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Digital twin-enabled smart industrial systems: a bibliometric review  

The aim of this study is to investigate the body of literature on digital twins, exploring, in 

particular, their role in enabling smart industrial systems. This review adopts a dynamic 

and quantitative bibliometric method including works citations, keywords co-occurrence 

networks and keywords burst detection with the aim of clarifying the main contributions to 

this research area and highlighting prevalent topics and trends over time. The analysis 

performed on citations traces the backbone of contributions to the topic, visible within the 

main path. Keywords co-occurrence networks depict the prevalent issues addressed, tools 

implemented and application areas. The burst detection completes the analysis identifying 

the trends and most recent research areas characterizing research on the digital twin topic.  

Decision-making, process design and life cycle as well as the enabling role in the adoption 

of the latest industrial paradigms emerge as the prevalent issues addressed by the body of 

literature on digital twins. In particular, the up-to-date issues of real-time systems and 

industry 4.0 technologies, closely related to the concept of smart industrial systems, 

characterize the latest research trajectories identified in the literature on digital twins. In 

this context, the digital twin can find new opportunities for application in manufacturing, 

control and services. 

Keywords: digital twin; smart industrial systems; literature review; co-occurrence network; 

burst detection; main path. 

1. Introduction 

Digital twin is a concept that dates back to the NASA Apollo program, when several identical 

vehicles were manufactured to allow the conditions of the vehicle travelling in space to be 

replicated during the mission. Later, in 2010, Shafto et al. (2010) provided the definition of the 

NASA digital twin: “an integrated multi-physics, multi-scale, probabilistic simulation of a 

vehicle or system that uses the best available physical models, sensor updates, fleet history, etc., 

to mirror the life of its flying twin. It is ultra-realistic and may consider one or more important 

and interdependent vehicle systems”. In the aerospace sector, the product digital twin has been 

exploited to predict the life of aircraft structure and assure its integrity, to design and maintain 

airframes, and to address the shortcomings of conventional certification, fleet management and 

sustainment approaches (see among the others Tuegel et al. 2011; Glaessgen and Stargel 2012; 



Tuegel 2012). Great interest in replicating digital aircraft counterparts for discovering and 

understanding emergent behaviours in dealing with product maintenance and service can be said 

to be related to the importance of ensuring proper behaviour of these systems, as enormous 

expense would be generated by undesired performances (Tao et al. 2018).  

In an era of increasing market requirements, industrial systems have to respond quickly to 

unexpected events, ensuring proper system behaviour under different conditions, raising the 

issue of system flexibility. Flexibility is provided by the quick re-configurability of production, 

when the system is disrupted or needs to be re-organized as a result of interaction with customers 

(mass customization) and market changes, enabling enterprises to stay competitive in the 

marketplace (Morgan and O’Donnell 2017). Hence, identification of the proper management of 

industrial systems for flexibility is gaining more attention, extending the attractiveness of the 

implementation of the digital twin concept to the management of production systems (Lu et al. 

2019; Park et al. 2019). Within the context of the fourth industrial revolution, smart industrial 

systems are expected to be cyber physical systems integrated through the Internet of Things 

(IoT) and utilizing cloud computing services (Sajid et al. 2016). This reconfigurable nature of 

decentralized systems is paramount in achieving flexibility (Morgan and O’Donnell 2017). 

Accordingly, smart industrial systems are expected to be an integral part of the enterprises that 

stay competitive in the marketplace. 

As smart industrial systems overcome the limitation of central re-planning, shortening response 

times, and executing high-level tasks autonomously without human control, they greatly increase 

the system complexity (Rosen et al. 2015). Consequently, the digital twin of the smart industrial 

system, constituted by a virtual copy of the physical industrial system, reflecting its elements in 

real-time, based on IoT and synchronized information (Park et al. 2019), is a fundamental part of 

smart industrial systems (Lu et al. 2019; Nikolakis et al. 2019). In particular, with reference to 

process planning and execution in the context of smart industrial systems, a digital twin should 

represent the means to provide fast and advanced decision-making support for elements 

distributed within the system (see for example the planning and commissioning presented by 

Nikolakis et al. (2019)). Moreover, the development of digital twins seems to be the right way to 

overcome the limitations in the use of recent technologies in product lifecycle management (e.g. 

lack of convergence between the product physical and virtual space). Synchronization and 



fidelity of representation, in fact, provide a high potential application in product design, 

manufacturing, and service (Tao et al. 2018). 

Given the opportunities offered by the digital twin concept, the goal of this paper is to depict a 

landscape of the related scientific literature, providing a knowledge base and directions for future 

research on the topic, with particular attention to its relationship with smart industrial systems. 

Hence, this paper aims to consider the following research questions (RQ1, RQ2 and RQ3): 

RQ1: What are the main contributions to the research on digital twins and what do these 

contributions address? 

RQ2: What are the topics the digital twin concept has been related to and what is the 

importance of smart industrial systems among them? 

RQ3: What have been the trends in research on digital twin and what are the recent 

research streams? 

In order to achieve such a challenging objective, the present work adopts the dynamic literature 

review method called ‘Systematic Literature Network Analysis (SLNA)’ introduced by Colicchia 

and Strozzi (2012). The applied analysis is based on bibliographic network analysis, an approach 

that has proved to be successful in investigating related concepts such as Smart Factory and Lean 

(see Strozzi et al. 2017 and Ciano et al. 2019). 

The paper is structured as follows. Materials and methods are presented in Section 2, while in 

Section 3 the results of the citation network and scores analyses are described. In Section 4 the 

results of the second phase of the SLNA methodology are outlined with particular reference to 

keyword clustering and analysis. The detection of bursts in the use of keywords over time is 

described in Section 5. In Section 6 the results are discussed, research directions are identified, 

and final remarks conclude the paper. 

2. Materials and method 

2.1. Materials 

The papers used in this study were gathered from Scopus, the database with the largest scientific 

journal coverage (Mongeon and Paul-Hus 2016). In order to include most of the body of 

literature about the topic, the search was performed using a broad and general search field, i.e. 

TITLE-ABS-KEY. Regarding the keywords used in digital twin literature, the search referred to 

the review by Holler et al. (2016), suggesting “digital twin”, “product avatar”, “cyber-physical 



equivalence”, “product shadow” and “information mirroring model”. However, Scopus searches 

for “cyber-physical equivalence”, “product shadow” and “information mirroring model” did not 

provide any output as isolated title or keyword terms and no consistent output as abstract terms. 

