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Abstract—Simultaneous wireless information and power trans-
fer (SWIPT) has long been proposed as a key solution for charg-
ing and communicating with low-cost and low-power devices.
However, the employment of radio frequency (RF) signals for
information/power transfer needs to comply with international
health and safety regulations. In this paper, we provide a complete
framework for the design and analysis of far-field SWIPT under
safety constraints. In particular, we deal with two RF exposure
regulations, namely, the specific absorption rate (SAR) and
the maximum permissible exposure (MPE). The state-of-the-art
regarding SAR and MPE is outlined together with a description
as to how these can be modeled in the context of communication
networks. We propose a deep learning approach for the design
of robust beamforming subject to specific information, energy
harvesting and SAR constraints. Furthermore, we present a
thorough analytical study for the performance of large-scale
SWIPT systems, in terms of information and energy coverage
under MPE constraints. This work provides insights with regards
to the optimal SWIPT design as well as the potentials from the
proper development of SWIPT systems under health and safety
restrictions.

Index Terms—Wireless power transfer, SWIPT, safety regula-
tions, specific absorption rate, maximum permissible exposure.

I. INTRODUCTION

Wireless technologies are an important part of modern
society, with Cisco expecting that global mobile subscribers
will reach 5.7 billion by 2023, which will correspond 71
percent of the global population [1]. Traditionally, the focus
of wireless communications is mainly on how to improve the
efficiency of information transfer. Nonetheless, with the devel-
opment of wireless systems employing a massive number of
devices, such as sensors and actuators, recently this focus has
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also been shifted towards energy sustainability. In particular,
the fact that radio frequency (RF) signals can also convey
energy apart from information, the concept of wireless power
transfer (WPT) and, in particular, of simultaneous wireless
information and power transfer (SWIPT) is considered as a
very promising and enabling technology for the realization
of such future systems [2]. The key idea of SWIPT is to
exploit the received RF signals in order to extract not only
information but energy as well. The extraction can be done
by separating the energy harvesting (EH) and information
decoding operations either in time, in power or in space [3]. In
contrast to conventional EH techniques (e.g. from renewable
sources), EH with SWIPT can be a dedicated, continuous,
controllable and on-demand process. The EH in this case,
is achieved through the employment of a rectifying antenna
(rectenna) that converts the received RF signal to direct current
(DC) [2], [3].

In light of the wide and increasing usage of wireless devices,
there is a growing concern with regards to the RF radiation
brought about by multiple and concurrent wireless transmis-
sions. Some studies have also revealed the potential biological
hazard in relation to the RF radiation, including metabolic
changes in brain and carcinogenic effects [4], [5]. As such,
international health and safety regulations have been put in
place in order to regulate and limit the level of RF exposure
to humans [6]. Two widely adopted regulations/measures on
RF exposure are the so-called maximum permissible exposure
(MPE) and specific absorption rate (SAR). The MPE or power
density (measured in W/m2), defines the highest level of
electromagnetic radiation (EMR) in a specific area that will
not incur any health/biological effect. On the other hand, SAR
(measured in W/kg) is a localized metric and defines the
maximum level of absorbed power in a unit mass of human
tissue.

Due to the vital impact on applications with WPT, MPE
is concerned by some relevant studies [7]–[10]. The prob-
lem of scheduling the power chargers is investigated in [7],
where the charging utility for all rechargeable devices is
maximized with a constraint on EMR. The works in [8] and
[9] deal with the problem of maximizing the harvested energy
and wireless charging tasks scheduling, respectively, when
transmitted signals guarantee a well-defined EMR constraint.
The work in [10] builds an empirical probabilistic wireless
charging and EMR model and then formulates an optimization
problem to maximize the charging utility of all EH devices
with consideration on the EMR constraint. For short distances
(i.e., distances less than 20 cm), the SAR measure dominates
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the RF exposure. Therefore, in this case, SAR becomes a
more critical factor than the MPE for the design of efficient
communications. Some regulatory agencies have established
limitations on the body SAR exposure. For instance, the
Federal Communications Commission (FCC) enforces a SAR
limitation of 1.6 W/kg averaged over one gram of tissue on
the partial body exposure [11], and the Comité Européen
de Normalisation Électrotechnique adopts a similar limitation
of 2 W/kg averaged over 10 grams of tissue on the SAR
measurements [12]. In addition, SAR needs to account for
various exposure constraints on the whole body, partial body,
hands, wrists, feet, ankles, etc., with various measurement
limitations according to FCC regulations [11]. Thus, multiple
SAR constraints are needed even for a single transmit device.
For instance, the iPhone 12 Pro Model A2407 has a whole
body SAR of 1.18 W/kg and a head SAR of 1.14 W/kg [13].

Although the subject of an RF exposure constraint (i.e., the
SAR constraint) has an important impact on the design of
wireless communication systems, few existing works in the
literature have considered SAR regulations. The SAR exposure
limitation can be easily guaranteed in single-antenna systems
by introducing an additional transmit power constraint (i.e.,
setting the transmit power below a required threshold). In
the meantime, the exploitation of multiple antennas provides
significant benefits in improving the throughput of a wireless
communication system, but it also poses potential challenges
during the design due to RF radiation restrictions. For exam-
ple, by exploiting advanced signal processing techniques such
as beamforming in multi-antenna systems, the pattern of the
RF signals is manipulated in such a way as to increase the
performance, while it also makes the associated SAR analysis
more complicated. Measurements and simulations are carried
out in [14] and demonstrate that SAR is a function of the phase
difference between two transmit antennas. The SAR reduction
and modeling in multi-antenna systems is studied in [15], [16].
The SAR constraints are integrated into the transmit signal
design for a multiple-input multiple-output (MIMO) uplink
channel in [17], where the quadratic model for the SAR mea-
surements is first proposed. In [18], a SAR code is proposed
to improve the conventional Alamouti space-time code under
SAR constraints. It is also revealed that the SAR measurement
is a function of the quadratic form of the transmitted signal
with the SAR matrix. The SAR-aware beamforming and trans-
mit signal covariance optimization methods are presented in
[19] and [20]. Capacity analysis with multiple SAR constraints
on single-user MIMO systems is intensively examined in [21].
Sum-rate analysis for a multi-user MIMO system with SAR
constraints is performed in [22], with both perfect and sta-
tistical channel state information (CSI). From an information
theory perspective, SAR-constrained multi-antenna transmit
covariance optimization can be seen as the classical MIMO
channel capacity optimization problem subject to generalized
linear transmit covariance constraints [23].

The consideration of SAR and MPE constraints for the
design of WPT or SWIPT systems is an under-explored
research area [2]. Even though SWIPT corresponds to a con-
trolled transmission of RF radiation to communicate as well as
energize, it may significantly contribute to the electromagnetic

pollution (electrosmog). However, few works in the literature
discuss the integration of SAR and MPE with WPT [7]–
[10] or SWIPT [24]. As such, this paper provides a complete
framework for the study of SWIPT, under both SAR and MPE
constraints. We first present the mathematical modeling of the
SWIPT technology as well as the modeling aspects of the
two safety metrics. Then, we describe methodologies for the
design of simple but also complex large-scale SWIPT systems
under safety constraints; the methodologies are general and
can be adapted to any communication scenario. Specifically,
the contributions are as follows:

• We first introduce and formulate the beamforming op-
timization problem to maximize the harvested power in
a multiple-input single-output (MISO) downlink system,
subject to SAR constraints and quality-of-service require-
ments. We derive the beamforming solution by leveraging
semidefinite programming and rank relaxation, and prove
that this method always achieves the optimal solution.

• Next, a robust beamforming design is proposed subject
to SAR constraints at the receivers. In practical systems,
the CSI is usually measured or estimated, while there
are many factors contributing to errors, e.g. quantization
errors [25]. In such cases, the constraints such as the user
end performance, measured by the signal-to-interference-
plus-noise ratio (SINR) are characterized in a statistical
instead of a deterministic manner and may be violated.
This challenge is traditionally addressed via robust beam-
forming. The major solutions to robust beamforming is
to provide the worst-case guarantees or probabilistic per-
formance guarantees, such as the semidefinite relaxation
(SDR) [26], Bernstein-Type Inequality (BTI) method
[27], and Large Deviation Inequality (LDI) method [28].
However, these solutions require high computational
complexity, which incur large latency and they are over-
preservative to account for the worst cases. The proposed
design is based on a low-complexity unsupervised deep
learning approach with the data augmentation technique.
Our results show that it achieves significant improvement
and outperforms the BTI method.

• The MPE constraint is considered in SWIPT networks
from a macroscopic point-of-view through the employ-
ment of stochastic geometry. Closed-form analytical ex-
pressions are derived for the probability of satisfying
the MPE constraint, the information coverage probability,
the energy coverage probability as well as their joint
probability. The performance with and without the con-
straints is considered and it is shown how each metric
is affected by this restriction. Moreover, we study the
system’s performance for different frequency bands and
our results show that higher frequencies decrease the
levels of RF exposure in the network.

The rest of this paper is organized as follows: Section II
describes the modeling of SWIPT and of the considered
safety regulations. In Section III, the proposed design of
robust beamforming for SWIPT under SAR constraints is
provided together with simulation results. Section IV presents
the performance analysis of a large-scale SWIPT network
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under MPE constraints. The paper concludes with Section V.
Notation: Lower and upper case boldface letters denote

vectors and matrices, respectively; [·]† is the Hermitian trans-
pose operator; P{X} and E{X} represent the probability and
expectation of X , respectively; Rn denotes the n-dimensional
Euclidean space; Γ(·) and Γ(·, ·) denote the complete and
upper incomplete gamma function, respectively [29]; B(·, ·)
denotes the beta function [29];  =

√
−1 is the imaginary

unit; tr(A) gives the trace of the square matrix A; A � 0

means that the matrix A is positive semidefinite; ℑ{x} and
ℜ{x} return the imaginary and real part of x, respectively;
U(a, b) denotes the uniform distribution in the interval [a, b].

