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Abstract
Objective.Magnetic resonance elastography (MRE) is widely adopted as a biomarker of liverfibrosis.
However, in vivoMREaccuracy is difficult to assess.Approach. Finite elementmodel (FEM)
simulationwas employed to evaluate liverMRE accuracy and informmethodological optimisation.
MREdatawas simulated in a 3DFEMof the human torso including the liver, and comparedwith
spin-echo echo-planar imagingMRE acquisitions. The simulatedMRE results were comparedwith
the ground truthmagnitude of the complex shearmodulus (|G*|) for varying: (1) ground truth liver
|G*|; (2) simulated imaging resolution; (3) added noise; (4) data smoothing.Motion and strain-based
signal-to-noise (SNR)metrics were evaluated on the simulated data as ameans to select higher-quality
voxels for preparation of acquiredMRE summary statistics of |G*|.Main results.The simulatedMRE
accuracy for a given ground truth |G*|was found to be a function of imaging resolution,motion-SNR
and smoothing. At typical imaging resolutions, it was found that due to under-sampling of theMRE
wave-field, combinedwithmotion-related noise, the reconstructed simulated |G*| could contain
errors on the scale of the difference between liverfibrosis stages, e.g. 54% error for ground truth |
G*|= 1 kPa.Optimum imaging resolutions were identified for given ground truth |G*| andmotion-
SNR levels. Significance.This study provides important knowledge on the accuracy and optimisation
of liverMRE. For example, formotion-SNR�5, to distinguish between liver |G*| of 2 and 3 kPa (i.e.
early-stage liverfibrosis) it was predicted that the optimum isotropic voxel size is 4–6mm.

1. Introduction

Magnetic resonance elastography (MRE) (McGrath 2018) is a powerful diagnostic tool to determine the
biomechanical properties of biological tissue. Through its sensitivity to pathology-driven changes in tissue
biomechanics,MRE can detect disease such as fibrosis (Yin et al 2007, Singh et al 2015). There are two broad
classes ofMRE, dynamic (Muthupillai et al 1995) and static (or ‘quasi-static’)methods (McGrath et al 2012). In
the former,mechanical waves are delivered, while the latter involves applying a compressive force to thewhole
tissue volume. For both, the resulting displacementfield ismeasured usingmotion encoding gradients (MEGs)
and the biomechanical properties are estimated from themeasurements using an inversion algorithm to
produce an ‘elastogram’. DynamicMREhas beenwidely adopted for the detection and staging of hepaticfibrosis
and cirrhosis (Singh et al 2015,Mathew andVenkatesh 2018). However, a number of questions remainwith
regard toMRE validation.

Crucially, it is difficult to determine the true accuracy of clinicalMRE.Comparisonwithmechanical bench-
top testing of surgically-resected tissue is usually not possible in human studies. Biopsy cores can be removed to
assess liver fibrosis via histological analysis (Morisaka et al 2018). However, the biomechanical properties of
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ex vivo tissue do notmatch the in vivo state due to loss of hydration and blood pressure, removal from the tissue
matrix, and potential damage and loss of structural integrity.

Commonly physical phantoms are built to testMRE and benchmark accuracy.However it is difficult to
make anthropomorphic phantoms that reproduce the in vivoMREmotionfield; although somework has been
done on breast phantoms (Madsen et al 1988,Madsen et al 2006). In liverMRE, the vibrations delivered to the
skin undergomultiple reflections and refractions at anatomical interfaces, e.g. the ribs. Hence, the in vivowave
pattern ismore complex than that of a geometric and homogeneous phantom, and an inversion algorithm that
performswell for a phantomwill not necessarily be optimal for in vivo tissue. Furthermore, the ground truth
mechanical properties of the phantommaterialmight be difficult to determine. Forwater-basedmaterials, e.g.
gelatine, the propertiesmay be temperature-dependent, or change over timewith dehydration.Moreover, non-
water-basedmaterials, e.g. acrylics,might not include sufficient viscosity tomodel biological tissue.

The determination of in vivoMRE accuracy is challenging, as it is influenced bymultiple factors. One
solution is to validateMREmethods using computationalmodelling, as demonstrated for brain (McGrath et al
2016,McGrath et al 2017). The advantage of this approach is that the ground truthmechanical properties are
known a priori and can be comparedwith the inversion-reconstructed properties tomeasure accuracy.
Anthropomorphic in silicomodels can be generated fromanatomical imaging data and used to simulateMRE
motionfields in the body. The computed data can be comparedwithMREdatameasured from the same
individual, to evaluate the realism of the simulation. Further, in silico data can be used to validate and optimise
MRE acquisitionmethodology and inversion algorithms.

This work presents finite elementmodel (FEM) basedMRE simulations to optimiseMRE acquisitions and
assess the accuracy ofMRE tomeasure liver biomechanical properties. The purpose of this initial study is to
investigate the potential of simulation-basedMRE evaluation, startingwith themodel of a healthy individual;
while future studies withmodels of other volunteers and patients will be needed to fully examine this technique.
It should be recognised that the realism of simulations is necessarily limited in various aspects, whichmight
influence the accuracy of absolute simulated values. But such simulations do allow the exploration of the
sensitivity ofMRE to detect a change inmechanical properties with disease, to assess the linearity ofMRE
measures with respect to underlying properties and the potential influence of factors such as imaging resolution.

Recent research has reported the advantages of spin-echo echo-planar imaging (SE-EPI)MREover gradient-
echo basedMREmethods for the liver, in particular for 3 Tesla (T)wheremagnetic field inhomogeneity effects
are pronounced in patients with high liver iron load and thus short transverse relaxation time (T2

*) (Cunha et al
2018). Therefore SE-EPIMREwas acquired and comparedwith the simulatedMRE in the same individual
whose data was simulated.