Therefore, the search was limited to the first two keywords ("digital twin” and "product avatar") 

indicated by Holler et al. (2016). In fact these terms are often used as synonyms as they both 

refer to the product digital counterpart of a physical product (Rios et al. 2015). In Scopus, the 

keyword “digital shadow” appears as one of the most recurrent keywords associated with the 

former two. The link between the concepts is found in the core nature of  “digital twin” that 

literature indicates as a “digital shadow” of a physical product and which includes all the 

information and knowledge about it (Schroeder et al. 2016; 2017).  

In order to consider the link between the digital twin concept and process aspects, the Scopus 

search in TITLE-ABS-KEY of the keyword “process avatar” was performed but reported only 

the paper by Wan et al. (2011), not cited to date by other Scopus papers. For these reasons, the 

search was completed using the following string: TITLE-ABS-KEY ( "digital twin*"  OR  

"product avatar*"  OR  "digital shadow*" ). This choice was made to encompass all the body of 

literature about digital twin and to understand what are the topics in this field, their weight and 

importance and, among them, to evaluate what is the role of the application of digital twin in the 

smart industrial system context. Moreover, only works written in the English language were 

considered. An additional filter on the publication year was applied, as the search outcome 

before 2004 consisted in only six papers published from the ‘70s to the ‘90s, whose content was 

not consistent with the scope of this study (i.e. depict a landscape of the related scientific 

literature, providing a knowledge base and directions for future research on the topic). Hence, the 

search was restricted to papers published from 2004. At the end of January 2019, the search 

output with the above-mentioned constraints was a set of 496 papers distributed over time as 

shown by Figure 1. 

 



 

Figure 1. Publications about digital twin over time 

2.2. Method 

In order to provide a complete landscape of scientific literature on digital twin, the method used 

in this work is based on the bibliographic network analysis developed by Strozzi et al. (2017). In 

fact, the authors suggested that analyses built upon citations and keywords can enable a 

challenging result to be reached. The methodology is depicted in Table 1.  

RQ1 is addressed exploring the main development trajectory of the digital twin research and 

analysing the papers in the network with the highest total citation score. Citations can be 

represented through a network composed of isolated nodes and connected components, i.e. 

groups of nodes representing publications connected by citations and graphically linked by 

arrows. The arrows’ direction goes from the cited paper to the one that is citing it, thus from the 

oldest to the most recent one, representing the flow of knowledge. Within the connected 

components, it is possible to recognize the main development trajectory of the topic extracting 

the so-called “main path” (Hummon and Doreian 1989; Lucio-Arias and Leydesdorff 2008), 

defined also as the “backbone of the research tradition” (Lucio-Arias and Leydesdorff 2008, 

Colicchia and Strozzi 2012). The articles included in the main path are built on prior works and 

act as hubs for the following studies (Strozzi et al. 2017). From the possible methods used to 

detect the main path among the ones described by Liu and Lu (2012), this research focuses on 

the search path link count (SPLC), global, key-route main path. This choice implies the traversal 

count, i.e. the significance index for each link in a citation network, which is calculated based on 

all possible search paths originating from a start node, then selecting a path with the largest 
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overall traversal counts and including the link that has the highest transversal count (Liu and Lu 

2012). The extraction of the main path was performed using the Pajek software for large network 

analysis (Batagelj and Mrvar 1998) and following the procedure suggested by Colicchia and 

Strozzi (2012). 

The main path analysis is completed by considerations about the papers in the network with the 

highest total citation score, i.e. key reference papers. In actual fact, as the focus of the main path 

is the traversal count, it may not include the paper with the highest citation score, while the 

citation is assumed to represent influence (Zhao and Strotmann 2015).  

RQ2 is addressed through the keywords co-occurrence network analysis, based on the approach 

developed by Waltman et al. (2010). The approach consists of the clusterization and the mapping 

of bibliometric networks, obtained as output of the use of VOSviewer, the dedicated software for 

the implementation of this approach. Clusters are groups of keywords that are used most 

frequently together to classify papers, and their analysis can reveal the research areas within the 

topic.  The map is the representation of the network, in which the nodes, namely the keywords, 

have various dimensions according to their occurrence weight and are marked by different 

colours reflecting how they belong to the different clusters.  

RQ3 is tackled implementing Kleinberg’s burst detection (Kleinberg, 2003). This analysis 

considers keywords recognizing the ones characterized by a “burst”, i.e. a sudden increase in the 

frequency of use over time. Kleinberg’s method uses an infinite state automaton to model the 

streams, in which bursts appear as state transitions; when the term becomes common, it reaches a 

kind of steady state and is no longer considered a burst (Pollack and Adler, 2015). Due to the 

effectiveness of this technique it is exploited by this work for the identification of the trends in 

publication. The algorithm is implemented on the normalized keywords in the Sci2 software 

(Sci2 Team, 2009) and the output is a temporal bar graph in which the keyword bursts are ranked 

according to the burst weight, i.e. the magnitude of the change in the keyword frequency.  

As input data for both keywords co-occurrence network analysis and Kleinberg’s burst detection 

analysis, this work considers all keywords, i.e. a combination of author keywords and different 

kinds of indexed keywords. Author keywords are chosen by the authors themselves, thus they 

encompass the specific extent of the study. Indexed ones are assigned to works by content 

supplier and they are based on vocabulary and thesaurus terms and encompass wider and more 



objective information, for instance, subject area, main topic, study typology, adopted 

methodology, sectors, etc. (Ciano et al. 2019; Pozzi and Strozzi 2018). In this work they are used 

together, as indexed keywords are updated only when a term becomes popular and could thus 

miss some recent and increasingly relevant topic, while considering only author ones could lead 

to overlooking broader and more complete features of the papers (Ciano et al. 2019; Pozzi and 

Strozzi 2018).  

Table 1. Methodology adopted by this work 

Research Question Data Representation Tool for the analysis Software 

1) What are the main contributions 

to the research on digital twin 

and what do these contributions 

address? 

Citations 

a. References 
 

b. Citations 

count 

Citation network a. global search of the key-

route main path on the 
biggest connected 

component 

 
b. total citation score 

a. Pajek 

software 

 

b. Scopus 

2) What are the topics the digital 

twin concept has been related to 

and what is the importance of 

smart industrial systems among 

them? 

