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Abstract

An experimental study is made of electron tunneling in a resonant-tunneling diode

in magnetic fields directed parallel and perpendicular to the planes of the GaAs/AlX

Ga1−XAs heterostructure layers. In particular, phonon replicas on the current-voltage

characteristics of the diode are investigated. In the second current derivatives a fine

structure of replicas is found. The transformation of the structure of replicas in a perpen-

dicular magnetic field can be qualitatively understood as a manifestation of the transition

of polaron states to magnetopolaronic ones.
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1. INTRODUCTION

It is well known that electrons in solids cause local deformation of the crystal lattice,

forming the so-called polarons [1]. Physics of polarons is nontrivial and penetrates in

all fields of the modern condensed-matter physics. To emphasize this, it suffices to

mention that the ones discovered by L.D. Landau [2] polarons attracted the attention of

H. Frohlich [3], J. Bardeen [4], R.P. Feynman [5]. Polarons are relevant for such effects

as the colossal magnetoresistance [6] and the high-Tc superconductivity [7], which are

characteristic of layered crystals with two-dimensional carrier systems. Here we present
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the results of tunneling spectroscopy of polarons formed in the quantum well (QW) of a

polar semiconductor.

QW polarons are usually observed in cyclotron resonance in high magnetic fields in

QWs with relatively low electron concentrations [8]. Strictly speaking, this is a special

type of polaron - magnetopolaron. In this case, the cyclotron energy is close to the LO-

phonon energy. Polarons were also observed in tunneling spectra of QWs at zero magnetic

field [9, 10]. In addition, the electron-phonon interaction was assumed to manifest itself

as electron tunneling assisted by LO-phonons emission (LOPAT) or inelastic tunneling

of electrons emitting the LO-phonons [11]. In fact, some features were observed in the

form of additional current peaks or replicas in the I − V curves of resonant-tunnelling

diodes (RTD). According to the LOPAT model, the voltage positions of the replicas

should differ from the resonance peak voltage by values corresponding to the LO-phonon

energy. Usually observed replicas have voltage positions very close to LOPAT, but not

all, and other explanations have been suggested [12]. Moreover, the amplitudes of the

replicas were usually significantly higher than the theoretical expectations. Thus, there

is no good agreement between the LOPAT model and experiments.

In Ref. [13], magneto-tunnelling spectroscopy was developed to study electron dis-

persion in QWs. This method was applied to study phonon replicas in Ref. [10]. In

particular, anti-crossing of the main resonance peak with its phonon replicas is observed.

This anti-crossing can be associated with that in the polaron spectrum at the LO-phonon

energy. This interpretation means the polaron origin of the peak replicas. A successful

explanation of all the features was obtained by considering resonant polaron tunneling

(RTP) between polaron subbands.

Here, we focus on phonon replicas in a magnetic field perpendicular to the layers of

the RTD QWs. Assuming the polaron origin of the replicas, we can expect the discovery

of specific features of the transformation of polarons into magnetopolarons. This trans-

formation is accompanied by Landau quantization and charge transfer from or in the

emitter QW, which is in thermodynamic equilibrium with the adjacent heavily doped

GaAs contact layer [14]. In particular, there are rather wide ranges of the magnetic field

in which the upper populated Landau level (LL) is attached to the Fermi level in the

sense that its energy change is compensated by a change in the QW potential due to
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charge transfer from or to the QW [15]. This causes a nonmonotonic shift of the current

peaks in the I-V curves of the diodes [16, 17]. This inevitably affects the energy of the

subband, in particular, the change in the Fermi energy in quantum wells, and should

also change the energies of polaron states. As for the magnetopolarons, their energy is

determined by the energy of partially filled LL, which are pined to the Fermi levels. This

indicates a weak magnetic dependence of the voltage positions of the replicas originated

from the magnetopolarons. This behavior has been observed and discussed in this paper.

In Section 2 details of experiment are described, including sample and setup. In

Section 3 we discusses and compares experimental data processing and theoretical pre-

dictions. The Section 4 consists of the paper conclusions.

