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Abstract We develop a novel Virtual Element Method
(VEM) to resolve the mixed Biot displacement pressure

formulation governing wave propagation in porous me-
dia. Within this setting, the weak form of the governing
equations is discretized using implicitly defined canon-

ical basis functions and the resulting integral forms are

computed using appropriate polynomial projections. The

projection operator accounting for the solid, fluid, and

coupling phases of the problem are presented. Different

boundary, interface and excitation conditions are ac-

counted for. The convergence behaviour, accuracy, and

efficiency of the method is examined through a set of

illustrative examples. A node insertion strategy is pro-

posed to resolve non-conforming interfaces that natu-

rally arise in multilayered systems. Finally the power of

the VEM is exploited to examine the acoustic response

of composite materials with periodic and non-periodic

inclusions of complex geometries.

Keywords Virtual Element Method · Porous media ·
Vibroacoustics · Biot

1 Introduction

Porous materials are widely used in the aerospace, auto-

motive, and construction industry to improve the vibro-

acoustic isolation and transmission behaviour of struc-

tural and non-structural components see, e.g., [1,2,3].
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Over the past 10 years, an increasing and radical shift

to additive manufacturing technologies has further en-

abled the development of material layouts tailor made

to specific acoustic properties; these often come in polyg-

onal and tessellated geometries, see, e.g., [4,5].

The vibro-acoustic behaviour of two-phase porous

media is described through structural and visco-inertial-

thermal phenomena exhibited by the solid skeleton and

the pore-fluid, respectively. The classical Helmholtz the-
ory [6] can be used to describe the behaviour of very
stiff materials, where the elastic behaviour of the solid

skeleton can be safely ignored under the rigid motion-

less skeleton assumption [7]. In such cases, an equivalent

fluid description [8] provides a complete characteriza-

tion of the acoustic behaviour of the medium. However,

there are certain resonance behaviours manifesting due
to elastic effects that cannot be captured through the
Helmholtz equation. In such cases, the rigid-skeleton

assumption fails and one requires the Biot formulation

for elastic wave propagation through poroelastic media

[9,10].

The Biot u − U formulation, where the primary

variables are the solid skeleton and pore-fluid displace-

ments, i.e., u and U, require 4 and 6 degrees of free-

dom (DoFs) per node in the 2-D and 3-D cases, re-

spectively. An alternative mixed u− p formulation was

developed in [11], where the primary field variables are

solid-skeleton displacements u and pore-fluid pressures

p. In this case, 3 and 4 DoFs per node are required

in the 2-D and 3-D cases, respectively. This reduction

in the number of DoFs proves significant when solv-

ing over large scale domains. However, this formulation

requires a reworking of the original Biot parameters.

This limitation is addressed in [12], where the dis-

sipation parameters are decoupled from the rest of the

formulation. These dissipation parameters are computed
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Parameter Description Value Units

σs in-vacuo stress tensor N ·m−2

εs infinitesimal strain tensor -

E Young’s modulus N ·m−2

ν Poisson’s ratio -

ηs(ω) structural loss factor -

D̃ elastic constitutive tensor N ·m−2

ρ̃ modified Biot density kg ·m−3

ρ̃eq dynamic mass density kg ·m−3

K̃eq dynamic bulk modulus N ·m−2

γ̃ coupling factor -

ω angular frequency rad · s−1

φ porosity -

ρs solid skeleton-material density kg ·m−3

ρ0 air density at rest 1.2042 kg ·m−3

ρ1 solid skeleton-frame density kg ·m−3

Kb porous skeleton bulk modulus at constant pressure N ·m−2

Ks solid skeleton-material bulk modulus N ·m−2

Kf fluid bulk modulus N ·m−2

σ static airflow resistivity N · s ·m−4

α∞ high frequency limit of dynamic tortuosity −

Λ viscous characteristic length m

Λ′ thermal characteristic length m

k′0 static thermal permeability m2

cair speed of sound in air 343.377 m · s−1

zair impedance of air 413.4807 kg ·m−2 · s−1

P0 atmospheric pressure 101,325 N ·m−2

Cp specific heat of fluid at constant pressure 1.0024× 103 J · kg−1

η dynamic viscosity 1.8214× 10−5 N · s ·m−2

γ adiabatic index 1.4012 −

α sound absorption coefficient -

T sound transmission loss coefficient -

κ thermal conductivity 0.0257 W ·m−1 ·K−1

k wave number of acoustic excitation m−1

Table 1 Material parameters used in the Biot u− p formulation.
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through analytic, empirical and semi-phenomenological

models [13], which in turn, depend on macroscopic me-

chanical, acoustical, thermal and geometrical proper-

ties. Characterization of these properties through ex-

perimental or sub-scale modelling approaches [14,15]

is a challenging task, and as a result, not all parame-

ters are always readily available. Here, one can insert a

chosen dissipation model depending on the accuracy re-
quired and the number of macroscopic parameters avail-
able, e.g. a six parameter model - Johnson, Champoux,

Allard, Lafarge (JCAL) model [16,17,18], or a single

parameter Delany-Bazley-Miki (DBM) model [19].

Solving the aforementioned equations using classical

finite-element techniques involves meshing the domain

with quadrilateral or triangular elements. Using such

elements to resolve complex shaped mesoscale hetero-

geneous morphologies necessitate fine resolutions, thus
rendering the problem expensive. Optimal mesh dis-
cretizations would aid in augmenting the efficiency of
the method. This motivates the investigation of numer-

ical techniques that can handle flexible element geome-

tries.

Polygonal finite elements PFEM [20,21,22] are used

in a wide range of applications where one encounters

complicated interface and inclusion geometries as in the

case of e.g., topology and shape optimization [23,24],

fracture and damage modelling [25,26,27], contact me-

chanics [28], and fluid-structure interaction problems

[29]. Defining shape functions over arbitrary polygonal

domains is an active field of research and encompasses

a large family of approaches. These include Wachspress

[30,31], natural neighbour [32,33], mean-value coordi-

nate [34,35] and maximum entropy [36,37] shape func-

tions. A detailed summary collating advances in these

polygonal shape functions is provided in [38]. The method

involves treating these typically non-polynomial func-

tions with special numerical schemes [39], or standard

quadrature rules over sub-triangulated domains. Sub-

optimal convergence rates are observed due to the er-

rors arising from numerical integration of complicated

non-polynomial functions. Employing higher quadra-

ture rules to minimize this error can significantly drive

up computational costs, especially in problems where it-
erative solutions are necessary, e.g., spectral problems,
time domain analysis, topology optimization etc. The
Virtual Element Method (VEM) [40,41,42,43,44,45,46]

is a relatively recent technique introduced into the com-

putational mechanics community to specifically address

these shortcomings.

The VEM circumvents the problem of creating polyg-

onal basis functions over non-standard element geome-

tries by avoiding explicit definitions altogether. The

trial and test functions spaces are enriched by allow-

ing potentially non-polynomial expressions that are de-

fined implicitly through precisely chosen degrees of free-
dom over the element domain. These implicit defini-
tions solve the problem of numerically or analytically

computing polygonal basis functions. Generalized inter-

element conformity and continuity requirements [47]

are enforced by preserving the polynomial accuracy over

element boundaries [40]. Extensions to curved geome-

tries is a new development [48,49,50]. This method is

being applied extensively in fracture mechanics [51,52,

53], modelling of structures [54,55,56], topology and

shape optimization [24], different problems in elasticity

[57,58,59,60,61], contact and micro-mechanics [62,63],

composite materials [64], sound propagation in solid or

fluid, i.e., uncoupled, domains [65,66] and very recently

in electro-magneto-mechanical couplings [67]. The VEM

has been used in [68] to treat solid domains for reservoir

modelling, considering also the case of fracture propa-

gation [69] using a combined Discrete Element-Virtual

Element approach. With regards to fluid domains, the

case of Darcy and Brinkman flow has been addressed

using the VEM in [70,71].

Naturally, mixed VEM formulations have emerged

over the past years to address elliptic problems [42,72,
73]. This paved the way for extended applications in
poromechanics such as mixed finite-volume discretiza-
tions [74] and three field formulations for the Biot con-

solidation equations [75,76]. Very recently, multiphase

problems pertaining to miscible fluids have been treated

in [77]. A hybridised MFD-VEM has been developed

for a similar application in [78] considering the case of
Darcy flow in elastic domains under quasi-static load-
ing conditions. Further to the current state-of-the-art,

in this work we harness the power of the VEM vis-à-vis

its ability to resolve complex geometries and examine

the case of wave propagation in poro-elastic domains

considering all the pertinent inertial and viscous terms

arising from the solid to fluid couplings; this is a direc-
tion not yet explored in the literature.

Within this context, a novel VEM formalism is de-
rived to resolve waves propagating in poro-elastic do-
mains. To achieve this, the weak form of the Biot gov-

erning equations is introduced and the appropriate vir-

tual spaces are defined. Next, the expansion coefficients

of the VEM projection operators pertinent to the fully

coupled vibro-acoustics setting are derived. Finally, we

introduce the appropriate definitions for the resulting
elastic, mass, fluid kinetic, fluid compressibility, and
coupling consistency and stability terms of the VEM

formulation. Through a set of benchmarks, we investi-

gate the merits and potential bottlenecks of the scheme

in terms of solution accuracy and computational ef-

ficiency. Further, we examine the merits of a node-
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insertion scheme to treat the problem of non-conforming

meshes arising in layered porous materials. We further

examine the applicability of the method to resolve acous-

tic waves in composites with tortuous inclusions.

In Section 2, the strong and weak forms of the gov-

erning equations are presented. The VEM discretization

procedure developed in this work is discussed in Section

3. The computation of the associated state matrices are

discussed extensively in Section 4. The solution proce-
dure is briefly shown in Section 5. Numerical examples
are finally provided in Section 6.

2 Preliminaries

2.1 Strong form

Fig. 1 A poro-elastic domain Ω subjected to acoustic and
mechanical excitations.

A generalized continuous two-dimensional poroelas-
tic domain Ω ∈ R

d, d = 2 with a boundary Γ is shown

in Fig. 1. The domain Ω is surrounded by arbitrary

neighbours Ωe
1 and Ωe

2. These neighbouring domains

may be elastic (solid), acoustic (fluid) or porous do-

mains. The domain is kinematically constrained over

Γu with prescribed displacements ū. An acoustic exci-

tation p̄ is enforced over Γp. Tractions t̄ and volume flux
q̄ are applied over Γt and Γq, respectively. The bound-

ary domains are constructed such that Γu ∩Γt = ∅ and

Γp∩Γq = ∅. There is no restriction on the overlap of Γu,

Γp or Γt, Γq. These overlaps are indeed encountered in

defining interface coupling conditions. An impedance-

type Robin boundary is also provided over Γr.

In this work, the mixed u − p formulation [11] is

employed. The corresponding momentum balance equa-

tions at a specific angular frequency ω are defined as

div(σs) + ω2ρ̃u = −γ̃∇p (1a)

∆p

ρ̃eq
+ ω2 p

K̃eq

= ω2γ̃div(u) (1b)

for the solid and the fluid phase, respectively. In Eqs. (1),

σs is the in-vacuo stress tensor, i.e., the stresses present

in the drained configuration. Furthermore, ρ̃ is the mod-

ified Biot density, ρ̃eq is the dynamic mass density, K̃eq

is the dynamic bulk modulus, and γ̃ is the Biot coupling

factor, respectively.

Under the assumption of linear elasticity, the solid

phase constitutive equations are defined as

σs = D̃ εs(u), (2)

where the elastic constitutive tensor D̃ depends on the

modified Young’s modulus Ẽ and the Poisson’s ratio ν,

D̃ ≡ D̃(Ẽ, ν), (3)

and εs(·) is the infinitesimal strain operator, which as-

sumes the following form

εs(u) =
1

2
(∇u+ (∇u)T ). (4)

The modified Young’s modulus Ẽ in Eq. (3) is ex-

pressed as

Ẽ = E(1 + jηs(ω)), (5)

where E and ηs(ω) are the Young’s modulus and the

structural loss factor, respectively while (̃·) denotes the
complex-valued and frequency dependent nature of it’s

argument. The symbol j stands for the unit complex

number j =
√
−1.

The thermal and visco-inertial dissipation effects of

the pore-fluid are captured by the dynamic bulk modu-
lus K̃eq and the dynamic mass density ρ̃eq, respectively.

The expressions for these quantities are provided by a
chosen semi-phenomenological dissipation model, (e.g.,
the JCAL and DBM models). The JCAL model is de-

fined as

ρ̃eq(ω) =
α∞ρ0
φ

[
1 +

σφ

jωρ0α∞

√

1 + j
4α2

∞ηρ0ω

σ2Λ2φ2

]
(6a)

K̃eq(ω) =
γP0/φ

γ − (γ − 1)A
, (6b)

where A is equal to

A =


1− j

φκ

k′0Cpρ0ω

√

1 + j
4k′

2
0Cpρ0ω

κΛ′2φ2



−1

. (7)
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The macroscopic material parameters α∞, σ, η, Λ, Λ′,

γ, P0, k
′
0, Cp and κ denote the high frequency limit of

dynamic tortuosity, static airflow resistivity, dynamic

viscosity, viscous and thermal characteristic lengths,

adiabatic index, atmospheric pressure, static thermal

permeability, specific heat at constant pressure and ther-

mal conductivity. A concise list of the expressions for

all semi-phenomenological models is provided in [13] .
The modified Biot density ρ̃ is computed:

ρ̃ = ρ̃11 −
ρ̃212
ρ̃22

(8a)

ρ̃11 = ρ1 − ρ̃12 (8b)

ρ̃12 = φρ0 − ρ̃22 (8c)

ρ̃22 = φ2ρ̃eq. (8d)

Here, the density of the solid frame ρ1 is evaluated by

ρ1 = (1−φ)ρs, where ρs is the density of the constituent
material of the solid-skeleton. The symbol φ denotes the

porosity of the material and ρ0 represents the density of
air at rest. The coupling factor γ̃ is expressed as follows:

γ̃ = φ
( ρ̃12
ρ̃22

− Q̃

R̃

)
. (9)

The coefficient Q̃ captures the elastic coupling behaviour

between both phases. Parameter R̃ corresponds to the

bulk modulus of a fluid occupying a volume fraction φ
of the porous media under consideration. These assume

the forms:

Q̃ =

[
1− φ− Kb

Ks

]
φKs

D̃
(10a)

R̃ =
φ2Ks

D̃
(10b)

D̃ = 1− φ− Kb

Ks
+ φ

Ks

Kf
, (10c)

where Kb is the bulk modulus of the porous skeleton

subject to constant air pressure,Ks is the the bulk mod-

ulus of the constituent material of the skeleton frame

and Kf denotes the fluid bulk modulus. These coeffi-

cients can be used to compute the total stress using the

principle of equivalent stress:

σt(u,U) = σs − cpI, (11)

where σt and I represent the total stress tensor of the

material and identity tensor, respectively. The total stress

σt is a function of both the solid skeleton displacements
u and fluid displacements U The constant c has the fol-

low expression:

c = φ
(
1 +

Q̃

R̃

)
.