All keywords: 
author keywords + 
indexed keywords 

Co-occurrence 
networks of 
keywords. 

Clusterisation of nodes using 
VoS clustering techniques 

VoSviewer 
software 

 

3) What have been the trends in 

research on digital twin and 

what are the recent research 

streams? 

All keywords: 
author keywords + 
indexed keywords 

Temporal bar 
graph 

Kleinberg’s Burst detection 
algorithm 

Sci2 software 

 

3. Citation network analysis 

The citation network of the collected papers (Figure 2) presents many isolated nodes. The 

isolated nodes represent papers that are not cited: this can be due to the recent date of publication 

or to their slight different scope in comparison to the majority of the other papers. Anyway, they 

include the keywords of search, reflecting the belonginess to the macro subject of digital twin, 

but highlighting peculiar areas of application. The network includes also seven connected 

components in which papers are linked by arrows that represent the presence of a citation and 

whose direction goes from the cited paper to the one that is citing it. Precisely, the biggest 

connected component includes 147 nodes, while the other six consist of 3 or 2 nodes each. As 



connected components are made up of a large number of nodes and contain more information 

(Strozzi, Bono, and Gutierrez 2014), the citation network analysis can provide more significant 

results. Therefore, this study considers only the biggest connected component and extracts its 

main path to detect the development trajectory within the topic. The Pajek software, with the 

default rank numbers of key-routes, i.e. 1-10, extracts a key-route global main path consisting of 

15 nodes (Figure 3). 

3.1. Main path analysis 

The 15 papers representing the main path nodes range from 2017 to January 2019, proving the 

recent development of the topic. Digital twin literature is just taking hold and the structure of the 

main path trajectory (Figure 3) mirrors the sudden increase in scientific production.  In 

particular, there has been considerable growth in the last three years, with a significant rise in 

2017 and then a strong surge in 2018, which more than doubled the outcomes of the previous 

year, as shown in Figure 1. Parallel to the increase in the number of papers published, the main 

path starts with a linear structure covering 2017 publications and develops into as a star network 

that includes papers published in 2018 and 2019. Retracing the main path structure, the content 

of the papers reveals two main evolutionary trends that reflect the consequences of the recent 

spread of the scientific production on the topic: on one hand, literature seeks consolidation, thus 

conceptual basis, reference models or frameworks; on the other hand, research is undertaking 

detailed studies on specific digital twin applications and features. 

Analysing the nodes of the main path that contribute to the development of the conceptual basis, 

the first one in the trajectory is the work by Wärmefjord et al. (2017). This study presents an 

insight into the two main digital twin adoptions, namely the geometry assurance of an assembled 

product and the real-time optimization in the production phase. The analysis of such adoptions 

highlights the digital twin dependence on the input data quality: the correct selection of data can 

convert information to knowledge and exploit the Big Data potential (Wärmefjord et al. 2017). 

The authors recognize a lack of practical directions to deal efficiently and effectively with input 

data, therefore they contribute to the literature by providing a framework for the correct and 

smart selection of the necessary inputs for each production phase activity. As the second node of 

the main path, Schleich et al. (2017) attempt to fill a lack of conceptual basis in the widespread 

implementation approaches. Thus, they build a first reference model for the digital twin 



implementation in design and production. The authors define the essential properties for a digital 

twin model, such as scalability, expansibility, interoperability, and fidelity. Moreover, they 

classify a set of operations on the model along the product life-cycle. This paper highlights the 

digital twin application in the product life-cycle outlining the use of the model in the geometrical 

variation management, as well as the first node. Notwithstanding the traditional application of 

digital twin as regards the product, the development trajectory of the topic intrinsic to the main 

path reveals other adoptions. Similarly, the focus of the study by Zhang et al. (2017) shifts from 

the product life-cycle to the production line design. In this context, geometrical assurance is no 

longer the priority and the adoption refers to digital twin in designing both equipment 

configuration and execution system. This study enriches digital twin literature presenting a 

framework able to support engineering analysis and decision-making in the production line 

design and in the evaluation of the solutions. The final output is the entire line model complete 

with control scheme, motion script, data acquisition system and execution system, enhancing the 

digital twin ability to simulate the production line performance.  

The main path then forks out into three nodes that contribute to the consolidation of digital twin 

literature as well. Liu et al. (2018) provide a digital twin-based method for reusing and 

evaluating process knowledge. The approach regards the creation of a digital twin-based process 

knowledge model framework which includes process requirement and constraints, the real-time 

status of process equipment and geometrical information. Tests with a prototype system proved 

that this method allows for an effective and precise process of knowledge reuse. Bao et al. (2018) 

propose an integrating manufacturing information model using digital twin. In particular, this 

study outlines the modeling approaches of product digital twins, process digital twins, and 

operation digital twins, enlarging the range of the application of the digital twin from the product 

only. With this aim, the authors highlight the need for data transmission and integration between 

different digital twins and propose AutomationML as a data exchange format. Since the digital 

twin has several adoptions in the life cycle,  there is a shortage of clear definitions in literature 

and, above all, of its requirements (Durão et al. 2018). To fill this gap, Durão et al. (2018) 

analyse 19 papers and report interviews in industry focusing on the most frequently addressed 

digital twin requirements: real-time, integration, and fidelity. The studies by Durão et al. (2018), 

Bao et al. (2018) and Zhang et al. (2017) introduce the link between digital twin and industry 4.0 

paradigm. 



The three nodes establishing the link between digital twin and industry 4.0 paradigm merge in 

the study by Tao et al. (2018) to a node representing the central hub of a star network. Tao et al. 

(2018) contribute to the development of the theoretical and conceptual background of the topic 

through the detail of frameworks for the application of digital twin-driven product design, 

manufacturing, and, in addition to the other studies, product service. This study concludes the 

flow of knowledge on the conceptual basis, reference models and frameworks, providing the 

foundation for the widening of specific digital twin’s applications and features.  

Every host node in the star network studies in detail a specific digital twin aspect. For instance, 

the study by Zheng et al. (2018) details a digital twin-enabled design approach for Smart 

product-service system service innovation, focusing on the digital twin adoption in service. Other 

studies consider digital twin implmentation in specific contexts, such as in livestock farms in the 

agricultural industry (Jo et al. 2018), in carbon fibre composite parts manufacturing (Zambal et 

al. 2018) and in 3D printing (Mukherjee and DebRoy 2019). The study by Yun et al. (2018) 

further develop the focus on the digital twin specific requirements first detailed by Durão et al. 

