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Abstract9

This paper presents a bottom boundary layer model for the unsteady and10

non-uniform flow in the swash zone, by extending the momentum integral11

method so as to include spatial gradients. The developed model is further12

incorporated into a hydrodynamic model based on the Nonlinear Shallow Wa-13

ter Equations. Two swash zone cases are examined to investigate the effect14

of the inclusion of spatial gradients. In the first of the two, boundary layer15

development under non-breaking periodic waves formulated by Carrier and16

Greenspan (1958) is investigated (wave-driven swash). Results show that the17

spatial gradients have the most pronounced effect in the lower swash, and in18

the region just seaward. In both these regions the spatial gradients enhance19

(diminish) onshore (offshore) bed shear stress, thus potentially contribut-20

ing to onshore sediment transport under non-breaking waves. The second21

case investigated is the Kikkert et al. (2012) dam-break swash event (bore-22

driven swash). The model results are qualitatively and quantitatively accu-23

rate when compared against the laboratory measurements, and the velocities24

in the later backwash agree more closely with the measurements than those25

of Briganti et al. (2011). Results show that the inclusion of spatial gradients26

also favours onshore sediment transport in the lower swash. In addition, the27

bottom boundary layer is more fully developed in the uprush tip, resulting28

in smaller bed shear stress in the upper swash. The extended momentum29

integral method thus appears to capture more comprehensively the swash30

boundary layer, and the approach, therefore, offers a way forward in more31
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accurate reproduction of swash dynamics in computational modelling.32

Keywords: swash, spatial gradients, bottom boundary layer, bed shear33

stress34

1. Introduction35

The swash zone is a very dynamic region of the beach, defined as that part36

of the beach that is alternately subaerial and subaqueous, where waves run37

up (shorewards: uprush) and back down (seawards: backwash) the beach-38

face. Consequently the flow is highly unsteady, and there is also considerable39

sediment transport both as bed and suspended load. The beachface response40

in this region plays an important role in the sediment exchange between land41

and sea, markedly affecting the nearshore morphological evolution.42

Despite this complexity, the Nonlinear Shallow Water Equations (NSWEs)43

have proved successful at reproducing many swash and related flows (e.g.44

Kobayashi and Wurjanto, 1989; Dodd, 1998; Bellotti and Brocchini, 2005).45

In these studies, the effect of the boundary layer is typically represented by a46

constant Chezy friction factor, which is usually pre-determined, and related47

to bed material.48

However, the boundary layer, and, in turn, the bed shear stress, are af-49

fected by accelerations and pressure gradients within the swash flow (Puleo50

et al., 2003). Some studies have accounted for these and other effects of51

complexity in swash flows by resolving the water column (Puleo et al., 2007;52

Torres-Freyermuth et al., 2013; Briganti et al., 2016; Baldock and Torres-53

Freyermuth, 2020), but models with this capability are computationally ex-54

pensive to solve for engineering purposes.55

An alternative approach is to improve the description of the bottom56

boundary layer (BBL), within which most depth variation occurs, whilst57

retaining the simplicity of the description of the free flow region. Barnes and58

Baldock (2010) developed a Lagrangian model for the boundary layer devel-59

opment within the swash zone, which is based on the momentum integral60

approach for steady, flat plate boundary layers and, in addition, it accounts61

for the unsteadiness of flow and flow history. Briganti et al. (2011) coupled62

a boundary layer model based on the momentum integral method (Fredsøe63

and Deigaard, 1993) to the NSWEs, in which the vertical distribution of hor-64

izontal velocity was assumed to follow the logarithmic profile. However, the65

effects due to spatial gradients in velocity and boundary layer thickness were66
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not considered in either study.67

