
Vol.:(0123456789)

Journal of Risk and Uncertainty (2022) 65:105–137
https://doi.org/10.1007/s11166-022-09393-w

1 3

An inquiry into the nature and causes of the Description ‑ 
Experience gap

Robin Cubitt1 · Orestis Kopsacheilis2 · Chris Starmer1

Published online: 25 October 2022 
© The Author(s) 2022

Abstract
The Description-Experience gap (DE gap) is widely thought of as a tendency for 
people to act as if overweighting rare events when information about those events is  
derived from descriptions but as if underweighting rare events when they experience  
them through a sampling process. While there is now clear evidence that some 
form of DE gap exists, its causes, exact nature, and implications for decision theory 
remain unclear. We present a new experiment which examines in a unified design 
four distinct causal mechanisms that might drive the DE gap, attributing it respec-
tively to information differences (sampling bias), to a feature of preferences (ambi-
guity sensitivity), or to aspects of cognition (likelihood representation and memory). 
Using a model-free approach, we elicit a DE gap similar in direction and size to the 
literature’s average and find that when each factor is considered in isolation, sam-
pling bias stemming from under-represented rare events is the only significant driver 
of the gap. Yet, model-mediated analysis reveals the possibility of a smaller DE gap, 
existing even without information differences. Moreover, this form of analysis of our 
data indicates that even when information about them is obtained by sampling, rare 
events are generally overweighted.

Keywords  Decisions from Description · Decisions from Experience · Risk 
preferences · Cumulative prospect theory · Ambiguity

JEL  D81 · C91 · D91

 *	 Chris Starmer 
	 chris.starmer@nottingham.ac.uk

	 Robin Cubitt 
	 robin.cubitt@nottingham.ac.uk

	 Orestis Kopsacheilis 
	 orestis.kopsacheilis@tum.de

1	 School of Economics, University of Nottingham, Nottingham, UK
2	 School of Management, Technical University of Munich, Munich, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11166-022-09393-w&domain=pdf


106	 Journal of Risk and Uncertainty (2022) 65:105–137

1 3

1  Introduction

In this paper, we present an experimental investigation into the nature and causes 
of the so-called Description-Experience gap (DE gap for short). The DE gap is a 
widely-documented tendency for people to act as if they have systematically dif-
ferent preferences over risks, depending on whether their information about those 
risks is derived from explicit descriptions or, alternatively, acquired through sam-
pling or other experience that permits learning. Classic references in psychology 
include Barron and Erev (2003), Hertwig et  al. (2004), and Weber et  al. (2004). 
Examples of more recent interest among economists include Abdellaoui et  al. 
(2011b), Kopsacheilis (2018), and Aydogan and Gao (2020). Wulff et  al. (2018) 
provides a meta-analytic review.

The distinction between description and experience is pertinent for a wide 
range of human decisions because, in everyday life, people tend to acquire infor-
mation about risks via both description and experience. Practitioners, such as  
doctors, insurance brokers or investment advisors, often provide clients with writ-
ten numerical information about different types of risk. Yet, people also continu-
ally learn about risks from a multitude of experiences: examples include seeing 
your investments go up and down; observing people returning from skiing trips 
with injured limbs; and living through one more day without being burgled or 
mugged. Hence, if there is a significant DE gap, it may influence many decisions. 
With that in mind, our primary motivation in this paper is to assess what sort of, 
and how serious, a challenge the DE gap poses for theoretical and applied work 
by investigating the contributions of different possible causes of the DE gap and 
measuring its footprint in choices and in risk-preference functions.

While existing research provides widespread evidence of DE gaps in experi-
mental studies, the exact form and implications of the phenomenon remain con-
troversial. For example, estimates of the size and even the direction of the gap 
vary across studies. Moreover, while there is ample evidence that misperceptions 
of objective probabilities in decisions from experience (due to biases in informa-
tion captured in sampling experiences) explain some component of the DE gap, 
it is less clear whether - and, if so, how far - other contributory factors related  
to preferences and/or cognitive processes also play a role. We discuss the rel-
evant evidence in the next section, simply noting here that our experimental  
design is motivated by two sources of diversity in the prior evidence: that the 
DE gap may be influenced by multiple, importantly distinct, causal mechanisms 
that have been triggered differentially by competing designs; and that different 
studies have measured the gap in different ways. For example, some studies use  
measures of the gap based on choice frequencies alone whereas other studies rely 
on parameter comparisons within particular preference models. We refer to these  
approaches as model-free and model-mediated respectively.

The experiment that we present here tests, in a single unified design, for the 
operation of four distinct causal mechanisms that may drive the DE gap. Our  
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data analysis uses both model-free and model-mediated approaches to assess the 
effects of the mechanisms and the size of the DE Gap itself.1

The mechanisms we examine are, respectively, effects of: sampling bias; attitudes 
to ambiguity in probability information; the representation of that information; and 
memory. The first of these mechanisms explains the DE gap in terms of differences 
in the information available to decision makers at the point of choice, comparing 
description and experience; the second attributes the DE gap to features of pref-
erence; the third and fourth effects explain the DE gap as arising from features of 
human cognition.

These channels are not mutually exclusive, as we explain. Yet, identifying which 
actually operate, and to what degree, is important because the implications for deci-
sion theory vary markedly depending upon which of the information, preference or 
cognition channels are most at play. If the DE gap is simply caused by differences in 
information about objective risks that result from properties of small samples, that 
would be a reason to pay close attention to information available to agents, but not 
a fundamental challenge to preference theory. If the DE gap arises from ambiguity 
sensitive preferences, it would become an important, but so far under-appreciated, 
part of the rationale for the numerous models of such preferences that have emerged 
in the last 30 years. However, if the DE gap is caused by cognitive processes and 
constraints, a full understanding of it may require models of decision processes, 
rather than pure preference models.

Our main findings are as follows. Our model-free analysis replicates a significant 
DE gap, similar in magnitude and direction to the literature’s average. Also, in line 
with existing literature, we find that sampling bias contributes importantly to the DE 
gap. In fact, in our experiment, sampling bias - in the form of under-representation 
of rare events - is the only one of the four causal factors we consider that generates a 
statistically significant gap by itself in our model-free analysis. Our model-mediated 
analysis uses the framework of rank-dependent utility theory (RDU; Quiggin, 1982; 
Wakker, 2010) to capture effects of our causal factors on probability weighting, while 
allowing for utility curvature (and for any effects of our treatments on the latter). It 
supports two findings. First, in all treatments that control for sampling bias, we find 
inverse-S probability weighting, consistent with overweighting of rare events for both 
description and experience; by contrast, sampling bias tends to create the appearance 
of more linear probability weighting via the under representation of rare events in 
experienced samples. Second, we find some evidence of DE gaps caused by factors 
besides sampling bias: this arises from treatment comparisons that implicate a mix-
ture of cognitive factors and ambiguity sensitive preference.

1  Our study is the first to consider all four of the causal mechanisms in a single experimental design. How-
ever, using multiple measurement approaches is an ambition shared by other recent papers. One example is 
Aydogan and Gao (2020), which prefaces an “individual data” analysis of probability-weighting functions 
with an “aggregate data” analysis based on choice frequencies. Yet, their aggregate analysis is not entirely 
model-free, as it uses a model to control for utility curvature. In contrast, as we explain later in this paper, 
our first mode of analysis uses no preference model at all, while our second one includes utility curvature 
among other model-parameters.
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In the next section, we discuss existing literature. This provides the background 
to our experiment. Section  3 presents our experimental design and details on the 
methods of analysis. In Sect. 4 we show results, with discussion and conclusions in 
Sect. 5.

2 � Background

Much of the evidence for the DE gap derives from lab experiments using variants of 
the so-called “sampling paradigm” (Hertwig et al., 2004) in which participants make 
one-off choices between safer and riskier options in one of two different treatments: 
“Description” or “Experience.”2 In “Description,” gamble properties are fully 
stated, leaving no uncertainty regarding the set of possible payoffs or their associ-
ated probabilities.3

In contrast, in “Experience,” participants are not given stated information about 
consequences and/or their probabilities but must garner it via some form of sam-
pling. In a typical implementation of “Experience,” the two gambles might appear 
on screen in the form of two buttons. Participants then sample by pressing the but-
tons in some sequence of their choice and, each time a button is pressed, one of the 
outcomes of the selected gamble appears on screen with outcome likelihoods con-
trolled by the gambles objective probabilities. Note that, in this framework, relative 
frequencies of experienced outcomes may not always coincide with the objective 
probabilities (though in some designs, as in some of our treatments, they may be 
controlled to do so).