(2018). Yun et al. (2018)  present a software-defined networking control mechanism overcoming 

the limitations of communication and providing stable service in a digital twin context. The 

study by Taylor (2019) depicts the state-of-the-art of the literature about distributed simulation 

for operational research, identifying its major role in the digital twin context, compared to other 

tools. Finally, two further studies developed the role of digital twin as an enabler of smart 

production driven by industry 4.0 (Zhuang et al, 2018; Preuveneers et al. 2018). The 

miscellaneous subjects covered by the star network hosts demonstrate the possible declination of 

digital twin in various contexts, suggesting an even greater topic branching in the future. The 

recent broadening implementation is confirmed by the sources of the publications, ranging from 

conference proceedings to the International Journal of Advanced Manufacturing Technology, 

Applied Materials Today and the Journal of Cleaner Production. 



 

Figure 2. Citation network 

 

Figure 3.  Biggest connected component main path 

3.2. Total citations score 

The applied algorithm to detect the global key-route main path is based on the citation traversal 

weights (Liu et al. 2012); this does not ensure that all the most cited papers are taken into 

account (Strozzi et al. 2017; Ciano et al. 2019 submitted) but only the ones that are important for 

understanding the development of the theory. Indeed, in this work among the five most cited 

papers in Scopus in the digital twin literature (Table 2), only the fifth belongs to the main path, 

the work by Tao et al. (2018).  The most cited paper, the one by Sarma and Girão (2009), refers 

to the digital shadow as a possible method to cope with the diversifying of the Internet towards 

an Internet of things.  



The work by Rosen et al. (2015) points out the importance of digital twin in the creation of an 

autonomous system, due to its ability to allow the communication between virtual and real 

worlds and the simulation in all the life cycle phases.  

The paper by Tuegel et al. (2011) describes the digital twin adoption in the aircraft industry to 

integrate structural deflections and temperatures depending on flight conditions, in order to 

predict local damage and material state evolution. 

Lee, Post, and Ishii (2011) present ZeroN, a tangible interface element used for physics 

simulation and education, which can be levitated and moved freely by computer in a 3D space. 

Here digital shadow provides users with visible links between ZeroN and other parts of the 

tabletop tangible interfaces. Despite the high citation score, this paper belongs to the specific 

research area of magnetic levitation, and the exclusion from the main path reflects its distance 

from the main topics addressed in the connected component, namely the ones related to the smart 

industrial system. 

The five most cited papers have different scopes and there is not a common thread able to 

strongly link them. Except for the article by Tao et al. (2018), none of them is linked to the two 

main development trajectories identified in the main path. However, these articles and papers 

address a specific topic, making them the key reference in their research stream, demonstrating 

the potential of the digital twin concept before the increase in interest in recent years. 

 

Table 2. The five most cited papers in the digital twin literature 

Authors Title Year Source Title Citation  

count 

Document 

type 

Main 

path 

Sarma A.C., Girão 

J. 

Identities in the 

future internet of 

things 

2009 Wireless Personal Communications 165 Conference 

Paper 

No 

Rosen R., Von 

Wichert G., Lo G., 

Bettenhausen K.D. 

About the 

importance of 

autonomy and 

digital twins for 

the future of 

manufacturing 

2015 IFAC-PapersOnLine 78 Conference 

Paper 

No 

Tuegel E.J., 

Ingraffea A.R., 

Eason T.G., 

Reengineering 

aircraft structural 

life prediction 

2011 International Journal of Aerospace 

Engineering 

75 Article No 



Spottswood S.M. using a digital 

twin 

Lee J., Post R., 

Ishii H. 

ZeroN: Mid-air 

tangible 

interaction 

enabled by 

computer 

controlled 

magnetic 

levitation 

2011 UIST'11 - Proceedings of the 24th 

Annual ACM Symposium on User 

Interface Software and Technology 

60 Conference 

Paper 

No 

Tao F., Cheng J., 

Qi Q., Zhang M., 

Zhang H., Sui F. 

Digital twin-

driven product 

design, 

manufacturing 

and service with 

big data 

2018 International Journal of Advanced 

Manufacturing Technology 

57 Article Yes 

 

4. Keywords clusters analysis 

Setting the minimum number of a keyword occurrence at 10 and the resolution at 1.3,  the 

network depicted in Figure 4 is the VOSviewer outcome. The network is composed of 51 nodes, 

i.e., keywords, corresponding to 8 clusters (Table 3; Figure 5). The following paragraphs 

comment on the content of the clusters through relevant articles and define the research areas 

within the literature about digital twins. 

4.1. Digital twin for decision making 

The biggest cluster of the keywords network concerns the importance of decision making in the 

digital twin literature. Digital Twin models adopt iterative simulation to forecast the possible 

impact of changes for the real world, empowering decision-making (Kuehn 2018). Liu et al. 

(2018) even stated that decision-making can be seen as the final objective of digital twin. 

However, digital twins generate enormous databases of information, which are helpful in 

decision-making only if consistent and integrated. Therefore, several works underline the need 

for a proper semantic meta-model to structure information. A univocal semantics ensures the 

digital continuity of data along with all the phases of the production system, and their synthesis 

under a unified common environment (Kousi et al. 2019) providing a holistic view that 



empowers decisions (Negri et al. 2017). Moreover, a unique and consistent data storage reduces 

effort in collecting data to perform simulations (Negri et al. 2017). 