The fluid displacement U can be defined in terms of
the primary variables u and p:

U =
1

ω2φρ̃eq
∇p− ρ̃12

ρ̃22
u. (12)

The material parameters involved in this model are
summarized in Table 1.

The coupled system of Eqs. 1 is subjected to the

following set of essential

u = ū on Γu, p = p̄e−jk·x on Γp, (13)

natural

t = t̄ on Γt, q = q̄ on Γq, (14)

and impedance boundary conditions

z(θ)∇p · n+ jωρ̃eqp = ḡ on Γr, (15)

respectively, where ū and p̄ denote Dirichlet-type bound-

ary values whereas t̄ and q̄ denote Neumann-type bound-

ary values, respectively. For a time-harmonic acous-
tic excitation of amplitude p̄ incident at an angle θ,

the vector valued wave number is represented by k =
[kcos(θ), ksin(θ)], where k = ω/cair. The vector x =

[x, y]T denotes the coordinates of a point on the inci-

dent face Γp. A Robin-type boundary value ḡ is spec-

ified over Γr where z denotes an impedance constant

z(θ) = zair/cos(θ). The parameters cair and zair = ρ0cair
denote the speed of sound in air and impedance of air,

respectively. For our purposes, we take ḡ = 0 [79].

2.2 Weak form

The weak form of Eq. (1) is derived by multiplying each

expression with the relevant test functions δu and δp
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and integrating over the entire domain:

Find (u, p) ∈ Vu × Vp := [H1(Ω)]d × [H1(Ω)],

d = 2, such that:

Solid phase
∫

Ω

σs(u) : εs(δu) dΩ − ω2

∫

Ω

ρ̃u · δu dΩ

−
∫

Ω

γ̃∇p · δu dΩ −
∫

Γt

(
σs · n

)
· δu dΓ

︸ ︷︷ ︸
I1

= 0 ∀ δu ∈ Vu

(16a)

Fluid phase
∫

Ω

1

ρ̃eq
∇p · ∇δp dΩ − ω2

∫

Ω

1

K̃eq

p δp dΩ

− ω2

∫

Ω

γ̃∇δp · u dΩ

+ ω2

∫

Γ

(
γ̃u · n− 1

ω2ρ̃eq
∇p · n

)
δp dΓ

︸ ︷︷ ︸
I2

= 0 ∀ δp ∈ Vp,

(16b)

where δu and δp are the variations in displacements

and pressures such that u, δu ∈ Vu and p, δp ∈ Vp,
respectively. The spaces Vu and Vp contain admissible

displacements and pressures and assume standard 2-

D [H1(Ω)]d, d = 2 and 1-D [H1(Ω)]d, d = 1 Hilbert

spaces, respectively. Using Eq. (11), the boundary inte-

gral I1 in Eq. (16a) is modified to

I1 =

∫

Γt

(
σt · n+ cpI · n

)
· δu dΓ. (17)

Similarly, the boundary integral I2 in Eq. (16b) is de-
composed into the relevant Neumann and Robin con-

tributions according to the identity Γ ≡ Γq ∪ Γr: I2 =

I
Γq

2 + IΓr

2 , where, employing Eq. (12) the following ex-

pression is eventually established

I
Γq

2 = −ω2

∫

Γq

(
cu · n+wn

)
δp dΓ, (18)

wherewn = φ(U−u)·n is the normal component of the

fluid displacement relative to the solid skeleton. This is

measured in volume per unit area of the bulk medium

[80,81]. Using Eq. (15), a simplified expression for IΓr

2

is obtained

IΓr

2 =
jω

z(θ)

∫

Γr

p δp dΓ. (19)

Boundary

Condition

Boundary

Integrals

Acoustic
Excitation

I1 = 0
I2 = 0

Roller
Support

I1 = 0
I2 = 0

Clamped
Support

I1 = 0
I2 = 0

Anechoic
Termination

I1 = 0

I2 = jω

z(θ)

∫

Γr

p δp dΓ

Table 2 Boundary integrals

Primary

Domain

Neighbour

Domain

Boundary

Integrals

Poroelastic Acoustic
I1 = 0
I2 = 0

Poroelastic Elastic

I1 = −
∫

Γt

c(pI · n) · δu dΓ

I2 = −ω2
∫

Γq

cu · n δp dΓ

Poroelastic Poroelastic
I1 = 0
I2 = 0

Table 3 Interface coupling integrals

Is it to be noted that the solid skeleton normal displace-

ments are not defined over Γr.

When subject to acoustic excitation, variations in δp

are zero. To ensure continuities, one requires σt · n =

−pI · n. Using the result for classical sound absorbing
materials, i.e., c ≈ 1 [82], I1 = I2 = 0. The acoustic

wave is simply imposed on the incident face as a pres-
sure Dirichlet boundary (Eq. (13)). Considering roller
or fully clamped supports, variations in δu are zero.

Further, u · n and wn are zero as well. Consequently,

once again, I1 = I2 = 0. Given an impedance-type ane-

choic termination, I1 = 0, I2 = IΓr

2 . These integral
conditions are tabulated in Table 2.

The coupling conditions encountered at the inter-

face between Ω and Ω1
e , Ω

2
e etc. need to be taken into

account. They are critical to generating accurate pre-
dictive models of porous composites. These conditions
are summarized in Table 3 and will not be derived here.
For a more detailed discussion of the boundary condi-

tions involved, see [82].

3 Virtual Element method for Biot

vibro-acoustics

3.1 Discretization

In this work, we harness the power of the VEM to

treat arbitrary polygonal domains and discretize the

coupled weak form Eqs. (16). Within this context, the
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following finite-dimensional approximations are consid-

ered for the displacement

uh ≈ u, δuh ≈ δu ∈ Vu
h ⊂ Vu (20)

and pressure fields

ph ≈ p, δph ≈ δp ∈ Vp
h ⊂ Vp, (21)

respectively, where uh, ph are the discretized displace-

ment and pressure trial functions and δuh, δph are the

corresponding test functions. These functions are de-

fined over approximating finite-dimensional subspaces

Vu
h and Vp

h.

Remark 1 This work concerns itself with a conform-

ing Virtual Element Method. Consequently, it is rea-

sonable to require that Vu
h and Vp

h are subspaces of the

corresponding infinite dimensional Vu and Vp spaces.
For a treatment of the non-conforming Virtual Element

method for elliptic problems, see [45].

Substituting in the weak form and collecting terms

gives rise to the following abstract weak formulation,

i.e.,





Find (uh, ph) ∈ Vu
h × Vp

h such that :

∀δuh ∈ Vu
h ,

aε(uh, δuh)− ω2 a0(uh, δuh)ρ̃−
a(∇,0)(ph, δuh)γ̃ − a0Γ (ph, δuh)c = 0,

∀δph ∈ Vp
h,

b∇(ph, δph)1/ρ̃eq
− ω2 b0(ph, δph)1/K̃eq

−
ω2 a(∇,0)(δph,uh)γ̃ − a0Γ (uh, δph)c+

jωb0Γ (ph, δph) 1
z(θ)

= 0,

(22)

where a(·)(·, ·)(·) and b(·)(·, ·)(·) represent bilinear func-

tional operators, which assume the following

Solid Phase

aε(uh, δuh) =

∫

Ωh

σs(uh) : εs(δuh) dΩ (23a)

a0(uh, δuh)ρ̃ =

∫

Ωh

ρ̃uh · δuh dΩ (23b)

Fluid Phase

b∇(ph, δp) 1
ρ̃eq

=

∫

Ωh

1

ρ̃eq
∇ph · ∇δph dΩ (23c)

b0(ph, δph) 1
K̃eq

=

∫

Ωh

1

K̃eq

ph δph dΩ. (23d)

b0Γ (ph, δph) 1
z(θ)

=

∫

Γhr

1

z(θ)
ph δph dΓ. (23e)

Phase coupling

a(∇,0)(ph, δuh)γ̃ =

∫

Ωh

γ̃∇ph · δuh dΩ (23f)

a0Γ (ph, δuh)c =

∫

Γht

c(phI · n) · δuh dΓ (23g)

In Eqs. (23), the domain Ωh is the discretized ap-

proximation of the original domain geometry, i.e.,

Ωh =
⋃

Ki∈Ωh

Ki ≈ Ω (24)

where Ki, i = 1, . . . , nel correspond to non-intersecting

polygonal sub-domains, i.e., virtual elements as shown

in Fig. 2. An arbitrary element is also shown in Fig. 2

with polynomial order k ≥ 1. The vertex coordinates

are given by xj , j = 1, . . . , Nv, where Nv is the number

of edges; this equals the number of vertices. Each edge
ej , j = 1, . . . , Nv connects vertices xj and xj+1 and

contains k − 1 internal nodes per edge. These internal

nodes are labelled xe. The index h is denotes the max-

imum diameter of all elements contained in Ωh. The

discretized boundaries Γhu, Γht, Γhp, Γhq and Γhr are

also obtained in the same fashion.

Remark 2 The fluid phase contribution a0Γ (uh, δph)c
from Eq. (22) is evaluated as shown in Eq. (23g). How-

ever, the integration is performed over Γhq. Addition-

ally, it is to be noted that the boundary forms a0Γ (ph, δuh)c
and b0Γ (ph, δph) are obtained as generalizations of the

boundary and interface conditions provided in Tables

2-3.
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Fig. 2 Discretized domain Ωh decomposed into nel arbitrary potentially non-convex polygonal elements. An example chicken
element with Nv = 51 edges adapted from [24] is shown. The jth edge ej connects vertex nodes xj and xj+1. A single edge
node xe

j(1) is also illustrated.

Using Eq. (24), the bilinear forms of Eqs. (23a)-

(23g) can be additively assembled from elemental con-

tributions, i.e.,

Solid Phase

aε(uh, δuh) =

nel∑

i=1

aεKi
(uh, δuh), (25a)

a0(uh, δuh)ρ̃ =

nel∑

i=1

a0Ki
(uh, δuh)ρ̃, (25b)

Fluid Phase

b∇(ph, δph) 1
ρ̃eq

=

nel∑

i=1

b∇Ki
(ph, δph) 1

ρ̃eq
, (25c)

b0(ph, δph) 1
K̃eq

=

nel∑

i=1

b0Ki
(ph, δph) 1

K̃eq

, (25d)

b0Γ (ph, δph) 1
z
=

nel∑

i=1

b0ΓKi
(ph, δph) 1

z
, (25e)

Phase coupling

a(∇,0)(ph, δuh)γ̃ =

nel∑

i=1

a
(∇,0)
Ki

(ph, δuh)γ̃ , (25f)

a0Γ (ph, δuh)c =

nel∑

i=1

a0ΓKi
(ph, δuh)c. (25g)

The elemental contributions in Eqs. (25) assume the

following form

Solid Phase

aεKi
(uh, δuh) =

∫

Ki

σs(uh) : εs(δuh) dΩ, (26a)

a0Ki
(uh, δuh)ρ̃ =

∫

Ki

ρ̃uh · δuh dΩ, (26b)

Fluid Phase

b∇Ki
(ph, δph) 1

ρ̃eq
=

∫

Ki

1

ρ̃eq
∇ph · ∇δph dΩ, (26c)

b0Ki
(ph, δph) 1

K̃eq

=

∫

Ki

1

K̃eq

ph δph dΩ, (26d)

b0ΓKi
(ph, δph) 1

z(θ)
=

∫

Γ
Ki
hr

1

z(θ)
ph δph dΓ, (26e)

Phase coupling

a
(∇,0)
Ki

(ph, δuh)γ̃ =

∫

Ki

γ̃∇ph · δuh dΩ, (26f)

a0ΓKi
(ph, δuh)c =

∫

Γ
Ki
ht

c(phI · n) · δuh dΓ. (26g)

Finally, the globally continuous displacement uh and

pressure fields ph, and their corresponding weight func-

tions δuh and δph are discretized into piece-wise con-
tinuous functions over each element Ki according to the

following expressions

uh = [Φu]︸︷︷︸
(nu

dof×2)

T
û, δuh = [Φu]︸︷︷︸

(nu
dof×2)

T
δ̂u, (27a)

ph = [Φp]︸︷︷︸
(np

dof×1)

T
p̂, δph = [Φp]︸︷︷︸

(np
dof×1)

T
δ̂p, (27b)
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where û, δ̂u, p̂ and δ̂p denote vectors containing element-

wise trial and test nodal displacement and pressure val-
ues, respectively. The quantities nu

dof and np
dof denote

the number of DoFs for Vu
h (K) and Vp

h(K).
The arrays [Φu] and [Φp] contain the canonical ba-

sis functions that span Vu
h and Vp

h, respectively. The

conventional Bubnov-Galerkin FEM definition for these

spaces for a kth order method is provided below:

Vu
h =[Wh]

d, d = 2, Vp
h = [Wh]

d, d = 1 (28a)

Wh ={v ∈ [H1(Ω) ∩ C0(Ωh)]

: v|K ∈ VK
h (K), ∀K ∈ Ωh}, (28b)

where VK
h (K) has the following definition:

VK
h (K) ={v ∈ [H1(K) ∩ C0(K)] : (29)

v,i|K ∈ Lk(K), for i = 1, . . . , d}.
The canonical basis functions retain their classical

properties

Φu
i (xj) = δij , i = 1, . . . , nu

dof,

Φp
i (xj) = δij , i = 1, . . . , np

dof,
(30)

and partition of unity properties

nu
dof∑

i=1

Φu
i (xj) = 1,

np
dof∑

i=1

Φp
i (xj) = 1, (31)

over Vu
h (K) and Vp

h(K) in the VEM formulation. These

properties are exploited through the entire work to al-

low for implicit definitions for uh and ph.