A standard test for the DE gap has been to compare choice proportions across the 
two conditions. The “canonical finding” is that subjects in the “Description” condi-
tion tend to prefer the riskier option when the rare event gives a desirable outcome, 
and to prefer the safer option when the rare event gives an undesirable outcome; 
whereas the opposite is observed in the “Experience” condition. Taken together, this 
pattern has been commonly interpreted as reflecting a tendency to overweight rare 
events in “Description” but to underweight them in “Experience” (Hertwig et  al., 
2004).

There is now a considerable amount of research investigating the DE gap, with 
a recent meta-analysis (Wulff et  al., 2018) adding authority to the claim that the 
DE gap exists. However, this meta-analysis also demonstrates striking heteroge-
neity across studies with respect to the size of the gap, ranging from very small 
to very large. In fact, some papers even find a reversed DE gap, with subjects in 

2  Note, however, that this is not the only paradigm. One notable alternative to the “sampling para-
digm” is the “partial feedback paradigm” (Barron & Erev, 2003) where participants in Experience make 
repeated instead of one-off choices between safer and riskier options.
3  Here, and unless otherwise stated, we use “Description” to refer to cases where there is a unique and 
complete description of the set of payoffs and their probabilities for each gamble. However, other lines 
of research have considered other possibilities, such as: imprecise descriptions of probabilities in Ells-
bergian investigations of ambiguity (e.g. Trautmann & Van De Kuilen, 2015); or multiple, competing, 
descriptions in studies of risk perception (e.g. Viscusi & Magat, 1992; Viscusi, 1997).
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“Experience” appearing to overweight rare events more than in “Description” (e.g. 
(Glöckner et al., 2016)). How can we make sense of these diverse findings?

One possible contributor to the diversity of findings is the wide variation in 
design features such as the structure of sampling, characteristics of gambles and 
the ways in which they are evaluated. Another is the fact that different studies have 
employed different measurement approaches to quantify their findings.

2.1 � Variation in design of studies

The idea that variation in study design accounts for the variation in measured DE 
gaps is plausible given that existing literature has suggested several potential causes 
of the DE gap. To the extent that there are multiple causes at work, different designs 
may have triggered subsets of them to different degrees. We taxonomise causal fac-
tors that may drive the DE gap into three channels: sampling bias; preference; and 
cognition.

Sampling bias is perhaps the most obvious candidate explanation. This attributes 
the DE gap to individuals acting on the basis of biased information in “Experience” 
treatments. As already noted, in these treatments, the relative frequency with which 
gamble outcomes are observed may not always match their objective probabilities. 
Moreover, because people usually choose to collect only quite small samples in 
“Experience” treatments (e.g. the median subject of (Hills & Hertwig, 2010), sam-
ples each option only 9 times), rare events tend to be under-represented due to a 
property of the binomial distribution.4 In such circumstances, we should expect the 
impact of rare events on choices to be attenuated, in line with the canonical finding.

There is considerable existing evidence that sampling bias contributes to the DE 
gap. Perhaps the most prominent, early evidence for this is the study of Fox and 
Hadar (2006). In this study, the authors reanalyse the data of Hertwig et al. (2004) 
and point out that if objective probabilities are replaced by either experienced rela-
tive frequencies or judged probabilities (each sensitive to samples), then aggregate 
choices in Experience can be explained sufficiently well with a standard, inverse 
S-shaped probability weighting function.

Were sampling bias the full story, the significance of the DE Gap would largely 
derive from the potential for sub-optimal search intensity by agents and the dan-
gers of environments that generate biased information. But, there is evidence that 
DE gaps can also arise, albeit typically weaker, in the absence of sampling bias, 
from studies that control for it by engineering ‘Experience’ treatments to ensure that 
experienced and objective probabilities coincide (e.g. Hau et al., 2010; Ungemach 
et al., 2009; Barron & Ursino, 2013; Aydogan & Gao, 2020). DE gaps observed in 
such setups require an explanation that goes beyond biased information, prompting 
consideration of preferences, cognitive processes or both.

4  As a simple demonstration, consider drawing a single ball from an urn that contains 90 black and 10 
red balls. On average, red balls will be under-represented in 90% of such single-observation (small) sam-
ples.
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The most obvious candidate for a preference-based account of the DE gap is 
some form of attitude toward ambiguity.5 This is so because, in terms of the clas-
sic Knightian distinction (Knight, 1921), decisions in a “Description” treatment are 
choices among risks whereas those in an “Experience” treatment are more natu-
rally interpreted as involving other forms of uncertainty, in which probabilities are 
ambiguous or only imprecisely known. If agents are (subjective, where necessary) 
expected utility maximisers, the distinction would be irrelevant in situations where 
subjective, experienced and objective probabilities coincide. But, the presence of 
ambiguous information about probabilities may affect behaviour if individuals have 
non-expected utility attitudes towards ambiguity. For example, paralleling Ellsberg 
(1961)’s famous urn experiments6 where people are often ambiguity averse in the 
sense of being more willing to gamble on “known” than “unknown” urns, willing-
ness to take risks may be lower in “Experience” (where distributions are unknown) 
than in “Description”. There is some existing evidence that ambiguity attitudes play 
a role in the DE gap. Specifically, Abdellaoui et al. (2011b), find that, in the absence 
of sampling bias, estimated probability weights for a prospect theory model are sys-
tematically smaller (less optimistic) in “Experience” compared with “Description.” 
While this result might be due to ambiguity aversion, as suggested by (Abdellaoui et 
al., 2011b), Sections 2.3.2 and 7.1.2), so far, the evidence for such an effect being an 
important driver of the DE gap is limited. If the finding were to generalise, the DE 
gap might be an important exhibit of ambiguity sensitivity, along with the Ellsberg 
paradox.

A third class of explanation attributes the DE gap to factors that have their roots 
in human cognition (as opposed to preference). We consider two such candidates: 
response to likelihood representation and memory. Recall that gamble information 
is represented in different ways across “Description” and “Experience.” In “Descrip-
tion,” probabilities are communicated through written information often in the form 
of percentages (e.g. “£16 with 10% chance”) but in “Experience,” gamble informa-
tion is obtained through sequential sampling experiences which must be interpreted 
by the receiver (e.g. “this option gave me a good prize 1 out of 10 times”). While 
there is considerable evidence that representation of chance can affect decisions in 
different contexts (e.g. Gigerenzer & Hoffrage, 1995; Slovic et al., 2000), it is not 
yet clear how important differences in likelihood representations are as drivers of 
DE gaps, when the underlying information represented is held constant. A related 
consideration arises from noticing that, when likelihoods are discovered through 
sequential sampling, claims about what information subjects have in mind are con-
tingent on assumptions about their recall. As such, imperfect memory of sampling is 
a further possible driver of the DE gap. While the possible role of imperfect mem-
ory in the DE gap has been noted in previous literature (e.g. Rakow et  al., 2008; 
Frey et  al., 2015) its actual role is hard to assess based on existing evidence (see 
(Wulff et al., 2018) p.156, for a relevant discussion).

5  See Etner et al. (2012) for a review of the theoretical literature on modelling ambiguity sensitive pref-
erences.
6  See Trautmann and Van De Kuilen (2015) for a recent review of the subsequent literature.
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2.2 � Variation in measurements

While most studies in this literature have used direct choice comparisons to assess the 
DE gap (e.g. comparing choice proportions as described above), studies in a slightly 
different genre have estimated behavioural models (usually based on cumulative pros-
pect theory; Tversky  &  Kahneman, 1992) to examine the impact of “Description” 
versus “Experience” on parameters of estimated preference functions, often focussing 
on differences in the resulting probability-weighting functions. It seems possible that 
different measurement approaches may support different conclusions. Notwithstand-
ing this possibility, there remains considerable variation across the results of studies 
even within each of these genres. For example, while DE gap studies that estimate 
prospect theory weighting functions have generally reported inverse S-shaped prob-
ability weighting curves in “Description,” there is considerable heterogeneity in the  
shapes of curves elicited in “Experience” conditions: Abdellaoui et al. (2011b), and Kemel  
and Travers (2016) reported inverse-S shaped weighting; Ungemach et  al. (2009) 
reported S-shaped weighting; while Hau et al. (2008) found linear weighting. More 
recently, Kopsacheilis (2018) put forward the “Relative Underweighting Hypothesis,” 
according to which people overweight rare events in “Experience” but less so than 
in “Description,” a hypothesis that was later corroborated by findings in Aydogan 
and Gao (2020). This hypothesis is accommodated by an inverse S-shaped probabil-
ity weighting function in “Experience” that is closer to the diagonal for probabilities 
closer to 0 or 1, when compared to “Description.”