The assumption of logarithmic profile of the horizontal velocities in the68

boundary layer is well supported by experimental studies. O’Donoghue et al.69

(2010) estimated the bed shear stress in the uprush based on logarithmic pro-70

file fitting to the measured velocities from particle image velocimetry (PIV)71

system, and the results show the estimates agree reasonably well with the cor-72

responding direct shear plate measurements reported by Barnes et al. (2009).73

Ruju et al. (2016) analysed the near bed horizontal velocities measured by74

high-resolution Acoustic Doppler Velocity Profilers in laboratory swash flow,75

and the results show that the horizontal velocities in the boundary layer76

follow the log law in most swash cycles.77

In this work, the BBL model developed by Briganti et al. (2011), which78

starts from the Fredsøe and Deigaard (1993) model, is extended to include79

velocity and boundary layer thickness gradients, which in principle would de-80

scribe more completely the behaviour of the boundary layer in non-uniform81

flow on impermeable beaches without discontinuous bottom geometry. The82

effects of spatial gradients on the boundary layer development are here in-83

vestigated under two different swash events. The first one is the swash event84

driven by the well known non-breaking periodic waves formulated by Car-85

rier and Greenspan (1958), which allows us to compare the numerical results86

against the exact solution, and also illustrate the periodic boundary layer87

development. The second case investigated is the Kikkert et al. (2012) dam-88

break generated swash event on a fixed impermeable bed, which provides89

detailed measurements of bed shear stress and near bed velocities.90

This paper is organised as follows: after this Introduction, in § 2, we91

present the model development. We then simulate the non-breaking periodic92

waves formulated by Carrier and Greenspan (1958) in § 3. The dam-break93

event examined by Kikkert et al. (2012) in laboratory is investigated in § 4.94

In § 5, we draw our conclusions.95
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2. Model development96

2.1. Hydrodynamic model97

The Nonlinear Shallow Water Equations including bed shear stress are98

utilised to describe the flow. Therefore, the governing equations are:99

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
+ g

∂B

∂x
= − τb

ρh
, (2)

where x (m) represents cross-shore distance, t (s) is time, h (m) represents100

water depth, u (ms−1) is a depth-averaged horizontal velocity, ρ (kgm−3) is101

water density, τb (kgm−1s−2 or Nm−2) is shear stress at the bed, B = B(x)102

(m) is the bed level (here considered as a function of x), and g (ms−2) is103

gravity acceleration.104

In Fig. 1, we illustrate the general swash geometry that is considered and105

the main variables utilised. η = h+B (m) represents the free surface position106

from the reference level z′ = 0.

z′

0 x

B

h

η

δ U

U0

u

Figure 1: Schematic diagram for a general swash.

107
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2.2. Bottom boundary layer model108

The bottom boundary layer is modelled and solved using the momentum109

integral approach to calculate τb in Eq. (2) (Fredsøe and Deigaard, 1993;110

Briganti et al., 2011).111

Inside the boundary layer the horizontal velocity increases from 0 at the112

bed (due to the no slip condition) to the free stream velocity U0 at the113

upper limit of the boundary layer. Therefore, shear stress exists inside the114

boundary layer because of the relative motion of flow in the vertical direction.115

However, outside the boundary layer, the flow all moves at the free stream116

velocity U0 with no relative motion in the vertical direction, and therefore117

no shear stress.118

Hence, the momentum equation for the flow outside the boundary layer119

is120

∂U0

∂t
+ U0

∂U0

∂x
= −g∂h

∂x
− g∂B

∂x
. (3)

While the momentum equation for the flow inside the boundary layer is:121

∂U

∂t
+ U

∂U

∂x
= −g∂h

∂x
− g∂B

∂x
+

1

ρ

∂τ

∂z
(4)

where z (m) is the vertical distance from the bed (z = z′−B), τ = τ(x, z, t)122

is shear stress at location (x,z) at time t. U (ms−1) is the horizontal velocity123

inside the boundary layer, which is approximated using the logarithmic law124

U(x, z, t) =
Uf
κ

ln

(
z

z0

)
, (5)

where κ = 0.4 is the von Karman’s constant, and Uf (ms−1) is the friction125

velocity,126

Uf = Uf (x, t) =
U0

|U0|
√
| τb | /ρ. (6)

z0 (m) is the vertical distance from the bed at which the velocity is assumed127

to be 0, and here z0 = Kn/30 with Kn (m) being the bed roughness.128

At the upper limit of the boundary layer, i.e., z = z0 + δ with δ the129

boundary layer thickness, the velocity equals the free stream velocity. Thus,130

U(x, z = z0 + δ, t) = U0 =
Uf
κ

ln

(
z0 + δ

z0

)
=
Uf
κ
Z (7)
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where Z = ln
(
δ+z0
z0

