative nonlocal method. In a nutshell, the field
should be associated with the intermediate scale, and
integrated out into the nucleation scale effective action.
This is because the tadpoles from the intermediate scale
outweigh the nonlocal errors from the nucleation or a
lower scale.

D. Nucleation scale EFT construction

Finally, we would like to discuss the process of con-
structing the EFT of the nucleation scale. This proceeds in
the same general way as in other contexts: the low-energy
degrees of freedom are identified, the most general action
containing these degrees of freedom and obeying the
relevant symmetries is written down, truncated at some
order, and the low-energy behavior of the full theory is
matched against that of the EFT. For a general review of
EFT see for example Ref. [99], and for reviews of high-
temperature dimensional reduction see Refs. [86,94–96].
For the case at hand, we will underline some pertinent
aspects; power counting and the truncation of the EFT, and
we will briefly touch on the practicalities of matching. Such
practicalities are also demonstrated in the examples of
Secs. IV, V, and VI.

In the presence of a hierarchy of scales, the counting of
loop orders is no longer a reliable way to organize
perturbative calculations. This is because, in addition to
the couplings, the ratio of scales provides a new small
parameter which may enhance or suppress infinite classes
of Feynman diagrams. EFT provides a systematic approach
to carrying out the necessary resummations of diagrams, by
means of a dual expansion in powers of couplings and in
the ratios of energy scales Λlow=Λhigh. If the ratio of scales
can be related to the couplings, such as in high-temperature
dimensional reduction, the result is a pure expansion in
powers of couplings, though one that differs from the loop
expansion.
In the absence of a computation of the dynamical part of

the nucleation rate, there is a baseline error which leads to a
natural truncation of the EFT. The dynamical part enters as
a prefactor to the nucleation rate [cf. Eq. (12)], and it is not
expected to be exponentially large in the power counting.
Hence, this baseline error is an Oð1Þ (or logarithmic)
correction compared to the nucleation action, and one need
only keep contributions which are parametrically larger
than this. Of course, if one calculates the dynamical part of
the nucleation rate, the action of the EFT will have to be
calculated to the corresponding accuracy.
To be able to truncate the EFT action appropriately, one

must be able to estimate the magnitude of different con-
tributions to the bubble action. To do so one first accounts for
the higher scales at leading order, fromwhich one can deduce
the scalings of the critical bubble. Next-to-leading order
(NLO) and successive higher-order terms in the EFT
action can then be estimated by evaluating them on the
critical bubble. Breaking this down, one needs estimations of
the bubble volume, VCB, the field value at the center of the
bubble, ϕ0 ≡ ϕCBðr ¼ 0Þ, and the gradient, ∇, evaluated on
the bubble. The contribution from a given action term can
then be estimated as VCB × Lagrangian term.
The gradient ∇, evaluated on the critical bubble, can be

linked to the mass of the nucleating field,mnucl. The critical
bubble is a localized field configuration, and a saddle point
of the action of the nucleation scale EFT. As such, the
kinetic and potential terms in the Lagrangian are of the
same order of magnitude when evaluated on the critical
bubble, leading to ð∇ϕCBÞ2 ∼m2

nuclϕ
2
CB, or simply

∇ ∼mnucl; ð27Þ

when evaluated on the bubble. Equation (27) can be
demonstrated with scaling arguments akin to those used
to prove the virial theorem, or Derrick’s theorem [100].
From Eq. (27) we directly obtain the length scale at

which the critical bubble configuration varies. Thus,
obtaining the nucleation scale,

Λnucl ∼mnucl; ð28Þ
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a central result for constructing the nucleation scale EFT.
This holds as long as the critical bubble is not thin-walled.
In the thin-wall regime, the free energy difference between
phases is anomalously small, resulting in the emergence of
a new infrared scale in the EFT, associated with the bubble
radius. There, Eq. (28) no longer holds, and the nucleation
scale satisfies Λnucl ≪ mnucl.
Now, we can also estimate the volume of the critical

bubble as

VCB ∼m−3
nucl: ð29Þ

From this one finds that to calculate all parametrically large
contributions to Snucl requires calculating the Lagrangian of
the EFT up to but not including Oðm3

nuclÞ.
Finally, there is the estimation of ϕ0. This can be found

by equating the order of magnitude of the mass term in the
potential with the term responsible for making the potential
go down again towards the stable minimum, akin to the
reasoning for obtaining Eq. (27). Near the critical temper-
ature, this implies that ϕ0 ∼ ϕstable. However, if there is
significant supercooling it may be that ϕ0 ≪ ϕstable.
The estimation of the field variable is important for

determining the relevance of an operator, but it can also
reveal a need for resummation. In Examples 2 and 3, the
field value changes so much that its effect on the mass of
the integrated-out field is of LO. Thus, the change has to be
resummed into the mass. Conversely this is not necessary in
Example 1.
Above, we have considered the magnitude of terms

evaluated on the critical bubble, in order to understand how
to truncate the effective action. One might still be con-
cerned about how various terms affect the critical bubble
itself, through corresponding tadpole diagrams. This how-
ever is not a problem, as we shall now demonstrate.
Let us represent some particular contribution to the

effective action by

ð30Þ

which we will assume to be parametrically smaller than
LO. This term affects the critical bubble, which in turn
leads to the following additional correction to the exponent
of Σ,

ð31Þ

Assuming for simplicity that we are not in the thin-wall
regime, then the internal line must be of the nucleation scale
as there are no other scales present. Thus, we can power
count the ratio of Eqs. (31) and (30) to be

ð32Þ

∼
ΔL

m2
nuclϕ

2
: ð33Þ

This ratio is small as long as the term ΔL is smaller than
the LO mass term, i.e., as long as ΔL ≪ L ðLOÞ. Hence,
compared to the LO, the effects from the change of the
critical bubble are of second order in the small expansion
parameter. This is, in essence, an elementary result of
second-order perturbation theory.
Using similar power counting arguments as above, one

can truncate the differential equation describing the critical
bubble, Eq. (2), to be more amenable. Dropping a term
from the action, Eq. (30), gives rise to a corresponding
tadpole expansion, whose leading order is the dumbbell
diagram, Eq. (31). The expansion is perturbative if the
dropped term is of subleading order. Conversely, including
a term into the differential equation describing the critical
bubble effectively resums the corresponding tadpole expan-
sion to all orders.
So, the above estimates allow one to rank the operators

of the EFT, and to truncate them, in order to achieve an
appropriate accuracy for the nucleation rate. Once this is
complete, the next task is to match the coefficients of these
operators.
The coefficients of the EFT can be chosen in order to

match the corresponding long distance correlation func-
tions of the theories. The task is immensely simplified by
treating all IR-quantities (masses of the EFT-fields and
external momenta) via strict perturbation theory and
utilizing dimensional regularization [56,57]; for a review
see Sec. 5.7 of Ref. [99]. In this approach, on the EFT side
all loop integrals vanish due to being scale free. Note that
the renormalization scale of the full theory must be run
down to the EFT cut-off (or matching scale) to treat both
sides equally. The result is essentially to add the 1-EFT-
particle-irreducible diagrams, whose EFT-field propagators
are IR-regulated with dimensional regularization, to the
corresponding couplings of the EFT.8 Note that it is
conventional to scale the EFT fields to have canonical
kinetic terms. This scaling enters the matching relations;
see for example the

ffiffiffiffi
T

p
in the matching relation of Eq. (43).

Intuitively, the EFT description shrinks to points the
short distance parts of long distance correlation functions.
As an illustrative example from Ref. [86], consider a two-
loop sunset diagram where the external legs are of a light
field, and internally there is an additional heavy field. The
diagram can be split into two parts, depending on whether
the momentum of the light field internal line is above or
below the EFT cutoff,

8While it is often stated that one needs only to match the 1PI
correlation functions [55,81], for example in the presence of
heavy scalar particles there can also be contributions from
diagrams containing reducible internal lines of these scalars
[101,102].
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ð34Þ

Here the full lines refer to the light field, the dashed lines to
the heavy field and the black circles refer to the two terms
in the effective description. The first term accounts for the
matching of two-point functions, whereas the latter comes
from the matching of four-point functions and then com-
puting the loop-diagram within the EFT [consider joining
two external legs in the middle diagram of Eq. (72)].

IV. EXAMPLE 1: ONE SCALE HIERARCHY

The approach outlined in Sec. III is model independent,
relying only on the existence of a hierarchy of scales. To put
the formalism in context however, we apply it to three
theories, starting with the simplest case where there is only
one hierarchy of scales, that between the thermal and the
nucleation scales, Λtherm ≫ Λnucl.
We first consider the simplest possible theory which may

display a first-order phase transition, that of a real scalar
field. When this theory has a Z2-symmetry, the thermal
phase transition in known to be of second order [103,104],
so we must include Z2-breaking terms. In four dimensions,
the most general renormalizable theory of a real scalar field,
Φ, is the following:

L Φ ¼ 1

2
ð∂μΦÞ2 þ VðΦÞ; ð35Þ

VðΦÞ ¼ sΦþ 1

2
m2Φ2 þ 1

3!
gΦ3 þ 1

4!
λΦ4: ð36Þ

In addition, we add a Dirac fermion, Ψ, coupled to the
scalar field via the Yukawa interaction,

L Ψ þL Yukawa ¼ Ψ̄ð=∂ þmΨÞΨþ yΦΨ̄Ψ; ð37Þ

so that the total (Euclidean) Lagrangian of our first example
takes the form,

L ¼ L Φ þL Ψ þL Yukawa: ð38Þ

For simplicity we will make the natural assumption that the
couplings of the theory are all equally perturbative,
λ ∼ g2=m2 ∼ y2, and that there are no mass hierarchies in
the theory at zero temperature, m ∼mΨ. In this case the
loop expansion and the couplings expansion agree at zero
temperature. Further, for there to be a phase transition,
thermal fluctuations must modify the effective potential of
the theory at LO. The leading effect of thermal fluctuations
amounts to a shift in m2 of order λT2 and a shift in s of
order gT2. As a consequence, in the vicinity of the phase
transition one expects m2 ∼ λT2 and s ∼ gT2. These rela-
tions define our power counting for this theory.

