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ABSTRACT 

We present a comparison of the photoionization dynamics of the 4d shell of XeF2 from threshold 

to 250 eV to those of the prototypical 4d shell of atomic Xe. The new experimental data include 

spin-orbit and ligand-field resolved partial cross sections, photoelectron angular distributions, 

branching fractions, and lifetime widths for the 4d-hole states. The spin-orbit branching fractions 

and angular distributions are remarkably similar to the corresponding distributions from atomic 

Xe across a broad energy interval that includes both the intense shape resonance in the f 

continuum and a Cooper minimum in the same channel. The angular distributions and branching 

fractions are also in reasonably good agreement with our first-principles theoretical calculations 

on XeF2. Data are also presented on the lifetime widths of the substate-resolved 4d-hole states of 

XeF2. While the trends in the widths are similar to those in earlier experimental and theoretical 

work, the linewidths are considerably smaller than in the previous measurements, which may 

require some reinterpretation of the decay mechanism. Finally, we present new data and an 

analysis of the Auger electron spectra for ionization above the 4d thresholds, as well as resonant 

Auger spectra for several pre-edge features. 
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I. INTRODUCTION 

Photoexcitation and ionization from the 4d shell of atomic Xe has long been a touchstone for 

experimental and theoretical studies of shape resonances, Cooper minima, and interchannel 

coupling.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 Removal of a 4d electron from Xe results in 

two spin-orbit states, 2D5/2 and 2D3/2, with thresholds of 67.548(11) eV and 69.537(12) eV, 

respectively.5 Experiment and theory have both addressed the corresponding photoabsorption 

and photoionization cross sections,1,2,3,4,5,6,13,20 photoelectron angular distributions,9,10 and spin-

orbit branching ratios.4,18 The 4d hole states lie above the double- and triple-ionization thresholds 

of Xe (33.105 ± 0.004 eV and 64.09 ± 0.04 eV, respectively24,25), and the decay processes of the 

4d-hole states have also been the subject of intense study, with determinations of Auger decay 

widths,21,22 final-state branching ratios, and Auger electron angular distributions.15,26 

Photoelectron-Auger electron coincidence and Auger-electron ion coincidence measurements 

have been particularly effective for characterizing the multiple decay pathways.27,28,29 

 

The evolution of structure and dynamics from those of a free atom to those of a molecule can 

provide deep insight into the nature of chemical bonding, particularly when they are studied as a 

function of the molecular orbital - from outer-valence, to inner-valence, to outer-core and inner-

core orbitals. One of the most interesting questions about the outer-core electrons is the extent to 

which they are affected by the molecular environment and participate in molecular bonding. 

From this perspective, the xenon fluorides, XeFn (n = 2, 4, 6) represent a particularly intriguing 

set of relatively weakly bound molecules in which the perturbation of the Xe inner-shell 

electrons by the highly electrophilic fluorine ligands30,31,32 can be characterized with 

considerable detail and benchmarked against the wealth of data on atomic Xe. 

 

In this paper, we focus on the photoexcitation of the 4d subshell of XeF2 between 60 eV and 250 

eV, and on the decay of the 4d-1 hole states. The present work builds on a long history of work 

on the xenon fluorides. Comes et al.31 recorded the first extreme ultraviolet (XUV) 
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photoabsorption spectrum of XeF2 and XeF4 between 50 and 160 eV, a region dominated by 

bound resonances just below the Xe 4d-1 threshold and by a large 4d → f shape resonance in the 

region above it.  This work was followed by photoelectron spectroscopy studies of XeF2, XeF4, 

and XeF6 by Carroll et al.32 and Bancroft et al.33 at the F 1s and Xe 3d thresholds. Auger electron 

spectroscopy following Xe 3d hole formation was also characterized by Aksela et al.,34 and most 

recently Southworth et al.35 performed a detailed study of the fragmentation dynamics of XeF2 

following 3d hole production. At lower energy, Cutler et al.36 have used high-resolution 

photoelectron spectroscopy to characterize the ligand-field and spin-orbit splittings of the Xe 4d 

hole states in XeF2, XeF4, and XeF6. Cutler et al.36 could explain the observed ligand-field 

splittings with an instructive model for the bonding, and they also found different lifetime widths 

for the different ligand-field-split substates. Bancroft et al.37 later studied the interchannel 

coupling among the valence continua and the 4d excitation channel between 50 and 110 eV, and 

found good agreement with their theoretical predictions. 

 

The earliest theoretical work on XeF2 was performed by Basch et al.,30 and was aimed at the 

characterization of the ordering of the molecular orbitals and the nature of the bonding. The 

currently accepted ordering of the configuration of XeF2 is: …(Xe 4s)2(Xe 4p)6(Xe 

4d)108g
25u

29g
26u

24u
43g

410g
25u

4.33 More recently, Buth et al.38 performed detailed 

calculations on the single-ionization spectra of XeF2, XeF4, and XeF6 from the first ionization 

energy to the Xe 4d ionization threshold. In a subsequent paper,39 they performed calculations 

and analysis of the double ionization thresholds, as well as a study of the decay mechanisms for 

the Xe 4d hole states. One of the interesting observations of Cutler et al.36 was that the Auger 

decay widths, , of the Xe 4d hole states increased with the addition of fluorine with Xe < XeF2 

< XeF4 < XeF6. Buth et al. explained this trend in terms of an increasingly important contribution 

from interatomic Coulombic decay to the Auger process. In later work, Pernpointner and 

Cederbaum40 assessed the role of relativistic effects on the ionization spectra of these molecules.  
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A second theoretical study of XeF2 including relativistic effects has been reported by Haiduke et 

al.41 

 

Here, we present new ion-yield and high-resolution photoelectron spectra that result in a 

comprehensive dataset for the 4d-1 partial photoionization cross sections for XeF2, as well as the 

photon-energy dependence of the XeF2 4d-1 substate branching fractions and photoelectron 

angular distributions. These data are compared with the earlier results, as well as with new 

theoretical calculations, and with the vast data on atomic Xe. The photoelectron spectra also 

allow a more detailed examination of the substate-specific widths and Auger decay lifetimes for 

the XeF2 4d-1 hole, as well as a more detailed comparison with theory. Auger-electron and 

resonant Auger-electron spectra are also reported that provide additional insight into the decay 

mechanisms of the 4d-1 hole. This study complements our recent comparisons of the 3d and 4d 

photoexcitation of Xe and methyl iodide, CH3I, a more strongly bound system that is 

isoelectronic with Xe.42,43  

 

In what follows, the experimental and theoretical methodologies are described first, followed by 

a presentation of the experimental data. The discussion begins with the ion-yield spectra and 

partial cross sections, and continues on to the 4d-1 ligand-field and spin-orbit dependent 

branching fractions and photoelectron angular distributions. The 4d-1 substate-dependent Auger-

lifetime widths are then discussed. The Auger electron spectra and resonant Auger electron 

spectra are then discussed using insights from the calculations of Buth et al.38,39 Finally, the 

present findings are discussed in the context of the growing number of pump-probe experiments 

performed by using new ultrafast sources of XUV and x-ray radiation.  

 

II. EXPERIMENT 

The experiments were performed on the PLEIADES beamline at the Synchrotron SOLEIL. The 

experimental approach was similar to that of our previous studies of the I 4d subshell of CH3I,43 
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and is described only briefly here. The linearly polarized radiation from the Apple II undulator 

was passed through a modified Petersen monochromator and into the interaction region of a VG 

Scienta R4000 electron spectrometer. The undulator radiation was determined to be >99% plane 

polarized, and the plane was rotated to be either parallel or perpendicular to the entrance axis of 

the electron spectrometer. We refer to the electron signal in these two geometries as I0 and I90, 

respectively. The incident monochromatic photon intensity was measured with a photodiode 

mounted downstream of the electron spectrometer. 

 

The major change to the experimental setup compared to that employed previously44  was the 

replacement of the standard Scienta ionization cell with one, designed in-house, allowing a 

significantly reduced pumping capacity, and hence sample throughput. A schematic diagram of 

the interaction region is included in the Supplemental Material. The ion yield spectra were 

measured in a separate chamber where the sample was introduced into the interaction region as 

an effusive jet through an needle positioned ~1mm above the photon beam.  A channeltron with 

a 2cm opening was positioned ~1cm from the intersection of the two beams in the horizontal 

plane.  The front of the channeltron was biased with -2000V, effectively extracting all positive 

photoions created in the interaction region.  The ion signal from the channeltron was amplified, 

discriminated and counted for a set dwell time of 1s per point. The inlet system for the XeF2 

sample was modified to minimize the distance between the sample holder and the ionization cell. 