II. MODELING SWIPT AND SAFETY CONSTRAINTS

A. Information and Power Transfer

Throughout this paper, we consider multi-antenna trans-
mitters and single-antenna receivers. Also, each receiver has
SWIPT capabilities, i.e. it can decode the information but also
harvest energy from the received signal simultaneously. The
SWIPT technique is employed with the power splitting (PS)
method such that the received signal is split into two parts: one
is converted to a baseband signal for information decoding and
the other is directed to the rectenna for EH and storage [30].
This is a mature SWIPT technique that does not require strict
time synchronization between information and power transfer.
Let ρ ∈ (0, 1) denote the PS parameter at a receiver. Then,
100ρ% of the received power is used for decoding, while the
remaining power is directed to the EH circuit. During the
baseband conversion phase, additional circuit noise is present
due to the phase-offsets and the circuit’s non-linearities, which
is modeled as an additive white Gaussian noise (AWGN) with
zero mean and variance NC .

Therefore, based on the PS technique considered, the SINR
at a receiver can be written as

SINR =
ρS

ρ(N0 + I) +NC
, (1)

where S is the received power of the signal of interest, I
is the power of the interference and N0 is the variance of
the AWGN component of the received signal. On the other
hand, since 100(1 − ρ)% of the received energy is used for
rectification, the instantaneous energy harvested at a receiver
is modeled by the following non-linear function, which refers
to a specific excitation signal1 [31]

E =
ā(1− ρ)Pr + b̄

(1− ρ)Pr + c̄
− b̄

c̄
, (2)

where Pr is the aggregate received signal power at the receiver
and ā, b̄, c̄ are parameters determined by the rectification cir-
cuit through curve fitting. These parameters fully characterize
the non-linear behaviour of the rectifying circuit including the
maximum harvesting value, the sensitivity and slope of the out-
put power [31]. In other words, depending on how a rectifier
is designed will correspond to a different set of parameters;
in this work, we will consider ā = 2.463, b̄ = 1.635, and

1The provided mathematical framework is not limited to this model and
can be easily adapted to consider other non-linear functions, e.g. the sigmoid
model [33].

c̄ = 0.826 [31]. Note that, in general, E (measured in Watts)
should be a function of the received signal rather than just its
power. In this paper, we adopt a simplified model to highlight
the dependency on the power of the energy signal only, which
will be discussed in the numerical results.

B. Safety Constraints in Wireless Networks

The SAR metric quantifies the deposited microwave energy
at a specific point on the human body. It corresponds to the
rate of energy absorption per unit mass at a specific location
in the tissue [18]. As such, SAR is a function of the induced
electric field E (measured in V/m), the electrical conductivity
of the tissue σ at the specific point (measured in S/m) as well
as the tissue’s density η (measured in kg/m3). This relation
can be expressed as

SAR =
σ|E|2
2η

. (3)

In order to integrate the SAR limitations into the design of
SWIPT, we use a quadratic form of the transmitted signal to
model the pointwise SAR value with multiple transmit anten-
nas [18]. This model is based on experimental studies, which
showed that SAR depends significantly on the phase difference
between the antennas [34] and thus can be characterized by a
sinusoidal function of the phase difference [17]. Let x denote
the transmitted signal and Q = E{xx†} its covariance. Then,
SAR can be modeled as a quantity averaged over the transmit
signals with a time-averaged quadratic constraint given by

SAR = E{tr(x†Ax)} = tr(AQ) ≤ P, (4)

where A is the SAR matrix and P is the SAR limit. The de-
pendence of the SAR measurements on the transmitted signals
can be fully described by the SAR matrix, where the entries of
this matrix have units of kg−1. Note that the SAR matrices are
positive-definite conjugate-symmetric matrices, since the SAR
measurements are always real positive numbers. The SAR
matrix is obtained offline during SAR testing and it highly
depends on the device’s type of antennas, operating frequency,
industrial design, etc. [18]. Moreover, during testing, several
measurements are taken for different operations and locations
of the device and the one that provides the “worst case” is
used for comparison with the SAR constraint.

Different to the SAR metric, which is a point quantity,
the MPE (power density) quantifies the RF exposure over a
specific area. The MPE corresponds to either the absorbed
power density or the incident power density [6]. The latter
is easier to be measured and thus international regulations are
given in terms of the maximum incident power density values.
The MPE is given by

MPE =
|E|2
Z

, (5)

where E [V/m] is the induced electric field and Z = 377 Ω
is the impedance of free space [6]. In the context of wireless
networks, the MPE can be evaluated by

MPE =
PtG

4πd2
, (6)



4

where Pt is the transmitted power, G is the antenna gain and
d is the distance of the measuring point from the center of the
antenna [32].

The SAR and MPE metrics are equally important for the
realization of safe (in terms of RF radiation) wireless networks,
where each metric concerns a different aspect of the network.
The SAR metric is considered for devices that are meant to be
carried close to the body (e.g. mobile phones) [18], [34] or to
be “worn” on the body (e.g. implantable sensors) [35], [36].
Essentially, these devices will be operating at a distance of 20
cm or less from a human body [17]. Moreover, the devices
need to abide by the FCC’s SAR regulations [11] and thus
are tested before being commercially available. In the case
of MPE, the devices under consideration are expected to be
operating at a distance greater than 20 cm from a human body
(e.g. base stations) [17]. Therefore, the MPE is evaluated based
on a network of transmitting devices and all locations in the
network area are required to satisfy the MPE constraint [32].
It is clear that SAR focuses more on the device itself, whereas
MPE is a network-wide safety constraint. This motivates the
approach taken in the following two sections. In Section III, we
consider a SAR-aware beamforming optimization for a simple
point-to-multipoint SWIPT system and, in Section IV, we
study the performance of a SWIPT system from a macroscopic
point-of-view with MPE constraints.

III. SWIPT WITH SAR CONSTRAINTS:
OPTIMIZATION OF TRANSMIT BEAMFORMING

In this section, we study SAR-aware transmit beamforming
optimization with both perfect and statistical CSI.

A. System Model and Problem Formulation

We consider a MISO downlink system consisting of an Nt-
antenna transmitter with total transmit power Pt and K single-
antenna receivers that employ single-user detection, as shown
in Fig. 1. The transmitted data symbol sk to receiver k follows
the Gaussian distribution with zero mean and unit variance
(i.e., E{‖sk‖2} = 1), which is mapped onto the antenna array
elements by the beamforming vector wk ∈ CNt×1. The signal
design in terms of modulation, waveform and input distribution
will also affect the efficiency of the RF-DC conversion [37],
[38], but for simplicity, we do not consider these in the
optimization.

We assume frequency non-selective block fading channels
(i.e., the channel coefficients remain constant in each slot)
with AWGN. Denote by hk ∈ CNt×1 the fading coefficients
between the transmitter and receiver k, which also captures
the large-scale degradation effects such as path-loss and shad-
owing. The received baseband signal at the receiver k can be
expressed as

yk = h
†
kwksk
︸ ︷︷ ︸

Information signal

+
∑

j 6=k

h
†
kwjsj

︸ ︷︷ ︸

Interference

+nk, (7)

where nk denotes the AWGN component with zero mean and
variance N0.

Fig. 1. System model of SWIPT with SAR constraints.

The receivers harvest energy from the received RF signal
based on the PS technique and so the SINR used for the data
detection process at the k-th receiver is given by

Γk =
ρk|h†

kwk|2

ρk

(

N0 +
∑

j 6=k |h
†
kwj |2

)

+NC

, (8)

while the input to the RF-DC circuitry is

Λk = (1− ρk)Pr,k, (9)

where Pr,k is the received power at receiver k, given by

Pr,k =

K∑

j=1

|h†
kwj |2 +N0. (10)

Finally, the l-th SAR constraint with a time-averaged quadratic
constraint is

SARl = Esk

{

tr

(
K∑

k=1

s†kw
†
kAlwksk

)}

=

K∑

k=1

w
†
kAlwk ≤ Pl, (11)

where Al � 0 is the l-th SAR matrix and Pl is the l-th SAR
limit.

1) Problem Formulation: We formulate the problem as
maximizing the harvested power at each user while satisfying
the requirements of both SINR and total transmit power under
the SAR constraints. To make the problem more tractable, we
introduce a slack variable λ, and then the problem can be
formulated as follows

P1: max
{wk,ρk}

λ (12)

s.t.
|h†

kwk|2
K∑

j=1,j 6=k

|h†
kwj |2 +N0 +

NC

ρk

≥ γk,

(1 − ρk)





K∑

j=1

|h†
jwk|2 +N0



 ≥ λ,

0 ≤ ρk ≤ 1, ∀k,
K∑

k=1

‖wk‖2 ≤ Pt,
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K∑

k=1

w
†
kAlwk ≤ Pl, ∀l = 1, . . . , L,

where γk is the SINR threshold at the k-th receiver. Clearly,
P1 is a non-convex problem because of both the SINR and EH
constraints and thus is difficult to solve. In the next subsection,
we develop an efficient convex optimization based algorithm
that jointly optimizes the beamforming vectors and the PS
parameters.

2) The Optimal Solution using SDP: We adopt the semidef-
inite programming (SDP) approach with rank relaxation to
solve P1. We first define a matrix variable Wk = wkw

†
k, and

introduce λ̃ =
√
λ to recast the problem P1 as follows

P2: max
{Wk,ρk,λ̃}

λ̃ (13)

s.t.
tr(hkh

†
kWk)

K∑

j=1

tr(hkh
†
kWj) +N0 +

NC

ρk

≥ γk
1 + γk

,

K∑

j=1

tr(hkh
†
kWj) +N0 ≥ λ̃2

1− ρk
,

0 ≤ ρk ≤ 1,Wk � 0, ∀k,
K∑

k=1

tr(Wk) ≤ Pt,

K∑

k=1

tr(AlWk) ≤ Pl, ∀l = 1, . . . , L.