2. Experiment

The investigated tunneling diodes are fabricated on the basis of an asymmetric double-

barrier heterostructure. The sequence of the structure layers is shown in Table 1.

Table 1: Layer sequence of the heterostructure under investigation.

Num Layer Composition Doping Thickness, nm

levels, cm−3

1 top contact GaAs 2× 1018 500

2 GaAs 1× 1017 50

3 spacer GaAs 1× 1016 50

4 GaAs undoped 3.3

5 thin barrier Al0.4Ga0.6As undoped 8.3

6 well GaAs undoped 5.8

7 thick barrier Al0.4Ga0.6As undoped 11.1

8 GaAs undoped 3.3

9 spacer GaAs 1× 1016 50

10 GaAs 1× 1017 50

11 GaAs 2× 1018 2000

n+ - GaAs substrate

Briefly, the GaAs QW layer is 5.6 nm thick and was grown between Al0.4Ga0.6As
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barrier layers with thicknesses of 11 and 8.3 nm. The barriers are separated from the

heavily doped GaAs layers by 3.3 nm thin undoped layers and low-doped spacers, i.e.

50 nm thick GaAs layers. Diodes were fabricated from the heterostructure by the con-

ventional methods of wet etching, photolithography, and contact annealing. Figure 1

shows the current-voltage characteristics or I-V curves of a diode with a zero and 7.5 T

magnetic field directed perpendicular to the layers. The polarity of the bias voltage is

chosen so that the thicker barrier is on the emitter side (see inset (a) in Fig. 1). In this

case, a build-in charge in the QW is minimal. The measurements were carried out at

two different temperatures. The current-voltage characteristics in a planar magnetic field

were measured at T = 4.2 K. The data in a perpendicular magnetic field were obtained

at a temperature of 0.4 K. The current-voltage characteristics were measured for diodes

with different mesa diameters range from 5 to 200 mkm.

The main current peak at V = Vp = 0.276 V corresponds to the main resonance

when the ground subband levels are aligned, that is, E01(Vp) = E02(Vp). Inset (b) shows

in more detail the peak splitting current or LO-phonon replica. In the LOPAT model,

two additional peaks are associated with the emission of LO-phonons with energies ε1,2

1 And the voltage positions of the replica peaks VL1,2 are determined from the following

equation:

VL1,2 = Vp + αε1,2/e. (1)

Here α and e are a leverage factor and an absolute value of electron charge accord-

ingly. In its turn the RTP model predicts other voltage positions of the replicas VR1,2 in

accordance with following equation:

VR1,2 = Vp + α(ε1,2 − EF1(VR1,2))/e (2)

where EF1(VR1,2) is an emitter Fermi energy in the QW with the subband level E01

at bias voltages VR1,2. It is worth to note that RTP model can also explain features

1Since the quantum well is adjacent to the heterointerface, electrons interact with two types of LO-
phonons. One type is in GaAs with an energy of ε1 = 36 meV, and the other lives in barrier layers with
an energy of ε2 = 51 meV. Localized modes of LO-phonons can also be considered, but their energies
are slightly different from bulk values, and the strength of its interaction with electrons is noticeable for
narrow QW [18].
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Figure 1: Tunneling characteristics of the diode. Current-voltage characteristics at zero field and a
magnetic field of 7.5 T are shown by solid and dashed lines, respectively. The dashed curve is shifted on
-4 nA for clarity. The second current derivative is shown by a dotted-dashed line with a 7.5 T magnetic
field directed perpendicular to the layers of the heterostructure. In inset (a), the conduction band profile
of the heterostructure is shown by a solid line, and the subband and Fermi levels are shown by dashed
lines. The energy levels of LO-phonons are shown by dotted-dashed lines. Inset (b) shows the phonon
replicas in detail as a broadened current peak (solid line) and two minima in the second derivative of
the current (dashed line).

at VL1,2 that we shall discussed in the Section 3. The key parameters to compare the

models are the leverage factor α and the Fermi energy in the emitter QW EF1(VR1,2).

