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Abstract

The aim of this paper is to present an explicit reduction algorithm for Hilbert modular
groups over arbitrary totally real number fields. An implementation of the algorithm is
available to download from [19]. The exposition is self-contained and sufficient details
are given for the reader to understand how it works and implement their own version if
desired.
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1. Introduction

Given a group G, acting on a topological space X, it is often useful to have a set
of representatives of the orbit, G\X, which are “reduced” with respect to some suitable
definition. In number theory the most prominent example is the reduction theory of the
modular group Γ = PSL2(Z). This gives rise to a large number of interesting applications
including the classical theory of Gauss for binary quadratic forms and continued fractions,
as well as more recent developments in modular and automorphic forms.

In the case of the modular group the topological space can be viewed as the complex
upper-half plane H = {z = x + iy ∈ C | y > 0} and the action is given by Möbius
transformations. The most commonly used set of representatives of Γ\H is given by the
following set

F = {z = x+ iy ∈ C | −1/2 ≤ x ≤ 1/2, |z| ≥ 1} .
This is an example of a closed fundamental domain, meaning that it tessellates the upper
half-plane, H = ΓF , and different copies overlap only on the boundary, i.e. V F◦∩WF◦ =
∅ if V 6= W ∈ Γ. By the covering property it is clear that for any z ∈ H there exists
some A ∈ Γ such that Az ∈ F and it is easy to see that unless z is a fixed point of
Γ this element A is unique. This geometric reduction can then be translated into a
reduction theory of, for instance, binary quadratic forms, by noting that the action of Γ
on q(x, y) = ax2 + bxy + cy2 with discriminant ∆ = b2 − 4ac < 0 is equivalent to the
action of Γ on the point x0 = 1

2a (−b+ i
√
|∆|) in the upper half-plane.
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The goal of the current paper is to give a coherent presentation of an explicit algorithm
which generalizes the reduction procedure to the case of Hilbert modular groups, ΓK =
PSL2(OK), for arbitrary totally real number fields K. With notation as in the following
sections our main result is the following.

Theorem 1. Given a totally real number field K and z = x + iy ∈ HK there exists an
explicit algorithm (Algorithm (12)), which finds an element A ∈ ΓK such that Az ∈ FK ,
where FK is a certain fundamental domain for ΓK . Furthermore, the runtime of this
algorithm is polynomial in N(x), N(y), N

(
y−1

)
as z varies.

We will follow a construction of fundamental domains for Hilbert modular groups that
originated with Blumenthal [1] and was further improved by e.g. Maaß [14], Herrmann
[11] and Tamagawa [20]. A comprehensive description of this method is given in the
lecture notes by Siegel [16, Ch. 3.2] and it is this presentation we have mainly followed.

The fundamental domains for quadratic fields and in particular Q(
√

5) and some
others of class number one have been studied in more detail both theoretically and
numerically by e.g. Götzky [9], Cohn [3, 4], Deutsch [6, 7], Jespers, Kiefer and del Río
[12], and Quinn and Verjovsky [15].

The intention with the presentation of this paper is to make sure that the exposition
is as self-contained as possible and that all details and notations are clear to the reader, in
particular, regarding which groups we consider. The following three chapters, 2, 3 and 4,
are therefore mainly aiming at reformulating elementary results from mainly Siegel [16,
Ch. 3.2] and van der Geer [22] but also other sources, into a common language. We start
with a brief summary of number fields and embeddings, followed by a section on Hilbert
modular groups and the different types of elements. After this we give a theoretical
presentation of the fundamental domain and the different components involved. This is
followed by Section Section 5, where a detailed analysis of the proof of the existence of
a closest cusp gives rise to Theorem (5), which is the theoretical foundation behind the
algorithm.

After all necessary theoretical results are presented we then give the actual reduction
Algorithm, separated in two algorithms to be more comprehensive. After this we provide
a selection of detailed examples with the aim to demonstrate the veracity and effectiveness
of the algorithm, covering examples of class number greater than one and degree greater
than two, both of which previous numerical methods have not been able to deal with
successfully. As a conclusion we mention some proposed further work and applications.

It should be noted that all algorithms mentioned in this paper are implemented using
SageMath [21] and is available as a Python package at [19]. Furthermore, all examples
presented in Section (7) (and more) are available in Jupyter notebook format as part of
this package.

2. Number Fields and Embeddings

Let K be a totally real number field of degree n over Q with ring of integers OK
and unit group U . Choose an integral basis α1, . . . , αn of OK and a set of generators
(fundamental units) ε1, . . . , εn−1 of U . Let ϕi : K ↪→ R, i = 1, . . . , n be the embeddings
of K into R and define the norm and trace on K/Q by

N := NK/Q : α 7→
∏

ϕi (α) and Tr := TrK/Q : α 7→
∑

ϕi (α) .
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When there is no risk of confusion we sometimes write αi for ϕi(α). The ideal class
number of K is denoted by h and we let c1, . . . , ch be the set of ideal classes, with c1 the
trivial class, and a1 = (1), a2, . . . , ah a fixed set of ideal class representatives, chosen by
selecting a fixed ideal of smallest norm in each class.

An element α ∈ K is said to be totally positive, and we write α� 0, if ϕi(α) > 0 for all
embeddings ϕi. To further simplify certain formulas we introduce the rings CK = C⊗QK
and RK = R⊗QK and view CK as an algebra over both C and K with the multiplication
operations defined in the natural way. More precisely, for pure tensors z, z′ ∈ CK with
z = z ⊗ a and z′ = z′ ⊗ a′ for some z, z′ ∈ C and a, a′ ∈ K we define

zz′ = zz′ ⊗ aa′, z′z = zz′ = (z′z)⊗ a, a′z = za′ = z ⊗ (a′a),

and then extend these operations to the whole of CK by linearity, and similarly for
elements of RK . The real and imaginary parts of z = z ⊗ a are defined by

=(z) = =(z)⊗ a ∈ RK and <(z) = <(z)⊗ a ∈ RK ,

again extended linearly, and we will write a general z ∈ CK as z = x+ iy with x = <(z)
and y = =(z). The embeddings ϕi are extended to embeddings of CK in C and RK in
R, respectively, by setting

ϕi(z) = ϕi(z ⊗ a) = zϕi(a)

and we use these to define the trace and norm on CK and RK . An element x ∈ RK is said
to be totally positive, written x� 0, if ϕi(x) > 0 for all embeddings ϕi and similarly we
write x � y, or equivalently, y � x, if x − y � 0. If z ∈ CK then |z| ∈ RK is defined
by ϕi(|z|) = |ϕi(z)| for all i. We define an analog of the standard upper half-plane by
setting

HK = {z ∈ CK | =(z)� 0} .