Note that the original objective value should be λ̃2. The
advantage of the problem P2 is that it is convex, because
it is linear in all {Wk} and both terms 1

ρk

and 1

1−ρk

are
convex in ρk > 0. It can be efficiently solved using numerical
software packages such as CVX [41]. Once P2 is optimally
solved, if the resulting solutions {Wk} are all rank-1, they
are the exact optimal solutions; otherwise, the solutions only
provide a lower bound for the minimum required transmit
power. However, whether the SDP with rank relaxation can
generate the optimal solution highly depends on the problem
structure. With the additional SAR constraints, it is unknown
whether this property remains true for the problem P2. In the
following theorem, we show that this is indeed the case.

Theorem 1. The optimal solution to P2 satisfies rank(Wk) =
1, ∀k, i.e., the SDP relaxation is tight, and the optimal solution

to the problem P1 can be recovered from {Wk} via the

eigenvalue decomposition.

Proof. The proof is given in Appendix A.

B. Robust Beamforming Solution using Deep Learning

It is noticed that the formulation of problem P1 and P2 are
based on the assumption of perfect CSI. However, in practical
systems, it is hard for the transmitter to obtain perfect CSI,
which could be subject to CSI estimation errors. Without loss
of generality, the general relation between the estimated CSI
ĥk and the actual CSI hk is described as follows

hk = ĥk +∆hk,∆hk ∈ Hk, (14)

where ∆hk denotes the channel estimation error and Hk

denotes the set of all potential channel estimation errors.
In practice, it is not feasible to know the exact channel
estimation error ∆hk in prior, since ∆hk is usually not
a deterministic value but a random variable. The statistical
characterization regarding ∆hk can be available, for example
via measurements and calibrations. Here, we model ∆hk by
using the complex Gaussian distribution with zero mean and
variance σ2

h as follows

Hk , {∆hk|∆hk ∈ CN (0, σ2
hI)}. (15)

Due to the uncertainty introduced by the channel estimation
error, the deterministic constraints in P1 with perfect CSI be-
come more difficult to satisfy. The key reason for choosing the
probabilistic channel estimation error model over the worst-
case channel estimation error model is that, worst-case channel
estimation models will lead to a worst-case study for the robust
beamforming problems, where the worst-case study usually
provides a very conservative performance. This is because
in practical systems, in order to bound the estimation errors
with a threshold, this threshold value might need to be very
conservative, so that all possible estimation errors (including
those extremely rare cases) are bounded. Therefore in this
manuscript, instead of providing a determined bound based
on the worst-case scenario, we aim to provide a statistical
guarantee to the EH and SINR constraints.

Therefore, we consider the constraints in a statistical man-
ner, where the original deterministic constraints are statis-
tically guaranteed with a probability. By rewriting the cor-
responding terms of P1 in a probabilistic form, the robust
formulation of the SWIPT problem under the SINR, total
power and SAR constraints with imperfect CSI can be written
as

P3: max
{wk,ρk,λ}

λ (16)

s.t. P{Γk ≥ γk} ≥ αk, ∀k,∆hk ∈ Hk, (17)

P{Λk ≥ λ} ≥ βk, ∀k,∆hk ∈ Hk, (18)

0 ≤ ρk ≤ 1, ∀k,
K∑

k=1

‖wk‖2 ≤ Pt,

K∑

k=1

w
†
kAlwk ≤ Pl, ∀l,

where αk and βk are the probability guarantees for the SINR
and EH constraints, respectively. The robust formulation in
P3 is non-convex due to the probabilistic constraints, which
makes the problem NP-hard and difficult to solve.

1) The Bernstein-type inequality method: We first introduce
an existing technique in the literature to solve P3, the so-called
BTI method. The BTI transforms the probabilistic constraints
into a deterministic form based on the large deviation inequal-
ity for complex Gaussian quadratic vector functions, which is
given in the following lemma [27], [39].

Lemma 1. If the probabilistic constraint can be represented

in the following form

P{x†Bx+ 2ℜ{x†z}+ σ ≥ 0} ≥ 1− ρ, (19)
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where x is a standard complex Gaussian random vector

with x ∼ CN (0, I), B is a complex Hermitian matrix, z is

a complex vector, while the tuple (B, z, σ) forms a set of

deterministic optimization variables, and ρ ∈ (0, 1] is fixed,

then the following implication holds

P{x†Bx+ 2ℜ{x†z}+ σ ≥ 0} ≥ 1− ρ (20)

⇐







tr(B)−
√

−2 ln(ρ)ψ + ln(ρ)ψ + σ ≥ 0,

||vec(B);
√
2z|| ≤ ψ,

ωI+B � 0, ψ, ω ≥ 0,

(21)

where ψ ∈ R and ω ∈ R are slack variables, and (21) is

jointly convex in B, z and σ.

In order to exploit the BTI method, we first apply the SDR
with Wk = wkw

†
k as used in the reformulation of P2, and

then further rewrite the probabilistic constraints as follows

max
{Wk,ρk,λ}

λ

s.t. P

{

∆h
†
kQk∆hk + 2ℜ{∆h

†
kQkĥk}+ ĥ

†
kQkĥk

−γk

(

N0 +
NC

ρk

)

≥ 0

}

≥ αk,∀k,∆hk ∈ Hk,

P

{

∆h
†
kW∆hk + 2ℜ{∆h

†
kWĥk}+ ĥ

†
kWĥk

+N0 −
λ

1− ρk
≥ 0

}

≥ βk,∀k,∆hk ∈ Hk,

tr(W) ≤ Pt,

0 ≤ ρk ≤ 1,Wk � 0,∀k,

tr(AlW) ≤ Pl,∀l,

where we have defined W ,
∑K

k=1
Wk and Qk , Wk −

γk
∑K

j=1,j 6=k Wj for notation convenience.
Then, by applying the BTI method to transform the prob-

abilistic constraints regarding the SINR and EH, we can get
the following robust formulation,

P4: max
{Wk,ρk,xk,zk,µk,νk,λ}

λ̃ (22)

s.t. σ2
htr(Qk)−

√

−2 ln(1− αk)zk + ln(1− αk)xk

+ĥ
†
kQkĥk − γk

(

N0 +
NC

ρk

)

≥ 0,

xkI+ σ2
hQk � 0,

‖σ2
hvec(Qk);

√
2σhQkĥk‖ ≤ zk,

σ2
htr(W)−

√

−2 ln(1 − βk)νk + ln(1 − βk)µk

+ĥ
†
kWĥk +N0 −

λ̃2

1− ρk
≥ 0,

µkI+ σ2
hW � 0,

‖σ2
hvec(W);

√
2σhWĥk‖ ≤ νk,

tr(W) ≤ Pt,

0 ≤ ρk ≤ 1,Wk � 0, ∀k,
tr(AlW) ≤ Pl, ∀l.

By the definition of Wk = wkw
†
k, Wk should be of rank one,

which has been relaxed to be positive semidefinite in P4. Since
P4 is a convex problem, its solutions Wk can be efficiently
obtained via numerical software packages such as CVX, which
are always optimal to the transformed problem P4, but not

Fig. 2. The proposed data-augmentation based training method for the robust
beamforming problem P1 for SWIPT under SINR, total power and SAR
constraints.

necessarily optimal to the original robust formulation of the
SWIPT problem P3. If the solution of Wk is of rank one,
then it is also the optimal solution to the original problem
P1. In such cases, the solution of wk can be derived based
on Wk, where it is straightforward when the rank of Wk

is one. For the cases where the rank of Wk is higher than
one, the near-optimal solution of wk can be derived via the
rank-one approximation of the Wk, e.g. via singular value
decomposition methods [40]. Since the transformed determin-
istic constraints are convex in Wk, ρk, xk, zk, µk and νk, the
original robust beamforming for SWIPT in P3 has been trans-
formed into a convex problem as in P4. Note that by using the
implication in BTI in Lemma 1, the transformed constraints
in P4 characterize the lower bounds on the probability αk and
βk. Therefore, the feasible solutions of P4 are sub-optimal
solutions of the original NP-hard problem P3, and can be
efficiently solved using convex optimization solvers such as
CVX, but the performance could be conservative.

2) Deep Learning Based Method: Based on the above
analysis, conventional solutions such as the BTI method might
transform the probabilistic constraints to a more tractable
form, but at the cost that the solutions are expected to be
conservative comparing to the optimal solutions. Instead of
seeking sub-optimal solutions via the conventional techniques
like BTI, in this subsection, we will exploit the power of
the deep learning neural networks (NNs), which learn from
the data to form the robust beamforming strategies for the
studied SWIPT under SINR, total power and SAR constraints.
A general design of the training method is illustrated in
Fig. 2. Specifically, we will present the data-augmentation
based technique to transform the probabilistic constraints to an
NN training problem, and then reformulate the optimization
problem with multiple constraints to a deep learning problem.
Note that our method can deal with general channel error
distributions and is not limited to Gaussian errors.

The general objective of the deep learning method is to train
an NN with the estimated channels ĥ1, . . . , ĥK as inputs, and
it will output the beamforming solutions of P3 as follows

{w1, . . . ,wK , ρ1, . . . , ρK} = f(ĥ1, . . . , ĥK ; θ), (23)

where θ denotes the parameter set of the NN. In this way,
it transforms the original non-convex optimization problem
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about the beamforming {wk} to finding the optimal parameter
set θ. However, note that the deep learning method cannot au-
tomatically address the constraints, which should be addressed
by a deliberate design of the training procedure.