The term Lmak(K) in Eq. (29) denotes kth order
Lagrange interpolating polynomials defined over an el-

ement domain K. These polynomials spanning the FEM
space are explicitly defined and fully dependent on the

element geometry.

3.2 Virtual Element spaces

To accommodate element domainsKi of arbitrary shapes,

the VEM seeks to avoid explicit definitions of these ba-

sis functions. To facilitate this, certain restricting as-

sumptions on the approximating subspace VK
h (K) need

to be relaxed. This is done by enlarging the space to al-

low for potentially non-polynomial function definitions

over the element interior. The associated enrichments

provide desirable stabilisation properties and correctly

capture the relevant kinematic modes of the element.

Within this setting, the space VK
h (K) is defined as

VK
h (K) ={v ∈ [H1(K) ∩ C0(K)] : v,i|e ∈ Pk(e) ∀ e ∈ ∂K ;

∆v,i|K ∈ Pk−2(K), for i = 1, . . . , d},

(32)

where Pk(K) denotes a kth order polynomial space, which

is spanned by appropriately defined monomials.
A significant point of departure from the FEM con-

sists in a two-fold observation of Eq. (32). First, the

VEM space VK
h (K) no longer requires its members to

have exclusively polynomial definitions over the element

interior. Second, the members are implicitly defined

through carefully chosen DoFs, as defined in Table 4,

where [Mk−2(K)]2 and Mk−2(K) contain scaled k − 2

order monomials of dimensions d = 2 and d = 1, respec-
tively. The total number of DoFs for each VEM space

is nu
dof = 2Nvk+ k(k− 1) and np

dof = Nvk+ k(k− 1)/2,

respectively. This is illustrated in Fig. 3 for an element

with Nv = 7 edges.

Fig. 3 VEM DoFs illustrated for a k = 2 element with Nv =
7. The centroid and element diameter are denoted by xK

and hK, respectively. This element contains nu
dof = 30 and

n
p
dof = 15 displacement and pressure DoFs, respectively.

Remark 3 From Eq. (32), it is to be noted that these

generalized non-polynomial functions assume continu-

ous kth order polynomial expressions over the element

boundary. These polynomials can be uniquely determined
through the corner and edge DoFs. This behaviour is
consistent with the classical FEM definition provided in

Eq. (29). The behaviour of the functions remain un-

known within the element interior, except through a

condition on its Laplacian, as defined in the area mo-

ment DoFs. Owing to the C0 conforming nature of the

method induced by the governing equations, it is suffi-
cient to retain the Laplacian operator, as originally de-
fined for elliptic problems in [40]. Stricter conformity

requirements, as encountered in higher order problems

require different conditions within the element interior

[56].

This approach solves the difficulty of providing ex-

plicit expressions for element basis functions. This im-

plicit definition justifies the terminology virtual elements

and virtual spaces. These bases are numerically evalu-

ated and visualized in Fig. 4 for the heptagonal element
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DoF

Type
Location Vu

h Vp
h

Number

of DoFs
Description

Number

of DoFs
Description

Corner vertices of K Nu
C = 2Nv

uh(xj),
j = 1, . . . , Nv

N
p
C = Nv

ph(xj),
j = 1, . . . , Nv

Edge
internal boundary
points on each

edge of K
Nu

E = 2Nv(k − 1)
uh(xe

j),
j = 1, . . . , k − 1
for each edge

N
p
E = Nv(k − 1)

ph(x
e
j),

j = 1, . . . , k − 1
for each edge

Area
Moment

point lying in
interior of
domain K

Nu
A = 2k(k−1)

2

1
|K|

∫

K

uh ·m dK

∀m ∈ [Mk−2(K)]2
N

p
A = k(k−1)

2

1
|K|

∫

K

ph ·m dK

∀m ∈ Mk−2(K)

Table 4 Degrees of Freedom for Vu
h (K) and Vp

h(K). For Area moment, the monomials belong to [Mk−2(K)]2 and Mk−2(K)
spaces, respectively.

defined in Fig. 3. They are computed through a sub-
scale boundary value problem over the element domain

with appropriate kinematic constraints.

3.3 Virtual approximants at the element level

Following the discretization introduced in Eqs. (27),
the displacement and pressure fields are split into their
polynomial and non-polynomial components

uh = uπ
h + (uh − uπ

h), δuh = δuπ
h + (δuh − δuπ

h),

(33)

ph = pπh + (ph − pπh), δph = δpπh + (δph − δpπh).

(34)

This decomposition is illustrated in Fig. 5. The index

π in Eqs. (33) and (34) denotes the polynomial com-

ponent of the respective field. The polynomial compo-

nents contain the consistent kinematic modes exhibited

by the element. For the solid phase, these comprise rigid

body and deformation modes.

Inserting Eqs. (33) into the definition for the solid

phase specific local bilinear operators of Eqs. (26a) and

(26b), the following expressions are derived

aεK(uh, δuh) = P(aεK) + NP(aεK) (35)

a0K(uh, δuh)ρ̃ = P(a0K) + NP(a0K) (36)

where P(aεK) contains the polynomial and NP(aεK) the

non-polynomial component of the operator, i.e.,

P(aεK) = aεK

(
Πε

kuh, Π
ε
kδuh

)
(37)

NP(aεK) = aεK

(
(uh −Πε

kuh), (δuh −Πε
kδuh)

)
, (38)

and

P(a0K) = a0K

(
Π0u

k uh, Π
0u
k δuh

)

ρ̃
(39)

NP(a0K) = a0K

(
(uh −Π0u

k uh), (δuh −Π0u
k δuh)

)

ρ̃
, (40)

respectively.

In Eqs. (37)-(40), Πε
k : Vu

k (K) → [Pk(K)]2 and Π0u
k :

Vu
k (K) → [Pk(K)]2 denote unknown projection opera-

tors that map the unknown field uh onto the polyno-

mial space [Pk(K)]2. These projection operators arise

from the fact that the operators εs(·) and (·) cannot
directly interact with the unknown displacement field

as the latter is not explicitly defined.

Naturally, this introduces additional error into the

formulation. To minimize this error, the projection op-

erators are computed on the basis of the following or-

thogonality conditions, i.e.,

Πε
k := aεK(uh −Πε

kuh,m) = 0, (41a)

Π0u
k := a0K(uh −Π0u

k uh,m)ρ̃ = 0, (41b)

∀uh ∈ Vu
h (K), m ∈ [Pk(K)]2,

Remark 4 One would expect four terms in the r.h.s
of Eqs. (35)-(36). However, two terms contribute zero

energy due to the energetic orthogonality conditions de-

fined in Eqs. (41). The polynomial terms in these ex-

pressions are called consistency terms as they comprise

the consistent kinematic modes defined earlier.

Similarly, inserting Eqs. (34) into the fluid phase
specific operators of Eqs. (26c) and (26d) results in the
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(a) Φ
p
x1

(b) Φ
p
x

e
1

(c) Φ
p
xK

Fig. 4 Canonical VEM basis functions defined over a heptagonal domain in Fig. 3 for (a) a vertex DoF, (b) an edge DoF
and (c) an interior DoF. The non-zero quadratic forms recovered on (a) edges e1 and e7 for Φ

p
x1

and (b) edge e1 for Φ
p
x

e
1
are

uniquely defined exclusively through the relevant edge and vertex DoFs.

Fig. 5 A discretized solution field and its polynomial components visualized over a polygonal element. A planar cross-section
illustrates that uh and uπ

h vary within the element interior, but coincide at the boundary.

following splits

b∇K(ph, δph) 1
ρ̃eq

= P(b∇K) + NP(b∇K) (42)

b0K(ph, δph) 1
K̃eq

= P(b0K) + NP(b0K), (43)

where the corresponding polynomial and non-polynomial
arguments become

P(b∇K) = b∇K

(
Π∇p

k ph, Π
∇p
k δph

)
1

ρ̃eq

(44)

NP(b∇K) = b∇K

(
(ph −Π∇p

k ph), (δph −Π∇p
k δph)

)
1

ρ̃eq

,

(45)
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and

P(b0K) = b0K

(
Π0p

k ph, Π
0p
k δph

)
1

K̃eq

(46)

NP(b0K) = b0K

(
(ph −Π0p

k ph), (δph −Π0p
k δph)

)
1

K̃eq

,

(47)

respectively. The projection operators Π∇p
k : Vp

k (K) →
Pk(K) and Π0p

k : Vp
k (K) → Pk(K) arise from the action

of ∇(·) and (·) onto the unknown pressure field.

Similar to Eq. (41), the following orthogonality con-

ditions are defined for the fluid phase projection oper-
ators

Π∇p
k := b∇K(ph −Π∇p

k ph,m) 1
ρ̃eq

= 0, (48a)

Π0p
k := b0K(ph −Π0p

k ph,m) 1
K̃eq

= 0, (48b)

∀ ph ∈ Vp
h(K), m ∈ Pk(K),

Finally, inserting Eqs. (33) and (34) into the cou-
pling operator of Eq. (26f), the following expressions

are derived, i.e.,

a
(∇,0)
K = P(a

(∇,0)
K ) + NP(a

(∇,0)
K ) (49)

with

P(a
(∇,0)
K ) = a

(∇,0)
K

(
Π∇p

k ph, Π
0uδuh

)

γ̃
(50)

NP(a
(∇,0)
K ) = a

(∇,0)
K

(
(ph −Π∇p

k ph), (δuh −Π0uδuh)
)

γ̃
,

(51)

The subspaces [Pk(K)]2 and [Pk(K)] are spanned by

vector and scalar valued scaled monomials belonging
to [Mk(K)]2 and [Mk(K)], respectively. The members

of these monomial spaces are provided in Table 11 of

Appendix A.

In these spaces, there exist members contributing

zero energy to aεK(·, ·) and b∇K(·, ·), e.g., εs([1, 0]T ) =
[0, 0, 0]T . ∇(1) = [0, 0]T . These zero energy modes are

operator specific and collected in K
ε(K) and K

∇p(K).
They are called the kernel of the relevant operator. The

projectors are computed without the kernel, to avoid

spurious results arising from ill conditioned matrices.

To this end, Eqs. (41) and (48) are redefined as:





Πε
k := aεK(uh −Πε

kuh,m) = 0

∀uh ∈ Vu
h (K), m ∈ [Mk(K)]2 \Kε(K),

Π0u
k := a0K(uh −Π0u

k uh,m)ρ̃ = 0,

∀uh ∈ Vu
h (K), m ∈ [Mk(K)]2 \K0u(K),

(52)

and





Π∇p
k := b∇K(ph −Π∇p

k ph,m) 1
ρ̃eq

= 0,

∀ ph ∈ Vp
h(K), m ∈ Mk(K) \K∇(K),

Π0p
k := b0K(ph −Π0p

k ph,m) 1
K̃eq

= 0

∀ ph ∈ Vp
h(K), m ∈ Mk(K) \K0p(K)

, (53)

respectively. It is to be noted that a0K(·, ·) and b0K(·, ·)
contain empty kernels as they have no zero energy modes,
i.e., K0u(K) = K

0p(K) = ∅. These operator kernels are

provided in Table 12 in Appendix A.

Remark 5 The optimality criteria used above ensure

that the energies associated with the bilinear operators
P(·) are still computed exactly. This property is called

polynomial k-consistency, see, e.g., [40].

To compute the L2 projector Π0u
k , an intermediate

fifth projector Π∇u
k := Vu

k (K) → [Pk(K)]2 is required

[47]. This is a projector specific to the solid phase and
is defined here for completeness

Π∇u
k := a∇K(uh −Π∇u

k uh,m)δ⋆ = 0,

∀uh ∈ Vu
h (K), m ∈ [Mk(K)]2 \K∇u(K),

(54)

where K∇u denotes the kernel of a∇K(·, ·). This operator
is defined as follows:

a∇K(uh, δuh)δ⋆ =

∫

K

δ⋆∇uh · ∇δuh dK, (55)

where the material parameter δ⋆ is an arbitrarily chosen

scalar real valued number. The need for this additional

projector is dealt with in greater detail in Section 3.4.2.

3.4 Computing the projectors

Following the revised definition of the projectors in Eqs.

(52)- (54), the projected functions are expanded in terms

of the appropriate monomial bases. The H1 projectors,

i.e., Πε
k , Π

∇u
k , and Π∇p

k are expanded as

Πε
kuh =

nu
k−3∑

i=1

mi+3ζ
ε
i , (56a)

Π∇u
k uh =

nu
k−2∑

i=1

mi+2ζ
∇u
i , (56b)

Π∇p
k ph =

np
k
−1∑

i=1

mi+1ζ
∇p
i , (56c)



Virtual Elements for sound propagation in complex poroelastic media 13

where ζε
i and ζ∇u

i are (1×nu
dof) vectors of the unknown

expansion coefficients. Conversely, ζ∇p
i is a (1 × np

dof)

vector. Each entry in the expansion vectors corresponds
to a canonical basis function describing uh or ph, con-

tained in Φu and Φp, respectively (see Eq. (27)).

Eqs. (56a)-(56c) can be conveniently cast in matrix

form as

Πε
kuh = mε

︸︷︷︸
(2×nu

k
−3)

ζε︸︷︷︸
(nu

k
−3×nu

dof)

, (57a)

Π∇u
k uh = m∇u

︸ ︷︷ ︸
(2×nu

k
−2)

ζ∇u

︸︷︷︸
(nu

k
−2×nu

dof)

, (57b)

Π∇p
k ph = m∇p

︸ ︷︷ ︸
(1×np

k
−1)

ζ∇p

︸︷︷︸
(np

k
−1×np

dof)

, (57c)

where the matrices mε, m∇u, and m∇p hold the ap-

propriate monomial bases and ζε, ζ∇u, ζ∇p are arrays
whose ith row holds the vectors of expansion coefficients

ζε
i , ζ

∇u
i , and ζ

∇p
i , respectively.