Many classical results about Hilbert modular groups and forms are formulated in terms
of n copies of the standard upper half-plane

Hn = {(z1, . . . , zn) ∈ Cn | =(zi) > 0, 1 ≤ i ≤ n}

but it is very easy to translate results between this and HK using the embedding ϕ of
CK into Cn (as vector spaces) given by

z 7→ ϕ (z) = (ϕ1(z), . . . , ϕn(z)) ∈ Cn.

3. Hilbert Modular Groups

For the purpose of this paper it is most natural to define the Hilbert modular group
for K as the projective group

ΓK = PSL2(OK) ' SL2(OK)/{±I2},

3



where I2 is the 2-by-2 identity matrix, and we usually represent the elements of ΓK
by the associated matrices. In connection with cusps it is also natural to consider the
following group associated with an integral ideal b of K:

Γ (OK ⊕ b) =
{(

α β
γ δ

)
, α, δ ∈ OK , β ∈ b−1, γ ∈ b, αδ − βγ = 1

}
⊆ PSL2(K).

The group PSL2(K) acts on HK by linear fractional transformations:

A(z) =
αz + β

γz + δ
:= (αz + β) (γz + δ)

−1 if A =
(
α β
γ δ

)
∈ PSL2(K), (3.1)

and this action is extended as usual to P1(K) by setting

A (ρ : σ) = (αρ+ βσ : γρ+ δσ) if (ρ : σ) ∈ P1(K). (3.2)

Elements of PSL2(K) can be classified, for instance, by using the trace of the associated
matrix. For convenience we use the same terminology as in GL2(R) and we say that A
is:

• parabolic if Tr(A) = ±2,

• elliptic if |Tr (A)| � 2, and

• hyperbolic if |Tr(A)| � 2.

It is clear that A is elliptic, parabolic or hyperbolic precisely if all embeddings ϕi(A) are
of the corresponding type in GL2(R). An element that does not belong to any of these
types is simply said to be mixed. It is not hard to show that A is parabolic if and only if
it has a unique fixed point in P1(K), elliptic if and only if it has a unique fixed point in
HK and hyperbolic if and only if it has two fixed points in P1(K). For more details see
e.g. Freitag [8, II.§2-§3]

3.1. Element and generators of the Hilbert modular group
If α ∈ OK and ε ∈ U we define the following elements of ΓK :

Tα :=

(
1 α
0 1

)
, E(ε) :=

(
ε 0
0 ε−1

)
and S :=

(
0 −1
1 0

)
.

and note that the corresponding actions on HK are given by the maps

Tα : z 7→ z + α, E(ε) : z→ ε2z and S : z→ −z−1.

For an integral ideal a ⊆ OK we define the translation module of a by

Ta :=
{
T β | β ∈ a

}
and if H 6 U is generated by εa1

1 , εa2
2 , . . . , ε

an−1

n−1 then the set of multipliers of H is

MH := {E(ε) | ε ∈ H} ' 〈E(εa1
1 )〉 × · · · ×

〈
E(ε

an−1

n−1 )
〉
.
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Let β1, . . . , βn and β′1, . . . , β′n be integral bases of a and a−1. It is clear that the translation
modules are finitely generated, more precisely

Ta '
〈
T β1

〉
× · · · ×

〈
T βn

〉
and Ta−1

'
〈
T β
′
1
〉
× · · · ×

〈
T β
′
n
〉
.

It follows by a result of Vaserštĕın [23] (see also [13] and [22, p. 82]) that Γ(OK ⊕ a) is
generated by upper and lower-triangular matrices and since these can all be expressed in
terms of the elements S and Tα it is generated by the set

{S, T β1 , T β2 , . . . , T βn , T β
′
1 , . . . , T β

′
n}.

As a special case we conclude that ΓK = Γ(OK⊕OK) is generated by {S, Tα1 , . . . , Tαn}.
This set of generators is very simple and an immediate extension of the well-known
generators S and T = T 1 for PSL2(Z). Unfortunately, in the case of ΓK , these generators
do not have the same geometric significance and in particular do not correspond to
side-pairing transformations. They are therefore not immediately useful in a reduction
algorithm. It is therefore common to consider a slightly larger set of generators including
elements E(ε) with ε ∈ U even though these can of course be expressed by the other
generators using, for instance, the algorithms introduced in [10].

3.2. Cusps of Hilbert Modular Groups
The set of cusps of ΓK , in other words, fixed points of parabolic elements, can be

identified with the projective line P1(K) = K ∪ {∞} where the cusp at infinity, ∞, is as
usual a convenient symbol for the class (1 : 0). Most results below are well-known and for
proofs and further details we refer the reader to e.g. [22] or [5]. Note that ∆(OK , b−1)
in the notation of [5] corresponds to the group Γ(OK ⊕ b) in our notation.

Every cusp λ ∈ P1(K) can be represented by (ρ : σ) for some non-unique pair
ρ, σ ∈ OK with associated fractional ideal aρ,σ = (ρ, σ). It is easy to see that different
representatives for λ give rise to fractional ideals in the same ideal class, denoted by
cλ ∈ Cl(K). For any λ ∈ P1(K) we assume that ρ and σ are chosen such that (ρ, σ) = aj
for some ideal class representative aj .