According to the SINR definition in (8), the calculation of
Γk requires the estimated CSI hk, the beamforming vector
wj for j = 1, . . . ,K , and the PS parameter ρk. Without
loss of generality, we can rewrite Γk as a function of the NN
f(ĥ1, . . . , ĥK ; θ) as follows:

Γk(ĥk,∆hk, f(ĥ1, . . . , ĥK ; θ))

,
ρk|h†

kwk|2

ρk

(
∑K

j=1,j 6=k |h
†
kwj |2 +N0

)

+NC

. (24)

Similarly, the EH power of receiver k in (9) can be rewritten
as

Λk(ĥk,∆hk, f(ĥ1, . . . , ĥK ; θ))

, (1− ρk)





K∑

j=1

|h†
kwj |2 +N0



 . (25)

The SAR function can be also rewritten as follows

Sl(f(ĥ1, . . . , ĥK ; θ)) ,

K∑

k=1

w
†
kAlwk. (26)

a) Problem Reformulation via Quantile Functions: Sim-
ilar to the analytical studies in the previous sections, it is also
a challenging problem to address the probabilistic constraints
in the NN. To facilitate the evaluation of the probabilistic
constraints, we first introduce the quantile function q(x, σ)
as follows,

q(x, σ) = inf{z|P{x ≤ z} ≤ σ}, (27)

where the quantile function q(x, σ) returns the quantile value
(infimum value) z, such that for all x, the probability P{x ≤
z} is no more than the value of σ. In this way, given a
probabilistic constraint in the following form

P{x ≤ Z} ≤ σ, (28)

then it can be rewritten by the quantile function in the
equivalent form as follows

Z − q(x, σ) ≤ 0, (29)

which transforms the comparison from the probability P{x ≤
Z} against σ, to the quantile value q(x, σ) against the thresh-
old Z . Therefore, for the SINR constraint (17) of receiver k,
it can be first rewritten into the following form

P{Γk ≤ γk} ≤ 1− αk. (30)

Then, with the quantile function, it can be further transformed
as follows

γk − q(Γk(ĥk,∆hk, f(ĥ1, . . . , ĥK ; θ)), 1− αk) ≤ 0, (31)

where the NN representation of Γk in (24) has been used.
Similarly, the EH constraint (18) of receiver k can be

transformed as follows

λ− q(Λk(ĥk,∆hk, f(ĥ1, . . . , ĥK ; θ)), 1− βk) ≤ 0. (32)

By noticing λ is also the objective of the original robust
formulation in P3, we further rewrite the robust formulation
of SWIPT based on NN f(ĥ1, . . . , ĥK ; θ) as follows

P5: max
θ

E
ĥk,∆hk,∀k min

{q(Λk(ĥk,∆hk, f(ĥ1, . . . , ĥK ;θ)), 1− βk)} (33)

s.t. E
ĥk,∆hk,∀k

min

{γk − q(Γk(ĥk,∆hk, f(ĥ1, . . . , ĥK ;θ)), 1− αk)} ≤ 0, (34)

0 ≤ ρk ≤ 1, ∀k, (35)
K
∑

k=1

‖wk‖
2 ≤ Pt, (36)

Sl(f(ĥ1, . . . , ĥK ;θ)) ≤ Pl,∀l, (37)

where the mathematical expectations in objective (33) and the
SINR constraint (34) are with respect to ĥk,∆hk, ∀k. This is
to make the trained NN parameter set θ generally applicable
to all possible ∆hk and estimated CSI inputs ĥk. Note that
since wk and ρk are the outputs of the NN f(ĥ1, . . . , ĥK ; θ),
the deterministic constraints (35)–(37) can be regarded as the
constraints on the NN outputs.

b) Addressing the constraints: During the training pro-
cedure, the NN cannot automatically satisfy the constraints.
Therefore, for the problems with constraints, e.g., the studied
robust beamforming for the SWIPT problem, each constraint
needs to be addressed deliberately. Similar to the analysis in
the convex optimization, there are no universal solutions to ad-
dress all constraints. Some simple constraints can be addressed
via the design of the output layer of the NN architecture. Here
we will use two output layer design techniques to address the
constraint (35) and (36) as follows:

• For the PS constraint in (35), each ρk should be within
the range of [0, 1]. This can be achieved by applying the
Sigmoid function in the output layer for each raw output
ρ̃k as ρk = Sigmoid(ρ̃k), with Sigmoid(x) = 1

1+e−x .
• For the total power constraint in (36), the sum power of

all wk, calculated by
∑K

k=1
‖wk‖2, should be bounded

by the total power Pt. This can be addressed by scaling
the raw beamforming vectors w̃k as wk = Y w̃k, with
Y = min

{

1, Pt∑
K

k=1
‖w̃k‖2

}

.

With the above output layer design, the constraints (35) and
(36) are enforced by the NN architecture automatically, i.e., all
outputs will satisfy both constraints. Therefore, when possible,
it is preferable to exploit the NN architectures, e.g., the NN
output layer, which firmly address the constraints. However,
the above techniques can only address simple constraints
such as (35) and (36). For complicated ones, such as the
probabilistic constraint (34) and the SAR constraint (37),
we exploit a general technique by modifying the objective
function, so that the trained NN parameter set θ should learn
to satisfy both via the training procedure. This is achieved by
considering the penalty of violating the constraints in the loss
function given by (38), where c1, c2 and c3 are positive weight
parameters for each individual learning objective terms2, and
(x)+ , max{x, 0} is the clamp operation. The use of the
clamp operation is to make the loss function L(θ) increase
only when the corresponding constraints are violated.

2The values of c1, c2 and c3 are empirically determined by trial and error.
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L(θ) = −c1 minE
ĥk,∆hk,∀k

{q(Λk(ĥk,∆hk, f(ĥ1, . . . , ĥK ;θ)), 1− βk)}

+ c2

K
∑

k=1

(

E
ĥk,∆hk,∀k{γk − q(Γk(ĥk,∆hk, f(ĥ1, . . . , ĥK ;θ)), 1− αk)}

)

+
+ c3

L
∑

l=1

(

Sl(f(ĥ1, . . . , ĥK ;θ)) − Pl

)

+
. (38)

θ
(t) = θ

(t−1) +
c1

|S
h̃k

|

∑

h̃k∈S
h̃k

1

|S∆hk
|

∑

∆hk∈S∆hk

∇θ min{q(Λk(ĥk,∆hk, f(ĥ1, . . . , ĥK ;θ)), 1− βk)}

−
K
∑

k=1

c2

|S
h̃k

|

∑

h̃k∈S
h̃k

1

|S∆hk
|

∑

∆hk∈S∆hk

∇θ

(

γk − q(Γk(ĥk,∆hk, f(ĥ1, . . . , ĥK ;θ)), 1− αk)
)

+

−
L
∑

l=1

c3

|S
h̃k

|
∇θ

(

Sl(f(ĥ1, . . . , ĥK ;θ))− Pl

)

+
. (40)

In this way, we can rewrite the robust beamforming for
SWIPT under SINR, total power and SAR constraints as the
following unconstrained deep learning problem:

P6: min
θ

L(θ), (39)

where P6 provides a transformed formulation of P3 that can
be solved by deep learning methods. Specifically, P3 is first
transformed to P5 with the help of the quantile function
in (27), which is then transformed to P6 by integrating the
constraints together with the objective function as the loss
function that can be used for deep learning. Note that since the
loss function L(θ) exploits the end performance (the expected
harvested power) to evaluate the outputs of the NN, the
training process can apply the unsupervised training method,
where there is no need to know the optimal beamforming
vectors and the PS parameters as supervised labeled data in
the supervised training method.

c) Data-augmentation Based Training Method: In the
studied robust beamforming problem of SWIPT with SINR,
total power and SAR constraints, the most challenging task
is to address the probabilistic constraints with regards to the
EH and SINR constraints. In the previous sections, we have
exploited the quantile function to transform the constraint with
probability to a constraint with quantile values. Further, the
loss function has been modified so that it is expected that
these constraints can be learned by the NN. It can be observed
by the loss function L(θ) in (38), that the channel estimation
errors ∆hk is only required to evaluate the outputs of the NN
with regard to the probabilistic constraints, while the NN only
calculates outputs based on the estimated CSI h̃k.

Inspired by this, we can add an auxiliary module during
the NN training procedure, where each estimated CSI h̃k

is augmented by a set of channel estimation errors S∆hk

to form a set of potential actual CSI Shk
= {hk|hk =

h̃k + ∆hk, ∀∆hk ∈ S∆hk
}, which is then used to evaluate

the probabilistic related terms in the loss function L(θ). The
evaluation over the augmented set Shk

, provides an estimated
performance of the loss function L(θ), while it is expected
to converge to the actual performance when the size of the
set increases according to the law of large numbers. Similarly,
the mathematical expectation calculation in (38) against the
estimated CSI h̃k can be achieved by an evaluation of the

loss function over a set of estimated CSI S
h̃k

. With the loss
function L(θ) estimated over the estimated CSI set S

h̃k
and

the augmented set Shk
for each element in S

h̃k
, the NN

parameter set θ can be updated based on the gradient descent
method [42] as (40).

When the offline training phase is completed, the trained
NN can be deployed for the application and the beamforming
solution can be obtained by using the inference mode of the
NN, i.e. the channels are used as inputs to the NN and the NN
only performs forward calculations without a back-propagation
process. Since matrix multiplication is the most computation-
intensive operation, we estimate the computational complexity
based on the required multiplications, while other operation
time is ignored. If the NN has L fully connected layers and
the l-th layer has θl neurons, then the total computational
complexity of the NN-based method can be estimated as
O(
∑L

l=2
θl−1θl). Besides the fixed number of neurons for the

layers l − 2 to L − 1, the first layer input is of dimension
2KNt and the last layer output is of dimension 2K(Nt + 1).
Therefore, the total computational complexity of the NN for
the proposed method can be estimated as O(KNt). The
complexity of solving the general problems P2 and P4 is
dominated by the SDP constraints and according to [43, 6.6.3],
the associated complexity of the interior-point algorithm for
solving these two problems is O

(√
KNt

(
K3N2

t +K2N3
t

))
.