)
. Note that U0 = U0(h, u, Z(δ)), and the derivation is131

shown in Appendix A, which itself stems from assuming Eq. (5). Note that132

the expression of the free stream velocity U0 (Eq. (A.8)) for the case of δ > h133

is slightly different from that in Briganti et al. (2011) because of different134

integration bounds used to obtain depth-averaged velocity u.135

In the case of uniform flow, ∂U0

∂x
= 0 and ∂U

∂x
= 0, and Eqs. (3) and (4) re-136

duce to the equations used by Fredsøe and Deigaard (1993) and Briganti et al.137

(2011), who examined the boundary layer development under non-uniform138

flows but assuming that ∂U0

∂x
= 0 and ∂U

∂x
= 0. See Fredsøe and Deigaard139

(1993) and Briganti et al. (2011) for further details on the calculation of τb140

from the simplified equations.141

In this work the spatial gradients in U0 and U are taken into consideration142

for flows of non-uniform velocities, so subtracting Eq. (3) from Eq. (4) gives143

∂

∂t
(U0 − U) +

∂

∂x

(
1

2
U2
0 −

1

2
U2

)
= −1

ρ

∂τ

∂z
. (8)

Integrating Eq. (8) across the boundary layer [z0, z0 + δ] gives144

τb
ρ

=

∫ z0+δ

z0

∂

∂t
(U0 − U)dz +

∫ z0+δ

z0

∂

∂x

(
1

2
U2
0 −

1

2
U2

)
dz

�
,. (9)

The second term on the right hand side is the extra term compared to the145

uniform flow case, and it accounts for the effect of the spatial gradient on146

the bed shear stress.147

Using Eq. (7) and the definition of Uf by Eq. (6) we then arrive at a148

differential equation for Z from Eq. (9),149

∂Z

∂t
+

U0

f2Z
(f1 + f2(Z − 1))

∂Z

∂x
=

κ2

z0f2
|U0|−

f1Z

f2U0

∂U0

∂t
− (f2 + f1(Z − 1))

f2

∂U0

∂x
,(10)

where f1 = eZ −Z− 1 and f2 = ZeZ − eZ + 1. Note that f1, f2, f2 + f1(Z−150

1), f1 + f2(Z − 1) ≥ 0. The equal signs hold true only when Z = 0, i.e.,151

when BBL thickness δ = 0.152

Eq. (10) can be rewritten as:153

dZ

dt
=

κ2

z0f2
|U0|−

f1Z

f2U0

dU0

dt
, (11)

where
dx

dt
=

U0

f1Z
(f2 + f1(Z − 1)) for

dU0

dt
dx

dt
=

U0

f2Z
(f1 + f2(Z − 1)) for

dZ

dt
.
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If the spatial gradients of U0 and Z are neglected, the characteristic speeds154

dx
dt

= 0 for both dU0

dt
and dZ

dt
, therefore we recover partial time derivatives in155

Eq. (11), which describe variation in time at one location, as used by Briganti156

et al. (2011). Eq. (11) is solved for Z, which then gives τb via Eqs. (6) and (7).157

The calculation of bed shear stress at the tip (wet-dry boundary) is detailed158

in Appendix B. Note that the bed shear stress τb → ∞ for the boundary159

layer thickness δ → 0, which gives an unbounded friction coefficient cd = |τb|
ρu2

.160

Therefore, we limit the bed shear stress in these circumstances: the maximum161

friction coefficient of cd = 0.0597 is imposed. The value of cd = 0.0597 comes162

from Appendix B.163

In Eq. (11) it can be seen that Z is advected at a speed related to, but164

different from, U0, which can be thought of as being due to the slower flow165

within the boundary layer. Note that dx/dt→ 2U0/3 as Z → 0, so advection166

occurs immediately, and that dx/dt increases for increasing boundary layer167

thickness such that dx/dt→ U0 as Z →∞. Thus a boundary layer can grow168

(decay) at one location if a more (less) developed boundary layer is advected169

by the flow into this location. This extra term is the second on the LHS of170

Eq. (10).171

Inclusion of the spatial terms also allows the boundary layer to evolve due172

to spatial gradients in U0. This can be interpreted as advective acceleration of173

the free flow, which is now present in addition to the local acceleration. This174