Similarly, the L2 projectors, i.e., Π0u
k and Π0p

k are
expanded as

Π0u
k uh =

nu
k∑

i=1

miζ
0u
i , (58a)

Π0p
k ph =

np
k∑

i=1

miζ
0p
i , (58b)

where ζ0u
i and ζ

0p
i are (1×nu

dof) and (1×np
dof) vectors,

respectively.

Eqs. (58) are also cast in their corresponding matrix

form, i.e.,

Π0u
k uh = m0u

︸︷︷︸
(2×nu

k
)

ζ0u

︸︷︷︸
(nu

k
×nu

dof)

(59)

and

Π0p
k ph = m0p

︸︷︷︸
(1×np

k
)

ζ0p

︸︷︷︸
(np

k
×np

dof)

, (60)

respectively, where the matrices m0u and m0p hold the

monomial bases and ζ0u, ζ0p are the corresponding ar-

rays of the expansion coefficients.

The summation indices in Eqs. (56a)-(58b) nu
k and

np
k denote the number of vector and scalar valued mono-

mials in [Mk(K)]2 and Mk(K) and their expressions are

provided in Appendix A for completeness.

3.4.1 Computing the projectors Πε
k, Π

∇u
k , and Π∇p

k

Inserting the expansion of Eq. (56a) into the orthogo-

nality condition Eq. (52) and performing the necessary
algebra the following system of equations is established
with respect to the unknown expansion coefficients, i.e.,

Gε
︸︷︷︸

(nu
k
−3×nu

k
−3)

ζε = Bε
︸︷︷︸

(nu
k
−3×nu

dof)

, (61)

where Gε is an array with elements

Gε
ij =

∫

K

εs(mi+3)
Tσs(mj+3) dK, (62)

and Bε is an array whose jth row is a vector

Bε
j =

∫

K

εs(uh)
Tσs(mj+3) dK. (63)

Similarly, imposing the orthogonality condition Eq. (54)

on Eq. (56b), the following equation is established for

the expansion coefficients of the projector Π∇u
k

G∇u
︸ ︷︷ ︸

(nu
k
−2×nu

k
−2)

ζ∇u = B∇u
︸︷︷︸

(nu
k
−2×nu

dof)

, (64)

where the matrices G∇u, B∇u are defined as

G∇u
ij =

∫

K

(∇mi+2)
T δ⋆∇mj+2 dK, (65)

and

B∇u
j =

∫

K

(∇uh)
T δ⋆∇mj+2 dK, (66)

respectively.

Finally, inserting Eq. (56c) into the first of Eqs. (53),
the following equation is established

G∇p
︸︷︷︸

(np
k
−1×np

k
−1)

ζ∇p = B∇p
︸︷︷︸

(np
k
−1×np

dof)

, (67)

where

G∇p
ij =

∫

K

(∇mi+1)
T 1

ρ̃eq
∇mj+1 dK, (68)

and

B
∇p
j =

∫

K

(∇ph)
T 1

ρ̃eq
∇mj+1 dK, (69)

The terms Gε
ij , G

∇u
ij , and G∇p

ij in Eqs. (62), (65),
(68) are computable using numerical integration since
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εs(·) and ∇(·) can be directly performed on the ex-

plicitly defined monomials (Appendix A). A standard
Gauss-Legendre quadrature is sufficient as the integrands
are composed wholly of polynomial-type terms. For k =

1, this is trivial as the integrand is a constant whereas
for k ≥ 2, numerical integration over sub-triangulated
domains is required.

Conversely, the terms Bε
j , B

∇u
j and B∇p

j cannot be
evaluated in their current form as explicit definitions for

the terms uh and ph over the element domain interior

do not exist. Performing integration by parts in Eq. (63)

results in

Bε
j = Bε

bj +Bε
dj , (70)

where

Bε
bj =

∑

e∈∂K

∫

e

uh · (σ(mj+3) · nε (e)) de, (71)

and

Bε
dj = −

∫

K\∂K

uh · (div(σs(mj+3))) dK, (72)

respectively, where nε (e) collects the boundary direc-
tion cosines nx (e) and ny (e) and is expressed as

nε (e) =

[
nx (e) 0 ny (e)

0 ny (e) nx (e)

]T
. (73)

Since uh is known over the boundary through the

definitions of the corner and edge DoFs (Table 4), the

boundary integral of Eq. (71) can be evaluated with a

Gauss-Lobatto quadrature giving rise to the following

expression

Bε
bj =

[
Nu

B = Nu
C + Nu

E︷ ︸︸ ︷
Bε

bj,1 · · · Bε
bj,Nu

B

Nu
A︷ ︸︸ ︷

0 · · · 0
]

(74)

Conversely, the area moment DoFs within the el-

ement interior (see Table 4, Fig. 3) are exploited to

evaluate the interior domain integral Bε
dj . As there are

no interior DoFs for k = 1 methods, these integrals

vanish. For order k ≥ 2, the Laplacian condition de-
fined in Eq. (32) is exploited. To this end, the term

div(σs(mj+3)) in Eq. (72) is expanded over the [Mk−2(K)]2

basis giving rise to the following expression

div(σs(mj+3)) =

nu
k−2∑

β=1

dεjβmβ , ∀mβ ∈ [Mk−2(K)]2,

(75)

where the expansion coefficients dεjβ are obtained through

inspection [83]. Substituting Eq. (75) in Eq. (72) the
following expression is eventually established

Bε
dj = −|K|

nu
k−2∑

β=1

dεjβdof2kNv+β(uh) = −|K|dε (76)

where the dof function denotes the evaluation of its ar-
gument at the indexed degree of freedom (see Eq. (142)),
and

dε =
[

Nu
B︷ ︸︸ ︷

0 · · · 0

Nu
A︷ ︸︸ ︷

dεj1 · · · dεj(nu
k−2)

]
. (77)

Combining Eqs. (74) and (76) and substituting in

Eq. (70) provides the computed form of matrix Bε.
Hence, Eq. (61) can be solved for the array of the ex-

pansion coefficients ζε. Substituting in Eq. (57a) the
following expression is eventually derived for the pro-

jection operator Πε
kuh

Πε
kuh = mε[Gε]−1Bε. (78)

The right hand side matrices in Eqs. (64) and (67)
are derived in a similar fashion. The derivations are

provided in Appendix B for completeness. Similar to

Eq. (78), the projection operators Π∇u
k uh and Π∇p

k ph
are evaluated according to the following expressions

Π∇u
k uh = m∇u[G∇u]−1B∇u, (79a)

Π∇p
k ph = m∇p[G∇p]−1B∇p. (79b)

3.4.2 Computing the projectors Π0u
k and Π0p

k

Within this vibro-acoustics setting, two additional L2

projectors emerge. To evaluate these, Eqs. (58a) and

(58b) are inserted into the second of Eqs. (52) and (53),

respectively to obtain

G0u
︸︷︷︸

(nu
k
×nu

k
)

ζ0u = B0u
︸︷︷︸

(nu
k
×nu

dof)

, (80a)

G0p
︸︷︷︸

(np
k
×np

k
)

ζ0p = B0p
︸︷︷︸

(np
k
×np

dof)

, (80b)

where the terms G0u and G0p are arrays with elements

G0u
ij =

∫

K

(mi)
T ρ̃mj dK, (81a)

G0p
ij =

∫

K

(mi)
T 1

K̃eq

mj dK. (81b)
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The quantities B0u and B0p are arrays, whose jth rows

are

B0u
j =

∫

K

(uh)
T ρ̃mj dK, (82a)

B
0p
j =

∫

K

(ph)
T 1

K̃eq

mj dK. (82b)

Computing G0u
ij and G0p

ij in Eqs. (81a)-(81b) is straight-

forward. The terms B0u
j and B

0p
j in Eqs. (82a)-(82b)

however, are not computable solely through the DoFs

of uh and ph. This is because the interior DoFs are

defined for m ∈ [Mk−2(K)]2 and m ∈ Mk−2(K), respec-

tively. To alleviate this, we employ the procedure shown

in [47,84].

Hence, these integrals are computed through the

existing DoFs of Vu
h (K) and Vp

h(K) when the current
monomial has a degree lesser than or equal to k − 2.

Conversely, the integrals are evaluated using Π∇u
k and

Π∇p
k when the order of the monomial under considera-

tion is larger than k − 2.

Following this procedure, B0u
j assumes the following

form

B0u
j =





B0u
1j , if 1 ≤ j ≤ nu

k−2

B0u
2j , if n

u
k−2 < j ≤ nu

k

, (83)

Similarly, B0p
j becomes

B
0p
j =





B
0p
1j , if 1 ≤ j ≤ np

k−2

B
0p
2j , if np

k−2 < j ≤ np
k.

(84)

Remark 6 A prima-facie notion might be that addi-

tional error is introduced through using H1 projectors

here. However, it is proved in [41,47] that this is not

the case. In fact, it is shown that one can replace uh and
ph here with enhanced stand-in functions zh ∈ Zu

h (K)

and zh ∈ Zp
h(K) where

Zu
h (K) = {zh ∈ [VK

h (K)]2, a0K(zh −Π∇uzh,mj)ρ̃ = 0,

nu
k−2 < j ≤ nu

k}
(85a)

Zp
h(K) = {zh ∈ VK

h (K), b0K(zh −Π∇pzh,mj) 1
K̃eq

= 0,

np
k−2 < j ≤ np

k}.
(85b)

With the additional condition requiring the orthogonal-

ity of the H1 projection error with respect to the L2

bilinear operators, it is seen that no additional error is

introduced through this procedure.

Using the definitions for VEM DoFs in Table 4, B0u
1j

and B
0p
1j can be evaluated as follows:

B0u
1j = |K| ρ̃ dof(uh) = |K|d0u

j , (86a)

B
0p
1j = |K| 1

K̃eq

dof(ph) = |K|d0p
j , (86b)

where

d0u
j = ρ̃

[
Nu

B︷ ︸︸ ︷
0 · · · 0

Nu
A︷ ︸︸ ︷

︸ ︷︷ ︸
j

0 · · · 1 · · · 0
]
, (87a)

d
0p
j =

1

K̃eq

[
Np

B︷ ︸︸ ︷
0 · · · 0

Np
A︷ ︸︸ ︷

︸ ︷︷ ︸
j

0 · · · 1 · · · 0
]
. (87b)

Using the monomial expansion forΠ∇u
k uh andΠ∇

k ph
from Eqs. (58a) and (58b) with running index β instead

of i to avoid confusion, the terms B0u
2j and B

0p
2j are now

collected and computed:

B0u
2 = Hu

︸︷︷︸
(nu

k
−2×nu

k
−2)

ζ∇u, (88a)

B
0p
2 = Hp

︸︷︷︸
(np

k
−1×np

k
−1)

ζ∇p, (88b)

where

Hu
βj =

∫

K

(mβ+2)
T ρ̃mj dK, β = 1, . . . , nu

k − 2, (89)

and

Hp
βj =

∫

K

(mβ+1)
T 1

K̃eq

mj dK, β = 1, . . . , np
k − 1. (90)

The coefficient arrays ζ∇u and ζ∇p have already been

derived. The quantities Hu
βj and Hp

βj can be computed
using numerical integration over sub-triangulated do-

mains.

Using Eqs. (86a) and (88a), B0u is cast in the fol-

lowing form:

B0u =
[
B0u

1 B0u
2

]T
(91)

Similarly, using Eqs. (86b) and (88b), B0p is eventually

expressed as

B0p =
[
B

0p
1 B

0p
2

]T
(92)

All terms in Eqs. (80a)-(80b) are now rendered com-

putable.
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Solving Eqs. (80a)-(80b) for the expansion coeffi-

cients and substituting in Eqs. (59) and Eqs. (60), the
following approximations for the projection operators
are eventually derived, i.e,

Π0u
k uh = m0u[G0u]−1B0u, (93a)

Π0p
k ph = m0p[G0p]−1B0p. (93b)

4 Discretized governing equations

4.1 Consistency terms

Using Eqs. (26a) and (26b), the solid phase polynomial
terms in Eq. (35) and Eq. (36) give rise to an elastic
consistency term,

aεK(uh, δuh) =

∫

K

σs

(
Πε

kuh

)
: εs

(
Πε

kδuh

)
dK, (94)

and a mass consistency term

a0K(uh, δuh)ρ̃ =

∫

K

ρ̃ Π0u
k uh ·Π0u

k δuh dK, (95)

respectively. Similarly, substituting Eqs. (26c), (26d),
and (26f) in the polynomial terms of Eqs. (42), (43), and

(49), respectively results in the following expressions for
the fluid kinetic consistency term

b∇(p, δph) 1
ρ̃eq

=

∫

K

1

ρ̃eq
∇
(
Π∇p

k ph

)
· ∇
(
Π∇p

k δph

)
dK,

(96)

the fluid compressibility consistency term.

b0(p, δph) 1
K̃eq

=

∫

K

1

K̃eq

Π0p
k ph ·Π0p

k δph dK, (97)

and the coupling consistency term

a∇,0(ph, δuh)γ̃ =

∫

K

γ̃∇
(
Π∇pph

)
·Π0uδuh dK, (98)

respectively.

Substituting the projector approximation from Eq. (78)

in Eq. (94) and perfoming the necessary algebraic ma-

nipulations, the following expression is eventually re-

trieved for the elastic stiffness consistency term

K̃C
K = ζεT [Gε]ζε, (99)

where Gε is provided in Eq. (62).

Similarly, substituting the projector approximation

of Eq. (93a) into Eq. (95) the following expression for
the mass consistency term is retrieved

M̃C
K = ζ0uT

[G0u]ζ0u, (100)

where G0u is provided in Eq. (81a).