The inlet line was extensively passivated to minimize the contribution of atomic Xe to the 

electron signal. The residual lines from atomic Xe could be used to calibrate both the photon 

energy and the electron kinetic energy. In addition, a series of photoelectron spectra was 

recorded using a mixed sample with roughly equal pressures of XeF2 and Xe. While the 

emphasis of our measurements was on electron spectroscopy, total ion yield spectra were also 

recorded for XeF2. These spectra were used to choose the photon energies for the resonant Auger 

studies.  
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Photoelectron spectra of XeF2 were recorded at photon energies between ~60 and 250 eV, 

resulting in electrons with energies up to 240 eV. Most of the measurements focused on the 4d-1 

photolines, although spectra were also recorded at selected energies to observe electrons 

produced by shake-up processes, Auger decay, resonant Auger processes, and valence-shell 

photoionization. All of the spectra have been corrected for the transmission function of the 

electron spectrometer. The monochromator and electron spectrometer resolutions were optimized 

for the different measurements depending on the signal levels and the achievable signal-to-noise 

level.   

 

In the electric dipole approximation with plane-polarized light, the differential partial cross 

section is given by:45 

    
ds
dW

= s
4p

1+ bP2(cosq)éë ùû  ,     (1) 

where  is the angle-integrated partial cross section,  is the angular distribution parameter that 

takes values between -1 and 2, P2(cos) is the second-order Legendre polynomial, and  is the 

angle between the plane of polarization and the plane of the ejected electron momentum. Using 

Equation 1 to express  in terms of the measurements at 0o and 90o, one finds: 

    b =
2( I0 - I90 )

(I
0
+ 2I

90
)

   ,      (2) 

which is used in the present determinations. The entrance slit of the analyzer limits the acceptance 

angle in the dispersive direction, which is the relevant angle for  measurements. Taking into 

account the geometry of the instrument, the size and curvature of the slits, and the magnifying 

effect of the spectrometer lens, the angular acceptance in the measurement is approximately 0.5o, 

which results in a contribution to the uncertainty of ~1-2%.      
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B. Fitting 

The photoelectron spectra of the XeF2 4d-1 photolines were fitted to extract the substate binding 

energies, peak intensities and widths, and  parameters. As described in detail previously,42,43,44 a 

weighted nonlinear least-squares procedure was used to fit the five components (three for 4d5/2
-1 

and two for 4d3/2
-1) for the 4d-1 hole. In the case of the Xe + XeF2 mixtures, the two Xe 4d-1 lines 

and the five XeF2 were all fit simultaneously. The error bars derived from the fits represent only 

the counting statistics, and do not include systematic errors. As discussed by Cutler et al.,36 

vibrational excitation in the 4d-1 hole spectra is expected to be a minor process, and no 

vibrational structure was considered. The procedure involved the simultaneous fitting of the 

photoelectron spectra obtained with both parallel and perpendicular polarizations with respect to 

the entrance slit of the electron spectrometer. In addition, at each photon energy, an experimental 

broadening parameter was used for all five (or seven) transitions that took into account the 

electron spectrometer resolution, photon bandwidth, and Doppler broadening. In contrast with 

our previous studies,42,43,44 all five photoelectron peak widths were allowed to vary separately. 

The output of the fits thus provided the ligand-field- and spin-orbit-split substate-specific angular 

distribution parameters, peak intensities, and linewidths that form the basis for the discussion of 

the 4d-1 photoionization processes and decay mechanisms.  

 

C. Computational Methods 

The electronic structure was computed, at the HF/SPKrQZP level, in Gamess (version 2018 

R3),46,47 and converged to an equilibrium bond-length of 1.9373 Å, slightly shorter than the 

experimental gas-phase value of 1.977(15) Å obtained via high-resolution spectroscopy.48 

Scattering calculations made use of the ePolyScat suite,49,50,51 which computes the fixed-nuclei 

scattering wavefunction via a Schwinger variational procedure. Although the calculations were 

performed in D8h symmetry, here we use the corresponding Dh labels appropriate for XeF2. 

Orbitals 21-25 correspond to the Xe(4d) core levels, and comprise a single g orbital (oriented 

along the bond), and two doubly degenerate orbitals g and g. The orbital energies were 
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computed to be g = -76.58, g = -76.27 and g = -75.67 eV respectively, which is 

approximately 6 eV from our experimentally measured ligand-field-averaged energy for the 

lower spin-orbit component of ~70.38 eV (~72.39 eV for the upper spin-orbit component). To 

allow for the bond-length dependence of the scattering (see, for example, References 52, 53, 54, 

and 55) and to (crudely) approximate symmetric stretching vibrational effects, the results were 

computed for a range of Xe-F bond lengths about the equilibrium value, and averaged over these 

via a Gaussian convolution kernel with s = 0.2 Å. No treatment for the symmetry-breaking bend 

and asymmetric stretching was applied, although due to its low frequency the former is likely to 

be thermally excited in our room-temperature measurements. Full computational results and 

additional notes and analysis are available online via Reference 56. 

 

It is of note that the present calculations do not include multi-electron effects such as the Xe 4d 

→ f giant resonance.57 As a result, the broad width of the resonances near 100 eV in Xe and 

XeF2 is not reproduced in the ePolyScat results. An illuminating comparison can be found in 

Reference 58, where multi-electron effects are investigated using a relativistic random-phase 

approximation (RRPA) treatment, and good agreement with the observed absolute cross sections 

is obtained for a range of isoelectronic atoms. Previous studies on atomic Xe have also shown 

that calculations including final-state correlation peaked at an energy somewhat above the 

experiment, but reproduced the width of the resonance reasonably well.2,56 

 

Spin-orbit effects were added to the computational results by introducing an additional spin-orbit 

coupling term that describes the final ionic states, as has been demonstrated in previous 

work.59,60 This approach makes use of an angular momentum coupling term, CSO, defined as 

follows: 

   CSO(L,J ,S) =
L J

M
L
M

J

S

M
S

æ

è
ç

ö

ø
÷

L J

L W
S

S

æ

èç
ö

ø÷
  ,  (3) 
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where the notation follows Hund's case b/c, with the lab-frame (LF) projections denoted ML,J,S 

and the molecular frame (MF) projections denoted , , and . The observables then include a 

term defined by the coherent product over coupling terms, summed over any unobserved states, 

:  

   X(L,J ,S) = CSO(L,J ,S)CSO(L ',J ',S ')
n
å   .    (4) 

In the current case, this term has been applied to the ePolyScat computed matrix elements to 

generate the spin-orbit split bands with the use of several assumptions. First, all lab-frame M 

sub-levels are assumed to be equally populated, and thus the lab-frame term will not affect the 

relative spin-orbit states. Second, the ion states are assumed to be fully resolved, so that there are 

no cross-terms (coherences). The quantum numbers for the 4d-1 hole state take the values L = 2, 

S = 1/2, and J = L+S, resulting in the 2D5/2 and 2D3/2 terms. The ligand-field split components 

have  = 0 - 2, corresponding to the , , and  components, respectively, which correspond to 

the g, g, and g states of the calculations.  corresponds to the allowed projection terms, sub-

selected to match the experimentally assigned values. Finally, no spin-orbit energy splitting is 

computed, and terms are assumed to be energetically ordered as in the experimental assignments. 

With this approach, appropriate sub-selection and multiplication of the computational cross 

sections, followed by renormalization, yields the effective spin-orbit branching ratios in the one-

electron model. 

 

III. RESULTS AND DISCUSSION 

Figure 1 shows the photoelectron spectrum of the 4d-1 region for a mixture of Xe and XeF2 

recorded at a photon energy of 115 eV and with  = 0o, along with the results of the fitting 

procedure. As discussed by Cutler et al.,36 the XeF2 4d-1 threshold shifts to approximately 2 eV 

higher energy than the corresponding atomic Xe 4d-1 thresholds. As in Xe, the XeF2 4d-1 

threshold is split into two spin-orbit components, corresponding to the 4d5/2
-1 and 4d3/2

-1 levels. 

Furthermore, each of these levels is split by ligand-field interactions. Using the results from our 
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fitting procedure, the lower 4d5/2
-1 threshold is split into 25/2, 23/2, and 21/2 states with energies 

of 70.169 eV, 70.404 eV, and 70.579 eV, respectively, while the higher energy 4d3/2
-1 threshold 

is split into 23/2 and 21/2 states with energies of 72.219 eV and 72.538 eV, respectively. These 

ionization energies for the ligand-field split states of XeF2 are given in Table I. 