extra term is the last on the RHS of Eq. (10); note, however, that this speed175

also depends on the boundary layer thickness through Z. Onshore (offshore)176

flow acceleration of the uprush (backwash) thins the boundary layer, with177

the corresponding deceleration thickening it.178

Finally, the boundary layer can also grow locally due to steady current;179

the first term on the RHS of Eq. (10) is always > 0 in both uprush and180

backwash, and so it always promotes growth.181

2.3. Analysis of boundary layer development182

2.3.1. Flow inundation (U0 6= 0 and Z = 0)183

When a dry bed is first inundated, we have Z = 0 and U0 6= 0. Eq. (10)184

shows that when Z → 0, ∂Z
∂t
→ −2

3
U0

∂Z
∂x

+ κ2

z0f2
|U0|→ +∞. This implies that185

Z immediately attains a finite value at inundation (at which the growth rate186

becomes finite). Therefore, at the initial time, Z is set to a small value to187

avoid singularity problems. Tests of different initial Z values show conver-188

gence, and are not included here. The asymptotic approximation for Z at189

inundation (see Appendix C) can provide an initial approximation.190
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2.3.2. Flow reversal (U0 = 0)191

At flow reversal, U = 0 and U0 = 0 are assumed in the present BBL192

model. When U0 → 0, Eq. (10) can be simplified into193

∂Z

∂t
∼ − Zf1

U0f2

∂U0

∂t
− f2 + f1(Z − 1)

f2

∂U0

∂x
. (12)

When flow changes from onshore to offshore, ∂U0

∂t
< 0. Just before rever-194

sal, U → 0+, and ∂Z
∂t
→ +∞. This implies that before flow reversal from195

onshore to offshore directed, Z increases rapidly, thus the boundary layer196

thickness grows to occupy the whole water column and becomes depth lim-197

ited. After flow reversal, i.e., U → 0−, ∂Z
∂t
→ −∞, Z, thus the boundary198

layer thickness, δ, rapidly decreases to 0. Therefore, when flow changes from199

onshore to offshore directed, we set δ = 0.200

Similarly, when flow direction changes from offshore to onshore, the bound-201

ary layer grows to the full water column before reversal, and δ is set to 0202

after reversal.203

2.4. Shock conditions204

Shocks frequently develop in the swash flow, i.e., the flow variables have205

jump discontinuity. The partial differential governing equations (1) and (2)206

cannot be applied at discontinuous flow, and so shock conditions are required.207

Applying the mass and momentum conservation across a shock, i.e., a bore,208

gives the Rankine-Hugoniot conditions:209

−W (hR − hL) + (hRuR − hLuL) = 0, (13)

−W (hRuR − hLuL) +

(
hRu

2
R +

1

2
gh2R − hLu2L −

1

2
gh2L

)
+

1

2
g(hR + hL)(BR −BL) = 0, (14)

where the subscripts L and R represent the left and right sides of the bore,210

W is the shock velocity, and to get Eq. (14), the Needham and Hey (1991)211

approximation, i.e.,
∫ BR

BL
hdB = 1

2
(hL +hR)(BR−BL), is applied. The shock212

condition for δ is derived in Appendix D.213

2.5. Numerical scheme214

The flow chart in Fig. 2 illustrates the numerical scheme for solving depth-215

averaged flow and flow in the bottom boundary layer. Eqs. (1) and (2), with216
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h, u, and τb from the previous time step are solved by the Specified Time217

Interval Method of characteristics (STI MOC) to get h and u at the new time218

step (Zhu and Dodd, 2015). At shocks, the conditions Eqs. (13) and (14)219

together with the Riemann equations derived from Eqs. (1) and (2) are solved220

to obtain hL, uL, hR, uR and W . Note that the shock condition Eq. (D.4)221

for δ is not solved simultaneously because the boundary layer is solved after222

the depth-averaged flow as shown in Fig. 2.223

Figure 2: Flow chart of the numerical algorithm during a single time step. The superscripts
j − 1 and j indicate the time step.