The modes of the thermal scale are integrated out using
dimensional reduction, so constructing the EFT which
describes the nucleation scale. The thermal modes are
the entire field Ψ as well as the nonzero Matsubara modes
of Φ. The 3D EFT is described by the most general
Lagrangian for the remaining degree of freedom, a single
real scalar field,

L 3 ¼
1

2
ð∇ϕÞ2 þ V3ðϕÞ; ð39Þ

V3ðϕÞ ¼ s3ϕþ 1

2
m2

3ϕ
2 þ 1

3!
g3ϕ3 þ 1

4!
λ3ϕ

4: ð40Þ

The construction of the 3D EFT is standard. As outlined
in Sec. III D, it proceeds via matching static infrared
quantities calculated in both the full theory and the EFT,
so determining the effective field ϕ and the effective
couplings of Eq. (39). These are matched order by order
in powers of couplings. Calculations of the static infrared
quantities take place with a cutoff, or matching scale, Λ,
which acts as an infrared cutoff for the full theory, as well as
an ultraviolet cutoff for the EFT. In the end, dependence on
Λ should drop out of all physical quantities. The most
economical method is to match 1 −Φ=ϕ-irreducible cor-
relation functions, and to use dimensional regularization to
introduce the cutoff. For this theory, 1 −Φ=ϕ-irreducible is
equivalent to 1-particle-irreducible, as there are no fermion
tadpole diagrams (fermions do not take a nonzero expect-
ation value). Further simplifications follow from utilizing
the strict perturbation theory of Refs. [56,57], in which one
treats IR masses, external momenta and tadpoles as
perturbations.
To truncate the EFT appropriately, we must first deter-

mine the parametric magnitude of the nucleation scale
mass, m2

nucl ¼ V 00
3ðϕmetaÞ, and the value of the field at the

center of the critical bubble ϕ0. Shifting to a field basis
where s3 ¼ 0, and equating the orders of magnitude of the
remaining terms in the potential of the effective theory,

m2
nuclϕ

2
0 ∼ g3ϕ3

0 ∼ λ3ϕ
4
0; ð41Þ

results in

m2
nucl ∼ λT2; ϕ0 ∼

ffiffiffiffi
T

p
: ð42Þ

Note that, these relations can change if there is parametri-
cally large supercooling, because the second relation in
Eq. (41) holds only in the vicinity of the critical
temperature.
The bubble volume is m−3

nucl ∼ λ−3=2T−3, and conse-
quently the nucleation action is m−1

nuclϕ
2
0 ∼ λ−1=2 at LO.

Hence, to describe the nucleation action at Oð1Þ accuracy,
i.e., exponential order for the nucleation rate, requires
contributions to the nucleation scale effective Lagrangian
at OðλT3Þ.
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To construct the EFT Lagrangian at OðλT3Þ accuracy,
the effective three-point and four-point couplings need only
be matched at tree level. The same is true for the matching
of the effective field, ϕ; one-loop corrections resulting from
matching the Oðp2Þ momentum dependence of the two-
point functions are of higher order. The only loop-corrected
matching relations at this order are for the tadpole and mass
terms, which are corrected at one-loop order.
Subleading corrections from the thermal scale correct the

nucleation scale effective Lagrangian at Oðλ2T3Þ, and
hence correct the nucleation action at Oð ffiffiffi

λ
p Þ. Since a

calculation of the nucleation rate at this accuracy would
require calculating the dynamical part and also the two-
loop corrections from the EFT field, which are beyond our
scope, these subexponential corrections wind up in the
uncertainties of the final results of this section, Eqs. (57)
and (58).
Diagrammatically the matching relation for the tadpole

reads

ð43Þ

¼ −s −
g
2

XZ
P

1

P2
þ ymΨ

XZ
fPg

trðPPÞ
P4

; ð44Þ

where plain lines denote the scalar, lines with arrows denote
the fermion, and crossed dots denote tree-level insertions,
of the scalar tadpole and the fermion mass. The results for
each diagram are shown below, appearing in the same
order. Our notation for momenta and loop integration are
standard [56,57] and are given in Appendix A.
The diagrammatic matching for the mass reads

ð45Þ

¼ −m2 −
λ

2

XZ
P

1

P2
þ y2

XZ
fPg

trðPPÞ
P4

; ð46Þ

where the crossed dot denotes a tree-level scalar mass
insertion and we have dropped all contributions smaller
than OðλT2Þ. The right-hand sides of both Eqs. (43) and
(45) are evaluated in the full theory at high temperature,
treating the particles as massless within loop sum-integrals
due to the strict perturbation expansion in the IR quan-
tities [56,57].
The relevant one-loop sum-integrals are known analyti-

cally, and can be found, for example, in Appendix A of
Ref. [57]. Inserting the integrals gives the matching
relations at this order,

ϕðxÞ ¼ 1ffiffiffiffi
T

p Φ0ðxÞ; ð47Þ

s3 ¼
sffiffiffiffi
T

p þ T3=2

24
ðgþ 4ymΨÞ; ð48Þ

m2
3 ¼ m2 þ T2

24
ðλþ 4y2Þ; ð49Þ

g3 ¼
ffiffiffiffi
T

p
g; ð50Þ

λ3 ¼ Tλ: ð51Þ

This completes the construction of the effective description
of the nucleation scale,

Snucl ¼
Z
x
L 3: ð52Þ

Note that, unlike the effective potential of the full theory
which is commonly utilized in bubble nucleation calcu-
lations, the potential of the nucleation scale EFT is real for
all ϕ. It is also independent of the renormalization scale Λ
up to the order we have calculated.
The equilibrium thermodynamics of this EFT has been

studied in Ref. [105]. To understand the phase diagram it is
convenient to shift the field by a temperature dependent
constant, ϕ → ϕ − g3=λ3, after which the tree-level poten-
tial takes the form

V3ðϕÞ ¼ s̄3ϕþ 1

2
m̄2

3ϕ
2 þ 1

4!
λ3ϕ

4; ð53Þ

up to an irrelevant overall constant. We have introduced
overlines to denote the parameters in this shifted field basis,

s̄3 ¼ s3 þ
g33
3λ23

−
g3m2

3

λ3
; ð54Þ

m̄2
3 ¼ m2

3 −
g23
2λ3

: ð55Þ

Eq. (53) shows that the general theory reduces to the Z2-
symmetric theory in the presence of an external field s̄3. If
s̄3 changes sign as a function of temperature, there is a
phase transition, and (at tree-level) this transition is first
order if m̄2

3 < 0. Beyond tree-level the endpoint of the line
of first-order transitions shifts slightly away from zero, but
the overall picture of the phase diagram is unchanged. In
the special case of s ¼ g ¼ mΨ ¼ 0, the 3D EFT has a Z2-
symmetry and the transition is of second order.
Being interested in bubble nucleation, let us consider a

point in the parameter space of this 4D model in which
there is a first-order phase transition. With the effective
action of the nucleation scale in hand, the statistical part of
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the bubble nucleation rate can be constructed using
standard methods. In particular, the critical bubble is the
appropriate saddle point of the effective action; see Eq. (2).
It is O(3) symmetric [106], and hence is a function only of
the radial coordinate r, satisfying

d2ϕCBðrÞ
dr2

þ 2

r
dϕCBðrÞ

dr
¼ V 0

3ðϕCBðrÞÞ: ð56Þ

The boundary conditions are such that the field is regular at
r ¼ 0, and approaches the metastable phase as r → ∞.
To complete the saddle-point approximation of the

statistical part of the nucleation rate requires calculating
the functional determinant of fluctuations in the back-
ground of the critical bubble; see Eq. (15). Numerical
methods for doing this are discussed briefly in Appendix D.
Putting it all together, the final result for the statistical

part of the nucleation rate reads

Σ ¼ VSnucl½ϕCB�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� detðS00nucl½ϕmeta�=2πÞ
det0ðS00nucl½ϕCB�=2πÞ

����
s

e−Snucl½ϕCB�

× ð1þOð
ffiffiffi
λ

p
ÞÞ: ð57Þ

Parametrically, this result is of the form

Σ ¼ aλ3=4T3V exp
�
−

bffiffiffi
λ

p
�
ð1þOð

ffiffiffi
λ

p
ÞÞ; ð58Þ

where a and b are Oð1Þ temperature-dependent values,
calculable using the approach presented, and we have used
that the low-lying eigenvalues of S00nucl scale as m2

nucl.
TheOð ffiffiffi

λ
p Þ corrections to Σ arise from two sources; from

the thermal scale,Oðλ2Þ corrections to the parameters of the
EFT, and, from the nucleation scale, two-loop corrections
in the expansion around the critical bubble. Regarding the
latter, note that the split between dynamical and statistical
parts in Eq. (12) has only been demonstrated to one-loop
order within the nucleation scale EFT.
The result, Eq. (57), demonstrates the split between the

modes above and below the factorization scale, discussed
around Eq. (23). The determinant of fluctuations runs over
only those modes that enter the EFT of the nucleation scale
(the numerical result can be found in Ref. [107]). The
modes of the thermal scale instead enter the final result
through their contribution to the effective parameters of the
EFT. This significantly simplifies the most difficult part of
the calculation of Σ. In particular, the determinant is
evaluated in R3 and not R3 × S1 and there is no spa-
tially-dependent determinant for the fermion. In essence,
the modes of the thermal scale see the critical bubble as
locally constant, with corrections to this picture being
suppressed by powers of Λnucl=Λtherm. Such corrections are
accounted for order by order by the construction of the EFT
in a derivative expansion.

V. EXAMPLE 2: TWO SCALE HIERARCHIES

In this section, we consider the renormalizable model of
two Z2-symmetric scalar fields. In part of its parameter
space, this model realizes a first-order phase transition.
However, unlike the previous example, this phase transition
is not simply induced by the thermal scale; the first-order
nature of the transition is radiatively induced by an
intermediate scale. The same model was analyzed in the
context of vacuum decay in Ref. [47], and in the context of
thermal bubble nucleation in Ref. [81], where more detail
on the calculations can be found.
The model is defined by the (Euclidean) Lagrangian

L ¼ LΦ þ LX þ LI; ð59Þ

LΦ ¼ 1

2
ð∂μΦÞ2 þm2 þ δm2

2
Φ2 þ λþ δλ

4!
Φ4; ð60Þ

LX ¼ 1

2
ð∂μXÞ2 þ

M2

2
X2 þ f

4!
X4; ð61Þ

LI ¼
g2 þ δg2

4
Φ2X2: ð62Þ

The field Φ is the nucleating field, and X is the inducing
field. Their three-dimensional counterparts will be denoted
ϕ and χ respectively. In the absence of X, the model reduces
to a single real Z2-symmetric scalar theory, for which there
is only a second-order phase transition. We have marked
only the counterterms that will be necessary up to the order
of our calculation. We will be working in the MS–scheme.
Our first goal is to hone in on the region of the parameter

space that contains first-order symmetry breaking transi-
tions of the Φ-field. To do so it is useful to adopt a formal
power counting scheme, in which the magnitudes of
quantities are measured in powers of the perturbative
coupling g and the temperature T.
For the X-field to induce a first-order phase transition for

Φ, its leading (one-loop) effects must contend with the tree-
level potential for the Φ-field. As a consequence, λ ≪ g2 is
a requirement for a first-order symmetry breaking transi-
tion. However, if we let λ be as small as λ ∼ g4 then the
transition becomes so strong as to invalidate the high-
temperature expansion.9 Therefore, for simplicity, we will
choose from g4 ≪ λ ≪ g2 the middle road

λ ∼ g3: ð63Þ

This choice has been motivated along similar lines in
studies of first-order phase transitions in gauge-Higgs