 

A. Ion Yield Spectra and Partial Cross Sections 

Figure 2a shows the ion yield curve between 60 eV and 74 eV, that is, from approximately ten 

eV below the XeF2 4d thresholds to a few eV above them. Figure 2b shows a detail of the 

structure between 67 eV and 72 eV. In Figures 2a and 2b, the ion counts were normalized to the 

photodiode current. The energy scale of the ion yield was calibrated by using the energy of 

65.110 eV for the Xe 4d5/2 → 6p transition.5 The spectrum is quite similar to the photoabsorption 

spectrum of Comes et al.,31 with some small (< 0.2 eV) differences in the resonance positions, 

            
Figure 1. The photoelectron spectrum of the 4d-1 features recorded at 115 eV with  = 0o, 
along with the results of the fitting procedure. 
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but the higher resolution (~4 meV) of the present spectrum reveals a splitting of some of the 

features and allows the observation of more members of the Rydberg series. Note that because 

Figure 2 and Figure 3 (below) correspond to the total ion yield, some differences with the 

photoabsorption spectrum are expected. In particular, photoionization followed by Auger decay 

or direct double 

photoionization produces 

doubly or multiply charged 

ions that can fragment to 

produce multiple counts 

following the absorption of a 

single photon. This issue is 

more significant above the Xe 

4p-1 threshold, where direct 

double ionization can be 

substantial.61 Nevertheless, 

the overall shape of the 

present ion yield curve 

matches the shape of the 

absorption spectrum quite 

well.  

 

The two lowest energy 

features in Figure 2a 

correspond to transitions from 

the 4d shell into the 

unoccupied u* valence 

orbital, which Comes et al.31 

 
Figure 2. (a) The total ion yield following the photoionization 
of XeF2 in the region of the Xe 4d-1 ionization threshold. (b) 
An expanded version of the same yield highlighting the region 
of resonance structures between photon energies of 67 and 72 
eV. 
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refer to as "5p". In their model, the fluorine atoms withdraw approximately one electron each 

from the atomic Xe 5p orbital, leaving a partially occupied orbital into which the 4d electron can 

be excited. The two resonances are separated by 1.929 eV, very close to the 2.01 eV spin-orbit 

splitting of the XeF2 4d5/2 - 4d3/2 multiplets, but the features are so broad that the ligand-field 

splittings are not observable. At higher energy, Figure 2 shows a number of weaker features, 

which Comes et al.31 analyzed in terms of Rydberg series converging to the five ligand- and 

spin-orbit split XeF2 4d-1 thresholds. For excitation from the 4d shell, the dominant transitions 

are expected to be to the np and np Rydberg states based on these five thresholds. Comes et 

al.31 argue that because electrons on the F atoms are more effective at screening the p electrons 

than the p electrons from the Xe+ core, the p orbitals are expected to be more strongly bound. 

Excitation from the 4d orbital into the f Rydberg series is weak due to the centrifugal barrier that 

keeps the f electron at long range. At higher energies, the f electron penetrates the barrier, giving 

rise to the well-known Xe 4d-f shape resonance in the continuum.7 

 

The np and np Rydberg levels can be denoted [2+
+]npe, ', where the quantity in brackets 

describes the 4d-1 core level, and ' is the sum of the molecular frame projections ' and '. The 

spin splitting resulting from the coupling of + and e is small and not resolved in the present 

experiments. The electric dipole selection rule from the " = 0 ground state of XeF2 is ' - " = 

0, ±1. Note that for the [2]np1/2 configuration, ' = 2 or 3, both of which are forbidden from 

the ground state. 

 

The model presented by Comes et al.31 reproduces both the splittings and intensities of the 6p 

and 6p states reasonably well, and the same pattern of levels is observed in the new n = 7 states 

observed in the present data. As expected, however, the 7p - 7p splitting is considerably 

smaller than the 6p - 6p splitting as a result of the 1/n*3 scaling with effective principal 

quantum number, n*. Table II gives the observed transition energies, assignments based on the 

work of Comes et al.,31 and effective principal quantum numbers calculated by using: 
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 n* = Ry / (IE - E) ,      (5) 

where Ry is the Rydberg constant for XeF2 (13.6056 eV), IE is the ionization energy, and E is 

the energy of the level. The n* values can be calculated with respect to each ligand-field split 

threshold, and the relevant values are given in Table II. The valence shell configuration of XeF2 

is given in Table III. 

 

While the improved resolution of the present experiments allows the observation of additional 

features, the only real difference in the assignments compared with those of Comes et al.31 is that 

they assign two weak features just below the corresponding spin-orbit split 6p features to 

transitions to the 6s Rydberg states converging to XeF2 4d-1. The 4d → 6s transitions are 

 
Figure 3. The total ion yield curve following the photoionization of XeF2 for photon energies 
between 60 and 250 eV. The insets show expanded versions of the resonance structures in the 
regions around the Xe 4p and 4s ionization thresholds. 
 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
68

53
0



Accepted to J. Chem. Phys. 10.1063/5.0068530

 15 

expected to be forbidden, but Comes et al. suggest that they become allowed by vibronic 

couplings. In the present spectrum, we do see the analogous features, but assign them to different 

final states. In particular, the feature at 67.028 is assigned as atomic Xe (4d3/2
-1)6p, and the 

feature at 68.961 is assigned as XeF2 (25/2)7p 

 

Figure 3 shows the total ion yield spectrum across a larger energy range from ~60 eV to ~250 

eV. Unfortunately, this total ion yield is not normalized to the incident photon intensity because 

over this extended energy range the photodiode signal exhibited prominent structure due to the Si 

edges and to contamination. The spectrum is dominated by the 4d → f shape resonance, and the 

overall appearance is very similar to that of atomic Xe, with only small differences in the peak 

positions and resonance width. Thus, the molecular field does not appear to have a strong effect 

on the ion yield from the 4d shell. In addition to the sharp resonances below 70 eV, the spectrum 

shows weak sharp features in the two regions shown as insets in Figure 3. First, a small sharp 

feature is observed at 144.8(2) eV, with some evidence for very weak oscillations just above it. 

This feature is the molecular analog of the Xe 4p → 6s transition observed by Codling and 

Madden62 at 141.961 eV. As in the case of the 4d resonances, the position is shifted to higher 

energy in XeF2 due to the electron withdrawing characteristics of the F atoms. The second weak 

feature is observed at 207.8(4) eV, as compared to the XeF2 4s-1 threshold at 216.04 ± 0.10 eV,33 

yielding a binding energy of ~8.24 eV. Based on the binding energy of the u* valence orbital 

with respect to the 4d-1 threshold, the most likely assignment for the 207.8 eV feature is 4s → 

u*. 

 

Figure 4a shows the present theoretical 4d cross section for atomic Xe, along with the 

experimental 4d cross section from Becker et al.,13 and the total photoionization cross section 

from West and Morton.6 Theoretical calculations based on the relativistic random phase 

approximation (RRPA) reproduce the experimental Xe cross section with very good agreement.7 

The present ePolyScat results, which were obtained using the length gauge, peak approximately 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
68

53
0



Accepted to J. Chem. Phys. 10.1063/5.0068530

 16 

10 eV below the 

experimental energy, and 

the calculated resonance 

width is only ~60% of that 

for the experiment. The 

cross section calculated 

using the velocity gauge 

has a similar shape, but the 

magnitude is ~8 times 

larger at its peak; this 

difference may be 

indicative of correlation 

effects. The differences 

between the present results 

and the more accurate 

results are attributed 

primarily to the lack of 

treatment of many body 

effects in the present 

calculation, as noted in 

Section 2.C,57 although 

computational factors such 

as the exact form of the 

scattering potential will 

also play a role.   

 

    
Figure 4. (a) The present theoretical 4d partial cross section 
for atomic Xe, along with the experimental 4d 
photoionization cross section from Becker et al. (Ref. 13), 
and the total photoionization cross section from West and 
Morton (Ref. 6). (b) A comparison of the theoretical 4d cross 
section for XeF2 and the present experimental data from 
Figure 2. The theoretical ligand-field-split partial cross 
sections are also shown in the absence of spin-orbit coupling. 
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Figure 4b shows a comparison of the calculated 4d 

cross section for XeF2 with the experimental data 

from Figure 3. The experimental ion yield is not 

absolute, and it has been scaled to the maximum of 

the theoretical spectrum. Theoretical cross sections 

for the individual ligand-field split continua are 

also shown in the absence of spin-orbit coupling. 

The level of agreement is comparable to that for 

atomic Xe, with the theoretical cross section 

peaking at lower energy, and displaying a 

considerably smaller width than the experimental 

curve. Interestingly, prior to vibrational averaging 

the theoretical cross sections also showed a 

number of continuum resonances between 80 and 

90 eV that are not evident in the experimental 

cross section, as well as more complex low-energy 

behavior. Many of these features are, however, 

washed out in the vibrationally-averaged results 

shown here. In earlier studies of the valence shell 

ionization of XeF2, Yates et al.63 and Tse64 found 

strong resonant features 10-15 eV above the 

threshold for photoionization out of the 10g and 

3g orbitals. Tse interpreted these resonances as 

excitation from the F-dominated 10g and 3g 

orbitals into the continuum dominated by Xe f 

character.64 In the present case, excitation occurs 

from the Xe 4d orbital, but is likely into the 

 
Figure 5. Representative photoelectron 
spectra of the 4d-1 features recorded (a) 
120 eV, (b) 150 eV, (c) 180 eV, and (d) 
210 eV with  = 0o and 90o.   
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analogous continuum 

resonances. Further details 

of these features remain a 

topic for future work, and 

numerical artefacts have not 

been fully ruled out. No such 

structures have been 

observed in the current 

experimental results.  