C. Simulation Results

To evaluate the performance of the proposed algorithm,
simulation results are presented and discussed in this section.
The considered MISO downlink is composed of a transmitter
with Nt = 3 transmit antennas and K = 2 receivers. Each
transmit and receive antenna has 8 dBi and 3 dBi gain, re-
spectively. Receivers can harvest energy at frequency f = 915
MHz, and are randomly located around the transmitter with a
distance lk ∼ U(1, 5) m and at a direction ζk ∼ U(−π, π).
We adopt Rician fading with a Rician factor of 0.5 to model
the channel, due to the short distance between the transmitter
and the receivers and the dominance of the line-of-sight (LOS)
signal; the path loss coefficient is 2.5. We consider one SAR
constraint, i.e., L = 1, Pt = 2 W, N0 = −70 dBm and
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Fig. 3. The harvested energy versus the SAR constraints.
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Fig. 4. The total transmit power consumption versus the SAR constraints.

NC = −50 dBm. The SAR matrix is given below by [19]

A =





0.35 −0.64− 0.15j −0.17 + 0.32j
−0.64 + 0.15j 2.51 −0.31 + 0.29j
−0.17− 0.32i −0.31− 0.29j 2.32



 .

(41)
1) Optimal Beamforming with Perfect CSI: For perfor-

mance comparison with the proposed optimal solution with
perfect CSI, we consider as benchmarks the zero-forcing
beamforming (ZF-BF) and the solution without the SAR
consideration (i.e., the solution of P1 without considering the
SAR constraint). Specifically, the ZF-BF vector is given by

wk =
√
pkw̃k, where w̃k =

(INt
−H

†

k
Hk)hk

‖(INt
−H

†

k
Hk)hk‖ , and pk is

the power for the k-th receiver. Let Gk,j , |h†
kw̃j |2 denote

the equivalent link gain between the transmitter and the k-
th receiver, which satisfies Gk,j = 0, ∀k 6= j. Finally, let
Fk,l = w̃

†
kAlw̃k denote the l-th radiation channel gain due to

the transmission intended for the k-th receiver.

P7: max
{pk≥0,ρk}

λ (42)

s.t.
ρkGk,kpk
ρkN0 +NC

≥ γk, ∀k,
(1 − ρk)(Gk,kpk +N0) ≥ λ, ∀k,
0 ≤ ρk ≤ 1, ∀k,
K∑

k=1

pk ≤ Pt,
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Fig. 5. The harvested energy versus the SINR constraints.
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Fig. 6. The feasible probability versus the SINR constraints.

K∑

k=1

pkFk,l ≤ Pl, ∀l.

This is a linear programming problem and can be solved using
CVX. But as will be illustrated by simulation results, the ZF-
BF solutions are very conservative in the EH performance.

Fig. 3 shows the harvested power versus the SAR power
constraint Pl, where the SINR requirement at the receivers
is 15 dB. The proposed optimal solution achieves higher har-
vested power as Pl increases, and significantly outperforms the
ZF-BF scheme. For instance, when Pl = 2 W, the harvested
energy of the proposed solution is about −5.6 dBm, which is
1.6 dB greater than that of the ZF-BF solution. The solution
without a SAR constraint remains constant and achieves a
higher harvested power than the proposed solution, but the
performance gap decreases by increasing Pl. Fig. 4 depicts
the total power consumption at the transmitter for various Pl

when Pt = 2 W. We can observe that the solution without
a SAR constraint consumes the full transmission power (2
W) to maximize the harvested power. The proposed algorithm
makes more effective use of the transmit power than the ZF-
BF solution in order to harvest more power while satisfying
the SAR constraint.

Fig. 5 shows the harvested power versus the SINR require-
ments, where the SAR power constraint is 2 W. The harvested
power of all solutions decreases as the SINR constraints
increase, and this indicates that more power of the received
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Fig. 7. The EH performance comparison between the proposed NN method,
the BTI method, and the non-robust method.

signal is used for information decoding at the high SINR
requirement, due to the nature of PS. Fig. 6 demonstrates the
feasibility probability of the three solutions in terms of the
SINR requirements, and the SAR power constraint is 2 W.
When the SINR requirement is low (i.e., 5 dB), the feasibility
probability of the optimal solution (about 99%) is close to that
of the solution without SAR constraints and much higher than
that of the ZF-BF solution (around 84%). In the high SINR
regime, this gap reduces as the SINR requirement increases
and this is because the ZF-BF becomes nearly optimal so both
solutions converge.

2) Robust Beamforming with Imperfect CSI: Simulations
are conducted to compare the performance of robust beam-
forming with the three previously discussed solutions when the
available CSI is imperfect, which includes a) the non-robust
solutions to the SWIPT formulation P2, without considering
the channel estimation errors, which is solved via CVX, b)
the BTI solutions to the robust formulation P4, and c) the
proposed NN-based solution to the robust formulation P6 via
the proposed method in Fig. 2. The variance of the channel
estimation error is set as σ2

h
= 10−5. Specifically, the SINR

and SAR thresholds are the same for all receivers, where
γk = 5 dB and Pl = 1.2 W/kg, while the total transmit
power Pt = 2 W is used. The probability constraints are set
as αk = 95%, βk = 90%, ∀k, unless otherwise specified.

In the proposed NN training method, five fully connected
hidden layers are constructed as illustrated in Fig. 2. Each
layer has a width of 300, and the PReLU activation function
is used except for the last layer, where PReLU(x) returns x
if x ≥ 0, or 0.25x otherwise. To support the NN training,
the Batch normalization technique is used for each layer
except for the last layer, and the Adam optimizer is used
with a learning rate of 10−5. Since the proposed NN training
method is based on unsupervised training, it only requires to
generate the estimated CSI and channel estimation errors for
the training purpose. In the simulations, we have randomly
generated 4×105 estimated CSIs and exploited the mini-batch
training method with a batch size of 4000. During the training
procedure, the channel estimation error sets are randomly
generated according to its distribution, where each estimated
CSI is augmented with 200 channel estimation errors. The
weight parameters are empirically selected as c1 = 10000,
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Fig. 8. The SINR performance comparison between the proposed DNN
method, the BTI method, and the non-robust method.

c2 = 100 and c3 = 100. In addition, a total of 500 testing
estimated CSIs are generated, which are used as inputs for the
three considered methods, whose beamforming solutions are
then evaluated against 104 channel estimation errors for each
estimated CSI.

We first evaluate the EH performance of the three methods,
where the cumulative distribution function (CDF) of the least
harvested energy among the receivers is shown in Fig. 7.
It is seen that the NN-based method shows a better EH
performance than the BTI method, where the harvested power
at the 90% probability threshold is −12 dBm and −15.7 dBm,
respectively. This corresponds to a 3.7 dB gain for the NN-
based method compared to the BTI method. As for the non-
robust method, it shows the best EH performance among the
three methods, but later it will be shown that the constraints
have been violated, which makes the EH performance invalid
to use.

The worst receiver’s SINR performance is presented in Fig.
8, where the probability threshold of 95% is indicated by
the horizontal dashed line, and the 5 dB SINR threshold is
indicated by the vertical solid line. Specifically, it is seen
that both the NN-based method and the BTI method meet
the probabilistic constraints regarding SINR, where their worst
receiver’s SINR have been maintained above 5 dB bound at
the 95% probability. Meanwhile, the NN-based method shows
better performance compared to the BTI method, i.e. it pro-
vides a higher worst user’s SINR at the probability threshold
95%. This is due to the fact that the BTI method transforms
the original robust formulation to a convex but conservative
formulation, where the solutions can be effectively solved but
at the cost of the sub-optimal solutions. On the other hand,
the NN-based method empirically evaluates the probabilistic
bounds during the training, and it learns to target at better
EH performance, while satisfying the SINR requirements. As
demonstrated in Figs. 7 and 8, both the NN-based and BTI
methods, satisfy the robust beamforming constraints as in the
original problem P3, while the NN-based method provides
better solutions with higher EH performance and the BTI
solutions are more conservative compared to the NN solutions.
It is noticed that the non-robust method fails to satisfy the
SINR constraint, and this is because the non-robust method
does not consider the channel estimation errors during its
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Fig. 9. The SAR performance comparison between the proposed NN method,
the BTI method, and the non-robust method.

formulation. By jointly considering the EH performance in
Fig. 7 and the SINR performance in Fig. 8, the results of the
non-robust method also indicate the importance of the robust
formulation, as the uncertainty introduced by the channel
estimation errors could compromise the performance, or even
make the solutions invalid to use.

The SAR performance is shown in Fig. 9. It can be seen that
the CDF of the BTI method and the non-robust method overlap
with the threshold line at Pl = 1.2 W/kg. This is because the
SAR constraint is a linear constraint, while the transformed
or relaxed formulations in both the BTI and the non-robust
method are in convex forms. Therefore, the overlap with the
SAR threshold Pl = 1.2 W/kg indicates that the solutions
via the BTI and non-robust method are based on the equality
condition of the SAR constraint. On the contrary, the CDF
of the NN method shows that the final SAR performance is
within the range from 0.6 to 1.2 W/kg, and the SAR threshold
has been met for all tests with regards to both estimated CSI
and channel estimation errors. It is also noticed that although
the formulation only requires a firm bound on the maximum
SAR, the NN-based method can provide solutions with lower
SAR radiations.

In summary, the trade-off among the SINR, EH and SAR
has been shown to be a non-convex and NP-hard problem
in the analytical studies in Section III-B, but the results in
Figs. 7–9 demonstrate that the proposed training method has
successfully learned better solutions than the BTI method and
the non-robust method.

IV. SWIPT WITH MPE CONSTRAINTS:
LARGE-SCALE PERFORMANCE ANALYSIS

In this section, we study a SWIPT network from a large-
scale point-of-view under the MPE constraint.