9In this case one obtains ϕ0 ∼
ffiffiffiffi
T

p
=g near the critical temper-

ature and, in the broken phase, the field χ can receive a correction
to its effective mass of order T. Relatedly, external ϕ2-legs would
need to be resummed in the dimensional reduction.
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theories [108,109]. In this analogy the X-field plays the
same role as the gauge fields.
Regarding the remaining parameters of the Lagrangian,

we will assume that there are no further anomalously small
couplings, so that f ∼ g2, and that the high-temperature
approximation applies to both particles. This latter
assumption implies that thermal mass corrections are at
least as large as the tree-level parameters, and hence that
both m2 and M2 are Oðg2T2Þ or smaller. For the Φ-field to
go through a thermal symmetry breaking transition, its
mass parameter should be negative, m2 < 0. Conversely,
theΧ-field mass parameter,M2, should not be too negative,
so that it does not go through symmetry breaking before Φ.
From these choices we can determine the orders of

magnitude of the necessary quantities related to the critical
bubble, following the discussion in Sec. III. Noting that the
leading thermal mass correction is Oðg2T2Þ, the transition
occurs roughly at

−m2 ∼ g2T2; ð64Þ

in the vicinity of which the thermal mass of the ϕ-field goes
through zero. At such temperatures, we can determine the
mass of the nucleating d.o.f. mnucl and the value of the field
at the center of the bubble ϕ0, by demanding that the
leading terms in the effective potential of the ϕ-field are all
the same order of magnitude

m2
nuclϕ

2
0 ∼ g3T3=2ϕ3

0 ∼ λTϕ4
0: ð65Þ

Here the cubic term arises from one-loop χ fluctuations.
Together with Eq. (63), the conclusion is that

m2
nucl ∼ g3T2; ϕ0 ∼ T1=2: ð66Þ

The result for ϕ0 will be important for noticing the need for
resummations in the external Φ=ϕ-legs; no need in the

dimensional reduction but needed for the second matching
step. While these estimates are valid near the critical
temperature, for strongly supercooled transitions nearing
spinodal decomposition both m2

nucl and ϕ0 may be smaller
than in Eq. (66).
Note that m2

nucl is parametrically smaller than both its
constituent parts m2 and g2T2, due to the approximate
cancellation of Eq. (64). No such cancellations occur for
the χ-field, and hence

M2
3 ∼ g2T2: ð67Þ

The bubble volume is m−3
nucl ∼ g−9=2T−3, and conse-

quently the nucleation action is m−1
nuclϕ

2
0 ∼ g−3=2 at LO,

and is ∼g−1=2 at NLO. To describe the nucleation action up
to NLO, we therefore need those contributions to the
nucleation scale effective Lagrangian up to and including
Oðg4T3Þ. This accounts or all the exponentially large
contributions to the nucleation rate. We will also discuss
extending the calculation to Oðg5T3Þ accuracy, which can
become relevant after solving for the dynamical prefactor.
In this model, all three scales of Fig. 3 are present: the

thermal scale (π2T2), the intermediate scale (g2T2) and the
nucleation scale (g3T2=π). Here we have reinserted the one-
loop factors of π in Eqs. (63) and (65) to obtain these scales.
The first task is to integrate out the thermal scale, by
performing dimensional reduction and thereby creating the
EFT for the intermediate scale. Second, we will need to
integrate out the intermediate scale to obtain the nucleation
scale EFT.

A. Intermediate scale

Here we detail the matching relations for dimensional
reduction. The matching relation for the mass parameter of
the ϕ-field and its counterterm reads

ð68Þ

¼ −m2 −
g2 þ λ

2

XZ
P

1

P2
þ g2

2

XZ
P

1

P4

�
M2 þ g2 þ λ

2

XZ
Q

1

Q2

�
þ g4

2

XZ
PQ

1

P2Q2ðP−QÞ2 − δm2 −
δg2 þ δλ

2

XZ
P

1

P2
; ð69Þ

where the crossed dot represents a mass insertion and a plain dot represents a counterterm. Note that the momentum
dependence of the sunset diagram is already higher order than our desired accuracy.
For the χ-mass, less accuracy is required, as it affects nucleation only via interactions,

ð70Þ
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¼ −M2 −
f þ g2

2

XZ
P

1

P2
: ð71Þ

For the same reason, the self-interaction of the ϕ-field is the
only coupling constant requiring thermal corrections,

ð72Þ

¼ −λþ 3g4

2

XZ
P

1

P4
− δλ ð73Þ

Higher-dimensional operators, resulting from e.g.,
matching 6-point functions, are higher order than the
desired accuracy, and so too are the gradient terms resulting
from momentum dependent diagrams.
The full result for the dimensionally-reduced effective

Lagrangian for the intermediate scale is given by

LDR ¼ Lϕ þ Lχ þ LI;DR; ð74Þ

Lϕ ¼ 1

2
ð∇ϕÞ2 þ

m2ðΛÞ þ δm2
3

2
ϕ2 þ λ3

4!
ϕ4; ð75Þ

Lχ ¼
1

2
ð∇χÞ2 þM2

3

2
χ2 þ f3

4!
χ4; ð76Þ

LI;DR ¼ g23
4
ϕ2χ2; ð77Þ

where the effective fields are identified with the zero-
Matsubara modes

ϕ ¼ 1ffiffiffiffi
T

p Φ0; ð78Þ

χ ¼ 1ffiffiffiffi
T

p X0; ð79Þ

and the parameters read

m2
3ðΛÞ ¼ m2ðμÞ þ g2ðμÞT2

24
þ λðμÞT2

24

−
ðg4 þ fg2ÞT2 þ 24g2M2

24ð4πÞ2 ln

�
eγEμ
4πT

�

þ g4T2

4ð4πÞ2 ln
�
A12Λ2

4πTμ

�
; ð80Þ

δm2
3
¼ g4T2

8ð4πÞ2
1

ϵ
; ð81Þ

M2
3 ¼ M2 þ ðg2 þ fÞT2

24
; ð82Þ

λ3 ¼ λðμÞT −
3g4T
ð4πÞ2 ln

�
eγEμ
4πT

�
; ð83Þ

g23 ¼ g2T; ð84Þ

f3 ¼ fT; ð85Þ

where A is the Glaisher-Kinkelin constant. Notice, that we
have used the one-loop running of the renormalized
parameters to eliminate most of the dependence on the
factorization scale Λ, replacing it with the renormalization
scale μ; see Refs. [54–56]. However, there still remains
some dependence in m2

3ðΛÞ. This is important, as it will
cancel against the Λ dependence of the sunset diagram in
the matching for the nucleation scale EFT (and so too will
the counterterm).
Physically, the most significant contributions are the

leading thermal corrections to the masses, which keep the
fields stable in the symmetric phase at high temperatures.
These terms eventually contribute to the nucleation rate at
its leading order ∼ expð1=g3=2Þ. The terms are, in fact,
separately of order ∼ expð1=g5=2Þ, but this leading power
cancels due to Eqs. (64) and (66). The rest of the terms
shown, though smaller, are nevertheless exponentially
important contributions to the nucleation rate, contributing
at order ∼ expð1= ffiffiffi

g
p Þ.

B. Nucleation scale

As one varies the temperature, T, Eq. (74) does not yet
manifestly display a first-order transition—just a second-
order transition. The first-order nature of the transition is
radiatively induced by the χ-field. Hence, it will only be
visible after integrating out the intermediate scale.
The second step, matching for the nucleation scale EFT,

exhibits two distinctions in comparison to the first step of
dimensional reduction: It is necessary to resum the external
ϕ-legs, and to include the leading one-loop gradient
corrections.
The need for the resummation arises from the fact that a

g2ϕ2 insertion to a χ-propagator modifies the order of a
diagram by a factor of g2ϕ2=M2

3. From Eqs. (66) and (67),
we can see that this is of order one. Hence, the modified
diagram is not suppressed compared to the original one.
This results in the need to resum external ϕ-legs in χ-
propagators.
Another, equivalent but perhaps more intuitive, view-

point is that the bubble background gives a LO correction to
the χ mass. Hence, the effect on the mass has to be taken
into account when integrating out the intermediate scale.
The need for gradient corrections arises from the fact that

the intermediate scale and the nucleation scale are separated
only by one power of g. The one-loop term from the χ-field
is of leading order (g3T3), as it induces the broken
minimum for the nucleation scale effective potential.
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Thus, the first gradient term is Oðg4T3Þ, which is still
exponentially important.
To handle the resummations of the χ-propagator, we

reorganize the calculation as a matching of 1ϕI-actions, i.e.,
of the generating functionals of all 1ϕI n-point correlation
functions. Due to the resummations in external ϕ2-legs, a
brute-force matching of n-point functions would be a
cumbersome bookkeeping task.
The matching has a particularly simple diagrammatic

representation,

ð86Þ

The diagrams on the right-hand side, in the full theory, are
understood to have resummed χ-propagators, and the first
gradient correction of the one-loop diagram is included.
The ϕ-propagator of the sunset diagram is massless, due to
the use of strict perturbation theory in m2

3, and it is IR
regulated with dimensional regularization.
The resulting effective action for the nucleation scale is

given by

Snucl ¼
Z
x

�
ZðϕÞ
2

ð∇ϕÞ2 þ m̃2ðϕÞ
2

ϕ2

−
1

3ð4πÞ
��

M2
3 þ

g23
2
ϕ2

�
3=2

−M3
3

�
þ λ3
4!
ϕ4

	
; ð87Þ

where the parameters are

ZðϕÞ ¼ 1þ 1

48ð4πÞ
g43ϕ

2

ðM2
3 þ g2

3

2
ϕ2Þ3=2

; ð88Þ

m̃2ðϕÞ ¼ m2
3ðΛÞ þ

f3g23
8ð4πÞ2

−
g43

4ð4πÞ2
�
1 − ln

�
4

Λ2

�
M2

3 þ
g23
2
ϕ2

���
; ð89Þ

in terms of those in Eqs. (82) to (84). By inserting the
expression for m2

3, we find that all the dependence on the
cutoff Λ cancels. So too does the dependence on μ, up to
higher-order corrections. The Λ dependence and the mass
counterterm were canceled by the sunset diagram.
Here, the field-independent free-energy contribution

from the intermediate scale, M3
3=12π [cf. Eq. (21)], is

explicitly present in the effective action for the nucleation
scale. Due to the one-loop resummation, it cancels only
asymptotically on the tail of the critical bubble, setting the
action to zero in the metastable phase.
The most crucial contribution from the intermediate

scale is the one-χ-loop, the term with square brackets in
Eq. (87). Together with the tree-level terms, it is responsible
for the coexistence of phases, and consequently for the

first-order nature of the phase transition. It thus enters the
nucleation rate at its leading order ∼ expð1=g3=2Þ. The rest
of the terms are subdominant, but still exponentially
important contributions to the nucleation rate, contributing
at ∼ expð1= ffiffiffi

g
p Þ.