Our experiment is designed to facilitate direct tests for the influence of each of: 
sampling bias, ambiguity attitude, likelihood representation, and memory. These fac-
tors are tested by pairwise comparisons of treatments in a unified design which, by 
varying a single factor in each comparison, isolates their separate influences. Our 
setup is designed to facilitate evaluation via model-free tests of effects and via com-
parisons of the impact of factors on probability-weighting functions. By using four 
different “Experience” treatments, our design also permits tests of four distinct forms 
of DE gap.

3 � Design and methods

3.1 � Treatments

In our experiment, subjects evaluate a series of binary gambles via a process 
described below. Payoffs are (non-negative) sums of money which are always known 
to the decision maker at the point of evaluation. Gambles are represented by virtual 
decks of cards, each containing two types of card, demarcated by colour.7 Within 

7  Each gamble’s outcomes are demarcated by a different pair of colours - Fig. 2 displays one such pair. 
The correspendence between colours and outcomes for each lottery was randomized for each subject. 
This was done to avoid systematic influence of connotations associated with particular colours such as 
“danger” with red or “environmental risk” with green. Moreover, the order of cards within each sample 
from each deck was randomised by subject.
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each gamble, there are two possible outcomes, each associated with one of the two 
colours in the deck; the relative frequencies of the two colours represent the prob-
abilities of the two outcomes. The design involves five treatments: one Description 
(Desc) treatment plus four variants of “Experience” which we label Unambiguous 
(E-Unamb), No Records (E-NR), Ambiguous (E-Amb), and Restricted (E-Res). As 
we summarise in the top part of Fig. 1, the treatments differ in how subjects obtain 
information about the contents of the deck.

In Desc, gamble probabilities are communicated in explicit, numerical form (as 
percentages) during evaluation (e.g. “90% of the deck’s cards are grey and 10% are 
yellow”). By comparison, in the Experience treatments, subjects are not told the rel-
ative frequencies of the colours in each deck but have opportunities to investigate 
and/or discover this information by sampling deck contents. The sampling environ-
ment varies by treatment as we now explain.

The E-Unamb treatment provides a version of “Experience”  which is informa-
tionally equivalent to Desc. This involves two key ingredients. The first is that, in 
E-Unamb, subjects sample the entire deck, without replacement, and are told that 
they see the full deck with each card appearing once and only once. Hence, subjects 
in this treatment have access to full information about the chances of the two out-
comes which is logically identical to that available to subjects in Desc. However, 
subjects having seen the full set of cards exactly once is no guarantee that subjects 
have accurate perceptions of the colour composition of the deck at the point of gam-
ble evaluation: they may not have paid full attention to the sampling experience and 
they might have forgotten aspects of it, prior to the evaluation phase. To control for 
the influence of such cognitive constraints in E-Unamb, we introduce, as the second 
key ingredient, a history table that remains on screen during the evaluation phase.8 
This records the colours of cards that were sampled in the order they were sampled. 
This record is shown on the screen where subjects evaluate gambles and, for this 
treatment, a message on top of the history table reads: “This is the entire deck with 
its cards displayed in the order you sampled them.”9

Figure 2 illustrates how the sampling process was displayed to subjects, depicting 
three instances of the experimental procedure for E-Unamb. Panels a. and b. capture 
before and after instances of a single sample event, while panel c. demonstrates an 
example of the evaluation phase. Notice that -once sampling is complete- the history 
table encodes mathematically identical probability information to that provided, in 
a different format, in the Desc treatment. Hence, comparing behaviour in the Desc 
and E-Unamb treatments provides a test of whether behaviour depends on the way in 
which given likelihood information is represented and acquired.

As illustrated at the bottom of Fig. 1, treatments branch along two different routes 
as a consequence of variations relative to E-Unamb. The E-NR treatment is identical 
to E-Unamb, except that no history table is presented. Hence, while the information 

8  The technology of this memory aid was introduced by Kopsacheilis (2018). However, unlike that 
paper, sampling amount is fixed (not an endogenous decision) in our study. A similar device was used by 
Hau et al. (2010) but with a markedly different technology.
9  See "Instructions" section in Appendix for details of instructions.
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contained in the sampled deck remains equivalent to Desc and E-Unamb, memory 
or other cognitive limitations (including lack of attention) might lead individuals to 
act on assessments of gambles based on misperceptions of objective probabilities. 
As a convenient shorthand we refer to any such influences of cognition, as “mem-
ory” effects. The comparison of E-Unamb with E-NR isolates such effects.

E-Amb branches in a different way from E-Unamb. E-Amb retains the history 
table and all other features of E-Unamb except that, in E-Amb, subjects are not told 
that the 40 cards they sampled comprise the entire deck. In this treatment, the line of 
text immediately above the history table just says: “These are the colours you sam-
pled in the order you sampled them,” instead of the text shown in Fig. 2c. Hence, 
while these subjects do in fact see the full deck and the record of it, they do not 
know that they see the full deck. From their perspective, the situation has a degree 
of ambiguity because they are not informed that the relative frequencies they experi-
ence match objective probabilities. Hence, the comparison between E-Unamb and 
E-Amb isolates the effect of the presence of ambiguity, keeping constant the actual 
samples experienced and the presence of the history table record of them. This is 
our cleanest test for the impact of ambiguity. However, if subjects are ambiguity 
sensitive and also (aware that they) suffer from imperfect recall, they might experi-
ence ambiguity in E-NR too. Our shorthand term ‘memory’ should be interpreted as 
including this additional effect of withdrawing the history table.

Our final treatment, E-Res, is identical to E-Amb except that the number of 
cards sampled was restricted. Specifically, unlike E-Unamb, E-NR and E-Amb that 
featured 40-card samples, sampling in E-Res was restricted to 18 cards. In conse-
quence, a unique feature of this treatment is that the experienced relative frequency 
of colours sampled cannot exactly match the objective one.10Therefore, the E-Res 
treatment necessarily introduces sampling bias and the comparison of it to E-Amb 
isolates the effect of that factor. Notice that sampling bias can arise in two direc-
tions: a particular event can be either over- or under-represented in a given sample, 
relative to its objective probability. Since we should expect the effects of under- and 
over-representation to be different, in the analysis we split observations in E-Res 
into two subsets: E-Over and E-Under. Since rare events are our loci of interest, we 
taxonomise observations according to whether the event with the smallest probabil-
ity to occur was over- or under-represented.11

We are now in a position to summarise the full logic of the set of treatments 
introduced in Fig.  1. In essence, pairwise comparisons of treatments which are 
adjacent in the bottom panel of Fig. 1 provide a series of tests designed to isolate 
causal effects due to: likelihood representation, memory, ambiguity, and sampling 
bias.We refer to these as tests for “effects.” Since we have multiple variants of 
Experience implemented in our design, and since it is possible that the factors we 
isolate might also work in combination, we also conduct a set of tests for DE gaps 

10  As will become clearer in the following subsection, the set of objective probabilities that we chose for 
this study cannot be accurately represented in samples of 18 observations.
11  There is one exception. For the one 50-50 gamble, we classify the observation according to the 
observed relative frequency of the event corresponding to the better outcome.
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by comparing behaviour in our Desc treatment with that in each of our different 
Experience conditions. Lastly, in order to get an estimate of the average DE gap 
we elicit, we compare Desc with E-All, a compilation of observations across all 
four variations of Experience.

The distinct DE gaps we elicit - each based on comparison of Desc with one of 
our Experience treatments - relate to previous literature in interesting ways. Since  
in E-Unamb the subject ultimately has access to precise information about gam-
ble probabilities (visible in one place, even though acquired gradually through  
an experiential process), comparison of Desc with E-Unamb investigates a case 
of a possible DE gap in which - unusually - both treatments are in the domain of 
risk. This contrasts with the more usual case in which the Description and Expe-
rience treatments cross the risk-uncertainty divide, a possibility that features in 

Fig. 1   Summary of treatments and treatment comparisons

Fig. 2   Instances of E-Unamb’s interface
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our comparisons of Desc with, respectively, E-Amb, E-NR and E-Res. Each of 
these Experience treatments gives subjects different reasons to be unsure of gam-
ble probabilities at the moment of choice, as explained above.