 

We have recorded the 

photoelectron spectra for the 

4d-1 photolines of XeF2 from 

threshold to 250 eV with 

sufficient resolution to 

resolve the ligand-field and 

spin-orbit substates. Figure 5 

shows examples of the 

photoelectron spectra 

recorded at photon energies 

of 120, 150, 180, and 210 

eV, for radiation polarized 

normal to the beam direction 

and in the planes parallel and 

perpendicular to the entrance axis of the electron spectrometer. These fits allow the 

determination of the photoelectron angular distribution parameter, , as well as the branching 

fractions for the different substates. We note that, below approximately 95 eV photon energy, 

 
Figure 6. (a) The substate-resolved  parameters for the 
photoionization of XeF2 between 95 and 250 eV, along with 
the corresponding spin-orbit resolved data on atomic Xe. (b) 
The theoretical ligand-field resolved  curves in the absence of 
spin-orbit coupling for photoionization from the 4d shell of 
XeF2. 
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post-collision interaction effects resulting from the interaction between the photoelectrons and 

the Auger electrons can broaden and distort the lineshapes.65,66,67 We have not modeled these 

effects here, and focus on the data between 95 and 250 eV. 

 

Figure 6a shows the experimental substate-resolved  parameters for the 4d-1 photoionization of 

XeF2 between 90 and 250 eV, along with the corresponding spin-orbit resolved data for Xe. 

Measurements for atomic Xe have been reported previously,10,23 and the energy dependence of 

the  curves is well reproduced by theory,23,68 with the dramatic profile resulting from the shape 

resonance in the f continuum. The curves for the Xe+ 4d5/2 and 4d3/2 final states are shifted 

slightly from each other, with some subtle differences in shape. As discussed by Wang et al.,23 in 

the absence of dynamical effects resulting from relativistic interactions, the  parameters for the 

two substates should be identical when plotted vs. electron kinetic energy. (When plotted vs. 

photon energy, the 4d3/2 curve is shifted ~2 eV above the 4d5/2 curve.) The differences they 

observed could be explained with their calculations using the relativistic random phase 

approximation.23 The present data for Xe are consistent with their measurements, but ours were 

not performed on as fine an energy grid. 

 

The substate-resolved  values for XeF2 in Figure 6a are all quite similar, both to each other and 

to the atomic Xe data. Two small differences deserve mention. First, below ~160 eV, the  

values in Figure 6a for the 4d5/2 21/2 and 4d3/2 21/2 substates lie noticeably below the 

corresponding values for the other substates. Second, above ~190 eV, the  values for the 4d3/2 

21/2 and 23/2 substates lie significantly below the other curves, and they are similar to the Xe 

2D3/2 curve. This higher energy region is also where the Xe+4d3/2  curve differed more 

substantially from the 4d5/2 curve, an observation that can also be made in Figure 6a. The present 

angular distribution parameters do not appear to be affected very strongly by the resonances 

associated with photoionization from the 4p and 4s shells, but this might simply reflect the low 

intensities of the resonances and the coarseness of the energy grid in Figure 6a. 
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Kukk et al.69 have performed a similar study of the molecular-field and spin-orbit resolved 

substates of OCS+ populated by S 2p photoionization. They observed significant differences in 

their substate-resolved angular distribution parameters relative to those given by atomic-like 

calculations. These differences are greatest close to threshold, and reflect the molecular character 

of the system. At higher photoelectron energies, where the dynamics are much less sensitive to 

molecular effects, these effects become much smaller. The present XeF2 data are consistent with 

the latter observation, with the molecular curves converging to the corresponding Xe+ spin-orbit 

state curves at high energy. Unfortunately, in the present experiment, the region close to 

threshold is complicated by a number of factors including shape resonances and post-collision-

interaction (PCI) effects that make it difficult to calculate the molecular-field and spin-orbit 

dependent behavior. In addition, PCI effects will depend on the photoelectron and Auger-

electron angular distributions, which will be modified by resonance effects in different channels, 

requiring theoretical analysis beyond the scope of the present paper. 

 

In atomic Xe, there is a Cooper minimum in the 4d → f cross section that occurs at a photon 

energy of ~185(10) eV,10,23 and this minimum is also expected in the XeF2 4d → f cross section. 

For an ionization channel generally, the observed minima in the cross section and  parameter 

may differ, and neither may correspond to the actual energy at which a radial dipole matrix 

element vanishes (this being the quantum definition for a Cooper minimum70) if the other non-

zero matrix elements are energy dependent. Wang et al.,23 have used the non-relativistic Cooper-

Zare formula71 for  in the 4d → p, f ionization to predict that, as the 4d → f matrix element 

goes through zero, the photoelectron angular distribution would have  = 0.2. This equality then 

provides an alternative means to identify a precise energy of the Cooper minimum from a plot of 

the  parameter. In the relativistic case, the situation is more complicated because there are 

multiple continua with matrix elements that pass through zero at slightly different energies (e.g., 

4d5/2 → f5/2 and f7/2). Nevertheless, Wang et al.23 found that the  value corresponds to 0.2 at 
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the average position of the minima in the two channels, and that the  value was 0.2 at about 2 

eV lower electron kinetic energy (~4 eV lower in photon energy) than the 3/2 value. In the 

present Xe data, the 5/2 and 3/2 values are 0.2 at photon energies of 174.5 eV and 177.3 eV, 

respectively (corresponding to a 0.8 eV difference in electron kinetic energy). The present values 

are consistent with the determinations of Lindle et al.10 and Wang et al.,23 and are slightly lower 

than the position of the minimum in the total photoionization cross section (180 - 185 eV).6 

 

In XeF2, the situation is somewhat more complicated than in Xe because there are both spin-orbit 

and ligand-field splittings, and because the minima in all of the 4d → f, f, f, and f 

matrix elements may occur at different energies. However, the similarities of the XeF2 and Xe 

data suggest that these differences are rather small. As seen in Figure 6a, the XeF2 4d5/2
-1 21/2, 

23/2, and 25/2  values reach a value of 0.2 at a photon energy of 174.5 eV, the same photon 

energy as the Xe 4d5/2
-1  value. Similarly, the XeF2 4d5/2

-1 21/2, and 23/2  values reach 0.2 at 

177.3 eV, as does the Xe 4d3/2
-1 value. The XeF2 values correspond to electron kinetic energies 

that are ~2.9 eV smaller than the corresponding Xe values. This difference implies the electron 

withdrawing nature of the F atoms results in a slightly different energy dependence of the 4d→ 

f transition matrix elements. 

 

Figure 6b shows the theoretical  curves for XeF2 for the three ligand-field components in the 

absence of spin-orbit coupling. In contrast to the cross-section calculation, the agreement with 

the experimental curves of Figure 6a is quite good. The curves do peak at approximately 15 - 20 

eV lower energy than the experimental ones, and their minima are shifted by a similar amount. 

The curve with the smallest maximum  (g symmetry) is the same as that in the experiment 

(21/2), and the curves with the largest  are also the same (g and 25/2). The  value in the g 

channel differs most from the atomic  curves because the 21/2g orbital along the F-Xe-F axis is 

the most effected by the electron-withdrawing character of the F atoms, i.e., the molecular 

effects. The improved agreement for the  values can be rationalized because this is primarily a 
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single-channel response, which suggests that the scattering potential is reasonably accurate, and 

the scattering dynamics are described reasonably well. This observation is consistent with the 

previous statement (Section 2.C) that the relatively poor agreement for the cross section is likely 

attributed to many-body effects.  

 

Figure 7a shows the 

4d5/2/4d3/2 spin-orbit 

branching ratio for XeF2 

integrated over the separate 

ligand-field-split states, 

along with the 

corresponding spin-orbit 

branching ratios for atomic 

Xe. The strong similarity 

between the two curves, 

even including the shallow 

minimum and strong rise as 

the photon energy 

approaches threshold, 

suggests that the spin-orbit 

branching ratios are largely 

governed by atomic effects. 

The detailed shape of the 

spin-orbit branching ratios 

for atomic Xe are well-

reproduced by theory.7,14,18 

Above 100 eV, the 

 
Figure 7. (a) The 4d5/2

-1/4d3/2
-1 branching ratio integrated over 

the ligand-field splittings for XeF2 between the 4d threshold and 
250 eV, along with the corresponding 4d5/2

-1/4d3/2
-1 branching 

ratio for atomic Xe. (b) The experimental XeF2 4d5/2
-1 and 4d3/2

-1 
partial cross sections determined by using Equations 6-8. 
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branching ratio is close to the statistical value of 1.5, with only small excursions from this value 

up to 250 eV. 