Now that we have the effective action for the nucleation
scale, Eq. (87), the general formalism of Sec. II can be put
into action to construct Σ, the statistical part of the
nucleation rate. First one finds the critical bubble configu-
ration, and second evaluates the effective action and the
fluctuation determinants about this bubble.
The critical bubble is, as usual, a stationary point of the

nucleation scale effective action, Eq. (87). Due to the
spherical symmetry of the critical bubble [106], the differ-
ential equation simplifies into a one-dimensional differ-
ential equation,10

ZðϕÞ∂
2ϕ

∂r2 þ
2

r
ZðϕÞ∂ϕ∂rþ

1

2
Z0ðϕÞ

�∂ϕ
∂r

�
2

¼V 0
nuclðϕÞ; ð90Þ

where VnuclðϕÞ is the potential part of the nucleation scale
effective action in Eq. (87).
The above equation of motion contains the NLO con-

tributions from the χ field, and thereby yields both the
critical bubble and the nucleation action up to NLO. To
calculate just the nucleation action up to NLO, one can
instead drop these NLO terms from the equation of motion,
and merely evaluate them on the critical bubble solved for
at LO. Doing so neglects tadpole corrections, as discussed
around Eq. (31). These tadpoles contribute to the nucle-
ation action at next-to-next-to-leading order (NNLO) order,
and hence can be safely neglected, as long as the NLO
terms are indeed subleading. However, this assumption
breaks down when the transition has supercooled to
m2

nucl ∼ g4T2, as the NLO contributions to the effective
mass then become of LO. It can also break down in the thin-
wall regime, where the NLO contributions to the potential
difference between the phases can become the same size as
the LO terms. In both these cases, one must solve the full
Eq. (90) to obtain the LO critical bubble.
The result for the statistical part of the nucleation rate can

now be read from Eqs. (15) and (17),

Σ ¼ V
�Z

x

ð∇ϕCBÞ2
3

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� detðS00nucl½ϕmeta�=2πÞ
det0ðS00nucl½ϕCB�=2πÞ

����
s

× e−Snucl½ϕCB�ð1þOð ffiffiffi
g

p ÞÞ: ð91Þ
Note that the fluctuation determinants neither bear refer-
ence to the compact Euclidean dimension, nor to the field χ,
both having been integrated out beforehand.

10The equation looks rather unpleasant, but it can be solved
numerically, for example, via a generalized version of the method
first presented in Ref. [110]. The straightforward generalization
to field dependent ZðϕÞ is given in Ref. [81].
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Parametrically, this result is of the form

Σ ¼ ag9=4T3V exp

�
−

b

g3=2
þ cffiffiffi

g
p

�
ð1þOð ffiffiffi

g
p ÞÞ; ð92Þ

where a, b, and c are Oð1Þ temperature-dependent values,
calculable using the approach presented, and we have used
that the low-lying eigenvalues of S00nucl scale asm

2
nucl. At LO,

and when written in terms of λ, this parametric result agrees
with Eq. (58) of Example 1, however there are additional
subleading terms in the present example.
The Oð ffiffiffi

g
p ΣÞ corrections to Σ in Eq. (91) come from the

missing Oðg5T3Þ contributions to the effective Lagrangian
for the nucleation scale, arising from the thermal and
intermediate scales. The calculation of these becomes
relevant if the dynamical part of the nucleation rate is
solved to the same accuracy. Two-loop corrections from the
nucleation scale itself are higher order still, contributing to
Σ at Oðg3=2ΣÞ.
In the dimensional reduction at Oðg5T3Þ accuracy there

is nothing new computationally; no new topologies arise,
and external momentum dependence is still unimportant.
There are two more diagrams to be included into the ϕ-
mass matching,

ð93Þ

There are also two additional contributions to the counter-
terms δm2 and δg2 coming from four-dimensional Euclidean
vacuum diagrams,

ð94Þ

which cancel the divergences of the corresponding dia-
grams above.
The matching of the χ-mass must be carried out to

Oðg4T2Þ, and thus it receives the same complexity as the ϕ-
mass. The matching includes all the diagrams of the types
given in Eq. (68), except

ð95Þ

Most notably, M2
3 acquires Λ dependence through

ð96Þ

Similarly to M2
3ðΛÞ, g23 needs to be matched to order

Oðg4TÞ. This means including the following diagrams,

ð97Þ

This concludes the relevant corrections at Oðg5T3Þ arising
from the thermal scale.
For integrating out the intermediate scale, essentially

every modification you can make to a diagram brings an
additional power of g. Hence, for Oðg5T3Þ accuracy, we
need to compute all vacuum three-loop diagrams with ϕ-
propagators IR regulated via dimensional regularization, an
additional gradient term for the one- and two-loop dia-
grams, and also the sunset diagrams with the insertions to
the ϕ-propagator of the ϕ-mass or an external ϕ-leg.
A nontrivial check of the computation at this next order

is that the three-loop basketball diagrams should cancel the
leading Λ dependence from Snucl due to M2

3ðΛÞ. Of course
some Λ dependence remains, though this is an Oðg6T3Þ
effect, of higher orders still.
The improvement toOðg5T2Þmight seem like a daunting

task, and it will only become relevant after solving for the
dynamical prefactor. However, the reason for discussing it
is to show that the method presented here can be system-
atically improved to higher orders up to, but not including,
two-loop order within the nucleation scale EFT. Here, this
amounts to a correction to Σ of order Oðg3=2ΣÞ.

VI. EXAMPLE 3: SCALE-SHIFTERS

It is common that the masses of fields shift during a
phase transition due to the changes in vacuum expectation
values of the nucleating d.o.f.. By scale-shifter, we mean a
field whose effective mass changes so drastically that it
belongs to parametrically different scales on different parts
of the nucleating bubbles, being much heavier than the
nucleation scale in at least one part.
In this section, we will discuss how to treat scale-shifters

within the EFT approach to bubble nucleation. More
specific discussion here is presented from the perspective
of perhaps the cosmologically most relevant case; a
symmetry-breaking phase transition, in which a field is
light (i.e., nucleation scale or lower) in the symmetric phase
and intermediate in the broken phase (cf. Fig. 3). Examples
of this case are strong transitions in gauge-Higgs models
[108,109], where the spatial components of the gauge field
can shift in scales, and in the cubic anisotropy model,
which is a cousin to our model in Sec. V [60]. Wewill adopt
the cubic anisotropy model as an example for this section.
The heart of the matter with scale-shifters is the follow-

ing: If they belong to a higher scale on some part of a
bubble, they can have a great impact on it, significantly
affecting the local free energy density. Consequently, their
contributions should be included in the effective descrip-
tion for the transition surface. However, since they belong
to different scales on different parts of the bubble, they need
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to be handled in different steps of integrating out on these
different parts.
In the symmetry-breaking cases discussed above, the

scale-shifters would need to be integrated out along with
the intermediate scale within the main body of the bubble,
but left in the nucleation scale EFT on the bubble tail. As
demonstrated in Example 2, intermediate scale fluctuations
can be of great importance for the critical bubble configu-
ration, making the integration over these modes crucial.
However, if one integrates out the whole scale-shifting
field, the result is nonlocal in regions where the field is
associated with a lower scale. The gradient expansion
works only on the inside of the bubble, but diverges on
the tail.
In attempting to apply an EFT approach to this problem,

first we need to understand at what perturbative order the
nonlocal IR physics of the bubble tails contributes to the
nucleation action. The terms of lower order than this are
directly calculable within a perturbative EFT approach,
whereas the nonlocal terms themselves will require further
consideration.
Inspiration for how to proceed can be found in the usual

perturbative approach to the study of non-Abelian gauge
theories at high temperature. In that case, the spatial gauge
bosons are screened only at Oðg2TÞ, and render non-
perturbative the Oðg6T4Þ contributions to the free-energy
density [111]. However, this does not prevent the pertur-
bative calculation of all the lower order terms, up to
Oðg6 log gT4Þ [93]. This can be achieved by treating the
mass of the spatial gauge bosons in strict perturbation
theory, i.e., equated to zero within loop integrals. Doing so
projects out the unknown nonperturbative IR physics, while
introducing an error of Oðg6T4Þ, which is anyway beyond
the reach of perturbation theory. If one proceeds further
within strict perturbation theory, one finds that theOðg6T4Þ
and higher order terms are IR divergent, though physically
these divergences are screened by the mass of the spatial
gauge bosons. This analogy sheds light on much of the
following.
In the present case, an analogous procedure would be to

treat the light IR quantities of the symmetric phase strictly
perturbatively, when integrating out the scale-shifter. This
projects out the difficult nonlocal physics from the lowest
few orders, at the cost of introducing errors at higher orders.
It is made possible because the light physics near the
symmetric phase has only a higher-order effect on the
nucleating d.o.f, and the IR quantities can be treated
perturbatively on the body of the bubble due to the scale
hierarchy, Λlight ≪ Λint.
In the following, we will test the validity of the strict

perturbative expansion as applied to scale-shifters in the
cubic anisotropy model. We show that it can be linked to
the perturbativity of the nucleating d.o.f. in the symmetric
phase. We will see that at LO this approach is straightfor-
ward, and yields the parametrically largest contributions to

the nucleation scale effective theory. Further, NLO correc-
tions in this expansion yield the dominant subleading
contributions. However, while they are finite and comput-
able, the NLO corrections from the scale-shifters will begin
to reveal the IR complications of the symmetric phase.
They should only be evaluated on the leading-order critical
bubble, dropping higher-order corrections coming from
their effect on the critical bubble. Beyond NLO there are IR
divergences in strict perturbation theory, though physically
these divergences are screened. The irreducible error in this
expansion is due to the contributions of nonlocal infrared
physics, which can be estimated parametrically.
The strict perturbative expansion projects out all the IR

physics of the symmetric phase, and not just the nonlocal
IR physics. In particular, it misses the normalizing partition
function evaluated around the metastable (symmetric)
phase in Eq. (13). In our Example 2 model, this gave
the mass-cubed term M3

3=12π in Eq. (87). Note, that its
effect is to make the nucleation scale effective action
asymptote to zero in the symmetric phase. Due to the
strict expansion, the term is set identically to zero. The error
yielded by the absence of this term is noteworthy only
when the scale-shifter mass is of the nucleation scale (and
not lighter), and in these cases it may actually give the
largest error of the strict perturbation expansion.
At the end of this section, we will discuss ways to go

beyond the strict perturbative expansion. Most notably, we
will show that the full error-free exponential order is
obtainable with the help of numerical methods for evalu-
ating the scale-shifter one-loop term on the LO critical
bubble. Also, we will show how to eradicate the error
coming from the missing mass-cubed term via a resum-
mation, and other tricks to soften the singular behavior in
derivatives of the action obtained through the strict
expansion.
Before moving further, let us briefly overview the cubic

anisotropy model, to give a concrete example containing a
scale-shifter. The model is akin to our Example 2, except
that the scalars,Φ and X, are symmetric,M2 ¼ m2 < 0 and
f ¼ λ ≪ g2.11 Hence, both of the fields can nucleate during
the phase transition. The symmetry between the fields is
broken by a nucleating bubble. We will use the freedom to
label the nucleating d.o.f. forming the bubble as ϕ, and
consequently the inducing d.o.f. as χ, matching the con-
vention of Sec. V. The power counting turns out exactly the
same as that in Sec. V, but with f ∼ g3, and the χ mass in the
symmetric phase being the same as the ϕ mass.
We will continue to denote the symmetric phase χ mass

as M3, even though there is a symmetry between the ϕ and
the χ masses: M2

3 ¼ m2
3. (Note that only the leading g3T2

11The couplings are chosen so that the broken phases exist in
the field directions corresponding to the field variables. There is
clearly freedom to e.g., rotate the field basis by e.g., π=4, moving
the locations of the broken minima (see for example Ref. [60]).
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accuracy is needed forM2
3, but g

4T2 accuracy is needed for
m2

3, to achieve the NLO accuracy of this section.) This will
make it easier to see what is specific to the cubic anisotropy
model, and what will differ in other models. For example,
in non-Abelian Higgs models, the spatial components of
the gauge field play the role of the scale-shifter, and their
squared mass in the symmetric phase is lighter, being of
Oðg4T2Þ. While the calculations presented below will be
specific to the cubic anisotropy model, the same arguments
and methods will apply also to gauge-Higgs models.