The expressions for the fluid phase consistency terms

are established by substituting Eqs. (79b) and (93b)

into Eqs. (96) and (97), respectively. Hence, the fluid

kinetic consistency term assumes the following form

H̃C
K = ζ∇pT

[G∇p]ζ∇p, (101)

where G∇p is evaluated in Eq. (68) and the fluid com-

pressibility term becomes

Q̃C
K = ζ0pT

[G0p]ζ0p, (102)

where G0p is provided in Eqs. (81b).

Finally, the phase coupling consistency term in Eq. (98)

assumes the following form

C̃C
K = ζ∇pT

[G∇p 0u]︸ ︷︷ ︸
(np

k
−1×nu

k
)

ζ0u, (103)

where where G∇p 0u in Eq. (103) is an array with ele-
ments
(
G∇p 0u

)

ij
=

∫

K

γ̃∇(mi+1) ·mj dK,

i = 1, . . . , np
k − 1, j = 1, . . . , nu

k

(104)

This integral can be computed in a straightforward way

using the sub-triangulation approach. The consistency

terms are not coercive over the complete polynomial

space as the monomials from the operator kernel have

been omitted.

4.2 Stability terms

The second part of the r.h.s. in Eqs. (35),(36), (42),(43)

and (49) cures this rank-deficiency. However, as these

contain non-polynomial integrands without an explicit

definition over the element interior, the relevant inte-

grals cannot be computed analytically. Further, numer-
ical integration requires higher order quadrature rules
to achieve reasonable accuracy. To alleviate this, the
non-polynomial contributions are approximated by user

defined bilinear forms called Stability terms.

Remark 7 These terms are chosen to satisfy basic sta-

bility and coercivity properties. They are also designed

to reduce to zero over polynomial subspaces as in, e.g.,

the boundaries of an element. This is necessary as con-

sistency terms exactly account for the entire energy here.
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These stability terms also provide additional stiffness to

higher order modes, thus preventing the entry of spuri-

ous higher order hourglass modes. For this reason, the

stability terms can also be interpreted as a form of hour-

glass control [85].

The non-polynomial integrands, uh and ph are known

only in terms of the canonical bases Φu and Φp, respec-
tively. Conversely, owing to the kinematic decomposi-

tion used in Eqs. (33)-(34), polynomial projections uπ
h

and pπh are also present alongside the non-polynomial

terms. These quantities are known in terms of the mono-

mial bases [Mk(K)]2 and Mk(K). To facilitate inter-

action between these two components, as is necessary

here, one needs to express uπ
h and pπh in terms of Φu and

Φp. This is done by re-expressing the monomial bases

in terms of the canonical bases as follows:

Πε
kuh = mεζε = [Φu]T Dε

︸︷︷︸
(nu

dof×nu
k
−3)

ζε (105)

Π0u
k uh = m0uζ0u = [Φu]T D0u

︸︷︷︸
(nu

dof×nu
k
)

ζ0u (106)

Π∇
k ph = m∇pζ∇p = [Φp]T D∇p

︸︷︷︸
(np

dof×np
k
−1)

ζ∇p (107)

Π0p
k ph = m0pζ0p = [Φp]T D0p

︸︷︷︸
(np

dof×np
k
)

ζ0u, (108)

where the matrices Dε, D0u, D∇p and D0p collect the

monomials evaluated at the VEM DoFs. Explicit forms

for these arrays are provided in Eq. (141) in Appendix

C.
Since the projectors have so far been computed only

for non-kernel monomials, it is now necessary to have

similar counterparts for the kernel components. This

ensures the completeness of the polynomial spaces in-

volved and restores coercivity to the entire formulation.

It is of interest to note that the L2 projectors already

achieve a complete polynomial projection as the respec-

tive operator kernels are empty (see Table 12 in Ap-

pendix A). To this end, it is sufficient to define kernel-
specific projectors ζε

S and ζ
∇p
S along with the relevant

change-of-basis transformation matrices Dε
S and Dε

S .

These matrices contain kernel monomials evaluated at

all DoFs, similar to Eq. (141):

Dε
S =




dof1(m1) . . . dof1(m3)
...

. . .
...

dofnu
dof

(m1) . . . dofnu
dof

(m3)


 , ∀m ∈ K

ε(K)

(109a)

D
∇p
S =




dof1(m1)
...

dofnp
dof

(m1)


 , ∀m ∈ K

∇p(K), (109b)

where dofi(mj) denotes the jth monomial evaluated at

the ith DoF.

The quantities ζε
S and ζ

∇p
S are now computed in a

straightforward way:

ζεS = [Gε
S ]

−1Bε
S (110a)

ζ
∇p
S = [G∇p

S ]−1B
∇p
S , (110b)

where Gε
S = Bε

SD
ε
S and G

∇p
S = B

∇p
S D

∇p
S . The terms

Bε
S and B

∇p
S are specially defined using relations de-

rived in [83,47]:

Bε
S =



1/Nv 0 1/Nv 0 . . .
0 1/Nv 0 1/Nv . . .

η(x1) −ξ(x1) η(x2) −ξ(x2) . . .


 (111a)

B
∇p
S =

[
1/Nv 1/Nv . . .

]
, (111b)

where ξ = x−xK

hK
and η = y−yK

hK
denote scaled monomi-

als in each parametric direction.

Remark 8 These relations are obtained for Bε
S by im-

posing equality of two mean translations and a single

rotation between uh and uπ
h. Similarly, B∇p

S is obtained

through imposing equality of mean pore-fluid pressures
between ph and pπh. It is to be noted that since Eq. (111)

is defined only at vertex DoFs, columns resulting from
edge and area DoFs encountered in k ≥ 2 methods are

set to zero.

The complete stability specific projection operators
are finally expressed in the canonical bases as follows:

Πε
tot = Dεζε +Dε

Sζ
ε
S (112a)

Π0u
tot = D0uζ0u (112b)

Π
∇p
tot = D∇pζ∇p +D

∇p
S ζ

∇p
S (112c)

Π
0p
tot = D0pζ0p. (112d)

Driven by the work of [86] on elasto-statics, we intro-

duce the following stability term approximants for the
non-polynomial terms of the solid phase

NP(aεK) ≈ S
K(uh, δuh) = [Φu]T K̃S

K [Φu], (113a)

NP(a0K) ≈ S
M(uh, δuh)ρ̃ = [Φu]T M̃S

K [Φu], (113b)

the fluid phase

NP(b∇K) ≈ S
H(ph, δph) 1

ρ̃eq
= [Φp]T H̃S

K [Φp], (114a)

NP(b0K) ≈ S
Q(ph, δph) 1

K̃eq

= [Φp]T Q̃S
K [Φp], (114b)

and the coupling term

NP(a
(∇,0)
K ) ≈ S

C(ph, δuh) = [Φp]T C̃S
K [Φu], (115)

respectively.
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In Eqs. (113a)-(115), K̃S
K, M̃

S
K, H̃

S
K, Q̃

S
K, and C̃S

K

denote the elastic, mass, fluid kinetic, fluid compress-
ibility and coupling stability stiffness matrices, respec-

tively. These are defined according to the following ex-
pressions,

K̃S
K = (Iu −Πε

tot)
T βK (Iu −Πε

tot), (116a)

M̃S
K = (Iu −Π0u

tot)
T βM (Iu −Π0u

tot), (116b)

H̃S
K = (Ip −Π

∇p
tot)

T βH (Ip −Π
∇p
tot), (116c)

Q̃S
K = (Ip −Π

0p
tot)

T βQ (Ip −Π
0p
tot), (116d)

C̃S
K = (Ip −Π

∇p
tot)

T βCIC (Iu −Π0u
tot). (116e)

In Eqs. (116), Iu and Ip are identity matrices of sizes

(nu
dof×nu

dof) and (np
dof×np

dof). The array IC = [Ip, Ip] is

used to ensure compatible matrix multiplication. The

stabilization parameters βK, βM, βH, βQ and βC are

defined using the D-recipe stabilization (originally pro-

posed in [87] and adapted to a porous media context in

[76]) below:

βG
K = γG

K |K| tr(D)

tr(DεT
Dε)

βG
M = γG

M |K| ρ̃

tr(D0uT
D0u)

βG
H = γD

H |K| 1/ρ̃eq
tr(D∇pT

D∇p)
βG
Q = γG

Q |K| 1/K̃eq

tr(D0pT
D0p)

βG
C = γG

C |K| γ̃

tr(D0pT
D0p)

.

(117)

In Eq. (117), the constants γG
K , γG

M, γG
H , γG

Q , γG
C are scal-

ing parameters. In the numerical tests conducted in this

work, we observe that γG
K = γG

M = γG
H = γG

Q = γG
C = 1

provides accurate and well behaved results in all cases.

However, it has been reported in [68], that the stabi-

lization parameter for the elastic stiffness matrix, while

stable with regards to uniform/isotropic scaling, is un-

stable with respect to the aspect ratio of the element.

Such unstable ratios can often be encountered, e.g., in
the case of non-conforming interfaces. To remedy this,
an alternate choice for the elastic stiffness stabilization

parameter is proposed in [68]:

βN
K = γN

K |K|tr(D) tr([DεT

Dε]−1). (118)

The choice γN
K = 1

9 has been proposed in [68]. For a

more detailed study on the influence of mesh quality

on the VEM, the reader is referred to [88].

4.3 State matrices

Employing the consistency and stability term defini-

tions introduced in Eqs. (99)-(103) and Eqs. (116), re-

spectively, the virtual element state matrices are even-

tually defined according to the following expressions,

i.e.,

[]

Consistency Stability

K̃K ≈ K̃C
K + K̃S

K

M̃K ≈ M̃C
K + M̃S

K

H̃K ≈ H̃C
K + H̃S

K

Q̃K ≈ Q̃C
K + Q̃S

K,

C̃K ≈ C̃C
K + C̃S

K.

(119)

The local state matrices defined in Eq. (119) are

assembled over the entire domain Ωh using a direct ap-

proach to obtain the following global state matrices:

K̃ =
nel

A
i=1

K̃Ki
, M =

nel

A
i=1

M̃Ki
, H̃ =

nel

A
i=1

H̃Ki
,

Q̃ =
nel

A
i=1

Q̃Ki
, C̃ =

nel

A
i=1

C̃Ki
.

(120)

4.4 Computing Boundary and Interface integrals

It is to be noted that as stated in Remark 3, one re-

covers from the VEM, a classical Lagrange polynomial

based interpolation over the element boundaries. As a

result, the boundary terms mentioned in Eqs. (26e) and

(26g) can be computed in a straightforward way with-

out resorting to deriving projectors exclusive to these

forms:

ÃK =

∫

ΓK
hr

1

z(θ)
Φp ·Φp dΓ, (121a)

S̃K =

∫

ΓK
ht

c
(
Φp · n

)
·Φu dΓ, (121b)

where ÃK denotes a local admittance matrix encoun-

tered over Robin boundary ΓK
hr (see Eq. (26e)). Matrix

S̃K denotes a local fluid-structure coupling matrix en-
countered at an interface (see Eq. (26g)). Similar to

Eq. (120), these integrals are assembled over the rele-

vant boundaries Γhr, Γht, Γhq to yield global boundary

matrices:

Ã = A
i
ÃK(i), S̃ = A

i
S̃K(i). (122)
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5 Analysis Procedure

The virtual element discretization of the weak form in
Eq. (16) is written as a coupled system of linear equa-

tions in matrix form:

 K̃− ω2M̃ −

(
C̃+ S̃

)

−ω2
(
C̃T + S̃T

)
H̃+ jωÃ− ω2Q̃



{
û

p̂

}
=

[
fu

fp

]
,

(123)

where fu and fp are load terms for either phase. It has

already been shown in Section 2.2 that all coupling and

support conditions yield either zero-value boundary in-

tegrals or forms that are bilinear in nature, (see Tables

2-3). Furthermore, since we exclusively consider acous-
tic excitations for this work, it is reasonable to allow
fu = 0 and fp = 0. These excitations are imposed as

Dirichlet pressures.

It is worth noting that despite Eq. (123) being lin-

ear in û and p̂, it exhibits an explicit parametric non-
linearity with respect to ω. Implicit material non-linearities

are encountered in the global state matrices through
their complex frequency-dependent material parame-
ters, see, e.g, Eqs. (6) for the JCAL model.

Owing to the spectral nature of the problem, mul-

tiple solutions to Eq. (123) are required over a de-
sired frequency bandwidth to sufficiently characterize
the vibro-acoustic behaviour of the system. It is pos-

sible to significantly reduce the assembly time by as-
sembling the global state matrices only once without
the implicit frequency-dependent content; this can be

post-multiplied during the solution stage.

6 Numerical Examples

In this work, we investigate the accuracy of the VEM

through four numerical examples. A first order method

k = 1 is used. The accuracy of the displacements and

pressures achieved by the method is measured through

relative L2 error norms:

||uQ
h (ω)− uQ

ref (ω)||L2 =
√√√√ 1

nQel

nQel∑

i=1

〈uQ
h(i)(ω)− uQ

ref(i)(ω) , u
Q
h(i)(ω)− uQ

ref(i)(ω)〉
〈uQ

ref(i)(ω),u
Q
ref(i)(ω)〉

,

(124)

||pQ
h (ω)− pQ

ref (ω)||L2 =
√√√√ 1

nQel

nQel∑

i=1

〈pQ
h(i)(ω)− pQ

ref(i)(ω) , p
Q
h(i)(ω)− pQ

ref(i)(ω)〉
〈pQ

ref(i)(ω),p
Q
ref(i)(ω)〉

(125)

where uQ
h (ω), p

Q
h (ω), where uQ

ref (ω), p
Q
ref (ω) denote

numerically computed and reference displacements and
pressures at an excitation frequency ω, respectively.

The quantities are interpolated over a query mesh Q
with nQ

el elements. The reference solutions uQ
ref and

pQ
ref are obtained using finely discretized FEM solu-

tions. The stabilization scaling parameters used through-

out the examples correspond to Eq. (117), unless explic-

itly stated otherwise.

Useful acoustic indicators like the Sound Absorption

Coefficient (SAC) and the Sound Transmission Loss Co-
efficient (STL) are provided. For comparisons, a refer-

ence SAC or STL curve is generated with the finely dis-
cretized post-processed FEM results or the semi-analytical
Transfer Matrix Method (TMM) [89]. The procedure

followed in computing these indicators is provided in

Appendix D.