Figure 8 shows the ligand-field-split substate branching fractions for XeF2, where the sums of 

the values are separately normalized for the two spin-orbit states. For the 4d3/2
-1 component, the 

21/2 and 23/2 branching fractions are both close to the statistical value of 0.5, with the 23/2 

fraction being slightly larger, and 

there are only small variations 

with the photon energy. Similarly, 

for the 4d5/2
-1 component, the 

21/2, 23/2, and 25/2 branching 

fractions are all approximately 

equal to the statistical value of 

0.33. Again, only small variations 

are observed as a function of 

photon energy.  

 

Figure 8 also shows the results of 

theoretical calculations using the 

present model for spin-orbit 

coupling. Overall, the agreement 

with experiment is quite good, 

particularly for the 4d3/2 

component. However, the 

calculations show rather more 

modulations in the branching 

fractions, even though these are 

relatively small in magnitude. 

 
Figure 8. The experimental ligand-field and spin-orbit 
resolved branching fractions for 4d photoionization of 
XeF2 between threshold and 250 eV. The corresponding 
theoretical branching fractions including both ligand-field 
and spin-orbit interactions are also shown. (a) The 4d3/2

-1 

branching fractions. (b) The 4d5/2
-1 branching fractions.  
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Although the theoretical branching fractions do show some oscillations, the lack of a stronger 

energy dependence in both the experimental and theoretical data seems somewhat surprising 

because the different ligand-field-split substates are associated with different sets of continuum 

partial waves, and the photoionization matrix elements show considerable variations in 

magnitude between 90 and 250 eV. As in the case of the  values, the reasonably good 

agreement between experiment and theory suggests that the branching fractions are primarily 

dependent on single-channel effects that are well-described by the present wavefunctions and 

matrix elements. 

 

One set of photoelectron data was recorded using a mixture of Xe and XeF2 to provide a 

simultaneous measurement of the 4d-1 spectra of the two species. The photoelectron data 

recorded with parallel and perpendicular polarization can be used to synthesize a "magic angle" 

photoelectron spectrum (Im) by using:72,73 

    Im =
(I0 + 2I90 )

3
    ,      (6) 

in which the relative intensities of the peaks reflect the relative cross sections for the different 

ionization channels independent of differing angular distributions. 

 

The integrated signals in the 4d-1 Xe and XeF2 photoelectron peaks can be combined with the 

well-known absolute photoionization cross section of Xe10,13 and the relative concentrations of 

Xe and XeF2 to yield the absolute photoionization cross sections of XeF2: 

    s XeF2
(E) =

NXeF2
(E)s Xe(E)

NXe(E)

Xeéë ùû
XeF2
éë ùû

æ

è
ç

ö

ø
÷  .   (7) 

Unfortunately, the relative concentrations of Xe and XeF2 are not well-characterized, although 

they are expected to be relatively constant over the time of the measurement. Taking their ratio 

as a constant, Equation 7 then provides a relative cross section measurement for XeF2. This 
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result can be further refined into XeF2 4d5/2
-1 and 4d3/2

-1 partial cross sections by separately 

integrating the two spin-orbit components of the XeF2 signal and using: 
 

    s XeF2
(4d5/2

- 1 ) =
NXeF2

(4d5/2
- 1 )

NXeF2

s XeF2
,    (8) 

and the analogous equation for the 4d3/2
-1 component. The relative partial cross sections are 

shown in Figure 7b. The Cooper minima in both channels are clearly observed near 180 eV, but 

the energy grid is not sufficiently fine to locate them more precisely. 

 

 

B. Shake-Up and Shake-Off Spectra 

Photoionization from the inner-shell orbitals is often accompanied by weaker shake-up or shake-

off processes in which a second electron is excited or ejected from a valence orbital in 

conjunction with the ejection of the core electron.74 Such processes typically occur in the energy 

region ~5 - 25 eV above the inner-shell threshold. Although most of the present photoelectron 

spectra are focused on the 4d-1 main lines, photoelectron spectra over a much larger kinetic 

energy range were recorded at photon energies of 90, 120, and 150 eV to characterize both the 

shake-up and Auger processes associated with the 4d-1 photoionization of XeF2. Tse et al.75 have 

discussed the Xe 3d and 4d shake-up processes for XeF2 following ionization by Al K radiation 

(~1486 eV). The spectrum was not well-resolved, but at this energy the direct/normal shake-up 

process is expected to dominate, and the experimental spectrum was fitted accordingly. 

 

Figure 9 shows a portion of the photoelectron spectrum of XeF2 recorded at 150 eV in the region 

of the 4d-1 shake-up and shake-off processes. The full spectrum is given in the Supplemental 

Material. The spectrum is plotted in terms of the excitation energy relative to the lowest Xe 

4d5/2
-1 binding energy of XeF2 (70.169 eV). Also shown is the corresponding spectrum of atomic 

Xe recorded by Holland et al.76 and plotted relative to the atomic Xe 4d5/2
-1 binding energy 
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(67.548 eV).5 Ausmees et al.19 have discussed the assignment of the latter spectrum, breaking it 

down into sections. The weak structure at binding energies below 16 eV is not present in the 

spectrum recorded at a photon energy of 1487 eV, and it was assigned to conjugate shake-up 

processes to final states with (4d-15p-1)5d and 6s configurations. The strong peaks at excitation 

energies of 16 to 20 eV were assigned to the normal shake-up processes to (4d-15p-1)6p states, 

and at higher energy some overlap with (4d-15p-1)7p states is expected. Unfortunately, the 

spectrum is potentially very complex because the (4d-15p-1)np configuration gives rise to a large 

number of possible states, and no detailed assignment has been given for the observed structure. 

The assignment of the shake-up states for XeF2 is expected to be even more challenging, 

although it appears that at least some features can be tentatively assigned. In particular, the XeF2 

4d-1 shake-up spectrum shows relatively intense structure at much lower excitation energy than 

atomic Xe. This structure almost certainly arises from shake-up into the unoccupied * valence 

orbital, which is not present in atomic Xe. 

 

The excitation energy of the lowest-lying feature in Figure 9 occurs at an energy of ~8 eV 

relative to XeF2(4d5/2
-1 25/2), slightly higher than the excitation energy of the corresponding u* 

resonance in neutral XeF2 (7.85 eV).77 Consideration of the selection rules provides insight into 

the nature of the shake-up process. In particular, Table III shows two mechanisms for shake-up 

involving the u* resonance, along with the valence-shell configuration of XeF2. In this simple 

picture, configurations with multiple excitations, as well as vibronic interactions, are ignored. In 

the normal shake-up process, the 4d electron is excited into the u continuum via a dipole 

process, and a valence electron is excited into the u* orbital via a monopole transition. As seen 

in Table III, the only allowed monopole process is from the 6u orbital, which would require 

approximately 5 eV more energy than excitation from the 5u highest-occupied orbital (HOMO). 
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On the other hand, the conjugate 

process involving dipole 

excitation from 4d to u* and 

monopole ionization of a valence 

orbital is allowed for all of the 

valence orbitals, and is likely the 

dominant shake-up mechanism for 

these low-energy features. 

Alternatively, the broad shoulder 

and peak observed at 14.31 and 

15.64 eV excitation energy may 

result from the normal shake-up 

process involving the 6u orbital. 

 

Assignments of the XeF2 shake-up features above 13 eV in Figure 9 run into the same difficulties 

as for Xe, and they must await more detailed theoretical investigations. By analogy with Xe, 

however, it appears likely that the structure at binding energies of 13 to ~20 eV in Figure 9 are 

associated with XeF2(4d-15p-1)6p and 7p excitation, and that the structure observed between 23 

and 28 eV is associated with the XeF2(4d-15s-1)ns excitations.11 

 

C. Auger Decay Widths 

Returning to the 4d-1 photolines, the core-excited states of Xe+ resulting from the removal of a 4d 

electron have sufficient internal energy to undergo single- or double-Auger processes78 to 

produce Xe2+ or Xe3+, and the situation is expected to be similar for XeF2. We now focus on the 

decay processes of the core-excited XeF2
+ through the consideration of the total decay rate and 

the Auger-electron spectrum. For the latter, we focus on the single Auger processes because the 

double Auger process is expected to produce slow electrons with energies below 10 eV.  

Figure 9. A portion of the 150 eV photoelectron 
spectrum showing the shake-up region and plotted in 
terms of the excitation energy relative to the lowest Xe 
4d5/2

-1 binding energy of XeF2 (25/2 at 70.169 eV). Also 
shown is the corresponding spectrum of atomic Xe from 
Ref. 73 and plotted relative to the atomic Xe 4d5/2

-1 
binding energy (67.548 eV). 
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As discussed in Section II.B, the decay widths for the ligand-field- and spin-orbit-split 4d-1 states 

of XeF2 can be extracted from the widths of the corresponding photoelectron peaks. In atomic 

Xe, the 4d5/2
-1 and 4d3/2

-1 widths differ slightly, with the former being slightly larger than the 

latter (111 ± 3 meV vs 104 ± 3 meV, respectively).22 Cutler et al.36 have reported a 

corresponding substate dependence to the 4d-1 widths in XeF2 at a photon energy of 94 eV. They 

also presented a model based on the character of the relevant molecular orbitals that rationalized 

which states had the greatest width. However, their widths for the corresponding 4d-1 states of 

atomic Xe were approximately a factor of two larger than those determined in more recent 

studies. 