2.Materials andmethods

2.1.MRI acquisitions
MRI datawas collected on a 3-TPhilips Ingenia scanner (PhilipsMedical Systems, Best, Netherlands), withMRE
implemented using the Resoundant acoustic wave delivery system (Resoundant Inc., Rochester,MN)
(Venkatesh et al 2013). Calculations and image processingwere carried out inMATLAB (R2017b,MathWorks
Inc., Natick,Massachusetts, USA).

One healthymale volunteer (age 26 years)was scannedwith informed consent and in accordancewith local
research ethics guidance.

InMRE,multiple acquisitions capture thewavefield at different snap-shots in time. These are combined via
discrete Fourier transform (DFT) to obtain a harmonic steady-state complex displacementfield,u

( ) ( ) ( ) ( )w=u t u i tx x, exp , 1

whereω is the angular frequency of the vibration. Time-steps are collected by varying the phase offset (α)
between themechanical wave and theMEG. In this study the number of phase offsets (NPO)was set to 8, i.e. 8
values ofα between 0 and 2π.

Four SE-EPIMRE acquisitionsweremadewith different isotropic spatial resolutions and driver frequencies
using the scan parameters: (1)Voxel dimension= 4×4×4mm3, Frequency (freq)= 60Hz,field of view
(FOV)= 384×384×24mm3,matrix= 96×96×6, repetition time (TR)= 600ms, echo time (TE)=
58ms, EPI factor= 39; (2)Voxel dimension= 5×5×5mm3, freq= 60Hz, FOV=400×400×30mm3;
matrix= 80×80×6, TR=600ms, TE=58ms, EPI factor= 33; (3)Voxel dimension= 6×6×6mm3,
freq= 60Hz, FOV=384×384×36mm3;matrix= 64×64×6, TR=600ms, TE=58ms, EPI
factor= 27; (4)Voxel dimension= 6×6×6mm3, freq= 50Hz, FOV=384×384×36mm3;
matrix= 64×64×6, TR=720ms, TE=70ms, EPI factor= 27.One signal averagewas employed
throughout. Each scan durationwas 16 s, in which 8 phase offsets were collected during an end-expiration
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breath-hold. In each acquisition six axial slices covering the central liver volumewere collected. Voxel sizes were
chosen based on the simulation results for healthy liver. The frequency was changed to explore variability in the
degree of wave attenuation.

MRE acquisitionswere repeated to collect each of theMEGdirections (head-foot (H-F), anterior–posterior
(A-P), right-left (R-L)), with themotion of the tissue in the direction of the appliedMEGencoded as phase-shifts
which are directly proportional to the displacements. Separate acquisitions confirmed the volunteer hadT2

*/T2

valueswithin a healthy liver range (Kritsaneepaiboon et al 2018).
For FEMpreparation, awhole-body anatomical imagingwas collected on the same subject using amulti-

point gradient-echo basedDixon (mDixon) scan (Dixon 1984, Xiang 2006) using the scan parameters:
FOV=448×560×300mm3,matrix=280×280×200, voxel=1×1×1.5mm3; TR=3ms,
TE=1.12 and 1.99ms,flip angle=10°, signal averages= 1. ThemDixonmethodwas chosen as it provided a
variety of contrasts to inform the data segmentation for the FEM:water-only, fat-only and in-phase and
opposed-phase images.

2.2. Calculation ofmotion- and strain-based SNR to evaluateMREaccuracy
An aimof this studywas to explore potentialmetrics for selection of higher-quality elastogramdata, and both
motion- and strain-based SNRwere considered.Motion-based SNR is likely to bemore informative than
imaging-SNR; where themeasuredmotion is proportional to the phase-shift accrued by the tissuemoving in
theMEG.

TheDFTofmeasured displacements obtaining the harmonic steady-state can be described asfitting a
sinusoid S to each voxel of the data (for eachmotion direction):

{ } ( )= wS ueRe , 2i t

where u is the complex-valued amplitude for the voxel in a given direction. InMcGarry et al (2011), the noise of
themeasured displacementsNmeaswas estimated as the standard deviation (SD)of differences betweenmeasured
andfitted displacements:

{ ( )} ( )s w= -N d u tcos , 3meas i i

whereσ indicates the SDover the phase offsets and di represents themeasured displacements at the different
phase offset time-steps ti (ωti≡αi). The noise of the fitted displacement amplitudeNampwas related toNmeas via
the propagation of uncertainties through theDFT (McGarry et al 2011):

( )=N
N

N
2

. 4amp
PO

meas

The SNRbased on themeasured displacements divided byNmeas is referred to asMM-SNR (‘measured-motion’
SNR), and that based on the real component of the steady-state amplitudes andNamp is denotedMA-SNR
(‘motion-amplitude’ SNR). Voxel-wiseMA-SNRwas calculated separately for the 3motion directions and
subsequently averaged over the directions.

As the focus here is to estimate shear elasticmodulus, shear strain is likely to be amore pertinent quantity
than tissue displacement, whichmay be dominated by bulkmotion. Thus octahedral shear strain (OSS)was
calculated (McGarry et al 2011). The deviatoric or shear strain component of theOSS is :

( ) ( ) ( ) ( ) ( )         = - + - + - + + +
2

3
6 , 5s xx yy xx zz yy zz xy xz yz

2 2 2 2 2 2

where xx are unique components of strain in three directions (x, y and z).
Similar toMcGarry et al (2011), the strain noise  s

noise was calculated by evaluating equation (5)with strain
values calculated fromNamp for each direction x, y, z, and SNRbased on theOSS:

‐ ( )


=OSS SNR , 6s

s
noise

where s indicates time averaging over the phase offsets. AsNamp is positive, a random signwas assigned to the
Namp values to generate a realistic noise distribution prior to calculation of  ,s

noise as used inMcGarry et al (2011).
However, while inMcGarry et al (2011) s was also averaged over a volume, in this work theOSS-SNRwas
calculated for individual voxels, thus allowing visualisation of the spatial distribution of theOSS-SNR.