6.1 Square poroelastic domain

The convergence behaviour of the method is investi-

gated herein. A square poroelastic domain with a side

b = 57 mm is considered. This domain is given impedance

tube constraints, i.e. a roller support on the lateral sides

and a rigid impervious backing at the rear. It is excited

by an acoustic plane wave at normal incidence. This

configuration is illustrated in Fig. 6.

Fig. 6 A poro-elastic domain in impedance tube configura-
tion subject to plane-wave acoustical excitation p̄ at normal
incidence

The material used is a poroelastic melamine foam.

The macroscopic material parameters are provided as
Material ID III in Table 7. Since the governing equa-
tions are linear in pressures, the solutions can be ap-

propriately scaled with the excitation. For the sake of

brevity, an amplitude of 1 Pa is considered.

The VEM solution procedure is performed using

a structured quadrilateral grid (QUAD) and unstruc-

tured CVT grid (CVT) over an excitation frequency
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range f ∈ [20Hz, 5500Hz]. Results were found to con-

verge at a discretization of 10 × 10 QUAD elements
and 100 polygonal CVT elements. The converged dis-

placement contours ||u|| for both meshes are shown in

Fig. 7 at 20 Hz and 1500 Hz. Similarly, the converged

pressure contours p are provided in Fig. 8 for the same
frequencies.

(a) QUAD mesh 20 Hz (b) QUAD mesh 1500 Hz

(c) CVT mesh 20 Hz (d) CVT mesh 1500 Hz

Fig. 7 Converged ||u|| displacement contours at excitation
frequencies 20 Hz and 1500 Hz for QUAD and CVT type
meshes

The contours obtained by the VEM for both meshes

are practically identical with a linear variation in dis-

placements and a uniform pressure profile accross the

domain being retrieved. As anticipated, the method

converges to a solution that is independent of the type

of the underlying discretization.

Next, a convergence study is performed through an

a posteriori error- based mesh sensitivity analysis. Five

QUAD and five CVT meshes are chosen for this pur-

pose. The details of these discretizations are provided

in Table 5. A finely discretized FEM solution with a

structured 250 × 250 QUAD mesh is used as a refer-

ence.

The relative displacement errors in L2 norm for both

mesh types are shown at frequencies f = 20 Hz, f = 750

(a) QUAD mesh 20 Hz (b) QUAD mesh 1500 Hz

(c) CVT mesh 20 Hz (d) CVT mesh 1500 Hz

Fig. 8 Converged p pressure contours at excitation frequen-
cies 20 Hz and 1500 Hz for QUAD and CVT type meshes

Label QUAD CVT

Nodes Elements Nodes Elements

I 36 5× 5 52 25
II 121 10× 10 202 100
III 676 25× 25 1251 625
IV 2601 50× 50 4993 2500
V 10,201 100× 100 19,968 10, 000

Table 5 Discretization used for the error-based mesh sensi-
tivity analysis

Hz and f = 1500 Hz in Fig. 9. Variations with respect

to the number of degrees of freedom and the average

element size are shown on the bottom and top hori-

zontal axes, respectively. Near comparable behaviour
is obtained by both meshes. The CVT mesh is shown
to achieve smaller errors at higher discretizations than
the QUAD mesh. This is expected as the number of

nodes and hence degrees of freedom associated with the

former practically doubles as shown in Table 5 hence

resulting in considerably more flexible numerical do-

mains.

The relative pressure errors in L2 norm are dis-

played in Fig. 10. Once again comparable behaviour

is noticed across both meshes. The displacement and
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(a) QUAD mesh (b) CVT mesh

Fig. 9 Convergence of relative errors in displacements at excitation frequencies 20 Hz, 750 Hz and 1500 Hz

(a) QUAD mesh (b) CVT mesh

Fig. 10 Convergence of relative errors in pressures at excitation frequencies 20 Hz, 750 Hz and 1500 Hz

pressure fields are approximated in descending accuracy

across the excitation frequency spectrum in Figs. 9 and

10. This is due to the fact that the same spatial res-

olution is employed across the entire frequency range;

yet the higher the frequency becomes the finer mesh

discretization is required to accurately resolve the cor-

responding wave lengths.

First order methods of this nature are expected a
priori to converge at h2 with respect to mesh size in the

L2 norm. This theoretical slope is provided as ”ref: h2”

in Figs. 9 and 10. Graphically it can be seen that near

optimal convergence rates for errors in displacements

and pressures are obtained by the method across both

mesh-types. This suggests that the stability approxima-
tions chosen using the D-recipe stabilization procedure,
and the enhancing conditions introduced in computing
L2 projectors do not generate sub-optimal convergence

properties.

It is of interest to note that a larger spread is ob-

served for errors in pressure in Fig. 10 when compared
to errors in displacements in Fig. 9. This potentially
highlights the requirement for a different order of ap-

proximation specifically for the pressure field. Such as-

pects are beyond the scope of this work.

6.1.1 A remark on VEM mesh refinement

To achieve accurate high frequency solutions, several al-

ternatives to standard h-refinement have been proposed

in the literature; p refinement or h−p refinement strate-

gies using classical polynomial-driven finite elements

do offer a viable route. Alternatives based on enrich-

ment strategies such as generalized finite element meth-

ods [90], discontinuity enriched methods [91]. Amongst

these, the Spectral Element Method (SEM) [92] has

been shown to provide well behaved solutions across

the frequency spectrum. These higher order methods

are motivated by the creation of more flexible domains
without having to decrease element sizes. This criterion
can be met using the Virtual Element Method as well.

To examine this, a relatively coarse discretization

of 4× 4 QUAD elements is shown in Fig. 11a. 1, 2 and
3 nodes are inserted per element edge to obtain the

8, 12, and 16 noded element discretizations shown in
Figs. 11b, 11c, and 11d, respectively. These elements
are parametrized using pe, which corresponds to the

number of subdivisions per edge.

In classical finite element methods, Figs. 11b, 11c

and 11d are generally interpreted as serendipity ele-

ments and support quadratic, cubic and quartic inter-
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subdivisions

per edge

nodes

per element
total nodes FEM VEM

edges order edges order

pe = 1 4 25 4 1 4 1
pe = 2 8 65 4 2 8 1
pe = 3 12 105 4 3 12 1
pe = 4 16 145 4 4 16 1

Table 6 Alternate parametrization of higher order elements using a first order VEM.

(a) pe=1 (b) pe=2

(c) pe=3 (d) QUAD mesh

Fig. 11 pe refined virtual element meshes

polations, respectively and pe would correspond to the

order of approximation. While these higher order inter-

polations are certainly achievable through the VEM,

we propose an alternate route harnessing the ability of

a virtual element to have multiple edges. A first order

VEM (k=1) interprets pe=1, pe=2, pe=3 and pe=4 as

4-sided, 8-sided, 12-sided and 16-sided elements, respec-

tively. Hence, linear polynomials living on each edge can

uniquely be defined through adjacent vertex degrees of

freedom. This argument is summarized in Table 6.

Since the elements employed remain linear, an h-
refinement based error convergence analysis would con-

tinue to yield a relative error convergence rate of h2 in

L2 norm. One should not expect the hpe+1 rates more

commonly associated with higher order methods.

Remark 9 It is to be noted that the number of quadra-

ture points required for accurate polynomial integration

directly scales with the order of the classical polynomial

based higher order methods, such as FEM and SEM.

Conversely, on the edge refinement method examined

herein, the number of quadrature points will vary only

as a function of the sub-triangulation required for in-

tegration over the domain interior. We point out that

for first order VEM methods, this sub-triangulation is

required only for bilinear operators containing L2-type
projectors, i.e., a0K, b

0
K and a

(∇,0)
K . For the purely H1-

type operators, i.e. aεK and b∇K , numerical integration is

moved to the boundary and exactly and uniquely com-

puted through 2 Gauss Lobatto quadrature points per

edge, located at the relevant vertex nodes.

The influence of this procedure on the solution ac-

curacy is illustrated through the SAC. This determines

the absorption behaviour of a system and is computed

in post-processing (see Appendix D).

The reference SAC is computed through the semi-

analytic Transfer Matrix Method (TMM). Although

the TMM assumes an infinite lateral dimension, the so-

lution is still valid for the purpose of this example due

to the normal plane wave incidence and lateral sliding

condition.

The SAC curves computed for the four discretiza-

tions described above are compared against the TMM

curve in Fig. 12. The SAC computed through the VEM
agrees with the TMM curve from 20 Hz to ≈ 1500 Hz.

Beyond this limit, deviations are noticed, especially for
the pe=1 mesh. On the contrary, a near exact corre-

spondence is achieved with pe=4.

To illustrate gains in computational cost, a second-

order serendipity finite element method is used to per-
form the computations over the pe=2 mesh. Total com-

putational times are recorded over 1000 runs to ob-

tain meaningful comparisons. The VEM achieves a time
of 0.42 hours, whereas the FEM takes a total time of
0.6 hours. Hence, the order 1 virtual element method

achieves in providing accurate results without signifi-

cantly increasing the computational complexity of the

discretized domain.

6.2 Multilayer systems

Poro-elastic materials generally exhibit reduced sound

absorption properties at low excitation frequencies. This

is due to a mismatch between the sample thickness
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(a) SAC

Fig. 12 Convergence of SAC with pe refinement

and large wavelengths encountered at these frequencies.

Multilayer systems are often deployed to improve the

low frequency behaviour. Similarly, multilayer configu-

rations are also designed to improve sound transmission

properties as well.
This example is chosen to demonstrate the ability of

the VEM to account for wave propagation through dif-

ferent types of materials. Varied interface coupling con-

straints, boundary conditions and acoustic excitation

types are considered. A multilayer system comprising

three layers, i.e., (I) a melamine foam (poroelastic), (II)

an elastic plasterboard (solid) and (III) non-dissipative
air (fluid) is taken up for analysis. Each layer is 10 mm
thick and has a lateral dimension of 2m. This exag-
gerated height is used to simulate the infinite diame-

ter assumption used by the Transfer Matrix Method

for impedance tube simulations. Contrary to the previ-

ous example, here this requirement is necessary owing

to the presence of oblique excitations. To avoid spu-
rious reflections at the lateral boundaries due to the
fully reflecting zero normal fluid velocity Neumann con-

ditions, Floquet-Bloch type conditions [93] are typi-

cally employed to mimic periodic material behaviour

in the vertical direction. Alternatively, absorbing/non-

reflecting boundaries are also implemented using Infi-

nite Elements [94], Perfectly Matched Layers [95] or
doubly asymptotic approximations [96]. Since these pos-
sibilities lie outside the scope of our work, we instead

choose to model an exaggerated height of 2m to elimi-

nate the possibility of spurious reflections at these lat-

eral boundaries.

The material properties for each layer is summarized
in Table 7.

Remark 10 We mention that creating multilayer con-

figurations that improve acoustic properties is a matter

of engineering judgement and is not our objective here.

Our choice of materials for the multilayered system is

Fig. 13 Multilayer configuration with roller supports on lat-
eral edges. Material configuration provided in Table 7. Each
layer is 10 mm thick. Plane wave normal incidence excitation
with a fully clamped backing considered for Section 6.2.1.
Diffuse field excitation with anechoic termination considered
for Section 6.2.2.

motivated purely by computational reasons. Layer II is
chosen as a solid elastic layer to demonstrate the ability
of the VEM to accurately compute the admittance ma-

trix necessary for coupling pressure degrees of freedom

of layer I and layer III with the displacement degrees

of freedom of layer II at the respective interfaces. This

corresponds to a0Γ (ph, δuh)c defined in Eq. (23g) and

Table 3.

The lateral edges are subjected to sliding condi-

tions with roller supports. A polygonal discretization

of 30 CVT elements per smallest wavelength is consid-

ered to accurately resolve high frequency wave prop-

agation. The smallest wavelength is chosen to be the

minimum wavelength of the three Biot waves (P1, P2,

S) propagating through a poroelastic media, and the

corresponding structural and acoustic waves propagat-

ing through elastic and fluid media [97]. The interfaces

are appropriately seeded to allow the CVT to accu-

rately capture the geometry. The ability of the VEM

to account for potentially non-conforming interfaces is
illustrated in Fig. 14.

These non-conforming interfaces are converted into

conforming ones by exploiting the power of the VEM to
accommodate elements with several edges. Nodes that
are conventionally treated as ”hanging nodes” are de-

tected and added to the relevant interface element to

create new corners and edges; it is not necessary to
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Fig. 14 Converting a non-conforming interface into a con-
forming one by adding nodes and edges to each interface el-
ement as required

incorporate weak coupling techniques like the Mortar

method [98] or the Nitsche method [99] here.

The node-insertion technique may result in elements

with non-standard aspect ratios, thereby leading to an
unstable aspect ratio as discussed in Section 4.2. In

this case, the elements may not be amenable to stan-
dard isotropic scaling of the elastic stiffness stability
terms. To examine this, the alternate elastic stabiliza-

tion parameter of Eq. (118) is also used herein and the

stability of the results is examined. A heat map illus-

trating ”diff”, i.e., the relative differences between the

element-wise elastic stiffness matrix as computed using

Eqs. (117) and (118) is provided in Fig. 15. The relative

Fig. 15 Relative differences (in %) in the element-wise elas-
tic stiffness matrix with respect to different stabilization pa-
rameter choices (Eqs. (117) and (118))

difference is evaluated for the ith element as

diffi =

∣∣∣∣∣

∣∣∣∣∣
K̃G

K(i) − K̃N
K(i)

K̃G
K(i)

∣∣∣∣∣

∣∣∣∣∣, (126)

where K̃G
K(i) and K̃N

K(i) indicate the element elastic stiff-

ness matrix as computed using the VEM, with stabiliza-

tion parameters βG
K and βN

K , respectively (see Eqs. (117)

and (118)). The differences are observed to be mostly

negligible except from the interface elements where node

insertion has taken place. The behaviour of the method

for two problems is examined: (1) an absorption prob-

lem subject to plane wave excitation and (2) a trans-

mission problem subject to diffuse field excitation.