The literature goes further into depth on the link between digital twin and decision making 

especially in the aircraft industry, the sector that witnessed the digital twin launch and 

development (Tuegel et al. 2011; Boschert and Rosen 2016; Kraft 2016; Liu et al.2018). Digital 

twins simulations, running virtually through all the flights corresponding to the projected usage, 

allow the user to understand what the aircraft has experienced and to forecast future 

maintenance needs and repair costs, often by using Finite Element Methods (Tuegel et al. 2011; 

Negri et al. 2017). In this research stream, some studies refer to the digital twin/digital thread 

binomial (see Kraft 2016; Boschert and Rosen 2016, and Mavris et al. 2018). In the same way as 

digital twin, digital thread describes an integrated systems engineering process that digitally 

manages the processes (Kraft 2016). However, digital thread and digital twin have different 

focuses: the digital thread concept is used to support and create informed decisions in the 

acquisition phase, and, as a consequence, in the design of new aircraft, while the digital twin 

should support decisions in its operation and service (Boschert and Rosen 2016). Using their 

combination, uncertainties can be more accurately identified, included and then reduced (Kraft 

2016). Furthermore, digital twin can translate residual input uncertainties into probabilities of 

obtaining various outcomes, supporting better decisions (Tuegel et al. 2011). Moreover, by 

refining the digital thread/digital twin model with structural dynamics modelling on an 

individual aircraft basis, fighter aircraft can shift from fleet or squadron-based management to 

risk-based management (Kraft 2016). 

4.2. Big data in production systems 

The work by Wärmefjord et al. (2017), presented in the main path analysis (Section 3.1), 

described the dependency of the digital twin on the input data and the importance of the correct 

selection to exploit the big data potential. Their work introduces the central theme of this cluster, 

i.e., the focus of digital twin literature on the use of big data in production systems. Big data 

could be considered as an essential part of digital twin; indeed, big data makes it possible to 

express most of the digital twin functions, while digital twin puts the big data analysis and the 

actual manufacturing in parallel (Qi and Tao 2018). Furthermore, literature is paying close 

attention to this research area since both big data and digital twin are considered key enablers of 



the recent concept of smart manufacturing,  namely a ‘dramatically and pervasive application of 

networked information-based technologies throughout the manufacturing and supply chain 

enterprise’ (Davis et al. 2012), and of its synonym smart factory (Qi and Tao 2018; Jeon and Suh 

2018). 

In this smart environment, artificial intelligence, characterized by self-learning ability, increases 

intelligence through data analytics (Qi and Tao 2018). Big data and artificial intelligence can 

transfer intelligence to entities, models and systems, establishing autonomous cooperation and 

negotiation between physical and virtual spaces and enabling digital twin application on the 

shop-floor (Tao and Zhang 2018). Zhuang et al. (2018) developed this concept tracing the 

evolution of shop-floor production management and control strategies. According to the authors, 

four stages characterize the evolution. After a first passive data collection via paperwork and 

offline input, a second stage involves a real-time collection through IoT technology. Then, a 

real-time system should associate real-time physical data with the assembly shop-floor digital 

twin, opening the way to the third stage. This consists in the predictive management and control 

characterized by the applications of machine learning, artificial neural networks, data mining and 

other big data-related technologies, able to predict potential shop-floor production disturbance, 

product quality, status and behavior of equipment, and improve human-robot collaboration 

(Dröder et al. 2018): a new approach for product and process optimization and decision-making. 

Finally, the fourth stage of the evolution path of shop-floor production management and control 

strategies is the proactive management and control, i.e. the systems autonomous optimization 

and decision-making based on prediction results. 

4.3. Product design and life cycle 

Some keywords belonging to this cluster, namely product design, product life cycle 

management, and product avatar, outline a research stream in the digital twin literature that 

focuses on the product. Indeed, it is proven that the digital twin remains the virtual counterpart of 

its physical twin across the entire product life cycle (Haag and Anderl 2018). Digital twin deals 

with both static and dynamic information, the former regarding geometrical dimensions, 

materials, and processes, the latter referring to the information that changes with time along the 

product life cycle (Schroeder 2016.b). Digital twin can be applied to all three phases of a product 

life cycle, i.e., product design, product manufacturing and product service (Tao et al. 2018). The 



need for early and efficient evaluations of the consequences of concept materialization makes 

digital twin essential in the design phase (Schleich et al. 2017). Tao et al. (2018) identified three 

stages within digital twin-based product design, i.e. conceptual design, detailed design, and 

virtual verification. In the conceptual design stage, designers define the concept, while a digital 

twin provides them with huge amounts of required information, such as customer satisfaction, 

product sales, investment plans, and much more, all integrated into a single source. The detailed 

design stage defines product functions and appearance, product configuration, and design 

parameters. Behavioural attributes can be integrated into the shape by storing them within the 

computer-aided design model, which can then be used as an index for information (Miller et al. 

2018). Digital twin supports this stage allowing repeated simulations in order to refine the 

product prototype. In the last stage, virtual verification, digital twin can exploit data regarding 

equipment, environment, physical characteristics as well as historical data to test the behaviour 

of the product and eventually propose corrective solutions. 

Wuest Hribernik and Thoben (2014) focused on the amount of information required by the 

design phase. According to the authors, the product avatar should be built upon (i) product life 

cycle management, implying information continuity, (ii) intelligent products, using IoT 

technologies to collect real-time data, and (iii) collaboration of stakeholders to tailor the product 

serving as an information management tool. 

4.4. Digital twin towards industry 4.0 

The link between the latest industrial paradigm, such as industry 4.0, and the digital twin concept 

has gained interest in the industrial research community. Indeed, the cluster that connects these 

two topics is the one with more keywords’ occurrences (Figure 5). The industry 4.0 paradigm is 

characterized by the physical-virtual connection and by the cyber physical systems networking 

(Lee et al. 2015; Negri et al. 2017; Uhlemann et al. 2017), and the digital twin exploits the real-

time synchronization of the input data coming from the field (Fumagalli and Macchi 2017; 

Uhlemann et al. 2017; Vachálek et al. 2017; Haag and Anderl 2018).  

Within the industry 4.0 environment, the system view and the interrelation between all the 

development phases is crucial and simulation is an essential tool (Boschert and Rosen 2016). 

Therefore, a modern manufacturing process calls for new simulation modelling paradigm 

concepts such as database integration and online automated modelling; digital twins connected 



through Ethernet/IP communication protocol, sensor technologies, and ERP/MES data and 

standards can provide this (Moreno et al. 2017; Rodič 2017). Moreover, the digital twin can 

simulate the entire process due to the ultra-high-fidelity virtual models (Qi and Tao 2018). 

Besides, industry 4.0 and digital twin can be linked in reference to the flexibility demand of the 

newest automation systems (Rosen et al. 2015). Flexibility can be achieved by industry 4.0 

autonomous systems that receive prior knowledge on the product and the production process 

from the digital twin. Moreover, digital twin information and models can be exploited by  

simulations in the action planning of the autonomous system; the simulations foresee the 

consequences of actions in given scenarios enabling autonomous decisions and increasing the 

systems’ flexibility even more. 