A. System model

1) Network Model: We consider a large-scale bipolar ad
hoc wireless network consisting of a random number of
transmitter-receiver pairs. The transmitters form a homoge-
neous Poisson point process (PPP) Φ = {xi : i ≥ 1} of
density λ in a two dimensional Euclidean space R2, where
xi ∈ R2 denotes the location of the i-th transmitter. Each
transmitter xi has a dedicated receiver at a distance d0 in

some random direction and transmits with fixed power Pt. The
time is considered to be slotted and at each time slot all the
transmitters are active without any coordination or scheduling.
We consider the performance of a receiver located at the origin
and its associated transmitter x0. We perform our analysis for
this typical receiver but, according to Slivnyak’s Theorem [44],
our results hold for any receiver in the network.

2) Channel Model: We assume that all wireless links suffer
from both small-scale block fading and large-scale path-loss
effects. The link between a receiver and an interfering node is
in LOS with a probability pL, otherwise it is blocked, e.g. by
buildings. On the other hand, the link between a transmitter
and its dedicated receiver is always considered to be in LOS,
i.e. pL = 1. The interference effect from non-LOS signals
is ignored, as we assume the dominant interference is caused
by the LOS signals [45]. We consider independent Nakagami
fading with parameter µ for each LOS link and so the power
of the channel fading is a normalized gamma random variable
with shape parameter µ and scale parameter 1/µ. We denote
by hi the channel gain for the link between the i-th transmitter
and the typical receiver. Moreover, all wireless links exhibit
AWGN with variance N0. The path-loss model assumes that
the received power is proportional to d−α

i where di is the
Euclidean distance from the origin to the i-th transmitter and
α > 2 is the path-loss exponent.

3) Sectorized Antenna Model: The transmitters and re-
ceivers are equipped with multiple antennas and employ adap-
tive directional beamforming [46]. For the sake of analytical
tractability, we make use of an approximation of an actual
beam pattern using a sectorized model. In particular, the gain
of a link between a transmitter and a receiver is a discrete
random variable given by [46]

g =







M2 with probability (ωπ )
2,

Mm with probability 2ω
π (1− ω

π ),

m2 with probability (1 − ω
π )

2,

(43)

where g takes into account three parameters: the main lobe
beamwidth ω ∈ [0, π], the main lobe gain M , and the side lobe
gain m. We let qi = {(ωπ )2, 2(ωπ )(1− ω

π ), (1− ω
π )

2} denote the
probability of a link with gain gi = {M2,Mm,m2}. Finally,
we assume that the link gain between each transmitter and
its dedicated receiver is equal to M2, i.e. they are perfectly
aligned. Due to this sectorization, the PPP Φ is partitioned into
three thinned spatial processes [47], as follows: Φ1 represents
the set of interferers with link gain g1 with the typical receiver,
i.e. Φ1 is a PPP with density λ1 = q1λ. Similarly, Φ2 and Φ3

are the set of interferers with link gains g2 and g3, respectively,
with the typical receiver; as such, Φ2 and Φ3 are PPPs with
density λ2 = q2λ and λ3 = q3λ, respectively.

B. Performance Analysis with MPE Constraints

Based on the considered system model, the SINR at the
typical receiver can be written as

SINR =
ρP0h0d

−α
0

ρ(N0 + I) +NC
, (44)
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where P0 , g1Pt and

I ,

3∑

i=1

Pi

∑

x∈Φi

hx
dαx
, (45)

denotes the aggregate interference generated by the transmit-
ters in Φ at the typical receiver, with Pi = giPt. On the other
hand, the instantaneous energy harvested at the typical receiver
is given by (2) with

Pr = P0h0d
−α
0 +

3∑

i=1

Pi

∑

x∈Φi

hx
dαx
, (46)

which is the aggregate received signal power at the receiver.
Any potential RF EH from the AWGN noise is considered to
be negligible.

In this section, we focus on the MPE of the network,
evaluated at the origin. In other words, we would like to study
the probability of satisfying the MPE constraint τ , expressed
as

ps(τ) = P{MPE < τ}, (47)

where

MPE =
P0h0d

−α
0

4πd20
+

3∑

i=1

Pi

∑

x∈Φi

hxd
−α
x

4πd2x
, (48)

which follows from (6) and is referred to as the point source
model, where the transmitting antenna is assumed to be
represented by a single point source [48]. Even though this
model does not take into account the antenna size (assumed
to be a point), it is accurate in the far-field [6], [48]. We first
state the following lemma and then provide the main result.

Lemma 2. The characteristic function of the interference I is

given by

φ(t, λ, P, α) = exp

(

2πλ

α

(

− tP
µ

) 2
α

B

(

− 2

α
, µ+

2

α

))

,

(49)

where λ and P are the density and transmit power of the

interfering nodes, respectively.

Proof. The proof is given in Appendix B.

Theorem 2. The probability of satisfying the MPE constraint

τ is given by

ps(τ) =
1

2
− 1

π

∫ ∞

0

1

t
ℑ
{

exp(−4πtτ)ψ(t)

(1− tP0d
−α−2
0 /µ)µ

}

dt, (50)

where

ψ(t) =

3∏

i=1

φ(t, λi, Pi, α+ 2), (51)

and φ(t, λi, Pi, α+ 2) is given by Lemma 2 with λi = pLqiλ
and Pi = giPt.

Proof. The proof is given in Appendix C.

Note that as µ increases, the above probability converges to
a constant floor. Specifically, for µ→ ∞, we have

lim
µ→∞

ps(τ) →
1

2
− 1

π

∫ ∞

0

1

t
ℑ
{
exp(−4πtτ)ψ(t)

1− tP0d
−α−2
0

}

dt,

(52)

with

lim
µ→∞

ψ(t) → exp

(

2πΓ
(

−2

α+2

)

α+ 2
(−t) 2

α+2

3∑

i=1

λiP
2

α+2

i

)

,

(53)

where (52) follows from (1 − x)a → 1 − ax for x → 0 and
(53) follows from Γ(x+ a) → Γ(x)xa for x→ ∞.

Next, we are interested in studying both information and
energy coverage probabilities when the MPE constraint is
satisfied, i.e. the joint probabilities. Due to the correlation
between the SINR and the energy harvested with MPE, we
assume these events are independent for the sake of analytical
tractability. Therefore, we consider the bounds

P{MPE < τ, SINR > γ} ≥ P{MPE < τ}P{SINR > γ}, (54)

and

P{MPE < τ,E > ǫ} ≤ P{MPE < τ}P{E > ǫ}, (55)

where γ and ǫ are non-negative thresholds for the SINR and
the average harvested energy, respectively, and P{SINR > γ}
and P{E > ǫ} are given in the following corollary.

Corollary 1. The information coverage probability is given

by

po(γ) =
1

2
− 1

π

∫ ∞

0

1

t
ℑ
{
exp(t(NC/ρ+N0))ψ(t)

(1 + tP0d
−α
0 /(γµ))µ

}

dt,

(56)

and the energy coverage probability is given by

pe(ǫ) =
1

2
+

1

π

∫ ∞

0

1

t
ℑ
{

exp(−tδ)ψ(t)
(1 − tP0d

−α
0 /µ)µ

}

dt, (57)

where ψ(t) =
∏3

i=1
φ(t, λi, Pi, α) and

δ =
cǫ

(1 − ρ)(a− ǫ− b/c)
. (58)

The proof for the above expressions follows similar steps as
the proof of Theorem 2 and thus it is omitted. It is important
to point out that in (58), we need ǫ < ā− b̄/c̄, that corresponds
to the value at which the harvesting circuit saturates. We now
derive the joint distribution of the MPE, the SINR and the
average harvested energy. In other words, we evaluate

P{MPE < τ, SINR > γ,E > ǫ}
≈ P{MPE < τ}P{SINR > γ,E > ǫ}. (59)

Theorem 3. The joint information and energy coverage prob-

ability is given by

pJ(γ, ǫ) =
1

πΓ(µ)

∫ ∞

0

1

t
ℑ
{(

Γ(µ, ξ(µ− tP0d
−α
0 ))

exp(tδ)(1 − tP0d
−α
0 /µ)µ
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Fig. 10. Probability of satisfying the MPE versus the constraint value τ .

− exp(t(NC/ρ+N0))Γ(µ, ξ(µ + tP0d
−α
0 /γ))

(1 + tP0d
−α
0 /(µγ))µ

)

ψ(t)

}

dt,

(60)

where ψ(t) =
∏3

i=1
φ(t, λi, Pi, α), δ is given by (58) and

ξ =
γdα0

P0(1 + γ)

(

δ +N0 +
NC

ρ

)

. (61)

Proof. The proof is given in Appendix D.

Finally, we consider the special case where the interference
does not exist. This can be realized in two ways: a) in a
blockage dense area, i.e. pL → 0, and b) small beamwidth
and small side lobe gain, i.e. ω → 0 and m→ 0. In this case,
we have

p̂J (γ, ǫ) = P{MPE < τ, SINR > γ,E > ǫ}

=
1

Γ(µ)

(

Γ

(

µ,
µdα0
P0

Ξ

)

− Γ

(

µ,
4πτµdα+2

0

P0

))

, (62)

where Ξ , max
(

γN0 +
NC

ρ , δ
)

. The proof is omitted as it
follows directly from the use of the CDF of a gamma random
variable. By using the above, we can find the optimal Pt that
maximizes the joint distribution. The derivative is expressed
as

d

dPt
p̂J(γ, ǫ) =

1

Γ(µ)

(

1

Pt

(
µdα0Ξ

M2Pt

)µ

exp

(

− µdα0Ξ

M2Pt

)

− 1

Pt

(
4πτµdα+2

0

M2Pt

)µ

exp

(

−4πτµdα+2
0

M2Pt

))

,

(63)

which follows from dΓ(a, x)/dx = −xa−1 exp(−x). Then,
by setting the derivative equal to zero and solving for Pt, we
deduce that

P ∗
t =

4πτdα+2
0 − dα0Ξ

M2 ln
(

4πτd2
0

Ξ

) . (64)

Observe that the optimal value of Pt is independent of the
fading parameter µ. As expected, P ∗

t increases with τ but
decreases with Ξ and M .
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Fig. 11. Information coverage probability versus the transmit power Pt.