2.3.Direct Inversion to calculateMRE elastograms
For a viscoelasticmaterial with the assumption of isotropy and local homogeneity of thematerial properties,
solving theNavier–Stokes equation for the propagation of an acoustic wave yields the viscoelasticmoduli from
themotionfield (Sinkus et al 2005). Substituting the time harmonic curl of themotion field ( )=  ´v u into
the viscoelastic wave equation gives theHelmholtz equation:
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( ) ( )rw- = ¢ + ¢¢ G iGv v, 72 2

where ρ is thematerial density,  v2 is the Laplacian of the curl (Sinkus et al 2005), andG′ andG" are the storage
and lossmoduli describing the shear elasticity and viscosity respectively, which are the real and imaginary
components of the complex shearmodulus,G*. In this study, the direct inversion approach of Sinkus et al 2005
is employed. The curl and Laplacianwere calculated viafinite differences, andG′ andG" solved by ‘direct
inversion’ of equation (7) via a least-squares calculation. In this studyG′ andG"were calculated for each voxel,
fromwhich |G*|was calculated, and the accuracy of |G*| comparedwith ground truthwas reported.

InMRE,motion is encoded in the phase of theMR signal, whichmust be unwrapped and scaled by the
appropriatemotion-encoding scaling factor to obtain the underlying displacements (Muthupillai et al 1996).
Alternatively, when direct inversion is employed it is not necessary to convert the phase-shifts into
displacements, as themotion-encoding factor cancels out. For the acquiredMREdata in this study, Laplacian
phase unwrappingwas employed (Dittmann et al 2016)prior to calculation of the steady-state harmonic phase
values viaDFT.

PreviousMRE studies have reported that pre-filtering or smoothing of the data results in better visual
appearance of the elastograms (Murphy et al 2013, Barnhill et al 2018). However, it is not clearwhat impact this
has on accuracy. Spatial smoothing of the curl with a 3× 3× 3 boxfilter was found to give optimum results in
previouswork (McGrath et al 2016) and hence this smoothingwas explored for the simulated and acquired data.

Many other inversionmethods have been developed for elasticity imaging (Doyley, 2012), including local
frequency estimation (LFE) (Manduca et al 2001), iterative optimisation, such as the over-lapping subzone
method (VanHouten et al 1999), andmulti-frequencymethods (Tzschätzsch et al 2016).

In order to provide a comparisonwith direct inversion, the LFE algorithm (MREWave,MayoClinic, www.
mayo.edu/research/documents/mrewave)was also applied to the acquiredMREdata and the simulated data
with no added noise (see supplementary information). Threemotion directions were incorporated and filtering
was explored.

2.4. Simulation of liverMREusing an anthropomorphic phantomof the torso
Simulation ofMREwas carried out using Abaqus 2017 (Dassault Systèmes Simulia Corp, Johnston, Rhode
Island,USA), and used direct-solution steady-state dynamic analysis: a perturbation procedure forwhich the
model response to an applied harmonic vibration is calculated about a base state, generating complex frequency-
space steady-state nodal displacements u (equation (1)).

An anthropomorphic FEMof the torsowas generated, consisting of sub-regions: liver, bone, fat and
generalised soft tissue (figure 1). The bone region consisted of ribs, spine and sternum (figure 1(d)), and the fat
included subcutaneous and visceral fat (figure 1(e)). The addition of bone and fat introducedmaterial
heterogeneity to enhance the realism of themodel, and in particular the ribs and spinewere added to simulate
wave reflection and scattering effects. InMRE the compressionwave delivered at the skin is partiallymode-

Figure 1. 3DFEMof human torso (a) torso FEMmesh; (b) boundary conditions of nodes with x-, y- and z-displacements fixed to zero
at the positions of truncation at the neck, arms andwaist (c) loading nodes position at the right of the sternal notch, and direction and
amplitude of loading, i.e. anterior–posterior (A-P) andwith real amplitude of 30μm; (d) 3D view of elements assignedwith the
properties of bone, i.e. ribs, spine and sternum; (e) axial cross section ofmodel with elements coloured according to the specified
materialmodels, i.e. liver, fat, bone, other soft tissue.
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converted to shear waveswhen passing through the ribs before reaching the liver, with somewave-energy also
reflected off the spine into the liver.

The sub-regions were defined by a combination ofmanual and automated segmentation of themDixon
scan. The outer edges of themodel were selectedmanually from thewater-only images, and for computational
efficiency themodel excluded the arms andwas truncated at the neck andwaist. Liver and bone regionswere
manually segmented using thewater-only images, while fat was segmented automatically using signal-
thresholding on the fat-only images. Binarymasks were generated for each sub-region.While the automated
segmentation steps could be completed rapidly, themanual segmentation of the rib cagewas themost costly in
terms of time and took several hours to complete.

FEmeshes were prepared using ISO2MESH software, an open-sourcemesh generation toolbox , that uses
surface and volumetricmeshing algorithms from the computational geometry algorithms library (CGAL, www.
cgal.org) (Tran et al 2020) andTetgen (wias-berlin.de/software/tetgen). A combinedmulti-labelmask of the
torso and liverwasmade and used to create a linear four-node tetrahedral elementmesh using the ‘vol2mesh’
function of ISO2MESH,whichmeshes each labelled region as a distinct, closed surface, ensuring there are
shared nodes at region interfaces. The total number ofmodel elements was 5117 417, with 4501 646 in the liver
sub-mesh. Themaximumvolume of the liver elements was set to 1mm3, the average element edge-length for the
liver sub-meshwas 1.5mm, and for the outer torsomesh 6.5mm.Ahighermesh density was prescribed for the
liver, compared to outside the liver, to allow generation of simulated voxel sizes in the range of interest (�2mm
isotropic). The processing time for the torso FEMMRE simulationwas∼7 h, with parallel use of 8 processors on
a dual-quad core PCwith 256GBRAM. Separate testing of a smaller tissuemodel for which three FEMswere
generatedwith 0.5, 1 and 2mm3 element volumes, demonstrated that themean |G*| converged for all three
element volumes at 2mmsimulated isotropic voxel resolution.