4.5. Cyber physical systems 

An embedded system is defined as a computer system dedicated to specific functions and 

embedded in a complete device or system (Park, Zheng and Liu 2012).  Cyber physical systems 

are an evolution of embedded systems in which networking can coordinate and integrate 

computation and physical processes; the network contains various embedded systems with 

computational components that serve to monitor, detect and activate physical elements (Park, 

Zheng and Liu 2012). Their ability to collect the information, monitor it from the physical space 

and synchronize it with the cyberspace often led literature to see cyber physical systems as the 

actualisation of Industrial Internet (Li et al. 2017). Moreover, due to the high connectivity, cyber 

physical systems act as distributed computer systems, characterized by decentralised control 

(Wang, Törngren and Onori 2015; Yun, Park and Kim 2017).  

Most of the contemporary research about cyber physical systems focuses on the link between the 

embedded systems of the physical layer and the application layer (Alam and El Saddik 2017). In 

this context, digital twins can act as a bridge between the physical and the application layers for 

all the physical objects (Rosen et al. 2015; Gabor et al. 2016; Alam and El Saddik 2017; 

Schroeder et al. 2017; Leng et al. 2018).  

The digital twin contains all the information needed for production in a cyber physical system, 

e.g., part ID and part type, production order number and priority, production workflow 

information, program files, production history (Rosen et al. 2015). It can manage all this 

information in real time and possibly recommend control actions for the physical environment 



(Uhlemann, Lehmann and Steinhilper 2017; Leng et al. 2018).  The joint adoption of digital twin 

and cyber physical systems is essential for the control of smart manufacturing and a research area 

is devoted to this topic (see Section 4.8). Literature also highlights specific aspects of their 

combination. For instance, Alam and El Saddik (2017) focused on the importance of digital 

twins for the cloud-based cyber physical systems, while Gabor et al. (2016) addressed their 

research to the possibility of implementing planning into a cyber physical system using digital 

twin through the so-called “simulation-based planning”. 

4.6. IoT and digital shadow 

Industrie 4.0, the German term for industry 4.0 (Hermann, Pentek and Otto 2016), reflects the 

shift of manufacture from the centralized mode to the distributed mode (Wan, Cai and Zhou 

2015). In this context, the value creation process changes, advocating internet of things (IoT) to 

link production and sales (Wan, Cai and Zhou 2015; Schuh, Jussen and Harland 2018). Internet 

of things technologies carry out online collection of real-time data through RFID tags and 

readers, smart sensors, bar codes, wireless networks, sensor networks, and Ethernet. Moreover, 

internet of things technologies can be applied to the majority of contexts, ensuring the timeliness 

of data (Zhuang, Liu and Xiong 2018). The digital twin concept, in the sense of digital shadow 

(Schroeder et al. 2016; 2017; Uhlemann, Lehmann and Steinhilper 2017), provides a new 

solution for managing such data (Misra, Simmhan and Warrior 2015; Schuh, Jussen and Harland 

2018; Zhuang, Liu and Xiong 2018). Combining internet of things with data from ERP and 

systems or service management systems generates a comprehensive set of data in real-time, 

while the digital shadow creates the preconditions for the accumulation of diverse data of the 

enterprise and creates a base for further analyses and applications working with that data (Schuh, 

Jussen and Harland 2018). Moreover, the literature links the concepts of internet of things and 

digital shadow also referring to humans. Humans are active participants of internet of things, 

serving as sensors and actuators, and digital shadow helps in managing digital identities of 

humans using “things” (Misra, Simmhan and Warrior 2015; Sarma and Girão 2009). Indeed, 

digital shadow contains uses, sessions and the required information about the endpoint devices in 

communication and service provision, becoming a projection of a virtual identity (Sarma and 

Girão 2009). 



4.7.  Immersive technologies in robotics 

Research interest reflects what is happening in the industry. In recent years, the adoption of 

immersive technologies, such as virtual reality and augmented reality, have seen a considerable 

rise in robotics (Kuts et al. 2018; Petković et al. 2019). Virtual reality creates a digital world in 

which users can be immersed and can interact with the various entities (Oyekan et al. 2019) 

through digital devices, such as headsets (Joordens and Jamshidi 2018). Augmented reality 

overlaps digital content on the real world (Schroeder et al. 2016) by means of transparent 

glasses, tablets or smartphones (Schroeder et al. 2016; Petković et al. 2019). Their use 

contributes to advantages, such as testing, troubleshooting, remote co-working, pre-evaluation of 

machine launch, monitoring, control, and education (Kuts et al. 2018) and their exploitation is 

usually enabled by a digital twin (Schroeder et al. 2016; Joordens and Jamshidi 2018; Kuts et al. 

2018; Oyekan et al. 2019; Petković et al. 2019). 

Literature on this topic ranges from considering the coupling between digital twin and virtual 

reality or augmented reality to works in which all the three technologies are combined. Some 

works explain how virtual reality allows the creation and testing of new scenarios, while the 

digital twin of the robot helps in the development of characteristics in those scenarios such as the 

sensor and control system of the real robot (e.g. Joordens and Jamshidi 2018). On the other hand, 

other works focus on the ability of augmented reality to display real-time information accessing 

digital twin model data via web services (e.g. Schroeder et al. 2016). 

An example of research in which all three technologies are combined is the study by Petković et 

al. (2019), which focused on safe, flexible robotized warehouses. In this study augmented reality 

is proposed in order to track worker motion inside the warehouse and to display valuable 

information, e.g., products to pick, or instruction for repairing robots, while virtual reality and 

digital twin are exploited to construct virtual warehouses with realistic simulations of worker 

interaction. 

4.8. Control in smart manufacturing 

According to Ding et al. (2019), smart manufacturing is the concrete embodiment of the recent 

production mode shift from mass production to mass individualization and the consequent 

transformation of production systems from automated to autonomous (Ding et al. 2019). 

However, Tao and Zhang (2017) recognized a challenge in achieving smart manufacturing, 



namely the merging of the physical manufacturing world and the virtual world, in order to realize 

smart interconnection, smart interaction, and smart control.  