6.2.1 Normal incidence plane wave excitation

absorption problem

A plane acoustic wave at normal incidence excites the
left face of layer I. The right face of layer III is sub-
ject to a rigid backing, i.e., bonded/clamped supports.
The response of the system to an excitation frequency

spectra of f = [100, 4000] Hz is evaluated. The displace-

ment and pressure contours ux, uy and p obtained by
the VEM at low and high excitation frequencies 100 Hz

and 4000 Hz are shown in Figs. 16 and 17, respectively.
The corresponding contours obtained by the FEM at
4000 Hz is also shown for comparison. All contours are
interpolated over a structured query rectangular grid

containing 50 × 50 QUAD elements to make the com-

parisons fair.

As expected in this normal incidence case, the elas-

tic wave is propagating along the the x-direction as

shown in Fig. 16 . The high frequency contours ob-

tained by the VEM and FEM are practically identical.

It is evident from Figs. 16 that the elastic wave does

not propagate through the fluid/air layer. The acoustic

wave in Fig. 17 propagates only through the poroelas-

tic and fluid layers and is fully horizontal. Once again,

the high frequency FEM and VEM contours are practi-

cally equivalent, and the pressure wave has nearly been

damped out in the fluid layer.

The SAC is evaluated by the FEM and the VEM for

30 frequency steps and is shown in Fig. 18. The SAC

as computed through the semi-analytic Transfer Matrix

Method (TMM) is used as a reference. It is clear that all

three methods offer coinciding absorption curve results.

The relative differences in the displacement (Eq. (124))
and pressure (Eq. (125)) values at the interfaces, as ob-

tained by the VEM using the stabilization parameter

choices βG
K and βN

K are displayed across the frequency

spectrum in Figs. 19a and Fig. 19b, respectively. It can

be seen from these figures that the differences have

small upper bounds of 1.6×10−3 and 1.5×10−4. These
are generally prevalent at high frequencies. While they

do not affect the quality of the computed SAC in this

example, it is still possible that appreciable deviations

may be observed in cases where mesh distortion is more

severe. Hence, when encountering meshes with poten-

tially non-standard aspect ratios, βN
K is recommended

over βG
K .
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ID Name σ φ α∞ Λ Λ′ E ν ηs ρ

N · s ·m−4 - - m m N ·m−2 - - kg ·m−3

I
Melamine

foam
104 0.99 1.01

9.8×
10−5

1.96×
10−4

1.6×
105

0.44 0.1 8

II
Plaster-
board

- - - - -
3×
109

0.3 0.08 700

III Air - - - - - - - - 1.197

Table 7 Macroscopic material parameters corresponding to the relevant material ID

(a) VEM at 100 Hz (b) VEM at 4000 Hz (c) FEM at 4000 Hz

Fig. 16 ux (in [m]) contours at low and high frequencies, respectively. High frequency FEM contours are also provided for
comparison.

(a) VEM at 100 Hz (b) VEM at 4000 Hz (c) FEM at 4000 Hz

Fig. 17 p (in [Pa]) contours at low and high frequencies, respectively. High frequency FEM contours are also provided for
comparison.

Fig. 18 SAC computed by VEM, FEM and TMM for the
multilayer absorption problem.

6.2.2 Diffuse field transmission loss

A sound transmission problem is studied here for the

same multilayer configuration. The right face has an

anechoic termination, i.e., a Robin type impedance bound-

ary condition. This corresponds to the term b0Γ (ph, δph)

defined in Eq. (23e) and Table 2. A diffuse field acoustic

excitation is incident on the left face of the domain. The

excitation consists of several oblique incidence plane

waves with angles of incidence θ ∈ [0, 75◦]. A total of
N = 20 samples were computationally determined to

be sufficiently representative of the entire diffuse field.

The response of the system to an excitation frequency

spectra of f = [100, 4000] Hz is evaluated. The associ-

ated ux, uy and p VEM contours for θ = 0◦ and θ = 75◦

are shown in Figs. 20, 21 and 22 for 100 Hz and 4000

Hz respectively.

The elastic wave contours ux and uy are only com-

puted over the melamine foam and plasterboard do-

mains. Similarly, the acoustic wave contours are evalu-
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(a) Displacements (b) Pressures

Fig. 19 Relative differences in spectral solutions generated by the VEM at the interfaces using stabilization parameter choices
Eqs. (117) and (118)

ated only over the melamine foam and terminating air

layers.

There is a good correspondence between the 4000

Hz ux, uy and p contours as computed by the FEM

and VEM for both the cases of normal and oblique

incidence. A fully horizontal contour is observed for

the elastic wave in x-direction in Figs. 20a, 20b, 20c.

Oblique contours are retrieved in Figs. 20c, 20d and

20e. Contrary to the normal incidence case, waves are
propagating along the y direction in the 75◦ case and

are shown in Fig. 21a, 21b and 21c. The high frequency
excitations have been almost entirely dissipated by the

time they enter the plasterboard layer.

The pressures from the acoustic wave are nearly uni-

formly distributed over each of the two layers at normal
incidence, as seen in Figs. 22a, 22b and 22c. Excepting

minor oscillations, the high frequency acoustic wave at
oblique incidence has almost died down by the time it
has reached the rear air layer in Figs. 22e and 22f. The

oblique excitation contours encountered in Figs. 20e,

20f, 21b, 21c, 22e and 22f are reminiscent of evanescent

waves rather than propagating waves.

The sound transmission loss factor (STL) is com-

puted for the diffuse field excitation according to Eq. (127)

Tdf(ω) = −10log10

( 75◦∫
0◦

T (ω, θ) sin(θ) cos(θ) dθ

75◦∫
0◦

sin(θ) cos(θ) dθ

)
,

(127)

where T (ω, θ) denotes the STL computed for a single

plane wave at incidence θ (see Appendix D). The STL

evaluated by the FEM, the VEM, and the TMM is
shown in Fig. 23c. The associated STL curves at normal

incidence and oblique incidence θ = 75◦ are provided

for clarity in Figs. 23a and 23b, respectively.
The STL curve at normal incidence (Fig. 23a) shows

good correlations between all methods. Both the FEM

and VEM correctly estimate the coincidence frequency

at 75◦ oblique incidence correctly in Fig. 23b. Similarly,

both methods accurately predict the critical frequency

for the diffuse field excitation as well in Fig. 23c. How-

ever, slight deviations at the peaks of both curves are
observed. This is attributed to the following reasoning:
the TMM assumes an infinite lateral dimension and as

a result does not account for reflections occurring off

of the lateral boundaries. This effect is captured by the

FEM and VEM and is especially prevalent at large an-

gles of oblique incidence.

6.3 Porous composite with tortuous inclusion

This example is adapted from [8] to demonstrate the

ability of the VEM to accurately model the acoustic

behaviour of a rigid porous composite material. This

medium has a tortuous mesoscale inclusion (material
II) embedded within the host material (material I). The
client material is more permeable than the host. The

macroscopic parameters are summarized in Table 8.

The configuration is provided with a fully clamped back-

ing (often called rigid backing in acoustical literature)

and is subjected to a normal incidence plane wave ex-

citation as shown in Fig. 24.
Contrary to the previous examples, here the preced-

ing air column contained in the impedance tube also

needs to be modeled to account for reflection, scatter-

ing, dispersion and edge effects introduced by the het-

erogeneous interface. The relevant inlet and incident

quantities are accordingly computed at the extreme left

end. Consequently, along with the 45 mm air column,
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(a) VEM at 100 Hz, 0◦ incident angle (b) VEM at 4000 Hz, 0◦ incident angle (c) FEM at 4000 Hz, 0◦ incident angle

(d) VEM at 100 Hz, 75◦ incident angle (e) VEM at 4000 Hz, 75◦ incident angle (f) FEM at 4000 Hz, 75◦ incident angle

Fig. 20 ux (in [m]) contours at low and high frequencies and angles of incidence, respectively. High frequency FEM contours
are also provided for comparison.

(a) VEM at 100 Hz, 75◦ incident angle (b) VEM at 4000 Hz, 75◦ incident an-
gle

(c) FEM at 4000 Hz, 75◦ incident angle

Fig. 21 uy (in [m]) contours at low and high frequencies and high angle of incidence, respectively. High frequency FEM
contours are also provided for comparison.

Name σ φ α∞ Λ Λ′

N · s ·m−4 - - m m
I (Host) 106 1.00 1 12× 10−6 12× 10−6

II (Client) 1.15× 104 0.96 1.01 108× 10−6 138× 10−6

Table 8 Macroscopic material parameters corresponding to
the relevant material ID

the entire domain is discretized with 2592 CVT ele-

ments - following the 20 elements per minimum wave-

length rule. This discretization is illustrated in Fig. 25.

Remark 11 This is an axi-symmetric domain and hence

the plane-strain assumption is not expected to hold, es-

pecially in high-frequencies. However, we opted for this

test case as it provides insight on the capability of the

VEM in efficiently treating tortuous geometries. For

this purpose, the accuracy of the method is compared

against the TMM and also an axi-symmetric FEM.

It is evident from Fig. 25 that the interfaces be-

tween (a) air and the sample, (b) host and client ma-

terial are not perfectly enforced. This is deliberately

done to investigate the influence of imperfect interfaces

on the final result. The problem is solved over equally

distributed frequency steps ranging from 20 Hz to 5000
Hz. The pressure contours at low (100 Hz) and high



28 Abhilash Sreekumar1 et al.

(a) VEM at 100 Hz, 0◦ incident angle (b) VEM at 4000 Hz, 0◦ incident angle (c) FEM at 4000 Hz, 0◦ incident angle

(d) VEM at 100 Hz, 75◦ incident angle (e) VEM at 4000 Hz, 75◦ incident angle (f) FEM at 4000 Hz, 75◦ incident angle

Fig. 22 p (in [Pa]) contours at low and high frequencies and angles of incidence, respectively. High frequency FEM contours
are also provided for comparison.

(a) STL at incident angle 0◦ (b) STL at incident angle 75◦ (c) STL at diffused field excitation

Fig. 23 Sound Transmission Loss curves computed for the multilayer diffuse field transmission loss problem through the
VEM, FEM and TMM

(5000 Hz) as computed by the VEM are displayed in

Figs. 26a and 26c, respectively.

The corresponding contours as evaluated by the FEM

are shown in Figs. 26b and 26d, respectively. The re-

sults are practically identical. The imperfect interfaces

does not affect the solutions significantly.

The SACs as computed by the VEM and the axi-

symmetric FEM are compared with the TMM porous

composite model with pressure diffusion effect [8] in

Fig. 27. Good agreement between the three methods is

observed until ≈ 3000 Hz. Beyond this limit, a slight

deviation is noticed. This is attributed to two reasons.

First, due to the plane strain assumption that can-
not account for the domain axisymmetry. Second, the
equivalent model theory [8], on which the porous com-

posite model is based, is no longer perfectly valid as

scale separation breaks down here. The acoustic wave-

length is now smaller than the characteristic mesoscopic

size of the inclusion.

6.4 Mesoscale inclusions

It has already been mentioned in Section 6.2 that porous

materials do not offer desirable absorption properties
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Fig. 24 Schematic diagram of a 45 mm thick rigid skeleton
porous material with a second rigid porous material as a tor-
tuous inclusion. Roller and clamped supports are provided
at lateral boundaries and the rear, respectively. The macro-
scopic parameters of the matrix and inclusion are provided
in Table 8.

Fig. 25 The domain along with an equally thick air layer
is discretized using 2592 CVT elements, following the 20 ele-
ments per minimum wavelength discretization schema.

(a) VEM at 100 Hz (b) FEM at 100 Hz

(c) VEM at 5000 Hz (d) FEM at 5000 Hz

Fig. 26 p (in [Pa]) FEM and VEM contours at low and high
frequencies at normal incidence plane wave excitation.

at low frequencies. This is traditionally remedied by

deploying multilayered systems, as shown in Section

6.4. Alternative solutions are explored in the form of

double porosity materials [100], porous composites [8]

and embedded inclusions [101]. An example of a tor-

tuous porous composite is provided in Section 6.3. In

this example, the ability of embedded rigid inclusions to

improve absorption at lower frequencies is shown. The

cases provided in Examples 6.4.1 and 6.4.2 are directly

Fig. 27 SAC computed by the VEM, axi-symmetric FEM
and TMM for the rigid porous composite material.

adapted from [101]. All cases are subjected to plane

wave normal incidence excitation and a rigid backing.

The porous material involved is a foam with rigid mo-

tionless skeleton modelled as an equivalent fluid. The

exact material parameters are provided in Table 9.

σ φ α∞ Λ Λ′

N · s ·m−4 - - m m
8900 0.95 1.42 180× 10−6 360× 10−6

Table 9 Macroscopic material parameters corresponding to
the relevant material ID

The inclusions are treated as infinitely rigid cylin-

drical tubes. This means that the inclusion domain in-

teriors need not be meshed. Additionally, the Neumann

boundaries at the inclusion interfaces are zero (zero

normal-velocity).

6.4.1 One Inclusion in periodic unit cell

A periodically repeating square unit cell of size 2 cm is

taken up. A single cylindrical inclusion centered at (1

cm, 1 cm) of radius 0.75 cm is embedded. The unit cell

is repeated ten times in the vertical direction to sim-

ulate an infinite lateral dimension. The total vertical

dimension is 20 cm. This configuration is illustrated in

Fig. 28. The domain has been discretized with uniform
CVT elements resulting in a polygonal mesh with 7000
elements and 13,961 nodes. The SAC computed over
the frequency range 100 Hz-10kHz with the VEM for

this configuration is shown in Fig. 29. The curve is val-
idated against the analytic mode-matching technique
developed in [101]. Additionally, the SAC for the same

porous domain without the inclusions is also provided

for comparison. It is evident that the configuration with

inclusions exhibits an improved absorption behaviour in

the 1800 Hz - 3800 Hz frequency range. A near-unity

peak is observed at ≈ 3000 Hz. The pressure contours
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Fig. 28 A 2 cm thick domain with a single infinitely rigid
circular inclusion of radius 7.5 mm, per unit cell. Unit cell
repeats periodically in the vertical direction with period 2
cm.