 

The present substate-dependent widths extracted from the Xe and XeF2 4d-1 photoelectron 

spectra are shown in Figure S3 of the Supplemental Material for photon energies between 75 and 

250 eV. The spectra at lower photon energies are asymmetrically broadened by post-collision 

interactions, and the present analysis is thus limited to higher energies. Two observations can be 

made directly from the data. First, as observed by Cutler et al.,36 the widths for XeF2 are 

systematically larger than those for atomic Xe. This observation has been used by Buth et al.39 as 

evidence for the contribution of interatomic Coulombic decay (ICD) to the Auger decay 

mechanism in the xenon fluorides. Second, the peak widths are essentially constant as a function 

of the photon energy. We also observed constant widths for Xe, which is consistent with the 

results of Juvensuu et al.,22 although Ausmees et al.21 have previously found a photon energy 

dependence to the 4d-1 widths for Xe. 

 

Table I shows the substate-dependent widths obtained by averaging the values determined for 

photon energies between 140 and 250 eV. As in the case of the Xe data, the present values for 

the XeF2 substates are approximately a factor of two smaller than those of Cutler et al.36 

However, their discussion of the relative widths of the different XeF2 substates is consistent with 
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our observations. In particular, the one-electron orbitals associated with the 4d5/2
-1 21/2

+ and 

4d3/2
-1 21/2 substates have the greatest amount of d

z2 character (i.e., along the F-Xe-F axis), and 

these substates also have the largest widths. 

 

D. Auger Processes 

The spectra recorded with  = 0o at 90, 120, and 150 eV in connection with the shake-up 

processes also include the Auger spectra for XeF2. Figure 10 shows the spectrum recorded at 90 

eV, in which the Auger electrons are best isolated from the other photoelectron bands. The 

double ionization threshold for 

XeF2 is expected to be ~30 eV, 

and the highest energy ligand-

field- and spin-orbit-split 4d-1 

level is at 72.538 eV, which 

means that the highest energy 

Auger electron will have a 

kinetic energy of ~40 eV. This 

expectation is consistent with the 

spectrum in Figure 10. Note that 

the sharp peak at 22.459 eV is an 

impurity line from atomic Xe 

4d5/2
-1 photoionization. Although 

the Xe concentration is small, the XeF2 Auger intensities are also small, which makes the Xe 

photoelectron peak look relatively intense by comparison. 

 

The Auger spectrum following 4d ionization of atomic Xe is split into two groups of lines.24,79 

The first lies at kinetic energies between 29.9 and 36.5 eV, and corresponds to Xe2+ final states 

with the …5s25p4 configuration, while the second lies at energies between 19.1 and 24.1 eV, and 

 
Figure 10. The Auger-electron spectrum recorded at 90 
eV photon energy and  = 0o. The sharp peak at 22.459 
eV is from the 4d5/2

-1 photoionization of atomic Xe. The 
lines connect pairs of peaks separated by the spin-orbit 
splitting in XeF2 (4d-1), suggesting that they result from 
decay into the same final state. 
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corresponds to final states with the …5s15p5 configuration. The corresponding XeF2 4d-1 Auger 

spectrum spans a somewhat larger range of kinetic energies, and the splitting between the two 

regions is smaller. This observation is consistent with the much broader range in energies of the 

XeF2
+ and XeF2

2+ outer-valence states, as compared to Xe+ and Xe2+. The XeF2 features at 

kinetic energies between 30 and 40 eV in Figure 10 most likely correspond to final state 

configurations with two holes in a combination of the 5u, 10g, 3g, and 4u orbitals ("outer-

outer" states in the language of Ågren80), while the higher binding energy (lower kinetic energy) 

features may involve configurations with holes in the 6u (predominantly Xe 5s character) 

orbitals as well ("outer-inner" states). 

 

As discussed in detail by Buth et al.,38,39 however, the whole molecular orbital picture becomes 

suspect for the doubly ionized states of XeF2 as a result of configuration mixing among the two-

hole states and three-hole, one-particle states. In addition, the two-hole configurations give rise 

to a very large number of states very close to the double ionization threshold. For example, Buth 

et al.39 found 38 electronic states of XeF2
2+ within 10 eV of the double ionization threshold, and 

19 states in the first 5 eV. Thus, the prospects for a detailed assignment without additional 

theoretical input is not promising. In spite of this situation, the Auger spectrum between 23 and 

40 eV is actually relatively simple, with only a handful of well-defined features. This observation 

suggests that there are simplifying aspects to the Auger decay that may ultimately allow more 

definitive assignments.  

 

On closer examination, the highest energy Auger line in Figure 10 occurs at a kinetic energy of 

39.71 eV. Assuming this results from the decay of the XeF2 4d3/2
-1 21/2 state at 72.538 eV, this 

kinetic energy corresponds to a double ionization threshold of 32.83 eV. This value is only 

slightly lower than the double ionization threshold for atomic Xe (33.105 ± 0.004 eV),24 and 

somewhat higher than the lowest XeF2 double ionization potential calculated by Buth et al. 

(30.511 eV),39 and in reasonably good agreement with the value of Haiduke et al. (32.3 eV).41 
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The results of Buth et al. indicate that the ground state of XeF2
2+ can be reasonably well-

described as a 3g
- state arising from two holes in the 5u HOMO of the neutral molecule. Note, 

however, that they calculate two additional 5u
-2 hole states with 1g and 1g

+ symmetry within 

0.3 eV of the 3g
- state. 

 

If the highest energy Auger peak corresponds to decay from 4d3/2
-1 21/2 into the ground state of 

XeF2
2+, the highest energy Auger peak from a 4d5/2

-1 state will be for the analogous process from 

the 21/2 state, with a kinetic energy of 37.75 eV. Thus, all of the peaks above this kinetic energy 

must arise from one of the two 4d3/2
-1 states. Unfortunately, even with this limitation, the number 

of possible final states precludes a definitive assignment. A number of factors add to the 

difficulty of making detailed assignments for the remainder of the Auger spectrum. First, 

propensity rules favoring the production of singlet states of the dications of lighter molecules80,81 

are likely to break down for a heavy molecule like XeF2. Similarly, while Auger intensities often 

display site specificity, Buth et al.36 have shown that ICD processes contribute approximately 

33% of the total width in the 4d-1 Auger decay of XeF2, which makes such arguments somewhat 

suspect. Finally, although the 4d electrons in XeF2 are primarily non-bonding, and there is little 

evidence for vibrational excitation in the singly charged cation, the loss of two valence electrons 

is more likely to affect the bonding in the doubly charged ion, and thus vibrational excitation is 

expected to create additional complexity in the Auger electron spectrum. 

 

While not resolution limited, the widths of the 4d3/2
-1 peaks with kinetic energies greater than 

37.75 eV are considerably sharper than those with lower kinetic energies (i.e., to those XeF2
2+ 

states with higher internal energy). As discussed in the next section, this does not appear to be a 

simple case of the lines broadening as a result of an increased number of overlapping transitions. 

Rather, this observation suggests that a faster decay channel for the XeF2
2+ sets in about 2 eV 

above its threshold of formation. Characterization of the ion fragmentation patterns in 

coincidence with the Auger electrons should be revealing in this regard. 
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At kinetic energies below ~37.75 eV, the Auger peaks are relatively broad, and the ligand-field-

split states are not likely to be resolved. However, for Auger processes from the XeF2 4d5/2
-1 and 

4d3/2
-1 spin-orbit states that access the same final states, pairs of Auger peaks should be observed 

that are separated by approximately the ligand-field state-averaged spin-orbit splitting of ~2.01 

eV. Several such pairs of peaks are clearly observed in Figure 10. Table IV gives the energies of 

the numbered peaks, along with tentative assignments for the spin-orbit symmetry of the initial 

state in the Auger decay for the paired transitions. 

 

 

E. Resonant Auger Processes 

Resonant Auger spectra of XeF2 were recorded at 61.526, 63.455, and 67.596 eV, corresponding 

to the (Xe 4d5/2
-1)*, (Xe 4d3/2

-1)*, and (Xe 4d5/2
-1)6p resonances, respectively, as well as at 

two off-resonance energies of 59.50 and 62.60 eV. Spectra were recorded at both  = 0o and 90o, 

allowing the determination of the corresponding  parameters. Figure 11 shows the resonant 

Auger spectrum recorded at the 

(Xe 4d5/2
-1)* resonance with  

= 90o, and plotted vs. electron 

binding energy. An expanded 

version of the region between 

threshold and 30 eV is shown in 

the Supplemental Material, along 

with the identification of a 

number of impurity bands due to 

N2,82 and O2.83 These impurity 

bands were caused by a very 

small air leak in the inlet system. 