Fat was distributed across the torso volume, and therefore was not suitable for the creation of sub-meshes.
The bone structure of the rib cagewould have required very finemeshing for accurate representation, and this
would have placed a high computational requirement on the parts of the FEMoutside liver, when here the
priority was for simulation accuracy inside the liver. Instead, thematerial properties for bone and fat were
ascribed to individual elements of the torsomodel by identifying the elements whose centroids fell within the
volume for each tissue type, as defined by the binarymasks. Generalised soft tissue properties were assigned to
the remaining elements of the torso. Thematerial properties for all tissues are shown in table 1. Those assigned
to the liver were varied between five sets of livermaterials (LM1-LM5)whichwere estimated fromMRE
literature for healthy and diseased liver (Asbach et al 2008, Venkatesh et al 2013), and the other properties were
ascribed based on literature values, e.g. for bone the cortical bone properties of the spine (Lee et al 2000). The
liver properties could also have been estimated from ex vivo tissuemeasurements to provide an alternative and
objective evaluation; however ex vivomeasurements would not have allowed for the influence of blood pressure
and the surrounding tissuematrix. Allmaterials except boneweremodelled as viscoelastic, while bonewas
modelled as linear elastic. Furthermore, allmaterials except boneweremodelled as near-incompressible with
hybrid elements (linear pressure) elements, in order to avoid volumetric locking by discretizing and solving for
the pressure field independently of the displacements.

For the boundary conditions (BCs) (figure 1(b)) nodeswere selected at the neck, shoulders andwaist, and
werefixed. These BCs achieved the dual purpose of tethering themodel in space, and also had the benefit of
reducingwave reflections from surfaceswhere themodel was truncated, i.e. in reality waves would be free to pass
through to the head, arms, abdomen and legs. Loading nodes (figure 1(c))were selected on themodel surface at a
position corresponding to that used, andwhich is recommended, for liverMRE acquisitions, i.e. at the front of
the body, over the lower ribs and to the right of the sternal notch (Quantitative Imaging Biomarkers

Table 1.Modelled tissuematerial properties in torso FEM.

Tissue type Frequency (Hz) G′ (kPa) G″(kPa) |G*| (kPa) Poisson’s ratio Density (kgm−3) Shear wavelength (mm)

Liver - LM1 60 0.6 0.8 1.0 0.499 1000 13

Liver - LM2 60 1.833 0.8 2.0 0.499 1000 23

Liver - LM3 60 2.891 0.8 3.0 0.499 1000 28

Liver - LM4 60 3.919 0.8 4.0 0.499 1000 33

Liver - LM5 60 4.936 0.8 5.0 0.499 1000 37

Fat 60 0.95 0.32 1.0 0.499 1000 16

Soft tissue 60 4.5 2.2 5.0 0.499 1000 35

Young’sModulusE (MPa)
Bone 60 10 0.25 1830 779
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Alliance, 2018).MREwas simulated by delivering a harmonic displacement to the loading nodes at 30μm
amplitude and 60Hz frequency in the anterior–posterior direction.

The nodal displacements were interpolated onto an isotropic ‘virtual-voxel’ gridwith a step-size of 1mm,
using theMATLAB implementation of the ‘Natural Neighbour’ interpolation algorithm (Sibson 1981). The data
was resampled to different isotropic resolutions by averaging the 1 mmdata over varying cubic volumes to
simulate the imaging partial-volume effect. Virtual phase-offset images (NPO=8)were calculated by
multiplying the interpolated steady-stateu(x) (equation (1)) by exp(iα), and selecting the real component.
Gaussian noise was added for the specifiedMM-SNR from the range 1–10 000, and the steady-state
displacements recalculated byDFT.

3. Results

3.1. SimulatedMREmotion datawith no added noise
The real components of the simulated displacement fields in theH-F, R-L andA-P directions for LM1-LM5 are
shown infigure 2. Thewave patterns differ considerably with LM. For LM1 (ground truth |G*|GT= 1 kPa, i.e.
healthy liver) thewaves are attenuated before reaching the liver centre. At higher |G*|GT (moving to LM5), the
waves travel further into the liver, and are reflected from the far boundary, resulting in interference patterns. For

Figure 2.Maps of the real components of the simulated steady-state displacements in the head-foot (HF), right-left (RL) and anterior–
posterior (AP) directions for livermodels LM1-LM5 (|G*|GT=1, 2, 3, 4, and 5 kPa).
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a given LM, the displacements in the three directions are of comparable amplitudes, with unpredictable patterns,
especially for the A-P andR-L directions. See supporting information videos S1-S9 for animations of the
simulatedmotion for LM2.

3.2. Effect of imaging resolution on simulatedMREaccuracywith no added noise
Figure 3 shows simulated elastogramswith no added noise for LM1-LM5 and isotropic voxel dimensions 1–6
mm,with themean and SD, and percentage error on themean comparedwith ground truth. For display and
subsequent analysis the 3Dmask of the liver volumewas eroded by amargin of∼8mm to exclude edge values
which result from errors in the direct inversion near the interface of the liver with surrounding tissue (i.e. due to
the assumption of local homogeneity in direct inversion and the complexity of thewavefield at the boundaries
where transmitted, reflected, and refractedwaves are combined). Elastograms are comparedwithout smoothing
(|G*|) andwith (|G*|SM) 3Dboxfilter smoothing of the curl. The focus is on the smoothed results, as the errors
from simulation (evenwithout added noise)warrant smoothing. For all LM themean |G*|SM values closest to
the ground truth are at 2mm resolution, with errors on themean as low as 0% for LM5. In theory the results at
1 mmresolution for the 3D liver should exceed the accuracy of 2mm.However as the average element edge-
length for the 3D livermeshwas 1.5mm, therewas insufficient nodal density in themesh to provide optimum
results at 1 mmvoxel size.