The design of our Experience treatments bears some noticeable differences 
from the sampling paradigm. For example, during the sampling phase, subjects 
explore only one source of uncertainty at a time instead of two. The second option 
is always a sum of money offered with certainty. Moreover, as we explain below, 
subjects make repeated choices for each lottery in our decision set - instead of a 
one-off choice - so that we can infer an indifference between the risky-option and 
a certain amount. The advantage of these adaptions is that they allow us to elicit a 
more precise account of subjects’ risk-preferences (see Abdellaoui et al., 2011b for  
further discussion).

Also, in our design, subjects do not decide when to stop sampling but, instead, 
draw a fixed number of cards (i.e. all 40 or just 18) from the deck without replace-
ment. This gives us complete control over the information they obtain by sampling. 
It is interesting to relate our use of this feature, especially when the fixed number is 
40, to designs reported by Aydogan and Gao (2020) and Barron and Ursino (2013). 
We focus on Aydogan and Gao’s “complete sampling paradigm,” but a similar argu-
ment applies to the “Experience” treatment of Barron and Ursino’s Experiment 1 
which shares some salient features with Aydogan and Gao’s design. In Aydogan and  
Gao (2020)’s “Description” treatment, subjects were fully informed of the set of balls 
in an urn; whereas, in their “Sampling” treatment, subjects sampled every ball from 
the urn one after another. They were not provided with any record of the sampling 
but were allowed to take their own notes. Therefore, this “Sampling” treatment is a 
hybrid of our various Experience treatments: a subject who kept a complete record 
would be in a position akin to our E-Unamb treatment; one who kept no records 
would be in a position akin to our E-NR treatment; whereas, the position of one who 
kept an incomplete record (or had less than full confidence in their record) is harder 
to characterise. Our design gives us more control of the information subjects have 
in these treatments and, by using four such treatments, enables us to isolate distinct  
effects in the way we have explained.12

3.2 � Incentives and other procedures

We now explain how gambles were evaluated by subjects. An example of the evalu-
ation phase is depicted in panel c of Fig. 2. This illustrates one step in the evaluation 
of a gamble (denoted Option A in this figure) which gives a 10% chance of winning 
£16 (otherwise zero). Note that while the presentation of probability information 

12  To illustrate the possible significance of this, note that Aydogan and Gao (2020) interpret their inves-
tigation as one of a DE gap in the domain of risk; yet, as acknowledged in their fn. 3 and Section 6.2, this 
relies on their subjects recording (or recalling) all the balls they sampled - a condition which their online 
archive of subjects’ notes supports for some subjects, but not for others. In contrast, our interpretations 
only rely on subjects having a full record of sampling in cases where the history table gave them such a 
record.
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on this screen would have differed between treatments, once probability information 
was acquired, the protocol for evaluation of gambles was essentially the same for 
all five treatments. Gambles were evaluated by a series of five choices between the 
gamble and a sure sum of money (such as Option B in the figure). We achieve this 
by implementing a version of the bisection method of Abdellaoui et al. (2011b) in 
which sums of money are updated according to the subjects’ previous choice. At the 
first iteration of each evaluation, the certain amount is set equal to the expected value 
of the gamble (Option A). In the second iteration, this amount is revised upwards 
(downwards) to the mid-point of the gamble’s highest (lowest) outcome and the cer-
tain amount just rejected (accepted). After the fifth iteration, we impute - for each 
gamble a subject evaluates - a certainty equivalent that is the certain amount that 
would have been displayed under Option B if a 6th iteration were to take place.13

The set of lotteries evaluated is summarized in the column of Table  1 headed 
“Risky,” using the notation explained in the legend of the figure. We selected 
these lotteries in order to comply with the semi-parametric estimation protocol of  
Cumulative Prospect Theory that was implemented by Abdellaoui et al. (2011b) (see  
Sect. 3.3.2 for more details). One noticeable adaption from the set of lotteries sug-
gested by Abdellaoui et al. (2011b) is that we increase the number of lotteries involv-
ing rare events - a feature that allows us to zoom further into this region of probabil-
ity weighting.

The order of these lotteries was randomized within two clusters for each subject. 
Lotteries in the first cluster ( 1.1 − 1.7 ) had varying outcomes but with a winning 
probability fixed at p = 0.25 . To make this common structure clear to subjects in 
the Experience treatments, this first cluster of lotteries was associated with only 
one deck and one sampling process. Seven evaluations were then based on that one 
sampling process. Lotteries in the second cluster ( 2.1 − 2.9 ) had a pair of fixed out-
comes and varying probabilities. A subset of this second cluster ( 2.4 − 2.9 ) feature 
“rare” events which will be important in our analysis. Following the convention in 
this literature we consider an event rare if its corresponding probability is less than 
0.20 (Hertwig et al., 2004). Notice that all of the lotteries with rare events have just 
one non-zero payoff and sometimes the rare event is associated with the desirable 
prize [lotteries 2.4,  2.5,  2.6] and sometimes the rare event is undesirable [lotter-
ies 2.7, 2.8, 2.9]. The role of lotteries without rare events will emerge in the next 
sub-section.

In total, 198 participants were recruited through ORSEE (Greiner, 2015) and ran-
domly assigned to one of the five treatments summarized in Table 1. The experi-
ment was programmed in Z-tree (Fischbacher, 2007) and sessions were conducted 
in the CeDEx laboratory (University of Nottingham) and lasted for approximately 
one hour. Subjects’ payments depended on their choices and on gamble resolutions. 
At the end of the experiment, one choice was selected at random for payment.14 If 
participants had chosen the Safe option, then they would receive the corresponding 

13  See Table 5 in the "Bisection method" section of the Appendix for a demonstration.
14  This is a standard procedure. See Cubitt et  al. (1998) and (Bardsley et  al., 2010, Chapter  6.5) for 
discussion.
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certain amount. Otherwise, if they had chosen the Risky option, they would play 
out the lottery, with the outcome determined by the probabilities implied by the rel-
evant colour mix of the cards for the specific lottery. On average, subjects were paid 
£11.50 including a flat £2 participation fee.

3.3 � Methods of analysis

3.3.1 � Model‑free methods

In the model-free analysis, we make cross-treatment comparisons using tests that do 
not rely on any particular behavioural or preference model, but instead let the raw 
choice data speak.

Another important motivation for the model-free analysis is that it allows us to relate 
our findings to several previous studies that used a similar measurement approach. To 
facilitate this comparison we use only the data from the first iteration of each bisec-
tion in the evaluation phase. This choice-structure is similar to that of the early stud-
ies in the sampling paradigm where participants often made one-off choices between 
the gamble (risky choice) and the certain amount equal to the gamble’s expected value 
(safe choice). Moreover, as these early studies focused only on situations involving 
rare events, for comparability, this part of our analysis will focus only on the subset of 
decision problems involving lotteries containing a rare event (those highlighted grey in 
Table 1).

We summarise each individual’s behaviour through an overweighting score. The 
score is constructed, for each individual, based on their evaluations of the six gambles 
which feature rare events. Consider a binary index: Ci ∈ {0, 1} , with i indexing one of 
the 6 problems in Table 2 that contain a rare event. Ci = 1 (0) when the subject’s choice 
in decision problem i is consistent with overweighting (underweighting) of rare events. 
A choice is consistent with overweighting when the riskier option is selected (over 
the safer one) when the rare event was desirable or when the safer option was selected 

Table 1   Decision problems and characterisation
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when the riskier alternative featured an undesirable rare event. We then calculate the 
overweighting score as:

We interpret the %Overweighting score as a measure of the propensity to over-
weight, which varies from 0 (no choice was consistent with overweighting) to 100 
(all choices were consistent with overweighting).15 While this index is in some ways 
simplistic16, it is intuitive, does not require committing to any preference model, 
avoids issues associated with inference from repeated observations, and allows us 
to benchmark against behaviour reported in earlier literature where the DE gap was 
established using comparable measures. Using this measure, we test for effects and 
for DE gaps by comparing the average %Overweighting scores across the individu-
als facing each relevant treatment.

3.3.2 � Model‑mediated methods: RDU

To the extent that the DE gap reflects variation in the weighting of events across dif-
ferent environments, it is natural to consider modelling it using theories which, in 
the tradition of prospect theory, embody a concept of decision weighting. We follow 
this approach exploiting a simple and now rather standard RDU framework. One 
important benefit of the model-mediated analysis is that it allows for more refined 
inferences, e.g. by separating effects that are representable as coming via utility cur-
vature from ones that come through probability weighting. In our design, a second 
advantage of this level of analysis is that it takes into account a richer information 
set, incorporating all 5 iterations of the bisection method (instead of only the first 
one) and more probability targets (instead of only the ones containing a rare out-
come). A third benefit is that this analysis facilitates comparison with more recent 
literature on the DE gap (discussed above) which has exploited related approaches.