Water depth h and depth-averaged velocity u at the new time step, and δ224

from the previous time step, are used to calculate the first approximate value225

of free stream velocity U0 at the new time step (Appendix A), which is then226

updated with the newly calculated δ at the new time step. With Z and U0 at227

the old time step and U0 at the new time step, Eq. (11) is solved to update Z228

using the characteristic method, and τb is calculated for the new time step,229

thus completing the cycle. At shocks, the boundary layer thickness δ at the230

downstream side cannot be calculated because the characteristic lines cross231

over the shock. Thus, the shock condition Eq. (D.4) is used to calculate δ on232

the downstream side.233

It should be noted that for uniform flows, or if spatial gradients in u and234

Z are ignored, the equations in the present work reduce to those in Briganti235

et al. (2011). However, the numerical methods for the hydrodynamic model236

and boundary layer model in this work are different from those in Briganti237
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et al. (2011). Therefore, the numerical results without spatial gradients ob-238

tained in this work are not necessarily identical to those in Briganti et al.239

(2011).240

3. Carrier and Greenspan (1958) periodic waves simulation241

The non-breaking periodic waves formulated by Carrier and Greenspan242

(1958) are simulated to investigate the development of a boundary layer243

under periodic waves in the swash.244

In the numerical simulation, the computational grid size is ∆x = 0.01 m,245

and the time interval is ∆t = 6.39×10−4 s for numerical implementation. In246

the boundary layer simulation, z0 = 1× 10−4 m is employed for the vertical247

distance at which the velocity is assumed to be 0.248

3.1. Formulation and exact solution249

We follow Mungkasi and Roberts (2012) to obtain the exact solution.250

The nondimensionalization in Mungkasi and Roberts (2012) is used and the251

dimensionless variables are indicated by the subscript ∗.252

The velocity potential of the periodic waves is253

φ(χ∗, λ∗) = A∗J0(ω∗χ∗) cos(ω∗λ∗), (15)

where A∗ is dimensionless wave amplitude, χ∗ and λ∗ are two dimensionless254

hodograph variables, a space-like and a time-like coordinate, respectively, J0255

is the zeroth order Bessel function of the first kind. ω∗ is wave frequency,256

ω∗ =
π

T∗
, (16)

where T∗ is the wave period.257

Here we take A∗ = 0.8, beach slope tanα = 0.1, dimensional wave period258

T = 10 s, and x = 0 m as the seaward boundary for the periodic wave. The259

dimensionless exact solutions are then converted to the dimensional values.260

The exact solutions (Mungkasi and Roberts, 2012; Carrier and Greenspan,261

1958) are used as the initial and seaward boundary conditions for the sim-262

ulation. A verification at the shoreline against the Mungkasi and Roberts263

(2012) solution is shown in Appendix E. In the simulations the region 8 m /264

x / 12 m comprises the swash zone. 0 ≤ t ≤ 1
2
T belongs to backwash, and265

1
2
T ≤ t ≤ T belongs to uprush.266

Finally, here the hydrodynamics are assumed not to be affected by bed267

shear stress so that the Mungkasi and Roberts (2012) solution is maintained;268

the boundary layer development is the focus here.269
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3.2. Boundary layer development270

3.2.1. Spatial variation271

Snapshots of η, u, δ, |τb|, and τb,wo/τb,w (ratio of bed shear stress without272

(τb,wo) and with (τb,w) spatial gradients) over one period are shown in Fig. 3.273

The symmetry in the Carrier-Greenspan solution in uprush and backwash274

can be seen in Fig. 3(a) and (b): η(x, T
2
− ε) = η(x, T

2
+ ε), and u(x, T

2
− ε) =275

−u(x, T
2

+ ε) for 0 ≤ ε ≤ T
2
. Fig. 3(b) shows that the velocity gradient is276

positive in the uprush, and negative in the backwash.277

0 2 4 6 8 10 12

0.8

0.9
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1.1

1.2

(a)

0 2 4 6 8 10 12

-0.1

-0.05

0
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0.1
(b)

0 2 4 6 8 10 12
0
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0.1

0.15

0.2

0.25
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(c)

0 2 4 6 8 10 12
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0.3

0.4 (d)

0 2 4 6 8 10 12

0.85

0.9

0.95

1

1.05

1.1

1.15

(e)

Figure 3: The snapshots of (a): B and η, (b): u, (c): δ and h, (d): |τb|, and (e): τb,wo/τb,w,
during periodic waves propagating towards the shore. In (c), solid line: boundary layer
thickness without spatial gradients; dashed line: boundary layer thickness with spatial
gradients; dotted line: water depth. In (d): solid line: without spatial gradients; dashed
line: with spatial gradients.