In general the elastograms are smooth at higher spatial resolutions (e.g. 2mm), while at coarser resolutions
artefactual patterns appear due to under-sampling of the complicatedwavefields, as seen in 2Dbrain tissue
simulations inMcGrath et al (2016). Also, similarly to the data inMcGrath et al (2016), there is a directly
proportional overestimate ofmean |G*| as the voxel size increases. Infigure 3, at 2 mmresolution, for higher
ground truth |G*| (e.g. |G*|GT=5 kPa) the error artefacts are less prevalent compared to lower |G*|GT (i.e. 1 and
2 kPa), and as the voxel size increases the artefacts aremore accentuated for the low |G*|GT simulations. For
LM1, |G*| is overestimated in the centre of the liver as thewave amplitude has been attenuated to near zero, and
the apparently longwavelengths are reconstructed as stiffermaterial.

Figure 3.Results ofMRE simulations in 3D livermodels with homogeneousmaterial properties according tomodels LM1-LM5
(ground truth |G*| GT=1–5 kPa) andwith no added noise. The |G*|mapswithout andwith (|G*|SM) 3Dbox smoothing of the curl for
central axial slices through the liver volume and for different isotropic simulated voxel sizes (1–6mm). Erodedmasks of the liver
volume, excluding amargin of∼8mm from the liver edges, is applied to the displayed images. Themean (standard deviation) are
shown for |G*| and |G*|SM for the eroded liver volumes. To provide a visual reference, for each LM, the colour of the ground truth |G*|
is shown in a box under the colour bar.
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3.3. Effect of added noise and imaging resolution on simulatedMRE accuracy
Figure 4 plots themean |G*|SM for the eroded liver volumes versus levels of added noise (MM-SNR) for different
resolutions and for LM1-LM5. The relationship between inversion accuracy, noise and resolution is
complicated. In general, increasedMM-SNR led tomore accurate estimates of |G*|. However, for larger voxel
sizes |G*|was overestimated, as is the case for no added noise (figure 3). For lowerMM-SNR, larger voxel sizes
are needed to recover |G*|, and the optimumvoxel sizes increase with |G*|.

Figure 5 plots themean |G*|SM over the (eroded) liver volume against the ground truth values for the
different voxel sizes for the instance of no added noise and added noise withMM-SNR=1, 2, 5, 10 and 20.
Table 2 provides the optimumvoxel size for each livermaterial LM1-LM5 and for all LMs combined for varying
MM-SNR. As an example, ifMM-SNR�5 and onewants to focus on the distinguishing between liver tissue of
2 and 3 kPa (i.e. early-stage liver fibrosis) then the optimum isotropic voxel size would be 4–6mm.

3.4. Comparison of simulated and acquired liverMRE atmatched imaging resolutions andMA-SNR
Matching resolutions andmotion-SNR levels were compared between acquisitions and simulations, allowing
assessment of acquired-elastogram accuracy.

Figure 4. For simulated data from3D liver FEM, plots ofmean |G*|SM over the liver volume for varying levels of added noise (MM-
SNR) and for no added noise (denoted SNR=∞) andwith curl smoothing, for varying isotropic voxel dimensions, and for ground
truth |G*|GT set to: (a) 1 kPa, (b) 2 kPa, (c) 3 kPa, (d) 4 kPa, (e) 5 kPa.
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Figure 6 presents simulated results at 4, 5 and 6mmresolutionwithMM-SNRof 1, 2, 5 and 10 for LM1, and
figure 7 presents the equivalent for LM2. LM1 and LM2were chosen as healthy liver is thought to have |G*| in the
range of 1–2 kPa (Asbach et al 2008). Themean and SDs in |G*| are shown alongwith the percentage error of the
mean comparedwith ground truth, and the errors vary greatly withMM-SNR and resolution, and between
applying smoothing or not.

Figure 5.Mean calculated |G*|SM over the liver volume versus the ground truth value for LM1-LM5 (ground truth |G*|GT=1–5 kPa)
for varying isotropic voxel sizes with curl smoothing andMM-SNRof (a)∞ (no added noise), (b) 1, (c) 2, (d) 3, (e) 10, and (f) 20.

Table 2. Isotropic voxel dimensions tominimise the error inmean |G*|SM for liverMRE.

Isotropic voxel dimensions tominimise the error inmean |G*|SM for liverMRE (mm)

MM-SNR 1 2 5 10 20 ∞ (No added noise)
|G*|GT (kPa)
1 5 5 5 4 4 2

2 6 5 4 3 3 2

3 6 5 4 3 3 2

4 7 6 4 4 3 2

5 7 6 5 4 3 2

Voxel dimension tominimise rootmean square error for all |G*|GT 6 5 4 4 3 2
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Infigures 8 and 9, for the central 2 slices of the acquired 6 slices, the unwrapped phase,MA-SNR andOSS-
SNRmaps, and the curl and |G*|maps are shownwithout andwith smoothing respectively. Figure 8 shows data
at 4 and 5mmat 60Hz frequency, and figure 9 shows data at 6mm for 50 and 60Hz frequency.

Figure 6.Results ofMRE simulations in 3D livermodels with homogeneousmaterial properties according to livermodel LM1
(ground truth |G*|GT=1 kPa)with added noiseMM-SNR=1, 2, 5 and 10 showingmaps ofMA-SNR andOSS-SNR, the right-left
(RL) component of curl and |G*|without curl smoothing, and the RL component of curl and |G*|with 3Dbox kernel (3× 3× 3
voxels) smoothing of the curl. Themean and standard deviation (SD) over the liver volume are shown alongwith the percentage
difference of themean |G*|with the ground truth |G*|. Data is shown for voxel dimensions of (a) 4mm, (b) 5mmand (c) 6mm.
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ThemeanMA-SNR values of the acquired data are quite low and increase slightly with voxel size, i.e. at 60
Hz,MA-SNR increases from1.49 to 1.59 and 1.73 from4 to 5 and 6mmrespectively. This ismainly driven by an
increase in imaging-SNRwith larger voxel size, but it does not increase linearly with voxel volume as the