Furthermore, the ideals associated with (ρ : σ) and A (ρ : σ) are identical if A ∈ ΓK
since det(A) = 1. It can be shown that the map λ 7→ cλ is a bijection from ΓK\P1(K)→
Cl(K) and therefore the number of ΓK-equivalence classes of cusps is equal to h, the
ideal class number of K, and we choose λ1 = ∞, . . . , λh as representatives for Γ\P1(K)
such that λj is associated with cj and we write λj = (ρj : σj) with (ρj , σj) = aj .

It is easy to see that the stabilizer of the cusp ∞ in ΓK is given by

ΓK,∞ :=
{
TαE(ε) =

(
ε ε−1α
0 ε−1

)
: z 7→ ε2z + α, ε ∈ U , α ∈ OK

}
' TOK o U2.

Corresponding to each cusp representative λj = (ρj : σj) we choose a cusp normalizing
map, Aj ∈ PGL2(OK), such that Aj (∞) = λj and

Aj =

(
ρj ξj
σj ηj

)
with ξj , ηj ∈ a−1

j and ρjηj − σjξj = 1. In the notation of [5] Aj is an (aj , a
−1
j )-matrix.

The map Aj is unique up to multiplication by an element in ΓK,∞ on the right and we
have

A−1
j ΓKAj = Γ(OK ⊕ a2

j ).
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As an alternative to studying the set of cusp representatives λ1, . . . , λh of ΓK it is
therefore possible to consider the cusp at ∞ for the collection of groups Γ

(
OK ⊕ a2

j

)
for j = 1, . . . , h, with stabilizers

Γ(OK ⊕ a2
j )∞ =

{
TαE(ε) =

(
ε ε−1α
0 ε−1

)
: z 7→ ε2z + α, ε ∈ U , α ∈ a−2

j

}
' T a−2

j o U2.

For an arbitrary cusp µ ∈ P1(K) we choose a map Uµ ∈ ΓK such that Uµ (µ) = λI(µ)

where I(µ) is a unique integer in {1, 2, . . . , h} and define the cusp normalizer of µ as

Aµ = U−1
µ AI(µ).

It is now easy to show (see e.g. [16]) that the stabilizer of an arbitrary cusp µ ∈ K in
ΓK can be written as

ΓK,µ = AµΓ(OK ⊕ a2
I(µ))∞A

−1
µ

where aI(µ) is the ideal corresponding to the cusp representative λI(µ) which is equivalent
to µ. In particular, all elements that stabilizes µ in ΓK can be written as AµTαE(ε)A−1

µ

for some ε ∈ U and α ∈ a−2
I(µ).

4. The Fundamental Domain

The fundamental domain we describe in this section is essentially the same as that
used by Bluhmenthal [1], Mass [14], Tamagawa [20], Siegel [16] and others. The main
difference in these authors’ approaches is in the description of the “bottom” part which
consists of a collection of hypersurfaces. Here we adopt the description given by Siegel
[16] since it is easy to use for the explicit reduction algorithm. We have aimed to provide
sufficient details to demonstrate the appropriateness and correctness of the algorithm
and refer to [16] for details and proofs.

4.1. Reduction with respect to units
We use log : R+ → R to denote the natural logarithm and without risk of confusion

we use the same notation for the extended map log : R+
K → Rn defined by log(x) =

(logϕ1(x), . . . , logϕn(x)). It is immediate from Dirichlet’s unit theorem that the group
of units squared, U2, corresponds to an integral lattice Λ of rank n− 1 in Rn, explicitly
given by:

Λ = log(U2) =
{

log(ε) : ε ∈ U2
}

=

{
n−1∑
k=1

ak log(|εk|) : ak ∈ 2Z

}
.

The vectors log |εk| = (log |ϕ1εk|, . . . , log |ϕnεk|)t form a basis of Λ and we let BΛ =
(brk)1≤r≤n,1≤k≤n−1 ∈ Mn×n−1(R) with brk = log |ϕr(εk)| denote the corresponding
basis matrix. Since all units have norm 1 it is easy to see that Λ is contained in the
n− 1-dimensional hyperplane

H = {u ∈ Rn | u1 + . . .+ un = 0} .
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We follow the explicit construction by Siegel and choose KΛ = BΛ[−1, 1[n−1 as a
fundamental parallelepiped for Λ and say that a vector in H is Λ-reduced if it belongs to
KΛ. If y ∈ R+

K we define ỹ = y · (Ny)−1/n and observe that Nỹ = 1, hence log(ỹ) ∈ H
and we say that y is U2-reduced if log(ỹ) is Λ-reduced. This means that we can write

BΛY = log(ỹ), (4.1)

where Y ∈ [−1, 1[n−1 . The complete coordinate map YΛ : R+
K → [−1, 1[n−1 is

then defined by setting YΛ(y) = Y where Y satisfies (4.1). Observe that if b =
(b1, . . . , bn−1)t ∈ Zn−1 then

BΛb =

n−1∑
k=1

bk log |εk|

and therefore, if ε = εb11 · · · ε
bn−1

n−1 ∈ U then YΛ(ε2y) = YΛ(y) + 2b. It follows that if
we are given a y ∈ R+

K with YΛ(y) = (Y1, . . . , Yn−1) and choose bi = −
⌊
Yi

2 + 1
2

⌋
then

E(ε)y = ε2y will be U2 reduced. Here bxc is the nearest integer to x, defined as the
unique integer n satisfying x− 1/2 < n ≤ x+ 1/2.

It is easy to see that KΛ ' Λ\Rn−1 is isomorphic via the logarithm map to a
fundamental domain for the action of the set of multipliers MU on R+

K . For the explicit
computations of reduced vectors it is useful to have the following explicit estimates in
terms of the absolute row sums of BΛ:

ri(BΛ) =

n−1∑
j=1

|log |ϕiεj || , 1 ≤ i ≤ n,

and we observe that ‖BΛ‖∞ = max si(BΛ).

Lemma 2. If u ∈ Rn is Λ-reduced then |ui| ≤ ri(BΛ).