C. Numerical Results

We now evaluate the performance of SWIPT networks with
MPE constraints and validate our analytical framework with
Monte Carlo simulations. For the sake of comparison, we
consider networks operating in millimeter wave (mmWave)
bands (e.g. 30 GHz) and in ultra high frequencies (UHF) (i.e.
300 MHz to 3 GHz). Following a similar approach to [46], we
use M = 10 dB for mmWave and M = 0 dB for UHF, i.e. the
mmWave antenna gain is ten-fold the one of UHF. Moreover,
we consider µ = 5, N0 = −117 dB, pL = 0.8 (mmWave) and
µ = 1, N0 = −127 dB, pL = 1 (UHF). Finally, the remaining
parameters are set as: ω = π/6, m = −10 dB, d0 = 5 m,
α = 3, NC = 0 dB, γ = −10 dB, ǫ = −5 dB and ρ = 0.5.

Fig. 10 depicts the probability of satisfying the MPE
constraint. As expected, the probability decreases with the
transmit power and increases with the constraint τ . We can
observe that the mmWave band satisfies the constraint with
a higher probability, compared to the UHF band with the
same transmit power. Indeed, for Pt = 10W and τ = 0.2
W/m2, mmWave can satisfy the constraint around 75% of
the time, whereas the RF exposure with UHF below τ is
less than 60% of the time. This shows the positive impact
of directional beamforming, which can be achieved by higher
frequencies, on the network’s overall RF exposure. The figure
also depicts the asymptotic scenario µ→ ∞ (Eq. (52)). It can
be seen that this provides a lower bound on ps(τ). Finally, the
analytical results (lines) and simulation results (markers) are
in agreement, which verifies our analysis.

Fig. 11 illustrates the information coverage probability
in terms of the transmit power. When there is no MPE
constraint, the probability converges to a constant ceiling
for large values of Pt; this corresponds to the interference-
limited scenario. Observe that mmWave networks significantly
outperform UHF, as also shown in [46]. On the other hand,
when an MPE constraint is imposed, the coverage probability
decreases after a certain value of Pt as the MPE level is
exceeded more frequently. In other words, there is an optimal
value that maximizes the coverage probability, which can be
easily deduced by algorithms such as the bisection method.
Similar observations can be derived for the energy coverage,
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Fig. 12. Energy coverage probability versus the transmit power Pt; λ = 0.1

(upper sub-figure) and λ = 0.2 (lower sub-figure).

shown in Fig. 12. In particular, with no MPE constraints, the
probability converges to one for high values of Pt, whereas
it drops after a certain value of Pt when an MPE level
is enforced. However, observe that the optimal Pt here is
different compared to the information case. Moreover, the
UHF bands perform well in terms of energy coverage but
are still outperformed by mmWave bands due to the higher
antenna gain at the receivers and transmitters.

Finally, Fig. 13 shows the joint coverage probability with
respect to the LOS probability. It can be seen that the impact
of LOS probability depends on the value of the transmit
power. At low Pt, the performance improves with pL since this
facilitates in harvesting more RF energy. Note that for these
values, the performance loss from imposing safety constraints
is small. On the contrary, for higher values of Pt, the coverage
probability decreases with pL as the effect of interference is
detrimental to the SINR. Also, the losses in performance due
to MPE constraints are more notable in this case.

V. CONCLUSION

In this paper, we provided an framework for the design
and analysis of far-field SWIPT under safety constraints.
We focused on two RF exposure regulations, the SAR and
the MPE, and outlined the state-of-the-art as well as the
modeling approach in the context of communication networks.
A design for optimal robust beamforming based on deep
learning was proposed, subject to specific information, EH
and SAR constraints. In addition, a complete theoretical study
for the performance of large-scale SWIPT systems under the
MPE constraint was derived, with regards to both information
and energy coverage. Our results provide insights in terms of
the optimal SWIPT design and show the potentials from the
proper development of SWIPT systems under health and safety
restrictions.

APPENDIX

A. Proof of Theorem 1

First the partial Lagrangian of the problem P2 is written as

L({Wk, ρk, αk, βk, νl, µ}) = µ

(
K∑

k=1

tr(Wk)− Pt

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 13. Joint coverage probability versus the LOS probability pL.

+

L∑

l=1

νl

(
K∑

k=1

tr(AlWk)− Pl

)

+

K∑

k=1

αk

(
K∑

j=1

tr(hkh
†
kWj) +N0

+
Nk

ρk
−
(

1 +
1

γk

)

tr(hkh
†
kWk)

)

+

K∑

k=1

βk



λ̃2 − (1− ρk)





K∑

j=1

tr(hkh
†
kWj) +N0









=

K∑

k=1

tr(WkXk)−
L∑

l=1

νlPl +

K∑

k=1

αk

(

N0 +
Ni

ρi

)

+

K∑

k=1

βk(λ̃
2 − (1− ρk)N0),

where {αk, βk, νl, µ} are dual variables, and we have defined

Xk , µI−
K∑

j=1

βj(1− ρj)hjh
†
j +

K∑

j=1

αjhjh
†
j

− αk

(

1 +
1

γk

)

hkh
†
k +

L∑

l=1

νlAl. (65)

So the dual problem is

max
ν,α,β,µ≥0

−
L∑

l=1

νlPl +

K∑

k=1

αk

(

N0 +
Ni

ρi

)

+
K∑

k=1

βk(λ̃
2 − (1− ρk)N0)

s.t. Xk = µI+
K∑

j=1

(αj − βj(1− ρj))hjh
†
j

−αk

(

1 +
1

γk

)

hkh
†
k +

L∑

l=1

νlAl � 0, ∀k.

Next, we prove that the matrix µI +
∑K

j=1
(αj − βj(1 −

ρj))hjh
†
j+
∑L

l=1
νlAl is full rank by contradiction. If it is not
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full-rank, suppose there exits a non-zero vector x that satisfies
x†(µI +

∑K
j=1

(αj − βj(1 − ρj))hjh
†
j +

∑L
l=1

νlAl)x = 0.
Because Xk � 0, we have

x†Xkx = x†

(

µI+

K∑

j=1

(αj − βj(1− ρj))hjh
†
j +

L∑

l=1

νlAl

)

x

− x†

(

αk

(

1 +
1

γk

)

hkh
†
k

)

x

= −αk

(

1 +
1

γk

)

|h†
kx|2 ≥ 0. (66)

Therefore, it holds true that h†
kx = 0, ∀k. It follows that

x†



µI+

K∑

j=1

(αj − βj(1 − ρj))hjh
†
j +

L∑

l=1

νlAl



x

= x†

(

I+

L∑

l=1

νlAl

)

x > 0, (67)

which contradicts the assumption that x†(µI +
∑K

j=1
(αj −

βj(1 − ρj))hjh
†
j +

∑L
l=1

νlAl)x = 0. Therefore, the matrix

µI+
∑K

j=1
(αj − βj(1− ρj))hjh

†
j +

∑L
l=1

νlAl must be full
rank, and the rank of Xk is at least Nt−1. One Karush-Kuhn-
Tucker condition of the problem P2 is that tr(WkXk) = 0,
so the rank of Wk is at most 1. This completes the proof.

B. Proof of Lemma 2

The characteristic function φ(t, λ, P, α) of the interference
I = P

∑

x∈Φ
hxd

−α
x is given by

φ(t, λ, P, α) = E{exp (tI)} = EΦ,hx

{

exp

(

tP
∑

x∈Φ

hx
rαx

)}

= EΦ

∏

x∈Φ

Ehx

{

exp

(

tP
hx
rαx

)}

= exp

(

2πλ

∫ ∞

0

(

Ehx

{

exp

(

tP
hx
uα

)}

− 1

)

udu

)

(68a)

= exp

(

2πλ

∫ ∞

0

((

1− tP

µuα

)−µ

− 1

)

udu

)

, (68b)

where (68a) follows from the probability generating functional
of a PPP [44]; (68b) from the moment generating function
of a gamma random variable since hx are independent and
identically distributed. By using the transformation x = − tP

µuα

and the binomial theorem, the integral can be written as
∫ ∞

0

((

1− tP

µuα

)−µ

− 1

)

udu

= − 1

α

(

− tP
µ

) 2
α

µ
∑

k=1

(
µ

k

)∫ ∞

0

xk−1−2/α

(1 + x)µ
dx

= − 1

α

(

− tP
µ

) 2
α

µ
∑

k=1

(
µ

k

)

B

(

k − 2

α
, µ− k +

2

α

)

, (69)

which follows from [29, 3.194-3]. With the use of the integral
representation of the beta function [29, 8.380-1], we can write

B(k − 2

α , µ − k + 2

α ) =
∫ 1

0
x−

2
α
−1(1 − x)µ+

2
α
−1( x

1−x)
kdx.

Then, it is easy to show that the above finite sum is equal to
−B(− 2

α , µ+ 2

α ), which completes the proof.

C. Proof of Theorem 2

We will derive the probability of satisfying the MPE con-
straint τ by applying the Gil-Pelaez inversion theorem [49],
that is,

ps(τ) = P{MPE < τ}

=
1

2
− 1

π

∫ ∞

0

1

t
ℑ{exp(−tx)φ(t)} dt, (70)

where φ(t) is the characteristic function of the expression in
(48) evaluated at t. Therefore, we have

ps(τ) = P

{

P0h0

dα+2
0

+

3∑

i=1

Pi

∑

x∈Φi

hx

dα+2
x

< 4πτ

}

(71)

=
1

2
− 1

π

∫ ∞

0

1

t
ℑ{exp(−t4πτ)φ(t)} dt. (72)

Since (48) is the sum of four independent terms, its charac-
teristic function is given by the product of the characteristic
function of each term. For the first term, we have

E

{

exp

(
tP0h0

dα+2
0

)}

=

(

1− tP0

µdα+2
0

)−µ

, (73)

which follows from the fact that h0 is a gamma random vari-
able with shape and scale parameters µ and 1/µ, respectively.
Finally, the characteristic function of the i-th term in the above
sum is φ(t, λi, Pi, α+ 2), given by Lemma 2.