To formalise our approach, consider binary lotteries of the form xEp
y which give 

one of two monetary outcomes x, y where x > y > 0 . Outcome x arises in event E 
which occurs with probability p; otherwise the outcome is y. The rank dependent 
expected utility of any such lottery is given by the expression:

where u(⋅) is a strictly increasing utility function, W(⋅) is a weighting function 
and W(Ep) is the decision weight associated with event Ep . This model reduces to 
expected utility theory in the special case where W(Ep) = p , for all events.

%Overweighting =
1

6
∗

6
∑

i=1

Ci ∗ 100.

(1)W(Ep)u(x) + (1 −W(Ep))u(y),

15  Glöckner et al. (2016) refer to the same index as p(overweighting) and interpret it as the probability of 
making a choice consistent with overweighting.
16  We are not entitled to assume that choices consistent with overweighting are fully explained by over-
weighting as other factors may be at work.
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To study the DE gap using the RDU model, we follow the source method (Tversky  
& Fox, 1995; Abdellaoui et  al., 2011a) which was specifically adapted for this 
purpose by Abdellaoui et  al. (2011b). A key feature of this approach is to allow 
weighting functions to depend on the source of uncertainty. So, for example, differ-
ent weighting functions might apply to decisions under risk than apply under differ-
ent forms of experienced uncertainty, even if the underlying probability distributions 
over outcomes are otherwise identical. In our setting, we apply this idea by interpret-
ing our various treatments as potentially different sources.

More formally, for an event Ep , such as drawing a yellow card from a deck in a 
specific treatment, where (100 × p)% of its cards are yellow, the decision weight is 
given by:

In Eq. (2), w� is a source function which transforms probabilities into decision 
weights according to the source of uncertainty, � . In this expression, �(⋅) is the indi-
vidual’s belief of the likelihood of Ep . In line with standard practice, we assume that 
in Desc, �(Ep) = p . 

In Experience conditions on the other hand, this belief depends on a variety of 
other factors, including the relative frequency ( fp ) of each event Ep that is observed 
by the individual. Following common practice, we assume that �(Ep) = fp for deci-
sions from Experience.17 Under this assumption, Eq. (2) can be re-written as:

For the three variations of Experience which control for sampling bias we set 
fp = p and so, for these cases, Eq. (3) reduces to:

In our treatment E-Res, fp ≠ p , by construction. Although in principle, operating 
under Eq. (3) for E-Res could allow us to control out the role of sampling bias, this 
would defy the purpose of this treatment, i.e., quantifying the effect of sampling 
bias. Therefore, we choose to operate under Eq. (4) for E-Res too, thereby incorpo-
rating a sampling bias of magnitude: |p − fp| . We return to this point in the Results 
section.

Though, formally, Eq. (4) gives us decision-weights for the more desirable of 
each gamble’s outcomes, those weights can only vary across our gambles (within 
a given treatment) with the probability p of that outcome. Hence, we will use the 
term “probability-weighting” when we are referring to how the decision-weight var-
ies with p.

In our analysis, we estimate (parametrically) utility curvature first and then calcu-
late (non-parametrically) decision weights at the individual level. The set of gambles 

(2)W(Ep) = w�(�(Ep)).

(3)W(Ep) = w�(fp).

(4)W(Ep) = w�(p).

17  Previous papers that operate under the same assumption include Fox and Hadar (2006), Hadar and 
Fox (2009) and Abdellaoui et al. (2011b). Moreover, Fox and Hadar (2006) report a very high correlation 
(0.97) between experienced and judged probabilities. Aydogan (2021) offers an interesting examination 
of this assumption.
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in Table  1 is tailor-made for this approach. Following Abdellaoui et  al. (2008)’s 
semi-parametric method for eliciting RDU components, we use the seven certainty 
equivalents elicited from evaluations of risky options in problems 1.1 − 1.7 to fit 
the utility curvature parameter of a power utility function: u(x) = x� . We do so by 
minimizing: 

∑7

j=1
(zj − ẑj)

2 , where zj and and ẑj are, respectively, the observed and 
estimated certainty equivalents for decision problem 1.j, with j ranging from 1 to 7. 
Using Eq. (1), the power utility function and the fact that the probability of the bet-
ter outcome of the lottery is 0.25 in all of problems j = 1,… , 7 , we obtain the fol-
lowing expression for ẑj which we can use to estimate � for every subject:

Hence, we can treat the corresponding decision weight: W(E0.25) as a free param-
eter to be estimated together with the utility curvature parameter: �.

Having obtained an estimate of each subject’s utility curvature, we proceed to 
calculate (i.e. non-parametrically) decision-weights for the risky options in 2.1 - 2.9. 
Notice that these options have fixed outcomes: x∗ = 16 and y∗ = 0 and varying prob-
ability: pr , with r indexing the risky option in decision problems 2.1 - 2.9. Using Eq. 
(5), we can therefore calculate the decision weight for the better outcome of each 
risky option, given the probability level pr of the event on which it is considered, 
obtaining:

where z′
r
 is the elicited certainty equivalent for risky option r ( r = 1, 2,… , 9).

Taking the median weight across individuals, we obtain an aggregated source 
function for each treatment. By studying the shape of the elicited weighting curves 
and comparing them across treatments, we examine the DE gap and its driving 
forces from the perspective of a model that allows for probability weighting. This 
combination, derived from Abdellaoui et al. (2008); Abdellaoui et al. (2011b) and 
explained above, allows us to control for utility curvature while letting the data 
speak on the exact form of probability-weighting in different treatments (without 
any commitments to functional forms).

4 � Results

4.1 � Model‑free analysis

We begin our analysis by examining choice proportions through the lens of the 
%Overweighting scores. Recall that these scores derive from choices made in the 
first iteration of each bisection process and, in line with the discussion of Sect. 3.3.1, 
we interpret the average %Overweighting for each treatment as representing a treat-
ment-level propensity to overweight rare events. The results are presented in Fig. 3.

(5)ẑj = [W(E0.25)(x
𝛼
j
− y𝛼

j
) + y𝛼

j
]
1

𝛼 .

(6)W(Epr
) =

(

z
�

r

x∗

)�

,
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We highlight three features of the data evident from the barplot of Fig. 3. First, 
and in line with the canonical finding, the propensity to overweight is higher in Desc 
than in any variant of Experience. Second, the %Overweighting scores (depicted at 
top of each bar) fall as we introduce extra features of “Experience” one by one along 
the two branches away from Desc in Fig.  1: Desc ⟶ E-Unamb ⟶ E-NR; and 
Desc ⟶ E-Unamb ⟶ E-Amb ⟶ E-Res. This is consistent with each extra fea-
ture expanding the DE gap. We explore the statistical significance of these changes 
below. Finally, a third salient feature of Fig.  3 is the comparatively low score for 
E-Under: this is consistent with the intuition that rare-events carry less weight in 
decisions from Experience, when they are under-represented in the sample.18

The Table in the bottom half of Fig. 3 details the size and statistical significance 
of the various DE gaps and effects that our experiment was designed to measure. Its 
top row reports the overall average DE gap in our experiment by comparing Desc vs 
E-All. This measure of the gap is statistically significant (p-value = 0.041 ; MW) and 
its size at 9.35 percentage points is very close to the literature’s average of 9.7 per-
centage points, based on a large meta-analysis from 80 data sets (Wulff et al., 2018). 
We view this close correspondence to the reported central tendency of existing 
evidence as a reassuring indication that we are capturing a familiar DE gap in our 
experimental setup. In line with the canonical finding, we find less overweighting of 
rare events in Experience than in Description. These observations lead to Result 1.

Result 1  We replicate a DE gap. It has the same direction as the canonical finding and, 
in terms of the %Overweighting measure, a very similar size to the literature’s average.

The next six rows of Fig. 1 test for a set of DE gaps via pairwise comparisons of the 
%Overweighting score for Desc with each of the individual Experience treatments includ-
ing the two sampling bias derivatives (E-Over and E-Under). Across these comparisons, 
statistically significant differences are identified only in cases where sampling bias is pre-
sent (i.e., the cases involving E-Res and E-Under). Not surprisingly, the gap is widest when 
rare events are under-represented rather than when they are over-represented. In compari-
sons that do not involve sampling bias (i.e., those comparing Desc with each of E-Unamb, 
E-NR or E-Amb), while the direction of each effect is in the typical direction of the DE 
gap, we find no statistically significant differences, although the comparison between Desc 
and E-NR is slightly bigger in magnitude than the literature average gap.