A. Leading-order critical bubble

Here, we will utilize the strict perturbative expansion to
find the LO critical bubble in the cubic anisotropy model.
The local LO action will inevitably contain errors near the
symmetric phase. These will be shown to be negligible as
long as the nucleating d.o.f. remains perturbative in the
symmetric phase.
From our Example 2, we can read off the LO contribu-

tion to be

ð98Þ

This is the same as the one-loop potential contribution in
Example 2, except with just the scale-shifting part of the χ
mass, M2

3ðϕÞ ¼ g23ϕ
2=2, i.e., without the constant additive

contribution, M2
3. The full LO action is thus12

SðLOÞnucl ¼
Z
x

�
1

2
ð∇ϕÞ2 þm2

3ðΛÞ
2

ϕ2

−
g33

6
ffiffiffi
2

p ð4πÞ jϕj
3 þ λ3

4!
ϕ4

	
; ð99Þ

where the masses and coupling constants can be found
from Sec. V in Eqs. (80), (82)–(84) (though f ∼ g3 renders
some terms negligible), and the equation of motion for the
critical bubble is given by

∂2ϕ

∂r2 þ 2

r
∂ϕ
∂r ¼ VðLOÞ0

nucl ðϕÞ; ð100Þ

where VðLOÞ
nucl ðϕÞ is the potential part of the LO nucleation

scale effective action in Eq. (99). When evaluated on the
critical bubble, the LO nucleation scale effective action is of
order 1=g3=2.
Underlying Eqs. (98) to (100), and the strict perturbation

expansion, is the assumption that the χ field is of an

intermediate scale, M3ðϕÞ ≫ mnucl, yet this is only true for
sufficiently large values of ϕ. To estimate the errors
introduced by this assumption, it is therefore necessary
to discover how small values of ϕ can be reached, while χ
remains of the intermediate scale. We will see that the
nonlocality only begins on the bubble tail, where the 1

2
m2

3ϕ
2

term dominates over the χ contributions, as long as the
nucleating DoF, ϕ, is perturbative in the symmetric phase.
Whereupon the nonlocal errors are under control, as a
negligible contribution to Eqs. (98)–(100).
To investigate this in detail, it will be useful to first

consider the region near the top of the potential barrier,
where theϕ-derivative of themass term and the LO one-loop
term are exactly opposite, because there the two terms are
equal in magnitude. Here, the χ-field contributions are not
subdominant, and the field has to have already shifted to the
intermediate scale,M3ðϕtopÞ ≫ mnucl, for the description of
the transition surface to be valid. Denoting this point by ϕtop,
one arrives at the following equality

m2
nuclϕtop ¼

g23
8π

M3ðϕtopÞϕtop; ð101Þ

⇒ M3ðϕtopÞ ¼
8πmnucl

g23
·mnucl: ð102Þ

Equation (102) relates the masses of the χ and ϕ fields near
the top of the potential barrier.
In the approach towards the symmetric phase, for

sufficiently small ϕ≲ ϕnonlocal the masses of χ and ϕ will
be of the same order, and hence the result of integrating out
χ will be nonlocal. This occurs at

M3ðϕnonlocalÞ ¼ mnucl; ð103Þ

⇒ ϕnonlocal ¼
g23

8πmnucl
· ϕtop: ð104Þ

Note, that here the local EFT fails to describe the χ
contributions accurately, thus they must be subdominant
for the validity of our approach. This is satisfied if
ϕnonlocal ≪ ϕtop.
Now, perturbativity of the nucleating field in the sym-

metric phase implies that

g23
8πmnucl

≪ 1: ð105Þ

This combination appears in both Eq. (102) and Eq. (104)
above, allowing us to reach the following conclusions,
when Eq. (105) holds: the χ field is of an intermediate scale,
when the χ contributions are not subdominant, ϕ≳ ϕtop,
and the χ contributions are subdominant, when it is
associated with the nucleation scale, ϕ≲ ϕnonlocal.
Therefore, the strict perturbative expansion is valid at least

12Note that, to avoid notational clutter, the split presented here
is Λ dependent. Moving the Oðg4Þ part of m2

3ðΛÞ to the NLO
action shown in Eq. (109) would make the split cutoff indepen-
dent. The ϵ-pole has also been implicitly canceled.
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at leading order, when the nucleating field is perturbative in
the symmetric phase.13 The magnitude of errors associated
with the region ϕ≲ ϕnonlocal is determined in Sec. VI C
below.

B. Strict perturbation theory: Next-to-leading order

Next, we will examine the NLO corrections from the
scale-shifter χ in strict perturbation theory. These contribute
to the nucleation rate at exponential order, expð1= ffiffiffi

g
p Þ, and

consist of corrections to the one-loop term from both the
light-mass expansion (in the cubic anisotropy model) and
the gradient expansion, and also the two-loop sunset
correction to the potential. By the analogous power
counting to Example 2, these are the last exponential
contributions to the statistical part of the nucleation rate.
Below, we will also find that these are larger than the
nonlocal errors from the bubble tail.
The NLO correction from the light-mass expansion is

ð106Þ

where the χ mass parameter, denoted with M3, is needed
only to its leading order, Oðg3T2Þ. Note that this term
would yield a singular contribution to the effective mass,
V 00
effðϕ ¼ 0Þ, and move the physical metastable minimum

away from ϕ ¼ 0. Thus, it cannot be included in the
equation of motion for the critical bubble, but can only be
evaluated on the LO critical bubble.
The two other NLO contributions are the first gradient

correction from the one-loop term,

ð107Þ

and the two-loop sunset,

ð108Þ

There are also singularities in the second ϕ-derivatives of
these terms, from the field renormalization and the loga-
rithm respectively. Note that the ϵ pole and the cutoff
dependence cancel the same way as in Sec. V, between the
sunset diagram and the counterterms and parameters of the
effective action for the nucleation scale. The canceling
cutoff dependence is shown explicitly in Eq. (99).

The NLO corrections are obtained by evaluating the LO
critical bubble from Eq. (100) on the terms in Eqs. (106),
(107), and (108),

SðNLOÞnucl ¼
Z
x

� ffiffiffi
2

p

48ð4πÞ
g3

jϕðLOÞ
CB j

ð∇ϕðLOÞ
CB Þ2 − g3M2

3

2
ffiffiffi
2

p ð4πÞ jϕ
ðLOÞ
CB j

−
g43

4ð4πÞ2
�
1

2
− ln

� ffiffiffi
2

p
g3jϕðLOÞ

CB j
Λ

��
ðϕðLOÞ

CB Þ2
	
:

ð109Þ

In this approach, of evaluating NLO terms on the critical
bubble rather than including them in the equation of
motion, we have uncanceled tadpole contributions. In
the perturbative expansion, diagrams containing tadpoles
relate to changes of the critical bubble configuration (see
for example Ref. [62]). We can confirm that the shape
changes are indeed NNLO by estimating the order of the
leading (two-loop) tadpole contribution to the nucleation
action. When Λnucl ∼mnucl ∼ g3=2T, this is

ð110Þ

which is indeed NNLO. The same power counting holds for
the other NLO tadpoles as well.
Lastly, we would like to note that evaluating the

fluctuation determinants of the ϕ field using the LO action
gives the determinants correctly to their leading order, even
though their contribution is of slightly higher order than
NLO. This follows simply from the fact that everything that
enters the evaluation of the determinants, the nucleation
scale action and the critical bubble, are correct to their
leading order.

C. Strict perturbation theory: Error analysis

Next, we investigate the size of the errors coming from
the χ contributions when the field is associated with the
nucleation scale, ϕ≲ ϕnonlocal. First, we will find the error
from the LO χ one-loop term, and then analyze the errors
linked to higher-order terms using the strict perturbation
and loop-expansion parameters.
We will investigate the size of the errors coming from the

one-loop term directly by estimating the contribution to
Eq. (98) from the region where the χ field is of the
nucleation scale,

Z
∞

r̃
dr4πr2

�
−g33

6
ffiffiffi
2

p ð4πÞ

�
jϕj3; ð111Þ

where r̃ is the radius at which the χ joins the nucleation
scale, and hence beyond which its effects on the nucleation
scale are nonlocal. The radius can be estimated with

13Note, that g23=ð4πm3Þ ≈ 1 in the benchmark point of
Ref. [60], so perturbation theory is not reliable at the phase
transition.

OLIVER GOULD and JOONAS HIRVONEN PHYS. REV. D 104, 096015 (2021)

096015-22



g23ϕ
2
CBðr̃Þ ∼m2

nucl; ð112Þ

where the left-hand side is the scale-shifting part of the χ
mass, M2

3ðϕÞ. This is equivalent to ϕ ∼ ϕnonlocal.
When the perturbativity condition in Eq. (105) holds, the

ϕ mass term m2
nuclϕ

2=2 dominates in the potential at ϕ≲
ϕnonlocal and the critical bubble profile is given by

ϕCBðrÞ ¼
A∞

r
e−mnuclr; ð113Þ

where A∞ is a constant. Using Eq. (112) with Eq. (113), we
obtain

r̃ ∼m−1
nucl log

1

g
or r̃ ∼m−1

nucl; ð114Þ

depending on the parametric form of A∞, which is
beyond the current scope.14

Due to the integral being cut off at large radii by the
exponential suppression of the bubble tail, exp−mnuclr, we
can estimate

r ∼ r̃; ð115ÞZ
∞

r̃
dr ∼m−1

nucl; ð116Þ

ϕCB ∼
mnucl

g3
; ð117Þ

where the last estimate follows in conjunction with
Eq. (112).
With these estimates, we immediately obtain from

Eq. (111) that the contribution to the nucleation action
from the region where χ light is of order

Oððr̃mnuclÞ2Þ; ð118Þ

where the order of r̃ is given in Eq. (114). Thus it is at least
Oð1Þ and at mostOððlog gÞ2Þ. This provides an estimate of
the error in the LO term (98) due to the nonlocality of χ on
the bubble tail. In essence, it is a ∼m3

nucl=ð4πÞ error in the
Lagrangian density, coming from a spherical shell of
thickness 1=mnucl, and at a radius r̃ on the bubble tail.
We can use the expansion parameters of theM2

3, gradient
and coupling expansion to determine the estimates for the
errors of the higher order terms, on the basis of the leading
order error given in Eq. (118). The expansion parameters of
the two former expansions, i.e., the expansion in the light
quantities, are given by

∇2

1
2
g23ϕ

2
;

M2
3

1
2
g23ϕ

2
; ð119Þ

and for the coupling expansion by

g23
4πg3ϕ

;
f3

4πg3ϕ
; ð120Þ

where the mass parameter in the denominator comes from
the scale-shifting part of the χ mass, 1

2
g23ϕ

2, due to the strict
perturbation expansion in M2

3 and the ϕ mass, m2
3.