Figure 7.Results ofMRE simulations in 3D livermodels with homogeneousmaterial properties according to livermodel LM2
(ground truth |G*|GT=2 kPa)with added noiseMM-SNR=1, 2, 5 and 10 showingmaps ofMA-SNR andOSS-SNR, the right-left
(RL) component of curl and |G*|without curl smoothing, and the RL component of curl and |G*|with 3Dbox kernel (3× 3× 3
voxels) smoothing of the curl. Themean and standard deviation (SD) over the liver volume are shown alongwith the percentage
difference of themean |G*|with the ground truth |G*|. Data is shown for voxel dimensions of (a) 4mm, (b) 5mmand (c) 6mm.
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harmonicmotion estimates will be affected by loss of spatial resolution. Decreasing the frequency to 50Hz
resulted in no change inMA-SNR. In viscoelastic liver themotionfieldwill vary with frequency, but also the
imaging-SNRwill changewith altered acquisition parameters.MeanOSS-SNR also varies slightly: at 60HzOSS-
SNRhas amean value of 1.81 at 4mmand 1.84 at 5mm, and at 6mm this increases to 1.99, while at 50Hz and
6mm it decreases to 1.93. These changes are influenced by changing strain estimates over different imaging
graphical prescriptions and frequency-dependentmotionfields, in combinationwith varying noise
contributions to the imaging signal.

For the acquired data, themean |G*| at 60Hzwith no smoothing increases with voxel size from0.65 to 1.18
and 1.77 kPa, and at 50Hz it is reduced to 1.12 kPa.With smoothing the equivalent values are 2–3 times higher:
2.08, 2.63, 3.77 and 2.77 kPa. By creatingmasks based on thresholds of 2 and 3 inMA-SNR andOSS-SNR it was
found that themean |G*| tended to increase with the threshold.

Based on theMA-SNR values in the acquired data, it could be determined that the simulationswithMM-
SNR=1 and 2were the nearest equivalent (i.e. withNPO=8MA-SNR is approximately 2 and 4). For LM1 at
MM-SNR=1 and 2, themost accuratemean |G*| values were at 5mmwith smoothing, i.e. 10% and 12%error
(figure 6(b)). For LM2 atMM-SNR=1 themost accuratemean |G*|was at 6mmwith smoothing, i.e.−3%
(figure 7(c)), and atMM-SNR=2 the best was at 5mmwith smoothing, i.e.−4% (figure 7(b)). As the |G*|
values of the LM1 simulation are greatly biased by errors from the attenuatedwave amplitude in the centre of the
liver, and a similar degree of attenuation does not appear to occur in the acquisitions at 50 or 60Hz, the LM2
simulation is seemingly a closer comparison to the acquired data. On that basis it could be deemed that forMM-
SNR=1–2 (MA-SNR=2–4) themore reliable acquired elastograms are at 5 and 6mmwith smoothing,
resulting in themean |G*| for the acquired liver being estimated in the range of 2.63 and 3.77 kPa.However, also

Figure 8.Results ofMRE acquisition for in vivo liver. (a)At 4 mm isotropic voxel dimension at 60Hz frequency, for the 2 central slices
of the 6 slice acquisition, the unwrapped phasemaps in the head-foot (H-F), right-left (R-L) and anterior–posterior (A-P) directions,
alongwithmaps ofMA-SNR,OSS-SNR, the RL component of curl and |G*|without curl smoothing, and the RL component of curl
and |G*|SMwith 3Dbox kernel (3× 3× 3 voxels) smoothing of the curl. Themean and standard deviation (SD) for the 4 central slices
are shown forMA-SNR andOSS-SNR. For |G*| and |G*|SM themean (SD) values are also shown for thresholdingMA-SNR andOSS-
SNR at 2 and 3; (b) similar to (a) but for 5 mm isotropic voxel dimension.
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of note is that at 5 and 6mm (with smoothing) the errors for 1 kPa ground truth could be as high as 54% at 6mm
(figure 6(c)), and for a 2 kPa ground truth the absolute value of the error as high as 17% at 5mm (figure 7(b)).

3.5. LFE inversion comparison
Supplementary figure S1 (available online at stacks.iop.org/PMB/66/225005/mmedia) shows the LFE
elastogramswith andwithoutGaussian band passfiltering for the acquiredMREdata.Mean values over the slice
withfiltering are comparable with those for the direct inversion results with smoothing.

Supplementary figures S2 and S3 show results for the simulated data (with no added noise)without andwith
filtering respectively. It can be seen that only certain areas of the liver have values close to the ground truth (i.e.
those areas closer to the point of wave delivery) and the results varywith liver tissuemodel (LM) and resolution.
However, as this was an initial test with LFE, exploration of the optimisation of the algorithmwith this simulated
datawas not carried out, and should be the subject of future investigations.

4.Discussion

4.1. The influence of imaging resolution onMREaccuracy
Whenno noise is added, onewould expectflat simulated elastograms for uniform ground truth properties.
However, simulated elastogramswith no added noise had an artefact pattern, especially for LM1, where the
displacement amplitudes were low at the liver centre, and smoothing accentuated this effect. These artefacts
arise from a combination of error sources: (1) limited accuracy, which is a function of the FEmesh resolution
and interpolation; (2) errors introduced to direct inversionwhen the voxel dimension is insufficiently small to

Figure 9.Results ofMRE acquisition for in vivo liver. (a)At 6 mm isotropic voxel dimension at 60Hz frequency, for the 2 central slices
of the 6 slice acquisition, the unwrapped phasemaps in the head-foot (H-F), right-left (R-L) and anterior–posterior (A-P) directions,
alongwithmaps ofMA-SNR,OSS-SNR, the RL component of curl and |G*|without curl smoothing, and the RL component of curl
and |G*|SMwith 3Dbox kernel (3× 3× 3 voxels) smoothing of the curl. Themean and standard deviation (SD) for the 4 central slices
are shown forMA-SNR andOSS-SNR. For |G*| and |G*|SM themean(SD) values are also shown for thresholdingMA-SNR andOSS-
SNR at 2 and 3; (b) similar to (a) but for 50Hz frequency.
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sample thewavefield, particularly when thewavelength is short, or when themotion has a complicated pattern
due towave interference. InMcGrath et al (2016) it was shown that with an appropriately small voxel size these
errors can be reduced or eliminated. Indeed, in this study, for |G*|GT� 2 kPa at resolutions 2–4mm the
simulated liver elastogramswere approximately uniform;while as the voxel size increased artefactual patterns
emerged.