Because the vertical velocity structure in Eq. (7) is always assumed for278

flow in the boundary layer, this implies that any difference between τb (Fig. 3(d))279

in uprush and backwash must be due to differences in δ (Fig. 3(c)). If we280

focus first on δ without spatial gradients (solid lines in Fig. 3(c)), clear dif-281

ferences between δ in uprush and backwash can be seen, both in the swash282
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(x ≥ 8 m) and further seaward. There is more spatial variation in δ in uprush283

than in backwash, and δ is overall thicker in the uprush.284

Boundary layer thickness δ in the late uprush (t = 3/4T and 7/8T ) is285

larger than values at the same locations in the early backwash (t = 1/4T and286

1/8T ), where the depth is the same, because of the different flow histories287

(decelerating from a finite value in the late uprush, and accelerating offshore288

from zero in the early backwash). For similar reasons the boundary layer289

is more developed in late backwash (t = 3/8T ) than in the early uprush290

(t = 5/8T ).291

Fig. 3(c) shows that the boundary layer thickness increases in the onshore292

direction, in both uprush and backwash, although much more so in the up-293

rush, until becoming depth limited at the tip. This is because u increases294

in magnitude toward the shore
(
∂Z
∂t
∼ κ2

z0f2
|U0|

)
, and local flow acceleration295

effects play a large role too, yielding a much more spatially uniform boundary296

layer in the backwash.297

The inclusion of the spatial gradients yields a significantly more spatially298

uniform δ in the uprush, with a smaller opposite effect in the backwash.299

These effects are consistent with the mostly positive (negative) gradient in u300

and therefore U0 in the uprush (backwash) through the final term in Eq. (10).301

The large spatial gradients in δ in the uprush obtained without spatial gra-302

dients (solid lines of Fig. 3(c)) also act to advect the thinner boundary layer303

shoreward when spatial gradients are included.304

Fig. 3(d) shows the corresponding |τb| values. The bed shear stress in-305

creases in magnitude rapidly toward the tip of the swash, where the velocities306

are large and water depths are small. Fig. 3(e) illustrates the ratio of the bed307

shear stress in the simulation without spatial gradients to that with spatial308

gradients. In the backwash, the bed shear stresses without spatial gradients309

are larger than those with spatial gradients, while the opposite trend is ob-310

served in the uprush. The differences are particularly exaggerated at the311

base of the swash, where the spatial gradients in the early to mid uprush312

provide an additional onshore-directed bed shear stress.313

3.3. Temporal variation314

The time series of h, u, δ and τb at the seaward extent of the swash x = 8 m315

is shown in Fig. 4. We can see that the boundary layer varies periodically,316

and is different in the uprush and backwash. At the start of the backwash317

we see δ grow after flow reversal. This growth is eventually curtailed by the318
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Figure 4: The time series of h, u, δ and τb at the seaward extent of swash x = 8 m during
periodic waves propagating towards the shore.

water depth. At the subsequent flow reversal the boundary layer develops319

again from zero, and so grows again in the uprush, more quickly, because of320

the rapid increase in u. There is an abrupt change in the boundary layer321

thickness at flow reversal. However, the 0 velocity at flow reversal results in322

continuous bed shear stress.323

The boundary layer is noticeably thicker in the uprush than in the back-324

wash. This is because in the uprush the flow accelerates more rapidly after325

reversal than in the backwash (see Fig. 4(b)) to a larger velocity, which results326

in faster boundary layer development.327

In Fig. 4(a) we can also see the difference between δ predicted by equations328

with and without spatial gradients. In the backwash the inclusion of the329

spatial gradients causes the boundary layer to grow faster than it would330

otherwise, because of the negative spatial velocity gradient, and also because331

of the positive spatial gradient in δ and seaward advection of boundary layer.332