The bottom section of the table in Fig. 3 provides analogous tests, but focussing 
on treatment comparisons capturing effects associated with specific mechanisms as 
summarised in Fig.  1. Based on this analysis, while each factor again moves the 
average %Overweighting in the direction consistent with the canonical finding, the 
only statistically significant effect is that of under-representation - where the effect is 
both large and highly significant.19 This leads to our second main result.

18  See Table 6 in the "Sampling Bias" section in the Appendix for more details on sampling bias.
19  We confirm this pattern of findings with a robustness check using a different, but conceptually similar, 
model-free overweighting index (see the section: An alternative model-free measure to %Overweighting in 
the Appendix). Although not directly comparable to previous literature, this alternative measure exploits data 
from all five iterations. We thank an anonymous referee for suggesting this additional form of analysis.
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Fig. 3   Average %Overweighting scores across treatments

Table 2   Utility curvature 
estimates ( � ) across treatments 
(medians)

Parametric estimations of utility curvature: � from x� . These esti-
mates derive from a non-linear least squares algorithm (Bates & 
Watts, 1988; Bates et  al., 1992; Moré, 1978), commonly specified 
for all 198 subjects: we estimate � for every subject 20 times with 
a randomly chosen starting value and select the iteration with the 
best fit. “Desc”: Description; “E-Unamb”: Unambigous; “E-Amb”: 
Ambiguous; “E-NR”: No Records; “E-Res”: Restricted (sample)

Desc E-Unamb E-Amb E-NR E-Res

Median 1.06 1.08 1.10 1.08 0.98
IQR 0.84-1.38 0.82-1.60 0.83-1.35 0.81-1.69 0.66-1.18
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Result 2  The most important single driver of the DE gap in our data is sampling 
bias, in the form of under-representation of rare events.

While the results we have presented so far are consistent with claims made else-
where (e.g. Fox & Hadar, 2006; Rakow et al., 2008) to the effect that sampling bias 
is the predominant driver of the gap, we hold short of such a firm conclusion at this 
point for two reasons. First, while no factor other than sampling bias was statistically 
significant in isolation, the measured DE gap nevertheless consistently widens with 
each factor introduced in our design. That is, the difference in %Overweighting is 
positive for each gap and effect reported in the table of Fig. 3, with the exception 
of over-representation where we expect an opposing effect. Moreover, combinations 
of other factors sometimes come close to producing a significant change in the gap 
(see the comparison between Desc and E-NR, which captures the combination of 
likelihood representation and memory). This suggests the DE gap might be partly 
driven by a range of other factors beyond sampling bias, even if these are relatively 
weak when operating in isolation. Second, in the next section we present a model-
mediated analysis which involves a different and more detailed examination of the 
DE gap and its underpinning causes. We turn to this analysis now.

4.2 � Model‑mediated analysis

In this analysis, we use certainty equivalents derived from the bisection elicitation process 
to estimate a best fitting RDU model for each individual. We obtain parametric estimates 
for the utility curvature first (as per Eq. 5) and then calculate -non-parametrically- decision 
weights (as per Eq. 6).

Table 2 reports median values for the utility curvature parameter ( � ) across treat-
ments. In aggregate, our estimations suggest near linear utility over money which 
is a not-uncommon finding.20 Median values are very similar across treatments and 
a Kruskal-Wallis test does not reject the null hypothesis of equal utility curvature 
across treatments (p-value = 0.708 ). Despite this, the size of the interquartile ranges 
(IQR) suggests that there was considerable heterogeneity of utility curvatures across 
individuals - a result that demonstrates the importance of our having controlled for 
this when assessing probability-weighting. We also consistently fail to reject the null 
of no difference in utility curvature in pairwise comparisons of treatments.21 This 
suggests that potential treatment effects are more likely to occur due to differences in 
probability weighting rather than due to differences in preferences over money.

Next, we calculate decision weights W(Epr
) for each subject at each probability 

level pr , following Eq. (6). Median values for these decision weights are reported in 
Table 3.

20  These estimates fall within the typical range of contemporary studies such as Abdellaoui (2000); 
Booij et al. (2010); Etchart-Vincent (2004); Murad et al. (2016), all of which find a central tendency of � 
between 0.8 and 1.1.
21  See "Utility curvature" section in the Appendix for more details on these tests (Tables 7 and 8) and for 
a plot of all subjects’ utility curves (Fig. 5).
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In this table, we use upward sloping arrows to indicate cases where estimated 
decision weights are statistically significantly above the diagonal line (i.e. the line 
consistent with linear decision weights where W(Epr

) = pr for all events, where EUT 
coincides with RDU), and we use downward arrows to indicate cases where weights 
are significantly below the diagonal (in each case, the number of arrows indicates 
the critical value). The shaded cells highlight cases where weights do not deviate 
significantly from the diagonal. Although unconventional, this labelling makes it 
easy to see that, if we confine attention to cases that control for sampling bias (i.e. 
the first 4 of the 8 data columns in Table 3), then probability weighting generally 
takes an inverse S-shape: weights tend to be above the diagonal for small probabili-
ties and below them for high probabilities with a cross-over at, or in the vicinity of, 
p = 0.25.22 This inverse S-shaped probability weighting is consistent with a general 
tendency to overweight rare events.23 This leads to Result 3.

Result 3  Controlling for sampling bias and utility curvature, probability weighting 
is generally inverse S-shaped, consistent with overweighting of rare events in both 
Description and Experience.

Things look different when we consider cases with potential for sampling bias. In 
particular, E-Under stands out by having a pattern of median weights consistent with 
an S-shaped weighting function: for low probabilities, median weights are nominally 
below the diagonal, rising above it for high probabilities. If we confine attention to 
the analysis of statistical significance, however, almost none of the weights associ-
ated with rare events depart significantly from the diagonal; and hence, an interpre-
tation of this analysis is that sampling bias is counteracting an underlying behav-
ioural tendency to overweight rare events. That is, the overweighting is a property of 
preferences that is disguised by the sampling bias.

We complement the analysis of Table  3 by providing a visualisation of the 
weighting functions implied by the weights reported there by fitting a parametric 
weighting function to the set of median decision weights for each treatment, using 
the linear-in-log-odds specification of the weighting curve (Goldstein & Einhorn, 
1987; Gonzalez & Wu, 1999):

In this specification, the parameter � is largely responsible for the elevation of 
the curve and � for its curvature (Gonzalez & Wu, 1999). When 𝛾 < 1 , the weight-
ing function takes its characteristic inverse S-shape, suggesting overweighting of 
rare events. As � approaches the value 1, the weighting curve becomes increasingly 

(7)w(p) =
�p�

�p� + (1 − p)�
.

22  Note that only one of the 36 cells in these four columns of data - that associated with E-NR for 
p = 0.025 - is inconsistent with this inverse-s pattern.
23  Recall that rare events lie in two sets: for p ∈ {0.025, 0.05, 0.10} and for p ∈ {0.90, 0.95, 0.975} . As p 
is the probability of the better outcomes, rare events in the first set have desirable outcomes; rare events 
in the second set have undesirable outcomes.



125

1 3

Journal of Risk and Uncertainty (2022) 65:105–137	

linear. Finally, values where 𝛾 > 1 suggest an S-shaped curve that is consistent with 
underweighting of rare events.

The fitted functions are presented in Fig. 4 where each of the seven panels pro-
vides a comparison of a pair of functions, thereby giving a qualitative impression of 
the impact of an individual factor manipulated in our design. We also include a com-
parison of Desc versus E-all for completeness. The top three panels use data from 
treatments which control for sampling bias and show the impacts of, respectively, 
likelihood representation, ambiguity, and memory. The top left panel reveals that 
the treatments Desc and E-Unamb generate almost identical inverse-S functions; 
hence our treatment manipulation capturing the impact of likelihood representation 
has no discernible impact on the fitted function. The middle and rightmost panels 
of the top row both use E-Unamb as a benchmark: the introduction of ambiguity 
(middle panel) slightly depresses the revealed weighting function throughout much 
of its range. The impact of removing the memory aid (history table) in our design, 
depresses weights more markedly (top right panel).