Proof. If u ∈ KΛ then u = BΛY for some Y ∈ [−1, 1]n−1 and hence

|ui| = (BΛY)i ≤
n−1∑
j=1

|log |ϕiεj || |Yj | ≤ ri(BΛ).

The following corollary is now immediate.

Corollary 3. If y ∈ R+
K then there is a unit ε ∈ U2 such that

(Ny)1/ne−ri(BΛ) ≤ |ϕi(εy)| ≤ (Ny)1/neri(BΛ) for all 1 ≤ i ≤ n.

4.2. Reduction with respect to translations

Let a be an integral ideal in OK and choose an integral basis β(a)
1 , . . . , β

(a)
n of a. Using

the embedding map we identify a with a lattice of rank n in Rn, also denoted by a. The
basis matrix for this lattice is denoted by Ba and we choose a fundamental polytope
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Ka = Ba[−1/2, 1/2[n. For an element x ∈ RK we define the a-coordinate vector Xa(x)
by the equation

BaXa(x) = ϕ(x)

and say that x is a-reduced if ϕ(x) ∈ Ka, or in other words, if Xa(x) = (X1, . . . , Xn)
with −1/2 ≤ Xk < 1/2 for all ks.

If α =
∑n
k=1 akβ

(a)
k ∈ a then Xa(α) = (a1, . . . , an) and it is clear that Xa(x + α) =

(X1 + a1, . . . , Xn + an) and hence, if we choose ak = −bXkc then Tαx = x + α will be
a-reduced.

4.3. Fundamental domain for the cusp stabilizer
Let λ ∈ P1(K) be a cusp of ΓK , aλ the corresponding representative ideal and b = a−2

λ

with an integral basis β(b)
1 , . . . , β

(b)
n . For an element z ∈ HK we define zλ = xλ + iyλ =

A−1
λ z and say that z is reduced with respect to λ if xλ is reduced with respect to b and

yλ is reduced with respect to U2. We let Cλ denote the set of all such reduced points,
more precisely

Cλ =
{
z ∈ HK | Xb(xλ) ∈ [−1/2, 1/2[n and YΛ(yλ) ∈ [−1/2, 1/2[n−1

}
.

It is easy to show that the set Cλ is indeed a fundamental domain for the action of
ΓK,λ = AλΓ(OK ⊕ a2

λ)A−1
λ on HK . Note that for the modular group, PSL2(Z), the

analogue of the domain Cλ is the strip −1/2 < <(z) ≤ 1/2.

4.4. Cuspidal regions
If the regions Cλ in the previous section are analogues of the vertical strip we will

now look at the analog of the curved part of the fundamental domain, given by |z| ≥ 1.
For the modular group this can be interpreted in terms of a reflection in the isometric
circle corresponding to the map given by z 7→ −z−1. An analog interpretation is valid
for Hilbert modular groups but it is much harder to work out precisely which reflections
to include even for small number fields of class number 1.

If z = x + iy ∈ HK we define ∆(z,∞), the distance to the cusp at ∞, by

∆(z,∞) = N (=z)
−1/2

and the distance to an arbitrary cusp µ = (ρ : σ) with associated ideal a = (ρ, σ) is

∆(z, µ) = N (a)
−1

N(=A−1
µ z)−1/2 = N (a)

−1
N (y)

−1/2
N(|−σz + ρ|2)1/2 (4.2)

= N(a)−1N
(

(−σx + ρ)
2
y−1 + σ2y

) 1
2

,

where N(a) is the norm of the ideal a. This expression is independent of the choice of
representatives ρ and σ as well as the choice of Aµ. Observe that the normalization
factor N(a)−1, which accounts for the independence of the choices of ρ and σ is present
in [22] but not in [16]. The expression ∆(z, µ) is in fact bi-invariant under ΓK , in other
words, ∆ (Az, Aµ) = ∆ (z, µ) for all A ∈ ΓK . We will show later, in Lemma 4, that for
every z ∈ HK there exists a cusp λ which is closest to z and it follows that the invariant
height
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∆(z) = inf
{

∆(z, λ) | λ ∈ P1(K)
}

is well-defined, invariant under ΓK and ∆(z) = ∆(z, λ) for some cusp λ (not necessarily
unique).

We are now fully prepared to give the definition of the fundamental domain that we
are interested in. For a cusp representative λj with 1 ≤ j ≤ h we let Fj denote the set
of λj-reduced points that are closest to λj , in other words:

Fj =
{
z ∈ Cλj

| ∆ (z) = ∆(z, λj)
}
.

It can then be shown (cf. e.g. [16]) that the set

FK = ∪hj=1Fj

is a fundamental domain for the action of ΓK on HK . Given that FK is a fundamental
domain we now turn to the problem of reducing a point z to its representative inside FK .
It is clear that the as soon as we find a closest cusp, say µ ∈ P1(K), which is equivalent
to a cusp representative λj with Uµ(µ) = λj then λj is a closest cusp to Uµz and we can
use the straight-forward reduction with respect to units and translations from Sections
4.1 and 4.2 to find an ε ∈ U2 and α ∈ a−2

j such that z∗ = Aλj
TαE(ε)A−1

λj
Uµz belongs to

Fj .
The reduction with respect to units and translations is essentially done in constant

time independent of z and has been efficiently implemented by many authors, cf. e.g. [2].
The practical and theoretical complexity of the reduction algorithm is almost entirely
in the finding of the closest cusp. The next section is dedicated to auxiliary results
and details on how our algorithm for finding the closest cusp works and we will then
summarize the actual algorithm in the following section.

5. Finding the closest cusp

Our approach to finding the closest cusp λ is to analyze the existence and conditional
uniqueness proofs from the lecture notes of Siegel [16] and find explicit and efficient
bounds for all constants involved. The general idea was already present in a slightly
different form in the work of Maaß[14] but note that some of the explicit constants
present, in e.g. Hilfssatz II, are in general weaker than those we obtain here. The aim
of this section is to include sufficient details in the proofs for a reader to be able to both
understand and verify the functionality of the associated code [19] as well as being able
to implement these algorithms independently.