 
Figure 11. The resonant Auger spectrum recorded at the 
(Xe5/2

-1)* resonance of XeF2 at 61.526 eV and plotted vs. 
the electron binding energy. The assignments of the 
impurity bands are indicated in the Supplemental Material. 
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While somewhat of a nuisance, these bands allow the accurate calibration of the spectrum and 

allow the matching of intensities for background subtraction. "Magic-angle" photoelectron 

spectra and the corresponding  values for the three resonance positions are also provided in the 

Supplemental Material. 

 

At binding energies below ~16.5 eV, all of the spectra look quite similar, displaying the 5u
-1, 

10g
-1, 3g

-1, and 4u
-1 valence bands resulting from single-photon ionization of the ground state 

molecule.84 Magic angle spectra were synthesized using Equation 6, and these were normalized 

to each other by using the intensities of the impurity bands. The resulting XeF2 band intensities 

on resonance are within 10-15% of the intensities off resonance, suggesting that the participator 

Auger processes are relatively weak. This result is consistent with the resonant Auger spectrum 

of atomic Xe. In particular, the atomic Xe 4d5/26p lifetime width is 0.1098 ± 0.0010 eV,20 which 

is very close to the Xe 4d5/2
-1 

Auger lifetime of 0.111 ± 

0.003 eV.22 This observation 

suggests that spectator 

Auger processes will 

dominate the decay 

following resonant (4d-1)6p 

excitation in Xe, as is 

generally found. This result 

also suggests that spectator 

decay will dominate in the 

decay of the (4d5/2
-1)6p 

resonance in XeF2 as well. 

The situation could be 

somewhat different for the 

 
Figure 12. The difference photoelectron spectra recorded at 90o 
in which the off-resonance spectrum recorded at 62.50 eV was 
subtracted from the spectra for the (4d5/2

-1)*, (4d3/2
-1)*, and 

(4d5/2
-1)6p resonances. See text for details. The sharp spikes 

labeled A, B, and C correspond to imperfectly subtracted 
impurity bands corresponding to vibrational levels of the N2

+ 
A 2u, O2

+ b 4g
-, and N2

+ B 2u
+ states, respectively. 
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lower-lying (4d-1)* resonances in XeF2, but the data below clearly show that spectator decay is 

the stronger process for these as well.  

 

Above 16.5 eV, a number of new bands are observed in the resonant spectra, along with the 

usual 6u
-1 and 9g

-1 valence bands at 17.39 and 26.28 eV, respectively.33 To enhance the 

features in the resonant spectra, we have subtracted the corresponding nonresonant spectrum at 

62.50 eV from each of the resonant spectra at  = 0o and 90o. Figure 12 shows the resulting 90o 

difference spectra for the three resonances over the energy range from 16.5 to 40 eV. The signal 

at the lowest kinetic energies is somewhat noisy because it is overlapped by both the 6u
-1 band 

and N2 and O2 impurity bands, and the subtraction is imperfect. 

 

The resonant Auger spectra 

for the XeF2 (4d5/2
-1)* and 

(4d3/2
-1)* resonances show 

most of the same features 

between 16.5 and 40 eV, 

although the relative 

intensities vary considerably. 

In contrast, the spectrum 

recorded on the (4d5/2
-1)6p 

resonance is quite different. 

We focus first on the decay of 

the two * resonances, and 

then contrast this with a 

discussion of the 6p 

resonance. 

 

 
Figure 13. Expanded portions of the (4d5/2

-1)* and (4d3/2
-1)* 

spectra from Figure 12, along with the normal  = 0o Auger 
electron spectrum recorded at 90 eV, where the x-axis of the 
latter has been reversed and shifted to line up with the lowest 
binding energy feature of the * spectra. The sharp spikes 
labeled A, B, and C correspond to imperfectly subtracted 
impurity bands corresponding to vibrational levels of the N2

+ 
A 2u, O2

+ b 4g
-, and N2

+ B 2u
+ states, respectively. 
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The spectator Auger spectra are expected to show strong similarities with the true Auger 

spectrum. However, because the final state in resonant Auger decay is a singly charged cation 

rather than a double charged cation, and because the excited electron is somewhat effective in 

screening the nuclear charge, the kinetic energies of the peaks are shifted to considerably higher 

energy that the corresponding peaks in the non-resonant Auger spectrum. The excited electron 

can also lead to splitting in the Auger peaks depending on the symmetry of the excited orbital, 

but for the * orbital it is only the spin-splitting, which is expected to be small. 

 

The first few peaks at binding energies of 16.5 to 18.5 eV in both the (4d5/2
-1)* and (4d3/2

-1)* 

resonant Auger spectra bear a striking resemblance to the highest energy features in the true 

Auger spectrum of Figure 10. Figure 13 shows an expanded version of the two * spectra, as 

well as the Auger spectrum, in which the x-axis of the latter has been reversed and shifted to line 

up with the lowest binding energy feature in the * spectra. Note that the Auger spectrum 

contains contributions from the decay of both the 4d5/2
-1 and 4d3/2

-1 states of XeF2
+, and by 

plotting in this manner, only the 4d3/2
-1 features are expected to line up with the * features. 

Nevertheless, the overall shapes of the resonant and true Auger spectra appear quite similar. The 

binding energy with respect to the double ionization threshold of the lowest energy feature in the 

* spectra is quite substantial. In particular, assuming the lowest energy spectator Auger feature 

at 17.09 eV is based on the lowest electronic state of XeF2
2+, the binding energy is 15.74 eV. 

This large value reflects the low effective principal quantum number of the * electron (it is 

effectively a 5p electron). 

 

The similarity between the resonant Auger spectra for the (4d5/2
-1)* and (4d3/2

-1)* resonances 

and the regular Auger spectrum extends to the linewidths of the lowest few features in the 

resonant Auger spectra. While these features are quite sharp, from just 2 eV above the lowest 

feature the linewidth appears to increase substantially. Unlike the regular Auger spectra, the 

resonant Auger spectra are state selected, and the increased linewidth does not appear to be 
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simply due to an increased density of transitions. This observation suggests that the XeF2
2+ ion 

core of the (XeF2
2+)* states populated in the resonant Auger decay has similar 

dissociation/decay dynamics as the free XeF2
2+ ion.  

 

The similarity of the (4d5/2
-1)* and (4d3/2

-1)* spectra between 16.5 and 30 eV suggests that the 

Auger decay of the corresponding cores access the same final states, albeit with different relative 

intensities. This behavior is extended to the higher-lying states as well. Here, the correspondence 

with the true Auger spectrum is somewhat less obvious, but a clear similarity remains. 

Interestingly, some of the higher energy features are significantly stronger than the lowest energy 

features, suggesting that decay to molecular ion states based on the Xe2+ 1D2 and 1S0 states is 

enhanced relative to those based on the 3PJ states. As discussed for the Auger spectra, this 

interpretation is complicated by the large number of low-lying states of the doubly ionized 

molecule.39 

 

The 67.596 eV spectrum of XeF2 corresponds to excitation of the (4d5/2
-1)6p Rydberg state, and 

spectator Auger decay is expected to populate the 6p Rydberg states converging to low-lying 

electronic states of XeF2
+. For atomic Xe, the lowest lying Xe2+ (3P2)6p Rydberg state is bound 

by 7.114 eV relative to the Xe2+ 3P2 ground state (33.3397 eV above Xe 1S0). The lowest-lying 

feature in the XeF2 (4d5/2
-1)6p resonant Auger spectrum lies at 25.70 eV, or 7.13 eV below the 

XeF2
2+ threshold, clearly suggesting a spectator process to a 6p state of the singly charged 

cation. The structure of the lowest lying features in the 6p spectrum show somewhat different 

splittings than the * spectra, reflecting the coupling of the 6p electron with the different ion-

core states. Most of the remaining structure in the 6p spectrum has splittings of 0.2 to 0.4 eV, 

making it unlikely to be vibrational structure, and more likely reflects decay to different XeF2
2+ 

states. The features between 25.5 and 27.5 eV are also relatively sharp, which is consistent with 

the longer lifetimes of the corresponding (4d-1)* states and the relative stability of these 

(XeF2
2+)6p states. 
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Shake-up processes are often significant in resonant Auger spectra. The lowest (Xe2+)7p state has 

a binding energy of 3.725 eV,85 while the XeF2 feature at 28.957 eV has a binding energy of 3.87 

eV. This observation strongly suggests an assignment to the lowest (XeF2
2+)7p Rydberg state, 

and neighboring features probably reflect additional core states. Not unexpectedly, the two * 

resonant Auger spectra do not show significant features that match up with the 6p and 7p 

features in the (4d5/2
-1)6p spectrum. This result is consistent with the shake-up process 

preserving the l symmetry of the excited electron. On the other hand, a stronger feature is 

observed in the * spectra at ~26.32 eV, or 0.62 eV above the 6p in the (4d5/2
-1)6p spectrum. 