The bottom three panels provide a similar exercise but focused on the impact of 
sampling bias. Here we highlight, in particular, the impact of under-representation 
of rare events: in line with the discussion of Table 3, relative to the E-Amb treat-
ment, we see the under-representation of rare events reducing the weights associ-
ated with both desirable and undesirable rare events (i.e. the weighting function for 
E-Under lies below the E-Amb function for low probabilities and above it for high 
ones). Finally, the comparison in the central panel, capturing the visual effect of 
the average DE gap, provides support for the “relative underweighting hypothesis” 
(Kopsacheilis, 2018). Although both weighting functions are inverse S-shaped, that 
of E-All exhibits less overweighting - i.e, it is closer to the diagonal - when com-
pared to Desc for small enough and high enough probabilities.

An obvious question is how far the suggestion of treatment differences is sup-
ported by more formal statistical analysis. We address this via Table  4 which 
reports the p-values from a series of 2-tailed Mann-Whitney (MW) U tests. The 
set of tests mirrors the structure of the treatment-level comparisons presented in 
Fig. 3: we compare the same pairs of treatments testing for gaps and effects, but 
we use the RDU approach to conduct a series of tests at each probability level 
for every treatment comparison.

Table 3   Median decision weights and comparison with the diagonal
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We highlight three main observations based on this analysis. First, consid-
ering the bottom half of the table which tests the impact of individual factors 
operating in isolation, we corroborate the finding of our model-free analysis that 
sampling bias, in the form of under-representation of rare events, has a major 
impact on the revealed weights. Second, and again in line with the model-free 
analysis, the bottom half of the table shows little evidence to support the impact 
of any factor beyond sampling bias.24 Third, the RDU analysis presented above 

Fig. 4   Probability weighting: Visual comparisons

24  Except for the role of Memory when p=0.10, no other factor registers a statistically significant effect.
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offers some new insights too. Based on the results presented in the top half of 
Table 4, we now can detect a significant DE gap in some cases where there was 
no sampling bias. Specifically, we find evidence of a significant gap in the com-
parison of Desc vs E-NR for small values of p (desirable rare events). This con-
firms the visual impression (from top right panel of Fig. 4) that desirable rare 
events receive lower weights in treatment E-NR relative to E-Unamb and Desc 
(the latter two functions being almost identical). We take these results as indi-
cating that there may be a replicable effect worthy of further investigation. On 
that assumption, it is helpful to reflect on the differences in weighting between 
Desc and E-NR.

Referring back to Fig. 1, note that we get from Desc to E-NR in two steps: one 
changes the likelihood representation; the other removes the history table. The evi-
dence presented in Fig. 4 and Table 4 provides tentative support for thinking that the 
removal of the history table may be the more important of the two manipulations: 
memory has a more marked effect on the shape of the weighting functions (compar-
ing top left and top right panels of Fig. 4) and in the bottom of Table 4, the memory 
effect in isolation does reach significance at 5% at one probability level (p = 0.1). As 
noted earlier, removal of the history table may be interpreted as not purely cogni-
tive if subjects are aware of their forgetfulness and react to the resulting ambiguity. 
Hence, to the extent that removing the history table has a genuinely distinct effect, 
we are not entitled to interpret it as a purely cognitive one, as there may be some 
preference component too. This leads to Result 4.

Result 4  We find some evidence that there are factors other than sampling bias that 
contribute to the DE gap. These factors are most clearly seen when our memory 
aide is removed and, thus, involve cognitive factors and responses to them.

5 � Conclusion

Past research has consistently demonstrated that revealed risk preferences vary 
according to whether risky options that decision makers face are described or expe-
rienced: that is, there is a Description-Experience (DE) gap. Yet the causes, nature, 
size - and even the direction - of the DE gap remain matters of ongoing debate.

This study was designed to provide an integrated investigation of three types 
of factor whose influences may contribute to the DE gap: probability information 
(which may differ according to whether experienced risks display sampling bias); 
ambiguity sensitive preferences; and cognitive factors (responses to likelihood rep-
resentation and memory constraints). We implemented an experiment designed to 
isolate the separate impacts of these factors; and measured their effects using two 
different approaches - a model-free one and a parametric one based on the Rank 
Dependent Expected Utility (RDU) model - allowing us to map our results to those 
reported in different branches of the extant literature.
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Reassuringly, our model-free analysis finds an average DE gap very similar in 
size and direction to the average across studies reported in a recent meta-analysis 
(Wulff et al., 2018). While each causal factor that we isolate contributes positively 
to the DE gap, the only one whose effect is statistically significant when consid-
ered in isolation is sampling bias due to under-representation of rare events. If 
this were the full explanation for the DE gap, its implications for core risk prefer-
ence models would be limited: though the gap would have important implications 
for how to apply them in settings where sampling bias might arise, those models 
would not require revision, at the theoretical level, in order to accommodate it. 
From some perspectives, this might seem a convenient conclusion. Yet, we can-
not endorse it unreservedly because, though preference and cognitive factors left 
only faint traces in our data, when considered in isolation, we still detected effects 
when multiple factors could operate in tandem, especially when memory limi-
tations were potentially at play. While these effects are modest in our data, they 
were detectable and it would be naive to assume they would always be negligible 
across all contexts of interest, especially given the totality of other evidence con-
sidered in Sect. 2.

Using the RDU approach, we established that the DE gap operates mainly via its  
impact on probability-weighting functions, rather than on utility curvature. Though 
we found variation in probability-weighting functions across our treatments, we 
also found that, in all those conditions that control for sampling bias, probability- 
weighting was inverse S-shaped. This is consistent with over-weighting of rare 
events in both Description and Experience conditions. More specifically, our 
analysis of probability-weighting is consistent with the “relative underweighting 
hypothesis” (Kopsacheilis, 2018) whereby rare events are over-weighted in Expe-
rience, but less so than in Description. In contrast with interpretations of the DE 
gap common in the earlier literature, it strengthens the accumulating recent evi-
dence that overweighting of rare events generalises beyond the domain of described 
risks, even in the presence of a DE Gap (Glöckner et al., 2016; Kopsacheilis, 2018; 
Aydogan & Gao, 2020).

The finding of consistently inverse-S shaped weighting in the absence of sampling  
bias coheres with the interpretation that overweighting of rare events is a robust 
feature of preferences which sampling bias -in the form of under-representation 
of rare events and possibly reinforced by memory limitations - has some tendency 
to offset. In principle, this means that the probability-weighting curve result-
ing from a small sample could become indistinguishable from the diagonal in  
the vicinity of rare events (as in our E-Under treatment). While this might tempt 
speculation that overweighting (as captured by several non-expected utility mod-
els such as Prospect Theory) originates as an evolved response to the problem of 
under-sampling (or recalling) rare events, caution is required as our evidence is 
only supportive of the two biases cancelling out under quite particular circum-
stances and so does not license any general cancelling-out claim.

The sensitivity of revealed risk preference to whether information about uncer-
tainty is obtained from descriptions or experience has intriguing implications. For 
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example, outside the laboratory, the potentially available information often com-
bines elements from both types of source; and the mix of the two types is not always 
fixed. The latter point opens the way for manipulation of behaviour, for good or ill, 
by firms, organisations or policy-makers hoping to “nudge” citizens, by influencing 
the form of information they have. People also make choices for themselves that 
influence the mix of description and experience they will be exposed to, with conse-
quences they may or may not foresee.

Appendix

Instructions

Instructions were handed to participants in printed form and were read out loud by 
the experimenter prior to the start of the experiment. Before the start of the exper-
iment and after the instructions had been read out loud, subjects played one trial 
round.

Instructions for Description

In this study you are asked to make choices that involve lotteries. For each choice, 
just pick the option you prefer as there are no “right” or “wrong” answers. Overall 
you are going to consider a total of 19 lotteries which are described by virtual decks 
of cards. Each deck contains exactly two types of cards represented by two different 
colours. Each deck has its own mix of these two types of cards.

The information about the relative frequency and the monetary value of each 
type of card will be provided to you (in the form of percentages) prior to making a 
choice. This information is seen on the bottom of the screen.

The first 7 lotteries are all associated with the same deck of cards. This guar-
antees that the relative frequency of each colour is the same for Lotteries 1 to 7. 
Notice however that the rewards associated with each outcome will differ from one 
lottery to another.

Later in the experiment, you may have the opportunity to “play” a lottery. That 
would mean drawing once more from a deck you have sampled and receiving the 
sum of money assigned to the colour of the drawn card.