Other workers using 2Dmodels and 3Dgeometric phantoms havemade similar observations to this study
with regard to optimum resolutions for given underlying properties and noise levels (Papazoglou et al 2008,
Honarvar et al 2017, Yue et al 2017). The reason behind the dependence on imaging resolution is bound upwith
thefinite difference calculation of the derivatives for the curl and Laplacian on awavefield. Aliasing of thewave-
forms occurs at insufficient sampling resolutions, and (when no noise is added) this results in over-estimates of
|G*|. At high resolutions (and no added noise) exact ground truth values can be recovered.When noise is added
at high resolution this tends to cause underestimates of |G*|, as the noise creates the impression of shorter
wavelengths. Increasing the finite difference step-size can offset the influence of noise, as shown in Papazoglou
et al (2008), Honarvar et al (2017), Yue et al (2017). At larger steps-size the gradient and therefore derivative
values are greater, and hence the influence of noise becomes proportionately less.

The simulatedmotionfields indicateMREwaves travel into the liver fromdifferent directions, i.e. waves
scattered from the ribs and reflected from the spine, and thesemay combine to form interference patterns in the
liver centre.Whatwas additionally identified in this study is these interference patterns can have effectively
shorter wavelengths than the surrounding tissue, and hence the effect of under-sampling can bemore
pronounced in certain areas leading to an artefact pattern in the elastogram.

However, it is likely that wave attenuation and scattering in the real liver tissuewould reduce the influence of
reflectedwaves, and often pre-processing such as directional filtering is employed to reduce errors from
reflections (Manduca et al 2003).

When noise was added to the simulated reflections of this study, different artefact patterns appeared in the
elastograms, whichwere a combination ofmotion-noise and under-sampling of thewavefield. In agreement
with thefindings of others (Papazoglou et al 2008,Honarvar et al 2017, Yue et al 2017), lower sampling
resolutions could offset the influence of noise on themean |G*|, and for a given scenario of noise, underlying
material properties, anatomy andwave delivery, a finite optimum imaging resolution could be identified.
However, lower sampling resolutions can also increase the errors of direct inversion due to poorer estimates of
the derivatives.

In Yue et al (2017) it was identified that for direct inversionwith finite differences the number of voxels per
shear wavelength should be�8.3. InHu (2020) direct inversionwas comparedwith LFE, and it was found that
direct inversion required�10 voxels per wavelength, compared to a limit of 2 for LFE. The shearwavelengths for
LM1-LM5 of this study are 13, 23, 28, 33 and 37mm.Hence at 1mm resolution thewavefields for all tissue
models should be sufficiently resolved, provided thatwave interference does not result in effectively shorter
wavelengths in portions of the images. At 2mmresolution thewavefields of LM2-LM5 should still be sufficiently
resolved.

Thefindings of this study highlight how critical spatial resolution is toMRE accuracy. The choice ofMRI
voxel dimension is a trade-off between preserving spatial resolution or SNR. LiverMRE is often carried out using
non-isotropic imaging resolutions, e.g. 4.7×4.9×10mm3 (Quantitative Imaging Biomarkers Alliance 2018),
butmore recent work hasmoved to isotropic graphical prescriptions which are suited to 3D inversion (Guo et al
2014, Sinkus et al 2018). Formethods thatmeasure one (through-plane)motion direction and solve for a 2D
slice, such as the one-motion-direction implementation ofMulti-model direct inversion (Yoshimitsu et al
2017), data is often acquired for larger voxels and reconstructed by the scanner to a higher resolution in-plane.
Polynomial fits are used to estimate derivatives, and hence the noise and resolution issues identified here are
obviated.

The acquisition voxel dimensions employed in this study (4, 5 and 6mm)were chosen based on the
simulation results for healthy liver (LM1-LM2) and lowMA-SNR (<10). Although previous work has
highlighted the relationship of accuracy to both resolution and noise inmore simplistic geometries (Papazoglou
et al 2008,Honarvar et al 2017, Yue et al 2017), unique in this work is that predictions have beenmade based on
an anthropomorphic personalised livermodel, which ismatched to theMRE acquisition, allowing a fuller
evaluation of liverMRE accuracy. Comparison of theMRE acquisitionwith simulations atmatching resolutions
andMA-SNR levels indicatedwhich resolutions are likely to have yielded elastograms closest to the true
underlying properties, and alsowhat themagnitude of errormight be in the acquired elastograms. Therefore this
study indicates thatMRE imaging resolutionmust be chosen carefully based on the expected range of |G*|.
However, evenwhen an optimum resolution has been identified, possible errors on the order of 54%
(|G*|GT=1 kPa, 6mm,with smoothing) exist. In liver disease, |G*|will increase with the progressive stages of
fibrosis, but can vary by<1 kPa between stages (Venkatesh et al 2013). Errors of thismagnitude could be critical
in distinguishing healthy and diseased liver, and the fibrosis stages. However, it is likely that the errormagnitudes
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predicted by this study exceed those in practice, due to the simplicity of the simulation, pre-processing and direct
inversion approach employed, which amplifies the influence of noise through derivative calculation.

The artefacts in the simulated elastograms have a structure which could bemisinterpreted as true variations
with disease or anatomy (i.e. the vascular tree). In the acquiredMRE elastograms there is a structured variation
in |G*|, whichmay indeed be associatedwith liver anatomy, ormight be influenced by under-sampling of the
wavefield.