This feature is likely a result of shake-up from the * into the 6p orbital. Interestingly, Comes 

et al. assign the (4d5/2
-1)6p transition to a feature lying ~0.78 eV above the (4d5/2

-1)6p 

transition, in reasonably good agreement with the present splitting observed in the lower-lying 

states. 

 

IV. CONCLUSIONS 

We have presented an extensive experimental study of the 4d-1 ionization of XeF2, including ion-

yield curves, and ligand-field- and spin-orbit-resolved photoelectron angular distributions and 

branching fractions. The overall behavior closely follows the corresponding ion yields, angular 

distributions, and branching fractions for atomic Xe, and some of the results are reproduced 

reasonably well by theoretical calculations of the photoionization process. In particular, although 

the theoretical XeF2 cross section between the 4d threshold and the 250 eV does not agree well 

with experiment, the corresponding  values and branching fractions are fairly well reproduced. 

Ligand-field - and spin-orbit-resolved lifetime widths were also measured for the resulting 

photoions, and these are consistent with the widths observed for atomic Xe. We also discussed 

the shake-up processes accompanying photoionization and the Auger-electron spectra resulting 

from the decay of the photoion. Finally, resonant Auger spectra were recorded just below the 4d 

threshold for the (4d5/2)*, (4d3/2)*, and (4d5/2)6p resonances. These spectra show many 
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features in common with the normal Auger spectra. Interestingly, both the Auger and resonant 

Auger spectra appear to be relatively simple, in spite of the large number of doubly ionized XeF2 

states close to threshold. Understanding the source of this simplicity is an interesting problem for 

the future. 

 

The present results suggest a number of future experiments. As shown by Southworth et al. at the 

3d edge of XeF2,35 neutral and ionic fragmentation patterns can provide a different window into 

the competing decay processes of the primary photoions or resonant levels of the neutral. 

Second, coincidence measurements of the photoelectron and Auger electron such as those 

performed on atomic Xe would help to disentangle the Auger spectrum.15,27,28,74 Finally, 

comprehensive resonant Auger measurements of a larger set of pre-threshold resonances could 

provide considerable insight into the Rydberg states of the singly charged cation converging to 

the doubly charged ion, as well as into the associated shake-up and shake-down processes. Such 

comprehensive measurements on prototypical heavy atom systems like XeF2 will also help 

provide a framework for a more detailed analysis of novel time-resolved x-ray studies, such as 

the recent two-color pump-probe experiments on XeF2 performed using a free-electron x-ray 

laser source.86 

 

V. SUPPLEMENTAL MATERIAL 

The Supplemental Material contains a schematic figure of the interaction region, along with 

additional figures of the energy-dependent Auger widths, and expanded plots of the resonant 

Auger spectra and magic-angle Auger spectra. 
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Table I. Average Substate-Dependent 4d-1 Photoelectron Linewidths. 

Final State 
Energy (eV) 

Present 

 Energy (eV) 

Ref. 36 

FWHM (eV) 

Present 

FWHM (eV) 

Ref. 22 

FWHM (eV) 

Ref. 36 

      

Xe (4d5/2
-1) 67.548(1)a  0.109(4)       0.111(3)        0.207(4) 

      
Xe (4d3/2

-1) 
 
 

XeF2 (25/2) 
 

XeF2 (23/2) 
 

XeF2 (21/2) 
 

XeF2 (23/2) 

69.539(5) 

 
 

70.169(6) 

 
70.404(6) 

 
70.579(6) 

 
72.219(6) 

 
 
 

70.179(6) 
 

70.421(9) 
 

70.601(13) 
 

72.248(6) 

0.102(4) 
 
 

0.133(7) 
 

0.127(13) 
 

0.160(6) 
 

 0.123(5) 

0.104(3) 
 
 
 
 
 
 
 
 

       

     0.202(4) 
 
 

     0.214(19) 
 

     0.256(27) 
 

     0.264(26) 
 

     0.223(10) 
      

XeF2 (21/2) 72.538(6)  72.568(6) 0.147(5)       0.248(8) 
      

      

a. The atomic Xe (4d5/2
-1) energy was taken from Ref. 5, and was used to calibrate the energy 

scale. The absolute uncertainty in the calibration energy is 0.01 eV. The relative uncertainties for 
the energies of the other peaks are significantly smaller than the absolute uncertainties. 
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Table II. Resonance energies below the XeF2 4d-1 threshold.a 

Energy(eV)b Assignment n* 
(25/2) 
70.169 

eV 

n* 
(23/2) 
70.404 

eV 

n* 
(21/2) 
70.579 

eV 

n* 
(23/2) 
72.219 

eV 

n* 
(21/2) 
72.538 

eV 

Energy (eV) 
(Ref. 31) 

        

61.526 (4d5/2
-1)* 1.2547 1.2379 1.2259   61.38 

        
63.455 (4d3/2

-1)*    1.2460 1.2239 63.29 
        

65.110 Xe (4d5/2
-1)6p       

        
66.367 Xe (4d5/2

-1)7p       
        

67.028 Xe (4d3/2
-1)6p      66.94 "6s" 

        
67.596 (25/2)6p 2.2995 2.2012 2.1357   67.49 

        
67.820 (23/2)6p 2.4067 2.2946 2.2207   67.73 

        
67.983 (21/2)6p 2.4948 2.3706 2.2893    

        
68.219 (23/2)6p 2.6415 2.4954 2.4011   68.27 

        
68.351 (21/2)6p 2.7357 2.5743 2.4712    

        
68.961 (25/2)7p 3.3560 3.1579 2.8998   69.00 "6s" 

        
69.189 (23/2)7p 3.7260 3.3464 3.1286    

        
69.433 (21/2)7p 4.2995 3.7433 3.4456    

        
69.617 (23/2)6p    2.2867 2.1582 69.53 

        
69.942 (21/2)6p    2.4444 2.2893 60.84 

        
70.029 (23/2)6p    2.4925 2.3287 70.20 

        
70.338 (21/2)6p    2.6895 2.4868  

        
70.994 (23/2)7p    3.3327 2.9685 70.89 

        
71.328 (21/2)7p    3.9077 3.3533  

        
71.472 (23/2)7p    4.2678 3.5736 71.47 
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71.822 (21/2)7p    5.8541 4.3592  

        
a. The n* values were calculated by using Equation 5, the ionization energies at the top of each 
column, and the Rydberg constant for XeF2 (13.6056 eV). 
b. The relative uncertainty in the line positions is 0.005 eV, and the absolute uncertainty from the 
calibration line is 0.01 eV.5  
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Table III. Valence Shake-Up Processes. 
  

XeF2 Ground State Valence Configuration  

…8g
25u

29g
26u

24u
43g

410g
25u

4  

  

4d
g

dipole¾ ®¾¾¾ eℓ
u

6s
u

monopole¾ ®¾¾¾ s *
normal process 

 

4d
g

dipole¾ ®¾¾¾ s *

5p
u

monopole¾ ®¾¾¾ e p
u

conjugate process  

 

4d
g

dipole¾ ®¾¾¾ s *

10s
g

monopole¾ ®¾¾¾ e s
g

conjugate process  

 

4d
g

dipole¾ ®¾¾¾ s *

3p
g

monopole¾ ®¾¾¾ e p
g

conjugate process  

 

4d
g

dipole¾ ®¾¾¾ s *

4p
u

monopole¾ ®¾¾¾ e p
u

conjugate process  

 

4d
g

dipole¾ ®¾¾¾ s *

6s
u

monopole¾ ®¾¾¾ e s
u

conjugate process 

 

4d
g

dipole¾ ®¾¾¾ s *

9s
g

monopole¾ ®¾¾¾ e s
g

conjugate process  
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Table IV. Auger-Electron Energies and Tentative Assignments. 

   Peak Number 

(Partner 
Number)a 

     Kinetic Energy 

     (eV) 

 Initial Xe  

  Spin-Orbit State 

   
1 (5) 39.64 4d3/2 

   

2 39.34 4d3/2 

   

3 (6) 38.84 4d3/2 

   

4 37.83 4d3/2 

   

5 (1) 37.58 4d5/2 
   

6 (3) 36.87 4d5/2 
   

7 36.24   
   

8 35.12  

   

9 34.34  

   

10 (12) 33.24 4d3/2 
   

11 (13) 31.89 4d3/2 
   

12 (10) 31.25 4d5/2 

   
13 (11) 

 
14 (15) 

 
15 (14) 

29.88 
 

26.64 
 

24.27 

4d5/2 

 
4d3/2 

 
4d5/2 

   
   

a. The numbers in parentheses indicate the paired level decaying to  
same final state. 
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