These values can be obtained from examining the voltage position, i.e., Vp, and the

broadening of the main peak in the in-plane magnetic field. Figure 2 shows the I-V curves

of the diode at different values of the field. In a sufficiently high field, the broadening

and shift of the main current peak interact with phonon replicas, the position of which

is practically insensitive to the field. A similar interaction of phonon replicas with a

resonance peak was observed earlier [10] and, as mentioned above, is a consequence of

anti-crossing in the polaron spectra. As far as we know, there is no theory that takes into

account the polaron and in-plane field effects in the RTD. There is a theory that does

not take into account polaron effects, and it takes into account the initial, final [19] and

maximum [10] positions of the resonance. These experimental positions are indicated by

symbols in the inset to Fig. 2. In this case, the start and end positions are determined
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Figure 2: Current-voltage characteristics of RTDs in various in-plane magnetic fields. In the inset, the
experimental positions of the beginning, end, and peak in the resonance are shown by triangles with
vertices up, down, and circles respectively. The best-fitted calculated values of the beginning Vs, end Vf ,
and position of the resonance peak Vp are shown by dashed, dash-dotted, and solid lines, accordingly.

as the voltages at which the current is at half the peak value, measured relative to the

current ”valley” on either side of the current peak. The lines show the calculated best-fit

values. A good match of the start and peak positions is seen. From this fit, you can

extract the EF1 and the leverage factor using the method described in the next section.

In particular, the best-fitted value for EF1(Vp) is 2.5 meV.

The most significant result was observed in a magnetic field directed perpendicular

to the plane of the QW. First of all, additional features appeared on the I - V curve,

which are more clearly observed in the second derivative of the current, as can be seen

in Fig.1. The voltage position of these features depends on the field. These features

are associated with tunneling between LLs with different indices, which is facilitated by

the emission of LO-phonons [20]. The field dependences of the features will be discussed

elsewhere. Here, the main attention is paid to the transformation of phonon replicas in a

perpendicular magnetic field. In Fig. 3, the second current derivatives are plotted in the

voltage range of the phonon replica at different perpendicular magnetic fields. First of all,

one can see a significant increase in the amplitudes of the replicas. Secondly, the replica
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Figure 3: Second current derivative versus bias voltage at different perpendicular magnetic fields. In the
inset the conduction-bottom profile of the RTD is plotted as solid line with quantum levels.

at Vb = 0.45 V is splited into two, one noticeably shifts with increasing field towards a

lower voltage, and the other is formed at a higher voltage, which is practically insensitive

to the field. The position of the feature at Vb = 0.53 V is slightly sensitive to the field.

In this case, its amplitude decreases and a new feature appears at a higher voltage. This

behavior is hardly understandable in the LOPAT model, and we will discuss it in the

RTP model.

3. Discussion

First off all let’s consider the electron spectrum as parabolic one at zero magnetic

field as follows:

ε(p) = p2/2m∗ (3)

where p is an 2D electron momentum, m∗ is an electron effective mass. According

to Eqs (1, 2), we can expect phonon replicas to be at lower voltages than in the LOPAT

model. The difference in voltage positions is determined by the Fermi energy in the

emitter QW. The Fermi energy of the emitter and the leverage factor can be found
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Figure 4: Bottom profile of the conduction band of the heterostructe under investigation with quantum
levels and dispersion curves (a). Intersection of the dispersion parabolas of the QWs at different bias
voltages(b). Intersection of the solid and dotted curves takes place at V = Vp, that of the solid and
dot-dashed curves at Vs and that of the solid and dashed curves at Vf .

from the behavior of the peak of the resonant current in a in-plane magnetic field (see

Fig. 2). In the field, the resonance broadens, which can be understood in the model of

sequential electron tunneling between QWs with the E01 and E02 levels. In this case, the

tunneling conserves the generalized electron momentum Px = px + eAx instead of the

usual momentum px [21]. Assuming a weak field, one can consider the common vector

potential for all electrons in QWs [19] as follows: Ax = eB < z >. Here, the vector

potential Ax is in the Landau gauge for a magnetic field directed in the direction y, i.e.

B = (0, B, 0) and < z > is the mean position of electrons in the QW along the z axis.