Fig. 29 SAC computed by the VEM for the domain with and
without inclusion. A reference curve using the analytic mode-
matching technique from [101] is provided for comparison.

computed by the method at 100 Hz and 10 kHz are

shown in Fig. 30.

6.4.2 Two Inclusions in periodic unit cell

A second configuration, comprising two cylindrical in-

clusions of different sizes within the unit cell is shown

in Fig. 31. The unit cell is rectangular (3.5cm × 2cm)

with a period of 2 cm. The first inclusion is centered

at (2.5 cm, 1cm) with radius 0.75 cm. The second in-

clusion is of radius 0.5 cm and is centered at (1.5 cm,

2.5−
√
(3)). The domain is discretized with 7000 uni-

form CVT elements resulting in 13,990 nodes. The SAC

computed over the frequency range 100 Hz-10kHz by

(a) 100 Hz (b) 10 kHz

Fig. 30 p (in [Pa]) contours computed by VEM at low and
high frequencies at normal incidence plane wave excitation.

Fig. 31 A 3.5 cm thick domain with two infinitely rigid cir-
cular inclusion of radius 7.5 mm and 5 mm respectively, per
unit cell. Unit cell repeats periodically in the vertical direc-
tion with period 2 cm.

the VEM for the configurations with and without in-
clusions are shown in Fig. 32. Improvements in absorp-
tion behaviour are exhibited by the configuration with

inclusions across two frequency bands: 1600 Hz - 2200

Hz, 3700 Hz - 5000 Hz. These low frequency absorption

peaks in both cases are primarily due to the tortuosity

added by the solid inclusions.

6.4.3 Complex inclusion geometries

The ability of the VEM to easily model more com-

plex non-periodic inclusions is demonstrated here. The
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Fig. 32 SAC computed by the VEM for the domain with
and without inclusions.

(a) 100 Hz (b) 10 kHz

Fig. 33 p (in [Pa]) contours computed by VEM at low and
high frequencies at normal incidence plane wave excitation.

first example is a 5 cm × 15 cm rectangular domain

with irregular infinitely rigid inclusions in the shape

of alphabets V-E-M. This domain is discretized with a

CVT mesh containing 2500 elements and 5030 nodes.

The pressure contours at 100 Hz and 10 kHz are shown

in Fig. 34. The second example increases the inclusion
complexity even further by embedding inclusions in the
shape of a bat, spider and pacman in a 6 cm × 18 cm

rectangular domain. The discretization involved con-
tains 5000 CVT elements with 10,054 nodes. The low
and high frequency pressure contours are provided in
Fig. 35. Both examples use the same equivalent fluid

porous foam described in Sections 6.4.1 and 6.4.2 and
employ the same boundary conditions.

The discretizations used for these different inclusion-

types are summarized in Table 10.

(a) 100 Hz (b) 10 kHz

Fig. 34 p contours computed by the VEM at low and high
frequencies at normal incidence plane wave excitation.

(a) 100 Hz (b) 10 kHz

Fig. 35 p contours computed by the VEM at low and high
frequencies at normal incidence plane wave excitation.

Mesh Nodes Elements

One
inclusion

13,961 7000

Two
inclusions

13,990 7000

V-E-M 5030 2500
Superhero 10,054 5000

Table 10 Discretizations for the four inclusion-types used in
Section 6.4

7 Concluding Remarks

A novel VEM discretization has been proposed for study-
ing the vibro-acoustic behaviour of fluid, elastic and
poroelastic materials in the frequency domain. The nov-

elty of the method lies in employing the flexible meshing

capabilities of the VEM to reduce computational cost

and accurately capture complex interfaces. Implicitly

defined basis functions are used to evaluate elementary
state matrices through employing appropriately defined
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operator-specific projectors. The final matrix form of

equations are non-linear in ω, and are repeatedly solved
over the desired frequency spectrum. The solution is

post-processed to obtain acoustic indicators like SAC

and STL.

The method was shown to exhibit near-optimal con-

vergence rates for different element types in Example

6.1. This illustrates that the VEM can accurately han-
dle versatile mesh configurations at different frequen-
cies. Furthermore, the computational gains achieved are
discussed and evidenced by comparisons with the FEM.

The ability of the method to handle different types of

materials (fluid, elastic, poroelastic) and the resulting

interface coupling conditions are provided in Exam-

ple 6.2. This section also shows that the VEM can be
used to easily resolve non-conforming interfaces using
appropriate node-insertion algorithms. In this context,

the accuracy of two different stabilization parameter

choices was explored; although the differences were neg-

ligible, the non-isotropic stabilisation procedure seems

to provide more well-behaved solutions at the higher

frequency spectrum. Different excitations (plane waves

at normal and oblique incidence, diffuse-fields) and con-

straints (rigid backing, anechoic termination) were con-

sidered and the accuracy of the method was verified in

each case against the TMM.

Example 6.3 concerns tortuous rigid porous compos-
ites and shows that the VEM can be used to study the

influence of imperfectly defined interfaces. Example 6.4
illustrates the power of the VEM in handling complex
periodic and non-periodic mesoscale inclusions across

a reasonably large frequency bandwidth. Examples 6.3

and 6.4 show the potential of using the VEM as a simu-

lation tool in investigating the absorption behaviour of

porous composites, in contrast to more classical multi-
layer systems, as shown in Example 6.2.

The method is currently limited by its confinement

to exclusively 2-D domains. Extending the method to

3-D polyhedral or 2-D axi-symmetric discretizations is

currently a work in progress.
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Appendix A Monomial spaces

The contents of the monomial spaces [Mk(K)]2 and

[Mk(K)] are iteratively defined in Table 11.

In Table 11, ξ = x−xK

hK
and η = y−yK

hK
denote scaled

monomials in each parametric direction. The number of

terms in [Mk(K)]2 and [Mk(K)] are nu
k = (k+1)(k+2)

and np
k = (k+1)(k+2)

2 , respectively. The operator-specific
kernels are provided in Table 12. The contents of these

kernels can be derived using kinematical decomposition

relations mentioned in [73].

The zero-energy modes contained in K
ε(K) can be

understood as rigid body motions, i.e., two translations

and one rotation in 2-D physical space.

Appendix B Computing B matrices

Using quadratures, Eq. (66) results in

B∇u
j = B∇u

bj +B∇u
dj , (128)

where

B∇u
bj =

∑

e∈∂K

∫

e

uh · (δ⋆∇mj+2 n
∇
e ) de, (129)

and

B∇u
dj = −

∫

K\∂K

uh · (δ⋆∆mj+2) dK (130)

respectively.

Similarly, Eq. (69) becomes

B
∇p
j = B

∇p
bj +B

∇p
dj , (131)

where

B
∇p
bj =

∑

e∈∂K

∫

e

ph ·
( 1

ρ̃eq
∇mj+1 · n∇ (e)

)
de, (132)

and

B
∇p
dj = −

∫

K\∂K

ph ·
( 1

ρ̃eq
∆mj+1

)
dK (133)

respectively, where the array n∇ (e) is defined here as

n∇ (e) =
[
nx (e) ny (e)

]T
. (134)

The boundary integrals in Eqs. (128) and (131) are

evaluated using Gauss-Lobatto quadratures in a sim-

ilar manner to Eq. (74).
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Polynomial

order
Mk(K) [Mk(K)]2

k = 0 M0(K) =
{

1
}

[M0(K)]2 =

{{

1
0

}

,

{

0
1

}}

arbitrary
order k

Mk(K) =
{

Mk−1(K), ξk,

ξk−1η, . . . ηk
}

[Mk(K)]2 =

{

[Mk−1(K)]2,

{

ξk

0

}

,

{

0
ξk

}

,

{

ξk−1η

0

}

,

{

0
ξk−1η

}

,

. . .

{

ηk

0

}

,

{

0
ηk

}

}

Table 11 Generalized scalar and vector valued monomials for Mk(K) and [Mk(K)]2, respectively

Operator Label Contents
Number of

Elements

aε
K(·, ·) K

ε(K)

{{

1
0

}

,

{

0
1

}

,

{

η

−ξ

}}

3

a∇
K (·, ·) K

∇u(K)

{{

1
0

}

,

{

0
1

}}

2

a0
K(·, ·) K

0u(K)
{

∅
}

0
b∇K (·, ·) K

∇p(K)
{

1
}

1
b0K(·, ·) K

0u(K)
{

∅
}

0

Table 12 Definition of operator kernels

To evaluate the corresponding domain integrals, the

terms∆mj+2 in Eq. (130) is expanded over the [Mk−2(K)]2

basis

δ⋆∆mj+2 =

nu
k−2∑

β=1

d∇u
jβ mβ , ∀mβ ∈ [Mk−2(K)]2. (135)

Inserting Eq. (135) in Eq. (130) the following expression

is derived

B∇u
dj = −|K|

nu
k−2∑

β=1

d∇u
jβ dofkNv+β(uh) = −|K|d∇u, (136)

where

d∇u =
[

Nu
B︷ ︸︸ ︷

0 · · · 0

Nu
A︷ ︸︸ ︷

d∇u
j1 · · · d∇u

j(nu
k−2)

]
. (137)

Similarly, expanding∆mj+1 over the basisMk−2(K)

1

ρ̃eq
∆mj+1 =

np
k−2∑

β=1

d∇p
jβ mβ , ∀mβ ∈ Mk−2(K), (138)

where the coefficients d∇p
jβ are also obtained through

inspection and substituting in Eq. (133)

B
∇p
dj = −|K|

np
k−2∑

β=1

d∇p
jβ dofkNv+β(ph) = −|K|d∇p, (139)

where

d∇p =
[

Np
B︷ ︸︸ ︷

0 · · · 0

Np
A︷ ︸︸ ︷

d∇p
j1 · · · d∇p

j(np
k−2)

]
. (140)

Appendix C Computing D matrices

The matrices Dε, D0u, D∇p, and D0p in Eqs. (105)-

(108) assume the following form

Dε =




dof1(m1) . . . dof1(mnu
k
−3)

...
. . .

...

dofnu
dof

(m1) . . . dofnu
dof

(mnu
k
−3)


 ,

∀m ∈ [Mk(K)]2 \Kε(K)

(141a)

D0u =




dof1(m1) . . . dof1(mnu
k
)

...
. . .

...
dofnu

dof
(m1) . . . dofnu

dof
(mnu

k
)


 ,

∀m ∈ [Mk(K)]2

(141b)

D∇p =




dof1(m1) . . . dof1(mnp
k
−1)

...
. . .

...

dofnp
dof

(m1) . . . dofnp
dof

(mnp
k
−1)


 ,

∀m ∈ Mk(K) \K∇(K)

(141c)

D0p =




dof1(m1) . . . dof1(mnp
k
)

...
. . .

...

dofnp
dof

(m1) . . . dofnp
dof

(mnp
k
)


 ,

∀m ∈ Mk(K).

(141d)

The quantities dofi(mj) and dofi(mj) are evaluated
according to the following expressions (see Table 4), for

the solid




dofi(mj) = mj(xi), ∀ i ≤ 2kNv

dofi(mj) =
1
|K|

∫
K

mj ·mβ dK,

∀mβ ∈ [Mk−2(K)]2, i > 2kNv,

(142)
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and the fluid phase





dofi(mj) = mj(xi), ∀ i ≤ kNv

dofi(mj) =
1
|K|

∫
K

mj ·mβ dK,

∀mβ ∈ Mk−2(K), i > kNv

, (143)

respectively.

Appendix D Computing Sound Absorption

and Transmission Loss coefficients

The complex valued surface impedance at the incident

face normalized with respect to the impedance of air

z(θ) is computed

ZsnK(ω, θ) =
( pinK
vinnK

)

ΓK
hI

/
z(θ) (144)

where pinK and vinnK denote inlet pressures and normal

component of fluid velocities over the elementary inci-

dent face ΓK
hI . This quantity is now used to obtain the

elementary coefficient of reflection:

RK(ω, θ) =
ZsnK(ω, θ)− 1

ZsnK(ω, θ) + 1
(145)

As the VEM computes only resultant quantities (the

net incident and reflected waves), one requires RK(ω, θ)
to obtain purely incident pressures and normal fluid

velocities over ΓK
hI .

pincK =

∣∣∣∣
pinK

1 +RK(ω, θ)

∣∣∣∣
ΓK
hI

, vincnK =
pincK

z(θ)
(146)

The time averaged powers are evaluated according

to Eqs. (147) below

W
in(ω, θ) =

1

2
ℜ
( ∫

ΓhI

pin · vin ∗
n dΓ

)
=

1

2
ℜ
(
∑

i

∫

Γ
K(i)
hI

pinK(i) · vin ∗
nK(i) dΓ

)
,

(147a)

W
inc(ω, θ) =

1

2

∫

ΓhI

pinc · vincn dΓ =

1

2

∑

i

∫

Γ
K(i)
hI

pincK(i) · vincnK(i) dΓ,
(147b)

W
ref(ω, θ) = W

inc(ω, θ)−W
in(ω, θ), (147c)

W
trans(ω, θ) =

1

2
ℜ
( ∫

ΓhO

pout · vout ∗n dΓ

)
=

1

2
ℜ
(
∑

i

∫

Γ
K(i)
hO

poutK(i) · vout ∗nK(i) dΓ

)
,

(147d)

where W
in, Winc, Wref and W

trans represent inlet, in-

cident, reflected and transmitted powers, respectively.

The operator ℜ(·) extracts real valued data, Complex

conjugation is denoted by (∗). Outlet fluid pressures

and normal components of fluid velocity poutK(i) and voutnK(i)

are evaluated over an elementary outlet face Γ
K(i)
hO . The

SAC and STL are finally derived for a plane wave inci-

dent at an angle θ with a driving angular frequency of

ω:

α(ω, θ) = 1−W
ref(ω, θ)

Winc(ω, θ)
, T (ω, θ) = 10log

W
inc(ω, θ)

Wtrans(ω, θ)
.

(148)

For a detailed report investigating the post-processing

procedures involved in structural and porous vibro-acoustics,

see, e.g., [97], [89].
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