Let us first look at the expansion in the light quantities,
Eq. (119), at one-loop level.Note that on themain bodyof the
bubble, ϕ ∼ ϕtop, where χ is of the intermediate scale, both
expansion parameters areOðg43=ð8πmnuclÞ2Þ ¼ Oðg=4πÞ, so
that the expansion in the light quantities is well behaved.
When the χ field joins the nucleation scale at r≳ r̃, these
expansion parameters areOð1Þ. For this reason, all the light
expansion terms from the one-loop level yield parametrically
the same error estimate as the leading term, Eq. (118).
The problem we then face is the question of whether the

error from one-loop level is truly under control. Let us
consider first the region where ϕ ∼ ϕnonlocal, and hence the
expansion parameters of Eq. (119) are of order one. In this
case, there exists only one scale in the full one-loop
diagram—the nucleation scale. Simply by dimensional
analysis, we can then conclude that the full one-loop
diagram is of order Oðm3

nucl=ð4πÞÞ. This is the same as
our estimate based only on the term Eq. (98). Hence, for
ϕ ∼ ϕnonlocal, the full error is of the same order of magnitude
as that of all the individual terms in the expansion powers of
M2

3 and ∇2. Thus, the previous error estimates are
unchanged, and the errors are indeed under control.
Even further from the bubble center, at ϕ ≪ ϕnonlocal, the

expansion parameters of Eq. (119) become much larger
than one. Again, we should look at the full diagram. Now,
the scale-shifting part of the χ mass is much smaller than
the symmetric phase mass, g23ϕ

2=2 ≪ M2
3, and hence its

resummation is no longer needed. The leading order in the
ϕ2-leg expansion is given by the plain, χ one-loop diagram
around the metastable phase, and it cancels identically
against the determinant from Zmeta. The next contribution,
the χ one-loop diagram dressed with a ϕ2-leg, gives a
contribution to the nucleation action which is much smaller
than Oð1Þ, and can hence be neglected.
At two-loop level, the leading contribution comes from

the sunset diagram in Eq. (108). We could repeat the same
analysis as at one-loop, but it is much more straightforward
to deduce the result by considering the coupling expansion
parameters of Eq. (120). At ϕ ∼ ϕnonlocal, they are

ffiffiffi
g

p
=4π

and g3=2=4π respectively. Thus, the leading error from two-
loop level is suppressed by

ffiffiffi
g

p
log g=4π compared to the

one-loop error of Eq. (118). The argument also extends to
higher-loop orders.

14We want to note here that, in the thin wall regime,
A∞ ∝ emnuclR, thereby introducing the correct, thin-wall regime
nucleation scale, R, (see Appendix B) to the estimates of r̃ in
Eq. (114) below.
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As already noted above, the expansion parameters of the
strict perturbative expansion, Eqs. (119) and (120), diverge
far enough from the center of the critical bubble. These
infrared divergences are not physical in nature, but are
artefacts of the strict perturbative expansion not being
applicable. Furthermore, the LO and NLO contributions to
the critical bubble and its effective action come from within
a region in which the strict perturbative expansion is well
behaved. Therefore, the IR divergences do not nullify the
LO and NLO contributions obtained.
There is another source of error, which was mentioned

when initially discussing strict perturbation theory. It is the
cubic mass term,M3

3=12π, in the χ one-loop contribution of
Eq. (87). This term is projected out by strict perturbation
theory, even though it is not actually problematic due to
nonlocality: It is just the plain one-loop contribution of χ to
the free energy of the symmetric phase. Still, a naive
reintroduction of the term to the strict perturbative expan-
sion would lead to a divergence with volume, because the
effective action would no longer asymptote to zero at
spatial infinity. We will discuss a way to consistently
reintroduce this term in Sec. VI D.
Let us now parametrically estimate the error from the

missing cubic mass term of the χ field. Considering first the
region where ϕ ≪ ϕnonlocal, we note that at LO the full one-
loop diagram evaluated on the critical bubble cancels
identically with the one-loop diagram evaluated in the
metastable phase. This point was in fact already made
above. Thus, the dominant contribution from the cubic
mass term arises from the region ϕ≳ ϕnonlocal. This error
can be estimated as

4π

3
r̃3 ×M3

3=12π ¼ Oððr̃M3Þ3Þ: ð121Þ

Note, that this is the leading error for the strict perturbative
calculation in the cubic anisotropy model if r̃ ∼m−1

nucl log
1
g.

Concluding this subsection, we arrive at the following
parametric result using strict perturbation theory, for the
statistical part of the nucleation rate in the cubic anisotropy
model

Σ ¼ ag9=4T3V exp

�
−

b

g3=2
þ cffiffiffi

g
p þOðr̃3m3

nuclÞ
�
: ð122Þ

The two leading exponential terms, b and c, amount to the
LO and NLO terms discussed above. The result is rather
similar to that of Example 2, except that there are still errors
present in the exponent that are at least ofOð1Þ and at most
of Oððlog gÞ3Þ. Note that rather amusingly the statistical
prefactor, a, is computable and under control at its leading
order, even though it is subdominant to the residual errors
in the exponent.

D. Beyond the strict expansion

Now, that we have discussed how to obtain the statistical
part of the nucleation rate within the pure strict expansion,
we would like to discuss alternative means to push the
accuracy even higher. First, we will show how to handle the
error from the cubic mass term, Eq. (121), and then, how to
eradicate all the errors from one-loop level, leaving only the
subexponential error from the nonlocal part of the two-loop
sunset diagram. This is the crowning achievement of the
section. At the end, we also discuss ways to soften the
singular behavior of derivatives of NLO terms. This can
become important in the thin-wall regime.
As already discussed above, the cubic mass term

M3
3=ð12πÞ is absent in the strict perturbative expansion,

and it cannot naively be added because doing so would
mean that the effective action would not asymptote to zero
at spatial infinity, leading to a volume divergence.
Consequently, we need to step out of the strict perturbative
expansion in M2

3 to obtain the correct asymptotic behavior
when the cubic mass term is included.
The cubic mass term is nonanalytic in M2

3, and hence
obtaining it requires going to all orders in the M2

3

expansion, though only to one-loop in the loop expansion.
This calculation was in fact already carried out in our
Example 2. The one-loop term in the square brackets in
Eq. (87) is the M2

3-resummed one-loop potential. It cor-
rectly asymptotes to zero at spatial infinity. Using this
resums the one-loop potential inM2

3, which mixes orders in
the strict perturbation expansion. Compared to the strict
perturbative treatment, it is�Z

x

−g33
6

ffiffiffi
2

p ð4πÞ jϕj
3

�
LO

þ
�Z

x

−g3M2
3

2
ffiffiffi
2

p ð4πÞ jϕj
�
NLO

→
Z
x
−

1

3ð4πÞ
��

M2
3 þ

g23
2
ϕ2

�
3=2

−M3
3

�
LO
; ð123Þ

where the latter term can be read from Eq (87). The
subscripts LO and NLO indicate how the terms should be
treated, when finding the LO critical bubble.
The modification of Eq. (123) correctly accounts for the

Oðr̃3m3
nuclÞ term discussed around Eq. (121), while intro-

ducing no new errors at lower parametric order. Hence the
leading error which remains is due to nonlocal physics on
the bubble tail, Eq. (118). The parametric result is now

Σ ¼ ag9=4T3V exp

�
−

b

g3=2
þ cffiffiffi

g
p þOðr̃2m2

nuclÞ
�
: ð124Þ

Note that this residual error is due purely to χ fluctuations at
one-loop order.
Next, we will discuss how to eradicate this one-loop

error altogether. Note that it is due to the nonlocal physics
of the bubble tail, containing derivative corrections from all
orders in the expansion in ∇2. Thus, the gradient expansion
must be resummed.
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A crucial observation for computing the full χ one-loop
term is that the critical bubble obtained with the action in
Eq. (99) is the correct critical bubble configuration at LO.
This means that the tadpole contributions from the χ one-
loop diagram cancel up to NNLO, as can be seen from
Eq. (110). With strict perturbation theory, we used this to
evaluate the NLO contributions on the critical bubble
solution. In addition, one can use this to evaluate the full
one-χ-loop term as functional determinants, without mak-
ing any derivative or mass expansion. Numerical methods
for doing so are briefly discussed in Appendix D.
Algorithmically, the procedure is as follows. First, one

finds the LO critical bubble using the action in Eq. (99), or
with an improved method e.g., using Eq. (123). Next, one
evaluates the LO nucleation scale effective action without
the χ contributions, as well as the two-loop sunset of
Eq. (108) on the LO critical bubble. Finally, one evaluates
the χ one-loop functional determinants, in the background
of the LO critical bubble.
In this way, at one-loop order one resums both theM2

3 and
the ∇2 expansions to all orders. This correctly handles both
the cubic mass term of the symmetric phase and the non-
localities at one-loop level. The remaining uncertainty due to
the nonlocal part of the two-loop sunset is subexponential.
Consequently, the fluctuation determinants of theϕ field, and
the dynamical part of the nucleation rate, become accessible
accuracy wise. Another way to put it is that the full leading
order of the nucleation rate is accessible, once the dynamical
part can be solved for. The parametric form of the result is
then exactly the same as in Example 2,

Σ ¼ ag9=4T3V exp

�
−

b

g3=2
þ cffiffiffi

g
p

�
ð1þOð ffiffiffi

g
p ÞÞ: ð125Þ

Equation (125) marks the pinnacle of this section, and
demonstrates that the EFT method can be applied equally
successfully to scale-shifters as to more straightforward
heavy d.o.f., such as the χ field in Example 2.
Lastly, we want to discuss a more minor point; softening

the singularities of derivatives of NLO corrections. This has
already been achieved for the linear potential term,
Eq. (106), through the replacement of Eq. (123), thereby
allowing the inclusion of this term into the equation of
motion for the critical bubble, i.e., into Eq. (100).
While softening singularities in the second derivatives of

NLO terms does not generically lead to any parametric
improvements in the calculation of the nucleation rate, it can
become crucial in the thin-wall regime. In this case, due to the
anomalous smallness of the free energy difference between
phases, higher loop-order corrections to the potential can be
of leading order in magnitude. Resumming the correspond-
ing tadpole corrections is then essential to obtain the LO
critical bubble.
In the cubic anisotropy model, this softening can be

naturally achieved by resumming χ mass contributions, as

in Eq. (123). This can be carried out for all three NLO
Lagrangian terms, and yields the same parametric forms as in
Example 2. This resummation was carried out for the one-
loop terms in Ref. [60]. In addition, there a renormalization
group improvement was carried out, which alleviates the
singularity in the second derivative of the sunset diagram. In
the SU(2) gauge-Higgs model, Ref. [59] proposed a modi-
fication of the field renormalization in the region
ϕ≲ ϕnonlocal, so as to soften its singular behavior there,
without affecting the leadingbehavior at largerϕ. In sodoing,
a formally higher-order error was introduced, and by varying
the functional form of the modification, the size of this error
could be estimated.