Lemma 4. If z ∈ HK then there exists a cusp λ ∈ P1(K) such that

∆(z, λ) ≤ ∆(z, µ) ∀µ ∈ P1(K).

Proof. Let z = x + iy ∈ HK be fixed. It is sufficient to show that for any given cusp µ
there exists only a finite number of cusps λ such that ∆(z, λ) ≤ ∆(z, µ).

It follows from Section 3.2 that we can assume that λ = (ρ : σ) where ρ and σ are
chosen such that (ρ, σ) = ai for some class group representative ai and in particular
N((ρ, σ)) ≤ C where

C = max {N(a1), . . . ,N(ah)} .
9



We now consider ∆(z, λ) as a function of the algebraic integers σ and ρ and write

∆z(ρ, σ) := ∆(z, (ρ : σ)) = N((ρ, σ))−1
(

N
(

(−σx + ρ)
2
y−1 + σ2y

)) 1
2

.

It is sufficient to show that if d > 0 there exists only a finite number of pairs ρ, σ ∈ OK
modulo units, such that ∆z (ρ, σ) < d. Given such a pair write

∆z(ρ, σ) = N((ρ, σ))−1(Nw)1/2,

where w = (−σx + ρ)
2
y−1 + σ2y ∈ R+

K . It follows from Corollary 3 that there exists a
unit ε ∈ U such that∣∣ϕi (ε2w

)∣∣ ≤ eri(BΛ)(Nw)
1
n ≤ eri(BΛ)d2/nC2/n, for all 1 ≤ i ≤ n.

Setting δi = eri(BΛ)d2/nC2/n we can therefore assume that σ and ρ have been chosen
such that |ϕi (w) | ≤ δi, and hence that

ϕi(σ
2y) ≤ δi and ϕi((−σx + ρ)

2
y−1) ≤ δi.

It follows that the coordinates of the embeddings of σ and ρ are bounded by

|σi|2 ≤ δiy−1
i and (5.1)

|ρi − σixi|2 ≤ δiyi. (5.2)

The inequalities (5.1) and (5.2) clearly define a bounded domain in Rn × Rn and the
statement follows since the embeddings of OK form a lattice in Rn.

An immediate consequence of the previous proof, and in particular (5.1) and (5.2) is
the following result which is crucial to our algorithm.

Theorem 5. Let z ∈ HK and assume that there is a cusp λ with ∆(z, λ) = d. Then a
closest cusp can be chosen as (ρ : σ) where the embeddings of ρ and σ satisfy the following
bounds:

|σi| ≤ Di · d1/ny
−1/2
i and |ρi − xiσi| ≤ Di · d1/ny

1/2
i ,

where
Di = C1/ne

1
2 ri(BΛ),

and, additionally, the norms are bounded by

N (|σ|) ≤ dCN (y)
−1/2 and N (|−σx + ρ|) ≤ dCN (y)

1/2
.

To apply the previous theorem we need to find an initial cusp λ. It is, for instance,
always possible to choose∞, in which case d = ∆ (z,∞) = N(y)−1/2, or 0, in which case
d = ∆ (z, 0) = N(y)−1/2N(x2 +y2)1/2 . However, it is clear that we would like to obtain
as small initial bound as possible and if N(y) is small than we need to find another cusp
to start with.

Fortunately there is a method which seems to work well in practice when N (y) is
small. This method was introduced by Bouyer and Streng [2] and the main idea is to use
LLL reduction to find a vector of short norm, −σz + ρ, in the lattice Lz = OKz + OK
and the corresponding cusp (ρ : σ) will then be close to z by (4.2).
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Remark 6. It should be noted that the LLL reduction method by itself does not does
not necessarily yield the closest cusp, as the LLL algorithm is not guaranteed to return
the shortest vector and the definition of distance ∆(z, (ρ : σ)) also involves the norm of
the ideal (ρ, σ). For a provably correct algorithm (in all degrees) it is therefore necessary
to combine this preliminary optimization with an exhaustive search using the explicit
bounds of Lemma 5.

Since the only integer in OK with norm less than 1 is 0 the norm bound of Theorem
5 immediately implies the following.

Corollary 7. Let z = x + iy ∈ HK . If N(y) > C then ∞ is the closest cusp to z.

Unfortunately it is in general not so easy to find the closest cusp and we will see
that it is often necessary to compare distances to many different cusps. However, the
number of comparisons needed can sometimes be reduced by using the following Lemma
and Corollary.

Lemma 8. There exists a constant d > 0, depending only on K, such that for all
z = x + iy ∈ HK , if λ and µ are cusps of K with ∆(λ, z) < d and ∆(µ, z) < d then
λ = µ.

Proof. Let z = x + iy ∈ HK . Assume that λ = (σ : ρ) and µ = (σ1 : ρ1) satisfy
∆(λ, z) < d and ∆(µ, z) < d for some positive d. Observe that the algebraic integer
ρσ1 − σρ1 can be written

ρσ1 − σρ1 = (−σx + ρ)y−1/2σ1y
1/2 − (−σ1x + ρ1)y−1/2σy1/2.

Since (5.1) and (5.2) applies to both (σ, ρ) and (σ1, ρ1) it is easy to see that

ϕi (|ρσ1 − σρ1|) ≤ 2δi,

where δi = eri(BΛ)d2/nC2/n. It follows that N (ρσ1 − σρ1) ≤ 2n
∏
δi and hence, if

d < C−12−n/2e−
∑
ri(BΛ) then we must have ρσ1 − σρ1 = 0 so µ = λ.

Corollary 9. Let z = x + iy ∈ HK . If λ is a cusp with ∆(λ, z) < C−12−n/2e−
∑
ri(BΛ)

then λ is the closest cusp to z.

The previous lemma also has the geometric consequence that it is possible to decompose
the fundamental domain F into a compact part and disjoint cuspidal parts.