In this context, several works on smart manufacturing identify its key enablers in cyber physical 

systems and digital twin (see among others Ding et al. 2019; Leng et al. 2019; Tao and Zhang 

2017; Uhlemann, Lehmann and Steinhilper 2017). In particular, several research works deal with 

their adoption to achieve control, a key activity in smart manufacturing (Zawadzki and Żywicki 

2016). Each physical device in the system has a cyber part as its digital representation, leading to 

the digital twin models. So, the digital twin can monitor and control the physical object, while 

the physical object can send data to update and synchronize its virtual counterpart (Leng et al. 

2019; Haag and Arlen 2018). This approach allows for control of the entire process and all the 

interfaces of parts flow and production progress in a transparent and real-time way (Uhlemann, 

Lehmann, and Steinhilper 2017; Ding et al. 2019). The parts flow and production process control 

driven by cyber physical systems and digital twin not only fulfil monitoring purposes but can 

also be applied to predict system behavior, enabling manufacturing optimization and 

improvement (Leng et al. 2019). 

 

 

Figure 4. Keywords co-occurrence network 
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Figure 5. Representation of the weight (occurrence) of each keywords belonging to the eight clusters 

5. Keywords burst detection analysis 

Figure 6 depicts the temporal bar graph of Kleinberg’s Burst detection, which provides 

insights into the popularity of keywords over time. The graph contains information about both 

the duration and the weight of a trend within the topic. Its analysis can confirm or add further 

information to what has emerged in the previous analyses of the citation network and of the 

keywords co-occurrence network. In particular, the latest trends can suggest future research 

directions. 

The limited amount of scientific production between 2004 and 2011 (see Figure 1) is mirrored by 

the smallest bursts in the literature timeline. In addition, Kleinberg’s Burst detection confirms the 

need for development of a conceptual basis, through the bursts of shadow and avatar (Figure 6), 

referring to digital twin synonyms digital shadow and product avatar. 

The slight increase in the digital twin publications in 2012 (see Figure 1) is combined with a 

clear focus on the aircraft industry demonstrated by the bursts in the use of airframe, aircraft and 

fleet keywords. Indeed, the key paper by Glaessgen and Stargel (2012), addressing the 

shortcoming of traditional approaches to certification, fleet management and sustainment 

through the shift to the digital twin paradigm, was in fact published in 2012. In addition, the 

burst characterized by the highest weight is dynam, which can be linked to the keyword 

structural dynamics, adopted by articles and papers published in 2012. Besides the scope of the 

studies published in this year, this burst can be explained by the fact that four out of the eight 



original works published in 2012 were presented in the special session on the digital twin in the 

53rd Structures, Structural Dynamics, and Materials Conference, all addressing aircraft issues. 

The bursts in this year confirm that the aircraft industry is the sector that has witnessed the real 

dawn of the topic, a context depicted by the keywords’ cluster analysis. Moreover, the bursts of 

the keywords “life”, which started in 2012, and “cycle”, in 2014, confirm the interest of research 

in studying the adoption of the digital twin concept along with the product life cycle, in 

accordance with Tao (2018). 

Bursts that start in 2013 mirror the in-depth study of the implementation of the digital twin 

concept to the aircraft industry, through the focus on aircrafts physical issues. Parts of keywords 

depicted by Figure 6, such as “composit”, “materi” and “struct”, suggest the compound keyword 

composite materials, the main material implemented for aircraft structural composites. Issues in 

this context are represented by the parts of keywords “crack” and “prop”, which can be 

understood as part of fatigue crack propagation, due to stress factors. These keywords are often 

associated with others such as “damage detection”, for monitoring crack propagation, and 

“Monte Carlo methods”, for its modelling, explaining the bursts “damage” and “method”. 

Although these keywords are characterized by a sudden increase in use in 2013, they have been 

used together for describing research works in less than 10 cases; hence they are not detected by 

the VOSviewer keywords’ clustering technique. 

In accordance with the results of the citation networks and keywords clustering analyses, the 

sudden and high increase in the use of “real” and “time” can be detected in 2017 (Figure 6). 

These parts of keywords confirm the recent interest in real time systems, discussed in Section 4.2 

and 4.6, in relationship with big data and IoT technologies. 

In this context, the real time burst opens the way to the burst of the part of keyword “industri” in 

2019, probably referred to the German name “industrie 4.0”, a synonym of smart manufacturing 

(Strozzi et al. 2017). This last burst reflects the debate of digital twin adoption towards the 

newest industrial paradigms, discussed in Sections 3.1 and 4.4, commenting the works by Bao et 

al. (2018), Durão et al. (2018), and Zhang et al. (2017) and the fourth keywords’ cluster. 



 

 

 

Figure 6. Keywords bursts temporal graph 

 

6. Discussion 

Answers to research questions can be given based on the analyses considering the citations and 

keywords used to characterize the research works. A synthesis of the elements discussed is 

presented in Table 4. 
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6.1. RQ1: What are the main contributions to the research on digital twin and what 

do these contributions address? 

The development trajectory outlines the need for consolidation of the knowledge base and the 

exploration of new frontiers of digital twin. The consolidation issue is addressed by Wärmefjord 

et al. (2017), Schleich et al. (2017), Zhang et al. (2017), Liu et al. (2018), Durão et al. (2018), 

Bao et al. (2018) and Tao et al. (2018), who develop models and frameworks to answer the 

requirements for digital twin adoption. The new frontiers are presented by Jo et al. (2018), 

Preuveneers et al. (2018), Zambal et al. (2018), Zheng et al. (2018), Yun et al. (2018) Zhuang et 

al. (2018), Mukherjee and DebRoy (2019), Taylor et al. (2019). In these works, the digital twin is 

linked to new applications (e.g. agriculture and materials) and to the technologies of smart 

production driven by industry 4.0. Moreover, the use of digital twin for product design, 

manufacturing and services represents a central contribution to the development of the field. 

Besides, the representation of digital twin as an enabler of autonomy in manufacturing is central 

to recent developments in research (Rosen et al. 2015). 

6.2. RQ2: What are the topics the digital twin concept has been related to and what is 

the importance of smart industrial systems among them? 