To demonstrate the effect of the field, it is convenient to consider the electronic spectra

as a function of Px (see Fig. 4(a)). To participate in coherent tunneling, an electron

must conserve its energy and generalized momentum. This means that coherent electron

tunneling can occur in the electronic state, which is defined as the intersection point of

the dispersion curves (see Fig. 4(b)).

Coherent tunneling begins and ends when the intersection point coincides with the

Fermi level in the emitter, which corresponds to the intersection of the dash-dotted and

dashed curves, respectively, with solid one in Fig. 4(b). From this picture, you can get the

equations for the energy of the E01,2 levels as follows: E01(Vs) + εFi = E02(Vs) + ε(PF −

δp). Where Vs is the voltage of the start of coherent tunneling, and δp = eδAx = eBd,

d = δz =< z2 − z1 > is the average distance between electrons in the z-direction in
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the emitter and inter-barrier QWs. Similar conditions for the voltage Vf of the finish of

coherent tunneling can be written as follows: E01(Vf )+εFi = E02(Vf )+ε(PF +δp). From

the definition of the leverage factor α you can get the following equation: e(V − Vp) =

α(E01(V )−E02(V )). Therefore, the following equations for the start and finish voltages

can be obtained:

Vs,f (B) = Vp(0) + e−1α(ε(PF ± eBd)− εFi) (4)

Here Vp(0) corresponds to the resonant voltage at zero field. As for the finite field

Vp(B) can be determined from intersection of the solid and dotted curves (see Fig. 4(b))

in similar way as Eq. (4) [10] as follows:

Vp(B) = Vp(0) + e−1αε(eBd) (5)

From fitting the dependencies in the Eq. (4, 5) to the experimental values, we can

extract the values of εFi and α. The best curves are shown in the inset to Fig. 2. It

should be noted that the fit was performed for the current peak and start of resonance

voltages, i.e. Vp and Vs, which are shown by circles and upper triangles, respectively.

The values α = 4.8 and EF1(Vp) = 2.5 meV are extracted from the parameters of the

curves. Extract details are discussed in Appendix. Using these parameters, one can also

calculate voltages of the resonance finish Vf , shown by the dashed curve in Fig. 2. A

noticeable discrepancy is seen between the calculated and experimental data of Vf in

high magnetic fields. This discrepancy is a consequence of the nonparabolic spectrum at

energies close to LO-phonon energy, that is, the polaron effect.

To clarify the difference between the LOPAT model and the RTP, it is worth dis-

cussing the polaron subbands. According to the RTP model [10], polaron subbands are

formed in the electron and LO-phonon spectra in zero magnetic field. Here we call the

polaron subband the one in which the polarons are formed by real LO-phonons. Strictly

speaking, the spectrum of polarons is split in the LO-phonon energy into two branches

or subbands. The splitting is the result of anti-crossing caused by electron-phonon inter-

action. The low-energy branch corresponds to polarons formed by virtual LO-phonons,

and the upper-energy branch is associated with real LO-phonons. In this case, the bot-

toms of the polaron subbands over-top the subband level at LO-phonon energies. In the
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heterostructure, the LO-phonon spectra are different for layers of different compositions,

and all LO-phonons interact with electrons. In particular, the structure under investiga-

tion contains two types of LO-phonons with energies ε1 = 36 meV (in GaAs layers) and

ε2 = 51 meV (in AlGaAs layers). The effective mass of polarons is practically infinite at

a small momentum in the polaron subband. Considering the direct resonant tunneling

of electrons or polarons of lower mass into the polaron subband, one can easily conclude

that the number of resonant states or the resonant current is maximum when the bottom

of the polaron subband is aligned with the Fermi energy in the emitter 2DEG. This gives

the Eq. (2) for the replicas voltage positions.

As noted above, phonon replicas can be explained by the manifestation of inelastic

electron tunneling. In this case, the electron can decrease its energy by emitting an LO-

phonon during tunneling in the QW. This is LO-phonon assisted tunneling (LOPAT) [11].