Your task is to choose each time between playing the Lottery and receiving the 
Certain Outcome. Each Lottery entails 5 such choices between the Lottery (Option 
A) which remains constant across these 5 Choice-Rounds and a Certain Outcome 
(Option B) that will be changing from each choice to the next.

Payoff Stage  At the end of the experiment one choice is going to be randomly selected 
to be played out for real. All choices are equally likely to be drawn so each choice you 
make has equal chances of affecting your final payment. There are two cases:
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Case 1: If in the randomly selected choice you chose Option B (the Certain 
Outcome) then the monetary value of this choice is going to be added directly 
to your final payment.

Case 2: If in the randomly selected choice you chose Option A (the Lot-
tery) then the deck of cards corresponding to that choice will reappear on the 
screen. You will then be asked to draw one card from it. Then the monetary 
value assigned to the colour of the card you just drew will be added to your 
final payment.

Instructions for the E‑Unamb version of Experience

In this study you are asked to make choices that involve lotteries. For each choice, 
just pick the option you prefer as there are no “right” or “wrong” answers. Overall 
you are going to consider a total of 19 lotteries which are described by virtual decks 
of cards. Each deck contains exactly two types of cards, represented by two different 
colours. Each deck has its own mix of these two types of cards.

For every lottery you go through two stages: 

Stage 1: the “Sampling Stage” 

Stage 2: the “Choice Stage” 

Exception: The first 7 Lotteries all share the same “Sampling Stage” because 
they relate to the same deck. This means that you will only sample once for the first 
seven lotteries. Each of the lotteries 8 - 24 has its own Sampling Stage (because it 
relates to its own deck).

Stage 1: “Sampling Stage”  In each Sampling Stage you go through a particular com-
puterized deck and explore one by one all of their cards. The information about the 
relative frequency of each type of card is unknown to you prior to the start of the 
sampling process. However by the end of the process, this information will be com-
pletely revealed to you as you will have seen every card in the deck exactly once.25 
As mentioned earlier, the first 7 lotteries relate to the same deck. This guarantees 
that the relative frequency of each colour is the same for Lotteries 1 to 7. We rec-
ommend that you pay attention during this sampling process as this information is 
relevant for your decisions later on and hence your final payment.

25  The italicised text was present on in E-Unamb and E-NR, where there was no ambiguity regarding 
the representativeness of the sampled cards. In E-Amb and E-Res this message was replaced by the fol-
lowing: “However by the end of this process you will have discovered something more about this mix 
because you will have seen a selection of draws from that deck”. All references to seeing or exploring 
“all” cards were replaced appropriately in E-Amb and E-Res.
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Every time you click on the “Draw” button you will observe a new card from 
the deck. Once you observe its colour click on “Proceed with the next card” for the 
“Draw” button to reappear. You will repeat this process until you go exactly once 
through all the cards in each deck. Once you have done so, a message will appear 
on the screen verifying that you have seen all the cards in this deck and a button that 
reads: “Go to the Choice Stage” will become accessible at the bottom of the screen. 
Once you click on that button you will move on to the “Choice Stage”.

Stage 2: "Choice Stage"  At this stage a monetary value is assigned to the colour of 
each card. This information is seen on the bottom of the screen. Later in the experi-
ment, you may have the opportunity to “play” a lottery. That would mean drawing 
once more from a deck you have sampled and receiving the sum of money assigned 
to the colour of the drawn card.

On the top of the screen you will observe a “History Table” where you can track 
your sampling history from each lottery’s “Sampling Stage.” As mentioned earlier, 
the first 7 lotteries are all associated with the same deck of cards and hence share 
the same “History Table.”26Notice however that although the relative frequency of 
each colour of card is the same for lotteries 1 to 7, the rewards associated with each 
outcome will differ from one lottery to another.

Your task in this stage is to choose each time between playing the Lottery and 
receiving the Certain Outcome. Each Lottery entails 5 such choices between the 
Lottery (Option A) which remains constant across these 5 Choice-Rounds and a 
Certain Outcome (Option B) that will be changing from each choice to the next.

Payoff Stage  At the end of the experiment one choice is going to be randomly selected 
to be played out for real. All choices are equally likely to be drawn so each choice you 
make has equal chances of affecting your final payment. There are two cases:

Case 1: If in the randomly selected choice you chose Option B (the Certain 
Outcome) then the monetary value of this choice is going to be added directly 
to your final payment.

Case 2: If in the randomly selected choice you chose Option A (the Lottery) then 
the deck of cards corresponding to that choice will reappear on the screen. You 
will then be asked to draw one card from it. Then the monetary value assigned to 
the colour of the card you just drew will be added to your final payment.

26  References to this “History Table” did not feature in E-NR where there was no such visual aid.
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Bisection method

The following illustrative choices demonstrate an example of the bisection process 
for the lottery: (16, 0.1; 0). Illustrative choices are represented in bold. The elicited 
CE for the process of this example will be the mid-point between 0.7 (the last cer-
tain outcome preferred over the lottery) and 0.6 (the last certain outcome that the 
lottery was preferred over). This yields a CE equal to 0.65.

Sampling bias

Table 5   Illustration of the 
bisection method for (16, 0.1;0)

Iterations CE elicitation questions

1 (16, 0.1;0) vs. 1.6
2 (16, 0.1;0) vs. 0.8
3 (16, 0.1;0) vs. 0.4
4 (16, 0.1;0) vs. 0.6
5 (16, 0.1;0) vs. 0.7

Table 6   Objective and 
experienced probabilities in 
E-Res

“p”: Objective probability. “ fp ”: mean-experienced probability. “se”: 
standard error of fp

p fp se

0.025 0.028 0.005
0.050 0.038 0.006
0.100 0.105 0.008
0.250 0.238 0.012
0.500 0.487 0.012
0.750 0.754 0.012
0.900 0.882 0.010
0.950 0.942 0.007
0.975 0.969 0.005
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Utility curvature

Fig. 5   Utility curves

Table 7   p-values from bilateral, MW tests for differences in utility curvature between Description and 
Experience treatments

Desc vs Desc vs Desc vs Desc vs Desc vs Desc vs Desc vs
E-Unamb E-NR E-Amb E-Res E-Over E-Under E-All

0.996 0.811 0.887 0.277 0.277 0.275 0.827

Table 8   p-values from bilateral, MW tests for differences in utility curvature between treatments that iso-
late effects

Lik. Repr. Memory Ambiguity Samp. Bias  SB-Over SB-Under
Desc vs E-Unamb vs E-Unamb vs E-Amb vs E-Amb vs E-Amb vs

E-Unamb E-NR E-Amb E-Res E-Over E-Under

0.996 0.852 0.950 0.250 0.250 0.249
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An alternative model‑free measure to %Overweighting

We provide here a supplementary analysis related to Result 2, based on an alter-
native, model-free index to %Overweighting, namely, the “Overweighting_Risk-
Premium” index. It is constructed as the difference between the elicited certainty 
equivalent and the expected value of the lottery when the rare event is desirable 
( CE − EV  ; positive risk premium) and the difference between the expected value of 
the lottery and the certainty equivalent when the rare event is undesirable ( EV − CE ; 
negative risk premium). Like the %Overweighting index, the Overweighting_Risk-
Premium index can be interpreted as a measure of overweighting of the rare event. 
While this alternative index retains the attraction of being model-free (by using only 
raw data and a property of the gamble), it differs from %Overweighting in using 
using choices from all iterations of the bisection method instead of only the first one.

Although our use of %Overweighting in the main text enabled Result 1 to link to 
model-free analyses in previous literature, the alternative measure considered here 
permits an important robustness check for Result 2. As Table 9 demonstrates, using 
this alternative measure leaves unchanged the conclusion that the only statistically 
significant driver of the DE gap in our data, is sampling bias, in the form of under-
representation of rare events.
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Table 9   Tests for effects based 
on treatment differences in 
Overweighting_RiskPremium 
scores

Reported p-values from 2-tailed, Mann-Whitney (MW) U tests on 
Overweighting_RiskPremium scores across treatments. See lower 
panel of Fig.  1 for the treatment comparisons which are used to 
measure each effect
*p-value 0.1; **p-value 0.05; ***p-value 0.01

Effects Difference in Overweighting_ 
RiskPremium

p - value

Likelihood representation 0.46 0.382
Memory 0.41 0.396
Ambiguity 0.57 0.236
Sampling Bias 0.93** 0.049
       Overrepresentation 0.05 0.830
       Underrepresentation 2.26*** 0.000

https://osf.io/frsa9/
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