6. Algorithms

We will now describe the actual reduction algorithm in detail. The key idea is to use
Theorem 5 to find bounded regions in Rn where the embeddings of the numerators and
denominators of potential closest cusps must be located. We then compare the distance
to z for each of the candidate cusps, except if one of the distances is less than the bound
in Corollaries 7 or 9, in which case we terminate the search early.

Recall that we have a fixed integral basis α1, . . . , αn of OK and a corresponding lattice
in Rn with basis matrix BOK

. If β ∈ OK is given by β =
∑n
i=1Xiαi for some integer

vector X ∈ Zn then the embeddings of β correspond to the vector ϕ(β) = BOK
X in Rn.

11



If we can bound the vector ϕ(β) in a parallelotope P it follows that X must belong to
the polytope B−1

OK
(P ) and we thus need to find vectors with integer coordinates inside

this set.
A preliminary investigation of the performance showed that the most efficient way to

find these seems to be to search for integer vectors in a bounding parallelotope of B−1
OK

(P ),
which we denote by BP(B−1

OK
(P )), and apply the embedding map to test whether or not

to include them in the result. Using this idea together with Theorem 5 gives us the
following algorithm.

Algorithm 10 (Finding the closest cusp). Let K be a fixed totally real number field, all
notation be as above and let z = x + iy ∈ HK .

Step 1: If N(y) > C return ∞ = (0 : 1) as the closest cusp.

Step 2: Use the LLL reduction to find a potentially closest cusp, λ, and set d =
min {∆(z, λ),∆(z,∞),∆(z, 0)}

Step 3: Recall that C = max (N(a1), . . .N(ah)) and Di = maxC1/ne
1
2 ri(BΛ). Define

ai = Did
1/ny

−1/2
i , 1 ≤ i ≤ n, and set

Pσ = [−a1, a1]× · · · × [−an, an] and P̂σ = BP(B−1
OK

(Pσ)).

Step 4: Compute the integral points X(1), . . . ,X(M) of P̂σ, and for each 1 ≤ j ≤M :

(a) Compute the corresponding ϕ(σ) = BOK
Xj and if

N (σ) > dCN (y)
−1/2 or ϕ(σ) /∈ Pσ,

remove the corresponding X(j) from the list and repeat for the
next j, if not, go to the next step.

(b) Set b±j,i = σixi ± yiai, and let

Pρ,j = [b−j,1, b
+
j,1]× · · ·× [b−j,n, b

+
j,n] and P̂ρ,j = BP(B−1

OK
(Pρ,j)).

(c) Compute the integral points Y(j,1), . . . ,Y(j,N(j)) of P̂ρ,j , and for
each 1 ≤ i ≤ N(j), compute ϕ(ρ) = BOK

Y(j,i) and if ϕ(ρ) /∈ Pρ,j
remove the corresponding Y(j,i) from the list.

After relabeling the remaining vectors if necessary we find that a closest cusp to z can
now be found corresponding to a pair in the finite set{

(ρ, σ) | σ = BOK
X(j), ρ = BOK

Y(j,k), 1 ≤ j ≤M ′, 1 ≤ k ≤ N ′(j)
}

where M ′ and N ′(j) are some positive integers.

Remark 11. Note that we do not make explicit use of the norm bound for ρ here, it is
instead part of finding the minimal distance in the final set.
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We can now combine Algorithm 10 with the reduction by units and translation
described in Section 4 to formulate the complete reduction algorithm.

Algorithm 12. [Reduction algorithm]Let K be a fixed totally real number field, let z ∈
HK and assume all notation is as above,

Step 1: Use Algorithm 10 to find the closest cusp to z, say µ.

Step 2: Find the cusp representative, λj, corresponding to µ and Uµ ∈ ΓK such that
Uµ(µ) = λj .

Step 3: Set zλj = A−1
j Uµz = xλj + iyλj .

Step 4: Let Y = YΛ(yλj
) and define ε = εb11 . . . ε

bn−1

n−1 where bk = −
⌊
Yk

2

⌋
.

Step 5: Set z′ = E(ε)zλj
= x′ + iy′.

Step 6: Let X = Xa−2
j

(x′) and define α = a1β1 + · · ·+ anβn where ak = −bXkc and
β1, . . . , βn is an integral basis for a−2

j .

Step 7: Set A = AjT
αE(ε)A−1

j Uµ.

Then A ∈ ΓK and Az ∈ Fj ⊆ F .

6.1. A brief analysis of runtime and performance
It is clear that reduction within the cuspidal domain is essentially of constant time

with respect to z. The run-time is therefore essentially proportional to the total number
of potential σs and ρs that are investigated in Algorithm (10) and each of these numbers
are proportional to the volumes of the corresponding polytopes. It is of little practical
use to make a very precise run-time analysis here but by using appropriate upper bounds
it is easy to see that for a fixed totally real number field K the run-time is polynomial in
‖x‖∞ , ‖y‖∞ and ‖y−1‖∞ as z varies. Similarly, if z is fixed and we let K vary then the
run-time is exponential in the degree of K and ‖BΛ‖∞, and polynomial in C,

∥∥B−1
OK

∥∥
∞

and ‖BOK
‖∞. While algebraic quantities like the discriminant and regulator of K do

play a direct role also in the reduction by units and translations, these can be bounded
by the respective matrix norms.

While a more precise analysis for the dependency on z is not too difficult to perform,
a detailed analysis on the precise dependency on the number field is more complex due
to the number of different parameters involved. For testing the runtime in practice it is
convenient to consider the point z = i1 since it will always be closest to both 0 and∞ and
the preliminary search using LLL does not provide any better bound. Table 1 contains
times to find the closest cusp of i1 for the different fields we consider in Section 7. Here
α1 and α2 have minimal polynomials α3

1 −α2
1 − 2α1 + 1 and α3

2 −α2
2 − 2α2, respectively.