With reference to RQ2, the interest of research in the application and link of the digital twin 

concept to decision making, big data, product design, and life cycle, industry 4.0, cyber physical 

systems, IoT and digital shadow, immersive technologies in robotics and control in smart 

manufacturing is detected.  Among the identified topics, a strong link between the concept of 

digital twin and elements of smart industrial systems (big data, industry 4.0, cyber physical 



systems, IoT and smart control) emerges. Literature is paying close attention to linking big data 

and digital twin, key enablers of the recent concept of smart manufacturing and smart factory (Qi 

and Tao 2018; Jeon and Suh 2018). Industry 4.0 and digital twin can be linked to the 

achievement of flexibility in responding to demand from smart industrial systems (Rosen et al. 

2015). Moreover, digital twin has recently been studied as acting as a bridge between the 

physical and the application layers for all the physical objects (Rosen et al. 2015; Gabor et al. 

2016; Alam and El Saddik 2017; Schroeder et al. 2017; Leng et al. 2018), i.e. the focus of cyber 

physical systems (Alam and El Saddik 2017). The interest of research in combining IoT with 

data from ERP and systems or service management systems is in generating a comprehensive set 

of data in real-time, while the digital twin creates a base for further analyses and applications 

working with that data (Schuh, Jussen and Harland 2018). Moreover, literature about smart 

manufacturing identifies its key enablers in cyber physical systems and digital twin (see among 

others Ding et al. 2019; Leng et al. 2019; Tao and Zhang 2017; Uhlemann, Lehmann and 

Steinhilper 2017). Their combination allows for the control of systems in a transparent and real-

time way (Uhlemann, Lehmann, and Steinhilper 2017; Ding et al. 2019). Thus, the importance of 

digital twin-enabled smart industrial systems in the research is clearly identified in the literature.  

Among the industry 4.0 technologies, additive manufacturing does not appear within the list of 

keywords constituting the clusters and thus seems to be overlooked by research on the link 

between digital twin and smart technologies. However, the keywords constituting the network 

analyzed in this work may be limited and may not cover all the existing topics that have been 

addressed. As it does not meet the co-occurrence requirements, the research developed on 

additive technologies turns out to be underrepresented within the body of knowledge and 

represents a possible area for further study. 

6.3. RQ3: What have been the trends in research on digital twins and what are the 

recent research streams? 

With reference to RQ3, two main trends in research on digital twins can be identified. A strong 

and renewed focus on aircraft issues and features characterizes the papers and articles up to 

2014. Recent interest is detected in modelling and realizing real time systems, i.e., smart 

industrial systems. The latest direction of research is represented by industry 4.0, the set of 

technologies known as a synonym of smart manufacturing (Strozzi et al. 2017). The digital twin-



enabled smart industrial systems represent a clear research area for future development of the 

concept of digital twin. Indeed, as the achievement of smart industrial systems is needed more 

and more in order to compete in the market by adopting flexible industrial systems meant to 

respond quickly to unexpected events (Morgan and O’Donnell 2017), the identification of the 

proper management of industrial systems for flexibility is gaining more attention. In this context, 

the attractiveness of the combination of the digital twin concept and industry 4.0 technologies 

becomes essential.  

7. Conclusions 

The digital twin concept has proven to be a topic of central interest for research, and this study 

represents an attempt to outline the existing body of literature on this subject, clarifying its 

relationship with the recently emerged concept of smart industrial systems. The adopted 

methodology, i.e., quantitative bibliometric analyses based on citations and keywords, has 

allowed for the outline of  interest in studies. From these analyses, the identification of research 

trajectories, central issues, reference studies, and of recent and future research streams has been 

obtained.  

This study contributes to the body of knowledge through the analysis of the evolution of this 

field of research and identification of works that have studied it, most recent research trends, and 

an underrepresented topic, that could represent a direction for future research work. Concerning 

the applied methodology, considering both citations and the author and indexed keywords has 

offered some benefits. While citations provide a view of the main contributions to the evolution 

of the field, i.e., a link between main topics covered, the keywords give details on how the topics 

and issues have been debated and the areas of application. Moreover, their bursts over time 

provide insights into the temporal evolution of interest over time, identifying the rise of research 

streams through the detection of a sudden increase in the use of keywords.  

In particular, the analysis of the main path of the citation network highlighted that in the last two 

years the scientific production regarding the topic is experiencing, on the one hand, the attempt 

to consolidate the topic through frameworks and reference models, on the other hand, the 

investigation of new possibilities for digital twin adoption, such as agriculture and materials, and 

its link with industry 4.0. This latter part of the development trajectory of the topic suggests that 



future works should update the results obtained by the former part. Therefore new frameworks 

and reference models should be formalised to grasp the role of and/or the way to adopt digital 

twin in the latest suggested contexts. 

The keywords analysis identified eight clusters representing the research areas and clarified the 

focus that research on digital twin had led to so far. Moreover, the burst detection of the 

keywords identified the latest research trends in industry 4.0 and real time systems. In fact, six 

out of the eight clusters contain keywords referring to industry 4.0, smart manufacturing, or 

specific industry 4.0 technologies, and the cluster with more keywords’ occurrences is the cluster 

4, that links industry 4.0 paradigm and digital twin (Figure 5). Future works could investigate 

further the adoption of digital twin and industry 4.0 features and technologies concerning the two 

remaining research areas, i.e.,  decision making and  product design and life cycle. 

As a practical contribution, this study clarifies the importance of digital twin in realizing smart 

industrial systems, identifying, in particular, the role of digital twin in the realization of real-time 

systems and the combination of digital twin and industry 4.0 technologies as the latest 

opportunities and research directions. Indeed, the literature identifies in the digital twin a 

prerequisite of the cyber-physical production system, a core element of industry 4.0. Moreover, 

literature draws attention to the link between digital twin and big data, IoT systems, and 

immersive technologies, some of the industry 4.0 pillars.  

However, additive technologies are an underrepresented topic among the industry 4.0 

technologies. Indeed, even if the trajectory development of the topic demonstrates the interest in 

studying the interrelation between digital twin and new materials and 3D printings, this topic is 

missing in the keywords’ clusters, suggesting that more industrial research and applications 

should be conducted to allow further contributions. 

A limitation emerges as this study is based on the citations and co-occurrence of keywords that 

may be not completely representative of the importance of references and topics within the body 

of knowledge. 

Despite this limitation, the value of this work is in how the citations and co-occurrence networks 

can be exploited as a research tool to support the dynamic analyses of research on a concept and 

for drawing up agendas to promote developments in further research. 
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