VII. DISCUSSION

In this article, we have put forward a general approach to
calculate the rate of thermal bubble nucleation from first
principles, up to a factorized dynamical prefactor. The idea
essentially fleshes out Langer’s blueprint of an equation,
Eq. (1), with the necessary details for application to
relativistic QFTs at high-temperature. As such, the EFT
framework provides a compelling physical picture of high-
temperature bubble nucleation.
TheEFTapproach also provides a powerful computational

framework. Crucially, it provides a self-consistent way out of
the apparent catch-22 which has plagued calculations of
thermal bubble nucleation in the particle physics literature. In
addition, it facilitates the identification of all exponentially
large contributions to the nucleation rate, including those
arising at two-loop and higher order, and simplifies their
calculation, by treating only one scale at a time.
To put the present article in context, in the following we

compare the EFT approach to existing approaches in the
literature, focusing on their advantages and disadvantages
for concrete calculations. In doing so we provide a brief
overview of the literature on the subject.
Naive approach—Following Linde’s early work [29,30],

by far the most common approach taken in the literature
(see for example Refs. [112–119]) uses the real part of the
full effective potential, along with the tree-level kinetic
terms of the nucleating fields, as the basis of the calculation
of the critical bubble and bubble nucleation rate. This
approach is not self-consistent on several counts: (i) the
DoFs of the nucleating fields are integrated over twice,
(ii) an uncontrolled derivative expansion is implicitly relied
upon and (iii) the imaginary part of the effective potential
must be thrown away by hand.15 The EFT approach
presented in this paper resolves all of these issues.

15This last point is often carried out without comment (for an
exception see Ref. [112]). For example, within the numerical
package CosmoTransitions [115] the imaginary part of the
potential is removed through the replacement logðm2Þ →
logðjm2jÞ within the generic_potential module.
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Informal effective field theory approach—Without the
formal construction of an effective theory, the observation
that some fluctuations should enter the effective action, and
others should enter the statistical prefactor, has been
utilized by several authors in concrete calculations of the
bubble nucleation rate [31–34,46,107,120]. Our approach
formalises these ideas, and makes it unambiguous which
fluctuations enter where (see Eq. (23).
Functional renormalization group approach—This

approach was pioneered in Ref. [35], and was further
explored in Refs. [36–38,40–44], and more recently
extended in Ref. [121]. The general approach utilizes
functional renormalization group methods to compute
the coarse-grained effective action, from which to solve
for the critical bubble. Thus, in spirit, it is very close to our
approach. In fact, the functional renormalization group
approach also depends upon a hierarchy of scales. This is
for two reasons. First, at a fundamental level, the energy
scale of fluctuations integrated out to define the coarse-
grained effective action must be higher than the energy
scale on which the nonconvex effective potential flattens
and becomes convex [36–38] (this issue is resolved in
Ref. [121]). Second, at a practical level, because it is
necessary to make a local approximation to the effective
action, and in the absence of a hierarchy of scales this local
approximation is not justified. In addition, all the above
studies which have utilized the functional renormalization
group approach to study thermal bubble nucleation have
made use of high-temperature dimensional reduction to
integrate out the non-zero Matsubara modes, with the func-
tional renormalization group used only when the UVand IR
descriptions are assumed to contain the same field content. In
fact, regarding this last point, from an EFT perspective we
can understand and overcome an apparent limitation of the
functional renormalization group approach. In Ref. [42],
which studied the cubic anisotropymodel (our Example 3), it
was found that the saddle-point approximation broke down
due to the large fluctuation determinants of the inducing χ
field. However, from an EFT perspectivewe have shown that
the χ field should be integrated out into the nucleation scale
effective action, and should not be included in the fluctuation
determinants; see Eq. (23). In other words, the χ mass
threshold was not accounted for in Ref. [42]. Doing so
rescues the artificial breakdown of the saddle-point approxi-
mation, by including all exponentially large contributions
into the nucleation action.
Iterative nonlocal approach—In this approach [39,45] (see

also Refs. [97,98]), one solves for the bubble (or bounce)
from the equations of motion of the full nonlocal effective
action, truncated at some loop order. Starting from a bubble
which solves some approximate local equations of motion,
the nonlocal tadpole corrections are included iteratively. If a
hierarchy of scales exists, this approach is equivalent to ours,
up to terms which are suppressed by powers of the ratio of
scales. This is because the hierarchy of scales ensures that

there will exist an approximate local description for the full
nonlocal effective action. On the other hand, if there is no
such hierarchy of scales, the iterative nonlocal approach is
still, in principle, applicable. Whether or not it is applicable
in practice depends on the iterations converging [122,123],
which in turn depends on the accuracy of the initial estimate
for the bubble. Note that these methods can be used in
conjunction: Creating a nucleation scale EFT, within which
one uses the iterative nonlocal method, already handles
analytically and consistently large contributions for the
higher scales, leaving only the nucleation scale and lower
energy scales for numerical treatment.
Lattice approach—This approach was developed in

Refs. [59,60,124] (see also Ref. [125] in lower dimen-
sions), and entails a fairly direct lattice Monte-Carlo
evaluation of the bubble nucleation rate. As such it does
not rely on the saddle-point approximation, nor on the
applicability of perturbation theory within the nucleation
scale effective theory. So, in our Examples 2 and 3 it can be
applied successfully to rather weak transitions. However,
the lattice approach does rely on an effective classical
description of the nucleation scale, and hence on high-
temperature dimensional reduction. Further, where there is
a hierarchy of scales, large lattices, perhaps prohibitively
large, are required to resolve them. As such, effective field
theory methods play a crucial role in the lattice approach.
In summary, our approach resolves the inconsistencies of

the naive and other approaches, and agrees with other self-
consistent approaches when there is a hierarchy of scales.
Only the iterative nonlocal approach and the lattice approach
can in principle go beyond ours and apply where there is no
hierarchy of scales. However, the former is in practice
limited by the convergence properties of the iterative
scheme, and the latter is limited by computational time,
which restricts its use to the study of selected benchmark
points. Thus, the effective field theory approach to thermal
bubble nucleation fills an important role: It is the only self-
consistent semiclassical method with a demonstrably local
bounce equation.
Planned gravitational wave experiments, such as LISA,

underline the importance of understanding cosmological
first-order phase transitions reliably and quantitatively. As
we have argued in this article, effective field theory is an
invaluable tool for self-consistently computing the thermal
bubble nucleation rate. However, the usefulness of effective
field theory goes beyond this, as it also facilitates order by
order gauge-invariant and renormalization scale-indepen-
dent calculations of equilibrium thermodynamic quantities,
such as the free energy, critical temperature and latent heat
[17,54–56]. Thus, effective field theory provides a general
framework for reliably studying cosmological first-order
phase transitions.
For the future, we leave two important extensions of the

EFT approach to thermal bubble nucleation: application to
well-motivated models beyond the Standard Model and the
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calculation of the dynamical prefactor. While we have
demonstrated the EFT approach to thermal bubble nucle-
ation in only a few simple models, chosen to exhibit various
characteristic behaviors, EFT provides a powerful tool that
can be applied much more generally. Models giving rise to
a first-order electroweak phase transition are of particular
interest, as these may be probed both at gravitational wave
experiments [10–13], and at the LHC or future colliders
[126]. Analysis of gauge-Higgs symmetry breaking tran-
sitions can be carried out on the basis of Sec. VI, while
multistep electroweak transitions may involve elements of
all three examples, and more. The latter extension, the
calculation of the dynamical prefactor, requires directly
tackling the nonequilibrium, real-time dynamics of an
expanding bubble interacting with a thermal bath. If this
can be described by an effective Langevin equation for the
infrared degrees of freedom, then the results of
Refs. [23,58] apply, yielding the dynamical prefactor in
terms of the relevant dissipation coefficient.
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APPENDIX A: NOTATION

Our notation for momenta and loop integration follows
Ref. [56,57]. In particular, thermal four-momenta are
denoted by uppercase letters, P ¼ ðp0;pÞ, their compo-
nents being the Matsubara frequencies, p0 ¼ ωn, and the
spatial momenta, p. Their norms squared are P2 ¼ p2

0þ
p2, where p2 ≡ p · p. The loop integration measure in d ¼
3 − 2ϵ dimensions is defined asZ

p
≡
�
eγEΛ2

4π

�
ϵ Z d3−2ϵp

ð2πÞ3−2ϵ ; ðA1Þ

where γE denotes the Euler-Mascheroni constant. Note that
we have included powers of the MS renormalization scale,
Λ, to make the measure up to mass dimension three. Sum-
integrals over bosonic loop momenta are then defined as

XZ
P
≡ T

X
p0¼ωb

n

Z
p
; ðA2Þ

where the sum over p0 implies a sum over integers n. Sum-
integrals over fermionic loop momenta are distinguished by
curly braces around the loop momenta,

XZ
fPg

≡ T
X
p0¼ωf

n

Z
p
: ðA3Þ

We also utilize the Feynman slash for contraction with the
Euclidean gamma matrices, P ¼ Pμγμ.
Finally, we use the natural units common in particle

physics, such that c ¼ ℏ ¼ kB ¼ 1.

APPENDIX B: THIN-WALL REGIME

The thin-wall limit of bubble nucleation arises as the
temperature approaches the critical temperature (from the
metastable phase). The smallness of the deviation from
the critical temperature results in a new hierarchy of scales,
with the bubble radius, R, becoming much larger than the
inverse mass of the nucleating field, mnucl, which deter-
mines the thickness of the bubble walls. The new hierarchy
of scales 1=R ≪ mnucl allows for an extra step of the
effective description: integrating out the scale mnucl. In fact
this step is usually necessary when sufficiently deep in the
thin-wall regime, which we will call the strong thin-wall
regime. Additionally, the estimate of the bubble volume
made in Eq. (29) is no longer valid, with the consequence
that additional exponential contributions to the nucleation
rate arise.
The free energy of a thin-walled bubble can be given

phenomenologically by [127]

Fbubble ¼ σA − pV; ðB1Þ

where σ is the surface tension, p is the pressure difference
across the bubble wall, and A and V are the area and volume
of the bubble wall respectively. The pressure is equal to the
difference in the free energy density p ¼ −Δf, and in thin-
wall regime this is approximately

p ≈
�
1 −

T
Tc

�
l; ðB2Þ

where l ¼ TcdΔf=dTjTc
is the latent heat.