For a more systematic comparison regarding the dependency on the discriminant we also
compared quadratic fields of class number one and discriminant up to 100. See Table 2.
The difference in timing between discriminant 93 and 97 of a factor over 200 is striking.
It highlights that the influence of the discriminant is vastly overshadowed by that of the
size of the embeddings of the fundamental units. The lengths in question here are ≈ 3.37
and ≈ 9.32, respectively, and exp(9.3− 3.3) ≈ 403.

All computations below were performed on a single 2GHz Xeon E5-2660 core and the
reported time is an average of 100 runs.
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Table 1: Times to find closest cusp of z = i1 for different fields.

Field Q(
√

5) Q(
√

10) Q(α1) Q(α2)

Time / ms 13ms 19ms 124ms 387s

Table 2: Times to find closest cusp of z = i1 for quadratic fields of discriminant D and class number 1

D 5 8 12 13 17 21 24 28 29 33 37 41 44
Time / ms 12 14 14 13 17 14 18 20 14 37 17 47 23

D 53 56 57 61 69 73 76 77 88 89 92 93 97
Time / ms 15 26 167 30 23 1087 178 16 201 488 33 24 4740

6.2. A note on the implementation
The algorithms described above are currently implemented as part of a package in

Python with parts written in Cython and is dependent on SageMath [21]. The package
is available from [19] and open sourced under GPLv3+.

7. Examples

The aim of the examples presented here is to demonstrate how the algorithm works
as well as making it easy for readers to verify the correctness. We will consider three
examples in detail: first the standard example of K1 = Q(

√
5) , which has degree 2,

discriminant 5 and class number 1, then K2 = Q(
√

10) which has degree 2, discriminant
40 and class number 2, followed by K3 = Q(α) where α has minimal polynomial
α3 − α2 − 2α + 1, which has degree 3, discriminant 49 and class number 1. The
computations involved in these three examples are demonstrated in the accompanying
Jupyter notebooks that can be found in [19]

Example 13. Consider K = Q
(√

5
)
with fundamental unit ε = 1

2 (1 +
√

5), ring of
integers OK = Z⊕ Zε and class number 1. Here

BΛ =
(

log( 1
2 (1 +

√
5)) log( 1

2 (
√

5− 1))
)
,

BOK
=

(
1 1

2

(
1 +
√

5
)

1 1
2

(
1−
√

5
) ) , B−1

OK
=

1

−
√

5

(
1
2 (1−

√
5) − 1

2 (1 +
√

5)
−1 1

)
and it is immediate to see that

r1(BΛ) = r2(BΛ) ≈ 0.48, D1 = D2 ≈ 1.27, ‖BOK
‖∞ ≈ 2.62, and

∥∥B−1
OK

∥∥
∞ = 1.

Consider now Algorithm 10 applied to z = y = i1 ∈ Hn. Since y1 = y2 = 1 the first
bounds are given by a1 = a2 = D1 and it can be computed that Pσ is the polygon
bounded by the vertices

B−1
OK

((±D0,±D0)) = {(0.57, 1.14), (1.27, 0.0), (−0.57,−1.14), (−1.27, 0.0)}.
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Figure 7.1: BOK
(Pσ) and Pσ together with N(σ) = 1 for z = i1 and K = Q(

√
5)

For this z the preliminary reduction does not produce any better cusp than ∞ and the
norm bound is given by CN (y)

−1/2
= 1. The domain Pσ and its pre-image together with

the embedded points of OK and Z2 and the curves indicating the norm bound are shown
in Figure 7.1. Note that we show the actual domain B−1

OK
(Pσ) and not the bounding box

for extra clarity.
It is clear from the figure that the only integral points in Pσ are X(1) = (0, 0),

X(2) = (1, 0) and X(3) = (−1, 0) so the three candidates for σ are 0, 1 and −1. The value
σ = 0 of course corresponds to the cusp at infinity so we can choose ρ = 1 in this case.
For σ = ±1 we get Pρ,2 = Pσ so the candidates for ρ are 0 and ±1. The potential cusps
are therefore ∞ = (1 : 0), c1 = (0 : 1), c2 = (1 : 1) and c3 = (−1 : 1). The corresponding
distances are ∆(z,∞) = N(y)−1/2 = 1, ∆(z, (0 : 1)) = N (y)

1/2
= 1 and

∆(z, (1 : 1)) = N
(
y−1 + y

)1/2
= 2.

Therefore both ∞ = (1 : 0) and 0 = (0 : 1) are closest cups.
If we consider instead z = 1

2 i1 then then a preliminary search (using e.g. the LLL
method) finds the cusp 0 = (0 : 1) and it is easy to see that ∆(z,∞) = 2 and ∆(z, 0) =
1/2. We can therefore apply the algorithm with an initial estimate of d = 1/2. This leads
to the same bounds for σ : |σi| ≤ D0 but the bounds for ρ gets scaled: |ρi| ≤ D0/2 ≈
0.636. The candidate cusps are therefore simply (1 : 0) =∞ and (0 : 1) with the closest
cusp being (0 : 1).

If we had not performed the initial search and instead simply used d = ∆ (z,∞) = 2
for the initial bound we would have obtained 9 candidates for sigma and in the end 9
candidates for closest cusp .

Example 14. Consider K2 = Q
(√

10
)
with fundamental unit ε = 3 +

√
10, ring of

integers OK = Z⊕ Z
√

10 and class number 2. The cusp representatives are

λ1 =∞ and λ2 = (2 :
√

10)
15



Note that the norm of the ideal associated with λ2 is N
((

2,
√

10
))

= 2. We now find
that

BΛ =
(

log((3 +
√

10)) log(
√

10− 3))
)
,

BOK
=

(
1
√

10

1 −
√

10

)
and B−1

OK
=

1

−2
√

10

(
−
√

10 −
√

10
−1 1

)
,

and it is immediate to see that

r1(BΛ) = r2(BΛ) ≈ 1.81, D1 = D2 ≈ 3.51, ‖BOK
‖∞ ≈ 4.16, and

∥∥B−1
OK

∥∥
∞ = 1.