The LOPAT theory predicts that electrons mainly emit LO-phonons with low lateral

momentum components. This means that the lateral momentum of the electron is prac-

tically conserved in the model. This provides LOPAT current peaks when the applied

voltage shifts the level of the E02 subband of the quantum well below the level of the

emitter subband E01 at the LO-phonon energy ε1,2. At the same time, RTP should start

at a lower voltage than LOPAT, and this difference should depend on the concentration

of electrons in the emitter [10]. In this case, the voltage replica positions are given by

equation (1).

The best-fit parameters enable us to compare the LOPAT and RTP models when

predicting the position of phonon replicas. Having determined the voltage positions of

the dips in the second current derivatives at zero field as Vp1 = 0.44 V and Vp2 = 0.508 V,

we can calculate the corresponding energies as εp1 = e(Vp1 − Vp)/α = 34.2 meV and

εp2 = e(Vp2 − Vp)/α = 48.3 meV. The values are less than the energy of LO-phonons,

but taking into account the Eq. (2) and the Fermi energy of the emitter, we can obtain

the following: ε1 = εp1 + εFi = 36.9 meV and ε2 = εp2 + εFi = 51 meV, which exactly

coincides with the energies of LO-phonons in GaAs and AlGaAs. This gives us strong

support for the RTP model, but what the model can explain for data obtained in a

perpendicular magnetic field .

In the high enough perpendicular magnetic field the electron spectrum is strongly
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quantized and LLs are well resolved. In this case the LLs are split on cyclotron energy

εc = eB/m∗ and over-topped the subband energy E01,2 of the QWs in accordance with

Landau equation:

ELL = E01,2 + (i+ 1/2)εc ± µB (6)

Here i is the LL index, ELL is the LL energy, µ is the Bohr magneton. The Landau

equation is derived for free charged particles and can only be used for polarons with a

weak electron-phonon interaction or polarons of the low-energy branch. In the case of

high-energy subbands, from a theoretical point of view, the polaron energy is simply

determined by the energy of low-energy polarons, shifted by the energies of LO-phonons

insensitive to the magnetic field [22]. This simple picture does not take into account

the conditions for detecting of Landau levels. The condition is as follows: the magnetic

length lm must be less than the localization length of polarons ll. In the case of high-

energy polarons produced by real LO-phonons, lm is not a well-defined parameter, since

the polaron charge q is determined by the electron-phonon interaction and is less than e.

This means that the polaron lm is longer than the electron one, because lm =
√
h̄/qB.

Also a good question is what is the localization length of the polaron. Probably the

length of ll is proportional to the phonon wavelength λp. Due to the weak dispersion

of LO-phonons, λp takes on a very wide range of values. Thus, one can expect a fairly

wide range of B for the conversion of polarons to magnetopolarons. And this range is

determined by such little-known parameters of the polarons like lm and ll.

The observation of the transition of polarons to magnetopolaron states is accompanied

by such an effect as LL pinning. Let us consider it in more detail. By changing the

magnetic field B, one can change εc, ELL and the number of filled LL. This change can

self-consistently lead to the pinning of the upper LL at the Fermi levels of the adjacent

contacts. From the Fermi energy of the emitter, it can be obtained that for a field

B > 2 T, the filling factor LL is less than 2. This means that the lowest LL is fixed by

the Fermi level in the emitter, and the magnetic field shifts the level of the subband E01

in accordance with the Eq. (6).

In this case, since high-energy polaron subbands are formed at energies close to the

energies of LO-phonons, overtoped the level of the subband or the bottom of the conduc-

tion band, they will be sensitive to the field. In particular, the bottom of the conduction
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band and the polaron mediated by electrons with the subband level E02 should decrease

with increasing field (see εp1,2 in the inset to Fig. 3). This behavior is observed in Fig. 3

for the features indicated by the arrows. However, there are high amplitude features,

the voltage position of which is almost insensitive to the field. They are characterized

by an increase in amplitude with increasing field. To explain them, it is necessary to

consider the states of the magnetopolaron, which are formed from the electronic states