D. Proof of Theorem 3

The joint distribution can be evaluated as

pJ(γ, ǫ) = P{SINR > γ,E > ǫ}

= P

{

δ − P0h0d
−α
0 < I <

P0h0d
−α
0

γ
− NC

ρ
−N0

}

= FI

(
P0h0d

−α
0

γ
− NC

ρ
−N0

)

− FI

(

δ − P0h0d
−α
0

)

.

(74)

By letting A ,
P0d

−α

0

γ and B , NC

ρ +N0, FI (h0A−B) can
be expressed using the Gil-Pelaez inversion theorem as

FI(h0A−B) =
1

2
− 1

π

∫ ∞

0

1

t

×ℑ
{

exp(tB)

∫ ∞

ξ

exp(−tAh)fh(h)dhφ(t)
}

dt (75a)

=
1

2
− 1

π

∫ ∞

0

1

t
ℑ
{

exp(tB)χ(A, ξ)
3∏

i=1

φ(t, λi, Pi, α)

}

dt,

(75b)

where (75a) uses the probability density function fh(h) =
µµhµ−1 exp(−µh)/Γ(µ) of a gamma random variable with
parameters µ and 1/µ. The lower limit ξ is derived by
considering

δ − P0h0d
−α
0 <

P0h0d
−α
0

γ
− NC

ρ
−N0,
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and solving for h0 gives (61). Then, in (75b), φ(t, λi, Pi, α)
is given by Lemma 2 and

χ(A, ξ) =

∫ ∞

ξ

exp (−tAh) fh(h)dh

=

(

1− P0d
−α
0

µ

)−µ
Γ
(
µ, ξ(µ− tP0d

−α
0 )
)

Γ(µ)
, (76)

which follows from [29, 3.381-3]. The second term in (74) can
be evaluated with a similar way and the result follows after
some algebraic manipulations.

REFERENCES

[1] CISCO Annual Internet Report (2018-2023) White Paper, 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-
741490.html.

[2] Y. Zeng, B. Clerckx, and R. Zhang, “Communications and signals design
for wireless power transmission,” IEEE Trans. Commun., vol. 65, no. 5,
pp. 2264–2290, May 2017.

[3] I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. W. K. Ng, and
R. Schober, “Simultaneous wireless information and power transfer in
modern communication systems,” IEEE Commun. Mag., vol. 52, pp.
104–110, Nov. 2014.

[4] N. D. Volkow, D. Tomasi, G.-J. Wang, P. Vaska, J. S. Fowler, F.
Telang, D. Alexoff, J. Logan, and C. Wong, “Effects of cell phone
radiofrequency signal exposure on brain glucose metabolism,” Jama,
vol. 305, no. 8, pp. 808–813, Feb. 2011.

[5] International Agency for Research on Cancer and others, “IARC clas-
sifies radiofrequency electromagnetic fields as possibly carcinogenic to
humans,” Press release, vol. 208, 2011.

[6] L. Chiaraviglio, A. Elzanaty, and M.-S. Alouini, “Health risks associated
with 5G exposure: A view from the communications engineering,” IEEE

Open J. Commun. Society, vol. 2, pp. 2131–2179, Aug. 2021.
[7] H. Dai, Y. Liu, G. Chen, X. Wu, T. He, and A. X. Liu, “Safe charging

for wireless power transfer,” IEEE/ACM Trans. Netw., vol. 25, no. 6, pp.
3531–3544, Dec. 2017.

[8] K. S. Yildirim, R. Carli and L. Schenato, “Safe distributed control of
wireless power transfer networks,” IEEE Internet Things J., vol. 6, no.
1, pp. 1267–1275, Feb. 2019.

[9] H. Dai, H. Ma, A. X. Liu, and G. Chen, “Radiation constrained
scheduling of wireless charging tasks,” IEEE/ACM Trans. Netw., vol.
26, no. 1, pp. 314–327, Feb. 2018.

[10] R. Dai et al., “Robustly safe charging for wireless power transfer,” in
Proc. IEEE Conf. Comput. Commun., Honolulu, HI, Apr. 2018, pp. 378–
386.

[11] K. Chan and R. F. Cleveland, and D. L. Means “Evaluating compliance
with FCC guidelines for human exposure to radiofrequency electromag-
netic fields,” Federal Commun. Commiss., Washington, DC, USA, Tech.
Rep. 01–01, Jun. 2001.

[12] CENELEC ES 59005, “Considerations for evaluation of human expo-
sure to electromagnetic fields (EMFs) from Mobile Telecommunication
Equipment (MTE) in the frequency range 30MHz - 6 GHz”, European

Specification, European Committee for Electrotechnical Standardization

(CENELEC), Oct. 1998.
[13] “iPhone 12 Pro RF exposure information,”

https://www.apple.com/legal/rfexposure/iphone13,3/en/
[14] K.-C. Chim, K. C. Chan, and R. D. Murch, “Investigating the impact of

smart antennas on SAR,” IEEE Trans. Antennas Propag., vol. 52, no. 5,
pp. 1370–1374, May 2004.

[15] C. Qiang, Y. Komukai, and K. Sawaya, “SAR investigation of array
antennas for mobile handsets,” IEICE Trans. Commun., vol. 90, no. 6,
pp. 1354–1356, Jun. 2007.

[16] K. R. Mahmoud, M. El-Adawy, S. M. Ibrahem, R. Bansal, and S. H.
Zainud-Deen, “Investigating the interaction between a human head and
a smart handset for 4G mobile communication systems,” Progress in
Electromagnetics Research C, vol. 2, pp. 169–188, 2008.

[17] B. M. Hochwald and D. J. Love, “Minimizing exposure to electromag-
netic radiation in portable devices,” in Proc. Inf. Theory Appl. Workshop,
San Diego, CA, Apr. 2012, pp. 255–261.

[18] B. M. Hochwald, D. J. Love, S. Yan, P. Fay, and J.-M. Jin, “Incorporating
specific absorption rate constraints into wireless signal design,” IEEE

Commun. Mag., vol. 52, no. 9, pp. 126–133, Sep. 2014.

[19] D. Ying, D. J. Love, and B. M. Hochwald, “Beamformer optimization
with a constraint on user electromagnetic radiation exposure,” in Proc.
Annu. Conf. Inf. Sci. Syst., Baltimore, MD, Mar. 2013, pp. 1–6.

[20] D. Ying, D. J. Love, and B. M. Hochwald, “Transmit covariance opti-
mization with a constraint on user electromagnetic radiation exposure,”
in Proc. Global Commun. Conf., Atlanta, GA, Dec. 2013, pp. 4104–
4109.

[21] D. Ying, D. J. Love, and B. M. Hochwald, “Closed-loop precoding
and capacity analysis for multiple antenna wireless systems with user
radiation exposure constraints,” IEEE Trans. Wireless Commun., vol. 14,
no. 10, pp. 5859–5870, Oct. 2015.

[22] D. Ying, D. J. Love, and B. M. Hochwald, “Sum-rate analysis for
multi-user MIMO systems with user exposure constraints,” IEEE Trans.
Wireless Commun., vol. 16, no. 11, pp. 7376–7388, Nov. 2017.

[23] L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, “On the
Gaussian MIMO BC-MAC duality with multiple transmit covariance
constraints,” IEEE Trans. Inf. Theory, vol. 58, no. 34, pp. 2064–2078,
Apr. 2012.

[24] J. Zhang, G. Zheng, I. Krikidis and R. Zhang, “Specific Absorption
Rate-Aware Beamforming in MISO Downlink SWIPT Systems,” IEEE
Trans. Commun., vol. 68, no. 2, pp. 1312–1326, Feb. 2020.

[25] M. You, G. Zheng, and H. Sun, “A data augmentation based DNN
approach for outage-constrained robust beamforming,” in Proc. IEEE

Int. Conf. Commun., Montreal, Canada (Virtual), Jun. 2021, pp. 1–5.
[26] G. Zheng, K.-K. Wong, and T.-S. Ng, “Robust linear MIMO in the

downlink: A worst-case optimization with ellipsoidal uncertainty re-
gions,” EURASIP J. Adv. Signal Process., vol. 2008, no. 1, p. 609028,
Jul. 2008.

[27] K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi,
“Outage constrained robust transmit optimization for multiuser MISO
downlinks: Tractable approximations by conic optimization,” IEEE
Trans. Signal Process., vol. 62, no. 21, pp. 5690–5705, Nov. 2014.

[28] Y. Yuan, P. Xu, Z. Yang, Z. Ding, and Q. Chen, “Joint robust beamform-
ing and power-splitting ratio design in SWIPT-based cooperative NOMA
systems with CSI uncertainty,” IEEE Trans. Vehicular Technology, vol.
68, no. 3, pp. 2386–2400, Mar. 2019.

[29] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and

products, 7th ed. San Diego, CA: Academic Press, 2007.
[30] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless

information and power transfer,” IEEE Trans. Wireless Commun., vol.
12, no. 5, pp. 1989–2001, May 2013.

[31] Y. Chen, N. Zhao, M.-S. Alouini, “Wireless energy harvesting using
signals from multiple fading channels,” IEEE Trans. Commun., vol. 65,
no. 11, pp. 5027–5039, Nov. 2017.

[32] “Understanding the FCC regulations for low-power, non-licensed trans-
mitters,” Federal Communications Commission, Tech. Rep. OET Bull.
63, Oct. 1993.

[33] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical
non-linear energy harvesting model and resource allocation for SWIPT
systems,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2082–2085, Dec.
2015.

[34] K. Chim, K. Chan, and R. D. Murch, “Investigating the impact of smart
antennas on SAR,” IEEE Trans. Antennas Propagation, vol. 52, pp.
1370–1374, May 2004.

[35] A. Khalifa, Y. Liu, Y. Karimi, Q. Wang, A. Eisape, M. Stanaćević, N.
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