Consider now again Algorithm 10 applied to z = y = i1 ∈ Hn. Since y1 = y2 = 1 the
first bounds are given by a1 = a2 = D0 ≈ 3.51 and Pσ is the polygon bounded by the
vertices

B−1
OK

((±D0,±D0)) ≈ {(−3.51, 0), (0, 1.11), (0,−1.11), (3.51, 0)}.

For this particular z the preliminary reduction does not produce any better cusp than
∞ and the norm bound is given by CN (y)

−1/2
= 2 . The domain Pσ and its pre-image

together with the embedded points of OK and Z2 are shown in Figure 7.2. We see
that there are only 3 possibilities for σ: −1, 0 and 1 and these result in 10 candidate
cusps. Comparing all these we see that the cusps∞ and 0 are both closest with distance
∆(z,∞) = ∆(z, 0) = 1.

Changing to the point z = i12 , the preliminary search finds a tentative closest cusp
0 with a distance of 1/2 so we can use the algorithm with d = 1/2, which results in the
same bounds for σ as before and we find three candidate cusps 0, 1 and −1 with the cusp
0 being the unique closest cusp, with distance ∆ (z, 0) = 1/2.

To demonstrate the the algorithm works for other cusps than infinity, consider the
point z = (2.58 + 0.5i, 0.5 + 0.5i). The preliminary search gives only the potential closest
cusp ∞ so we will apply the algorithm with d = 2 and the norm bound |σ1σ2| ≤ 8.
We find 13 candidates for σ and 35 distinct candidate cusps, from which we find that
µ = (

√
10 :
√

10 + 2) is the closest, with distance ≈ 1.59. It is not hard to check that µ
is equivalent to λ2 under the element(

−5 −2
√

10 + 9

−2
√

10 + 1 4
√

10− 10

)
∈ ΓK .

Applying the complete reduction map to z givesw = Bz withw ≈ (−0.669+0.036i, 0.709+
0.004i) and

B =

(
−2
√

10− 9 9

−4
√

10− 9 4
√

10

)
∈ ΓK .

Example 15. To demonstrate that the method works also in degree 3, consider K3 =
Q (α) where α has minimal polynomial α3 − α2 − 2α + 1. This field has degree 3, class
number 1, discriminant 49, fundamental units ε1 = 2− α2 and ε2 = α2 − 1 and OK has
an integral basis

β1 = 1, β2 = α, β3 = α2 − 2.

The real embeddings of α are approximately (−1.247, 0.445, 1.802) and we find the
relevant numerical bounds to be:
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Figure 7.2: BO−1
K2

(Pσ) and Pσ together with the curve N(σ) = 2 for z = i1, K2 = Q(
√
10).

r(BΛ) ≈ (1.40, 0.810, 1.03), D ≈ (2.01, 1.499, 1.674),

‖BOK
‖∞ ≈ 4.05, and

∥∥B−1
OK

∥∥
∞ = 1.

Let z = i1 and apply Algorithm 10 to find closest cusps. In the first step we find 5
candidates for σ. See Figure 7.3, which shows the polyhedron together with the surfaces
N (σ) = 1. The two points which do not satisfy the norm bound are drawn in lighter
gray, the others in black. In the end we find 8 candidates for the closest cusp and we
find (as usual) that the cusps ∞ and 0 are both closest with a distance of 1.

Example 16. Just to give an idea of how it works in a more complicated example,
consider K = Q (α) where α has a minimal polynomial x3 − 36x − 1. Then K has
discriminant 20733, class number 5 and its label in the LMFDB is 3.3.20733.1. The
fundamental units are ε1 = −α and ε2 = −α− 6 and OK has an integral basis

β1 = 1, β2 = α, β3 =
1

3

(
α2 + α− 23

)
.

The real embeddings of α are approximately (−5.986,−0.028, 6.014) and we find the
relevant numerical bounds to be:

‖BΛ‖∞ ≈ 6.06, D0 ≈ 52.22, ‖BOK
‖∞ ≈ 13.41, and

∥∥B−1
OK

∥∥
∞ = 1.

Using Algorithm 10 with z = i1 we find 9 candidates for σ, in total 3396 candidate cusps
and as usual the cusps 0 and ∞ are both closest with distance 1.
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Figure 7.3: BOK3
(Pσ) and Pσ for z = i1, K3 = Q(α) with α3 − α2 − 2α+ 1

8. Conclusion and Suggestions for Future Work

It is important to stress again that the raison d’être and main result of this paper
is that, as far as the author is aware, we are for the first time presenting a reduction
algorithm for Hilbert modular groups which applies to any totally real number field
(in theory at least) and can be proven to return a reduced point and terminates in
polynomially bounded time for a fixed field and varying z.

8.1. Motivation and future applications
Our interest in reduction theory for Hilbert modular groups stems from two different

problems. The first problem is regarding dimension formulas for vector-valued Hilbert
modular forms. This is part of ongoing work joint with Skoruppa and Boylan, cf. e.g.
[17] and [18]. One of the necessary ingredients for dimension formulas is the number
of elliptic fixed points, and in the vector-valued case it is also necessary to know the
corresponding stabilizers. The number of elliptic fixed points is well known for quadratic
fields but for higher degrees this is a hard problem for which a computational approach
currently seems to be the only option. While there are many computational approaches,
both algebraic and analytic, at some point they generally require some form of reduction
to produce representative elements.

The second problem is the computation of non-holomorphic Hilbert modular forms.
One of the key ingredients in the so-called automorphy (or Hejhal’s) method for computing
Maaßcusp forms on Hecke triangle groups and subgroups of the modular groups is the
existence of an efficient reduction algorithm. While many parts of this algorithm need to
be modified to work over fields other than Q, the main obstacle so far has been the lack
of a general reduction algorithm. With the existence of the current algorithm the hope
is that a computational approach to non-holomorphic Hilbert modular forms is finally
within reach.

From an algorithmic perspective it is clear the most important improvment would be
to find a better bound for the embeddings or coordinates of ρ. While we believe that
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most of the bounds are close to optimal in the general setting it might be possible to
hard-code the case of, say, a quadratic field, more efficiently.
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