Partial-volume errors occur at the liver boundaries for the simulated and acquired data. Additionally,more
complicatedmotionfields will occur at the tissue interfaces, as waves are scattered and refracted due to acoustic
impedancemismatch, whichwhen under-sampled can cause elastogram errors (McGrath et al 2016). Coupled
with this is the inherent assumption of local-homogeneity in direct inversion, which causes errors at the
boundaries of tissues with different properties (McGrath et al 2016). The liver |G*| variations in the acquired
elastogramsmight be artefacts resulting from the assumption of local homogeneity, or indeed the further
assumption of isotropy. Recent work has developed algorithms avoiding these assumptions (Barnhill et al 2018,
Fovargue et al 2018, Sinkus et al 2000). However, any inversion algorithm is likely to be hampered by insufficient
spatial-sampling of the displacements. Hence, these observations indicate thatmethodological improvements
should be pursued to increase resolution, e.g. by reducing echo time through use of higher harmonic frequency
MEGs (Herzka et al 2009) and leveraging the increased SNR to obtain higher resolution data. Alternatively,
imaging during free-breathing or applying retrospective gating (as opposed to imaging during breath-hold)
would allow higher resolutionswhile preserving SNR (Tzschätzsch et al 2016), through collectingmultiple signal
averages or phase offsets. Another approach to offset the effect of undersampling is to use interpolation (Yue et al
2017), but this employs assumptions of the local homogeneity of the tissue biomechanics.Methods such as the
multi-model direct inversion (Yoshimitsu et al 2017) employ polynomial fitting for derivative calculation, which
can also offset problemswith under sampling and noise.

Other studies onMREvalidation have identified important factors which determineMRE accuracy. For
example in Tweten et al (2017) it was found thatwith respect to identifying anisotropicmaterial properties,
multiple slow and fast shear waveswith different propagation directions should be present, and directional filter
inversionwith LFEwas comparedwith curl-basedmethods.

4.2.Motion-based and strain-based SNR for evaluation ofMRE accuracy
By applyingMA-SNR andOSS-SNR threshold-masks, differentmean |G*| valueswere obtained, which tended
to increase with threshold. This is a similar approach tomethods such asmulti-scale andmulti-model direct
inversionwhich incorporate cross-hatching on the elastograms representing 95% confidence thresholds on
modelfitting (Yoshimitsu et al 2017).

MRE-measuredmotion depends on the phase accrual of the tissuemoving in theMEG,which can be
improved by: (1) increasingMEGamplitude; (2)more efficient wave delivery; (3) frequency-optimisation to
reducewave attenuation in viscoelastic tissue.HigherMA-SNR could also be achieved by increasing imaging-
SNR, increasingNPO (e.g. by using free-breathing) or reducing TE (e.g. by usingMEGs at higher harmonic
frequencies).

Changing imaging resolution resulted in slight variations inMA-SNR andOSS-SNR, whichwere driven by a
combination of factors. Although imaging-noise is reduced in larger voxels, the displacement and strain
measures will also varywith resolution. These initial observations indicate that voxel-wiseMA-SNR andOSS-
SNR could be used to guide the choice ofMRE acquisition parameters and as ametric for summary-statistic
preparation.

4.3. Comparisonwith LFE
The initial evaluation of LFE demonstrated that similar results could be obtained for the acquired datawhen
using LFEwith filtering, comparedwith the direct inversionwith smoothing. However for the simulated data
only portions of the liver slice elastograms had values close to ground truth. InHu (2020) LFE and direct
inversionwere shown to produce different results dependent on frequency and resolution. Future studies will
carry out a fuller investigation and optimisation of LFE.

4.4. Study limitations
Limitations of this study are: (1) only one personalised FEMwas generated; (2) homogeneousmaterial
properties were prescribed for the simulated liver; (3)Other anatomical aspects were not considered in the
simulation, such as the organ capsule, pulsations fromblood vessels, variations in fat andmuscle orfluid (i.e.
ascites), or aspects of liver disease such as atrophy; (4) theMREdriver positionwas not varied; (5)more
advancedmethods of noise reduction such as in Barnhill et al (2017)were not explored; (6) likewisemethods of
reducing the effects of reflection and interference were not applied such as inManduca et al (2003). The direct
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inversionmethod has assumptions of isotropy and local homogeneity, and involves calculation of third order
derivatives, which amplifies imaging-noise. Futureworkwill use thismethodology to incorporate: (1) a range a
FEMmodels generated frompatients and volunteers; (2) variations in liver properties with anatomy and disease,
heterogeneity and anisotropy; (3) comparison of repeatMRE acquisitions at different driver positions; (4)
comparisonwith other inversionmethods, whichmay be less sensitive to spatial resolution and noise, and pre-
processingmethods to reduce the influence of noise and reflections.

5. Conclusion

This simulation study has demonstrated important considerations for the optimisation of liverMRE. A range of
factors were found to greatly impactMRE results: (1) imaging resolution; (2) data smoothing during inversion,
(3)MA-SNR andOSS-SNR threshold. The simulated liver elastogram error was dependent on ground truth
properties in combinationwith imaging resolution andmotion-SNR, suggesting that liverMRE should be
planned according to the expected liver |G*|. For example, in healthy liver (|G*|= 2 kPa) and an anticipatedMA-
SNR<5, the optimum imaging resolution is predicted to be 5–6mm.To obtain greater accuracy for diseased
liver (|G*|� 3 kPa), an increase in voxel size should be considered.

It was determined that at typical voxel sizes the error on themean |G*| could be on the order of 54% for
healthy liver (|G*|= 1 kPa) at 60Hz; an uncertainty of 0.54 kPa. As liver |G*| can vary between stages offibrosis
by<1 kPa, this consideration is vital in the development of liverMRE as a disease biomarker. However further
work is required to fully explore and determine the limitations of these findings.
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