LL. The states of the magnetopolaron exceed LL at the energies of LO-phonons ε1 and

ε2 (see εmp1,2 in the inset to Fig. 3). Since LL is fixed at Fermi levels, the energy of

magnetopolarons is insensitive to the field. As for the amplitude, it grows with the field

due to an increase in the LL degeneracy. The replica positions can be found as the dip

positions in the second current derivative (see Fig. 3) as follows: Vmp1 = 0.452 V and

Vmp2 = 0.510 V. Using the leverage factor, the corresponding energy can be determined

as follows: εmp1 = e(Vmp1−Vp)/α = 37 meV, εmp2 = e(Vmp2−Vp)/α = 48.8 meV. These

values are very close to the energy of LO-phonons in GaAs ε1 = 36 meV and AlGaAs

ε2 = 51 meV, but they are not as accurate as the data obtained in planar magnetic fields.

A perpendicular magnetic field dramatically changes the spectrum of electrons, as well

as in the state of magnetopolarons, and a change in the leverage factor is quite expected.

However, within the framework of the RTP model, the behavior of phonon replicas is

qualitatively clear.

4. Conclusion

Summing up, it can be argued that detailed experimental studies of phonon replicas

in magnetic fields of different orientations were carried out for the first time. The leverage

factor and the Fermi energy of the emitter were extracted from the I - V characteristic of

the diode in an in-plane field, which allows us to compare the voltage positions of phonon

replicas predicted by different theoretical models. The RTP model is more suitable for

describing experimental data. In a perpendicular magnetic field, a transformation of

phonon replicas was observed, which can be qualitatively described as the transformation

of polarons into magnetopolarons, accompanied by LL pinning.
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Appendix

Strictly speaking, the fitting of the calculated data (see Fig. 2) was carried out by

varying two parameters a and b of the following parabolas:

Vp(B) = Vp(0) + a×B2 (7)

Vs(B) = Vs(0)− b×B + a×B2 (8)

The best-fit values of a and b are 1.8 mV/T2 and 9.3 mV/T accordingly. From Eqs. (4,

5) one can find the values as follows:

a = αed2/2m∗ (9)

b = αdPF /m∗ (10)

Thus, using the two best-fitted parameters, we have to determine three unknown

values α, d and PF . Obviously, the third equation is necessary and can be found by

considering the leverage factor in detail.

The leverage factor can be estimated using the Stark effect approximation. In this

case, the levels E01 and E02 change their energy in accordance with the electric field F

as follows E01,2(F ) = E01,2(0) + eFz1,2, where z1,2 are the average positions of electrons

in quantum wells. Therefore, the level difference can be found as follows:

∆E1,2(F ) = E01(F )− E02(F ) = ∆E1,2(0) + eF (z2 − z1) = ∆E1,2(0) + eFd (11)

Suppose that the electric field F is homogeneous in the active region of the diode (see

inset (a) in Fig. 1), we can express the field value as follows:

F = V/(we + de + w + dc + s) (12)

Here the we is a width of the emitter QW or accumulation layer, de is a thickness of

the emitter barrier, w is a width of the inter-barrier QW, dc is a collector barrier width
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and s is a collector spacer width (see Fig. 1). Combining the Eqs. (11) and (12) one can

deduce the following:

∆E1,2(V ) = ∆E1,2(0) + eV d/(we + de + w + dc + s) (13)

According Eq. (13) the leverage factor can be found as follows:

α =
e

d∆E12/dV
=
we + de + w + dc + s

d
(14)

The tunnel distance d can be roughly estimate as follows:

d = de + (we + w)/2 (15)

All lengths are well defined by the layer width, with the exception of the we accu-

mulation layer width. Calculation of we goes beyond the uniform-electric-field approxi-

mation and requires self-consistent calculations of the Poisson and Shrödinger equations.

In any case, using the Eqs (14, 15, 9, 10) one can outdraw the value we = 5.6 nm,

which corresponds to the leverage factor α = 4.8. From Eq. (10) taking into account

that PF = pF =
√

2m∗EF1 one can calculate the emitter Fermi energy as follows:

EF1(Vp) = 2.5 meV.
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