Given spherical symmetry, we can solve for the radius of
the critical bubble,

d
dR

Fbubble ¼ 0 ⇒ R ¼ 2σ

p
: ðB3Þ

In the approach to the critical temperature, p becomes
arbitrarily small. The cost of the walls is proportional to the
surface area of a bubble, but the effect of the interior free
energy is proportional to the volume. To compensate the
cost of the walls, the critical bubble has to have a large
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interior consisting of the true new phase, and hence a large
radius, so that the two effects are balanced.
Although the bubble radius grows in the thin-wall limit,

the characteristic size of the wall width is still given by the
mass of the nucleating field dwall ∼m−1

nucl. Thus, the thin-
wall regime is

R ¼ 2σ

p
≫ m−1

nucl: ðB4Þ

In the thin-wall regime, the nucleation scale is no longer
mnucl, as was identified in Eq. (27), but is an independent
scale related to the bubble radius, Λnucl ∼ R−1. Hence, the
EFT for the scale mnucl still contains shorter scales than the
nucleation scale.
To create the nucleation scale effective description, one

has to integrate out the new intermediate scales at
R−1 ≪ ΛNI ≲mnucl. The wall thickness belongs to an
intermediate scale (dwall ∼m−1

nucl) and is thus absent in
the effective description. This means that the nucleation
scale contains only infinitely thin bubble walls as its
dynamical d.o.f.
The effective description for the bubble walls can be

constructed based on general effective-theory principles.
First, one writes down the most general Lagrangian
describing a two-dimensional closed membrane, M, in
three spatial dimensions which is invariant under repar-
ametrizations of the membrane, and is a scalar under the
three-dimensional Euclidean symmetry group. Denoting by
ξa, a ∈ f1; 2g, the coordinates on the membrane, the d.o.f.
of the effective theory are the locations in space of the
points on the membrane, xiðξaÞ, i ∈ f1; 2; 3g. Then, as
usual, one must match the long-wavelength predictions of
the full theory to those of the effective theory.
The effective theory is constructed as a dual expansion in

powers of couplings and in powers of the ratio of scales
1=ðmnuclRÞ. The operators of the membrane theory are
ordered according to increasing mass dimension, and the
leading few coefficients are matched to reproduce the
infrared predictions of the UV theory,

Feff ½M� ¼
Z
M

ffiffiffi
γ

p
d2ξ

�
−
1

3
pxini þ σ þ cKþ…

�
: ðB5Þ

Here γ is the determinant of the induced metric on the
membrane γab ¼ ∂axi∂bxi, ni is the unit normal pointing
out of the bubble, K is the extrinsic curvature of the
membrane, and p, σ and c are constant coefficients. The
first two terms in Eq. (B5) reproduce Eq. (B1), though the
volume term has been be rewritten as an integral over M
using Gauss’s law [128,129], so that Eq. (B5) appears as a
Lagrangian theory.
If this effective description is to prove fruitful, the

additional terms suggested by the ellipsis in Eq. (B5)
should be of higher mass dimension, containing additional

derivatives of the membrane position or normal vector.
From standard effective theory arguments, wewould expect
that the magnitude of the constant coefficients, matched to
the UV theory, is determined by a UV mass scale (mnucl or
larger) to the appropriate power, excepting p which is
anomalously small in the thin-wall regime. On the other
hand, the membrane operators must be of order R to the
appropriate power, as this is the only scale present in the
membrane theory.
In the thin-wall regime, the partition function of the full

theory reduces to that of the membrane theory, up to an
overall constant,

ZðTÞ ∝
Z ðΛÞ

DM expf−βFeff ½M�g; ðB6Þ

where Λ is now the matching scale between the scales 1=R
and mnucl. For the leading nontrivial theory, i.e., only p and
σ nonzero, the one-loop statistical prefactor for this theory
has been calculated in Refs. [128,130].16

It is not always an imperative to construct the effective
description for the bubble walls, if the system is not in the
strong thin-wall regime. The new intermediate scale can be
treated perturbatively if it has a small effect on the free
energy describing the critical bubble. Crucially, the dom-
inant contribution to the surface tension, σ, must come from
higher scales still, as the wall width itself is of order m−1

nucl.
If, in addition, the new intermediate scale gives only a small
correction to the pressure

ΔpNI ≪ p; ðB7Þ

then it is possible to calculate the bubble nucleation rate
either within the thin-wall effective theory, or within the
EFT at the scale mnucl. In this case the thin-wall effective
theory may be useful, but is not necessary. When using the
EFT at the scale mnucl, one can account for the effect of the
new intermediate scales on the shape of the critical bubble
by computing their tadpole contributions, as discussed
around Eqs. (24)–(26). See Ref. [133] for an example of
this in the context of vacuum decay.
On the other hand, for temperatures sufficiently close to

the critical temperature (where p ¼ 0), Eq. (B7) typically
breaks down, as even a perturbatively suppressed correc-
tion can be of LO for the pressure difference. This, in turn,
will have a LO effect on the critical bubble [cf. Eq. (B3)],
thus compromising the perturbative expansion. This is the
strong thin-wall regime.
In the strong thin-wall regime, the construction of the

thin-wall effective theory is still possible, as a dual

16Note that the extrinsic curvature contribution to βFeff is
linear in R (see also Refs. [131,132]), and hence is larger than the
prefactorial corrections calculated in Refs. [128,130] when deep
in the thin-wall regime.
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expansion in the couplings and in the deviation from the
critical temperature. Deep in the thin-wall regime, correc-
tions due to the finiteness of the deviation from the critical
temperature are subdominant, and one can work to leading
nontrivial order in j1 − T=Tcj, while working to higher
order in the couplings. That is, one calculates the surface
tension at Tc, and the pressure according to Eq. (B2).
Corrections to the pressure from the new intermediate
scales can be calculated about a homogeneous background,
but corrections to the surface tension from new intermedi-
ate scale fluctuations must be calculated in the bubble wall
background (see for example Refs. [133–135]). In order to
calculate the exponent of the nucleation rate to Oð1Þ
accuracy, one must calculate the pressure, surface tension
and extrinsic curvature coefficient c to within uncertainties
of order T=R3, T=R2, and T=R respectively.
The strong thin-wall regime does not arise in the special

case whereby an exact symmetry determines Tc, such as for
the 3D EFTof Sec. IV where aZ2-symmetry relates the two
phases at Tc. Due to this symmetry, the condition in
Eq. (B7) is not broken, and hence the strong thin-wall
regime does not arise. This special case is, in fact, the
model for which the thin-wall regime has been most widely
studied [28,131,132].
As a closing aside in the context of the thin-wall

approximation, we would like to highlight the work of
Refs. [82,136–140], in which an effective hydrodynamic
description was assumed to apply at the nucleation scale,
containing thin-wall bubbles. Within this effective descrip-
tion, the nucleation rate has been calculated explicitly,
including the statistical and dynamical prefactors. The latter
was found to depend on the bulk and shear viscosities of the
fluid. However, a first-principles derivation of this effective
hydrodynamic description, including of its region of
validity for bubble nucleation, is still lacking. This was
seen in Ref. [82] as a serious gap in our logical develop-
ment. Filling this gap in full detail would be a very
interesting extension of our work.

APPENDIX C: NOT A HIGH-TEMPERATURE
PHASE TRANSITION

In the EFT approach to thermal bubble nucleation, the
thermal scale is integrated out in dimensional reduction,
removing the Euclidean time dimension from the descrip-
tion. This step is necessary for the link to classical nucleation
theory, as discussed in Sec. II. However, it is only possible if
Λnucl ≪ Λtherm, so that the bubbles are much larger than the
extent of theEuclidean dimension.Clearly this is not the only
possible case, as there may be transitions withΛnucl ∼ Λtherm
orΛnucl ≫ Λtherm, which wewill refer to as intermediate and
low temperatures respectively.
At zero temperature, vacuum decay through bubble

nucleation is well understood. In this case the real-time
process of quantum tunneling can be related to the
imaginary part of the vacuum energy, Γvac ¼ −2ImEvac

[79] (see also Ref. [141] for an approach avoiding analytic
continuation). This in turn can be calculated in a purely
Euclidean setting, which is simpler still than classical
nucleation theory, in which the dynamical prefactor [see
Eq. (12)] requires a real-time calculation.
It is worth noting that the EFT approach to bubble

nucleation is also useful at zero temperature, in particular
for radiatively-induced vacuum transitions (see for example
Refs. [47,142]). By first integrating out the high-momen-
tum modes, to arrive at an EFT for the nucleating d.o.f., the
problems of double-counting d.o.f., stray imaginary parts
and an uncontrolled derivative expansion can be avoided,
and the vacuum decay rate calculated in a consistent power
expansion.
Without the hierarchy Λnucl ≪ Λtherm, an effective

classical description is not in general possible, in which
case the real-time dynamics of the quantum theory must be
tackled head on. While at zero temperature the rate of
vacuum decay can be related to the imaginary part of the
vacuum energy, this is not the case at nonzero temperature
and hence one must return to the Schwinger-Keldysh
formalism [80] to formulate the problem of bubble
nucleation.
Nevertheless, Linde’s conjectured analogy Γ ∼ −2ImF

[29,30] may still capture the qualitative temperature
dependence of the exponent of the nucleation rate, indeed
it agrees with the quantum mechanical escape rate at low
temperatures [48]. In this approach, the relevant saddle-
point solution determining the nucleation process changes
from being O(4) to O(3) to Oð3Þ × Oð2Þ symmetric as the
temperature increases from zero through the low-, inter-
mediate-, and high-temperature regimes.17 Studies within
this approach have found that the intermediate O(3) case
may only occur in a rather fine-tuned range of temperatures
[143–146]; see also Ref. [147] for a recent study. In fact, in
the thin-wall regime this intermediate case does not occur at
all [143], and the nucleation rate jumps from vacuum
tunneling to an over barrier process as the temperature is
increased.

APPENDIX D: NUMERICAL METHODS

A range of numerical techniques have been developed
for concrete calculations of the factors entering Eq. (15).
Following Ref. [28], the shooting method has been widely
and successfully used to solve for the critical bubble.
However, for theories with multiple scalar fields, the
convergence of this method is not guaranteed, so a variety

17Strictly speaking the O(4)-symmetric solution is only appli-
cable at T ¼ 0, however for theories without massless excitations
at T ≠ 0 the action of the O(4)-symmetric solution is equal to that
of the O(3)-symmetric one up to exponentially small corrections,
until the temperature raises to approximately 1=ð2RÞ, where R is
the radius of the bubble.
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of methods have been developed to overcome or ameliorate
this [81,110,115,148–155].
The functional determinant, which makes up the stat-

istical prefactor, is radially separable and can be decom-
posed using spherical harmonics. The computation of the
radial part can then be simplified by making use of a classic

result of Gel’fand and Yaglom [156]; see for example
Refs. [107,157–161]. In Ref. [107] functional determinants
have been calculated for several theories within a 3D EFT
framework. The numerical results of this work can in fact
be used directly to obtain the statistical part of the
nucleation rate for our Example 1.
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