The difference in δ becomes most noticeable in the late backwash. In contrast,333

in the uprush the inclusion of spatial gradients retards the growth in δ,334
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because now the thinner boundary further seaward is advected into the swash335

and also because the positive velocity gradient retards the development of336

the boundary layer.337

Fig. 4(b) shows the corresponding τb. The peak in τb in the backwash338

occurs toward its end, because U0 increases slowly from zero. Thus the339

local acceleration controls the very early development of δ (see Appendix340

C) and τb only develops gradually as U0 increases. In contrast, the rapidly341

increasing velocity at the start of the uprush at x =8 m yields a more rapid342

development in δ, but τb develops quicker still, because of the simultaneous343

very thin boundary layer (τb ∝ U2
0Z
−2, Eq. (7)). Note also the asymmetry344

in the peaks in τb (compared to the symmetry in u–red lines in Fig. 4(a)) in345

uprush and backwash without the inclusion of spatial gradient effects (blue346

lines in Fig. 4(b)). Again, this is due to the different flow histories in uprush347

and backwash, and was also found from measurements (Barnes et al., 2009).348

Therefore, we observe an enhanced onshore bed shear stress at the base of349

the swash, and therefore expect potentially slightly more onshore sediment350

transport especially of larger sediment diameters.351

This asymmetry between τb in uprush and backwash is enhanced with352

the inclusion of spatial gradients, consistent with Fig. 3(e). In the uprush,353

as noted earlier, gradients in both U0 and Z favour a thinner boundary354

layer, therefore further enhancing the increased τb in that phase of the swash.355

In contrast, in the backwash the difference in δ only becomes noticeable356

gradually because the flow starts from rest, and only in the late backwash357

does this lead to a diminution in offshore directed τb.358

The time series further offshore (Fig. 5) display similar features, but with359

the differences between results with and without spatial gradients (as well360

as differences between uprush and backwash) being less pronounced. This is361

because the free flow is more sinusoidal. Nonetheless, there is a similar shift362

favouring increased onshore over offshore bed shear stresses.363

Finally, further onshore (Fig. 6) we see that in the uprush there is an364

instantaneous increase to maximum velocity as x = 10 m is wetted. The365

identical velocity maximum occurs at the end of the backwash. Spatial366

boundary layer gradient effects are very minor. τb increases instantaneously367

(τb ∼ (t − t0)
−2/3, where t0 is time of inundation (see Appendix C and368

Eq. (7))).369

14



0 0.5 1 1.5 2 2.5 3 3.5
-0.1

0

0.1

0.2

0.3

0.4

0.5 (a)

0 0.5 1 1.5 2 2.5 3 3.5
-0.01

-0.005

0

0.005

0.01

(b)

Figure 5: The time series of h, u, δ and τb seaward of the swash, x = 5 m, during periodic
waves propagating towards the shore.

4. Kikkert et al. (2012) swash event370

The experiment of a dam-break swash event on a rough, impermeable371

beach carried out by Kikkert et al. (2009, 2012) in the laboratory, which372

was considered by Briganti et al. (2011), is utilised in this work to test the373

BBL model. This allows the comparison of boundary layer structure against374

experimental measurements and also numerical results from Briganti et al.375

(2011) for bore-driven swash. The initial set up of the Kikkert et al. (2012)376

experiment is shown in Fig. 7. The beach is rough and impermeable, and377

consists of a flat part, and a sloping part of slope 1/10.378

We follow Briganti et al. (2011) by driving the simulation with the mea-379

sured water depths h and depth-averaged velocities u at PIV 1 (x = −1.802 m)380

shown in Fig. 8. The IMP015 case is simulated (Briganti et al., 2011), in381

which the sediment sizes are D10 = 1.0 mm, D35 = 1.2 mm, D50 = 1.3 mm,382

D65 = 1.5 mm, D84 = 1.8 mm and D90 = 1.9 mm. The bed roughness383

Kn = 2D65 = 3 mm is estimated using the Engelund and Hansen (1967)384
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Figure 6: The time series of h, u, δ and τb in the upper swash zone x = 10 m during
periodic waves propagating towards the shore.
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Figure 7: The initial set up of the Kikkert et al. (2012) swash event (Briganti et al., 2011).

formula. Therefore, z0 = Kn/30 = 1× 10−4 m.385

Finer computational grid size ∆x = 0.005 m and smaller time interval386

∆t = 3.19×10−4 s, compared to those used in Carrier and Greenspan (1958)387

simulation, are used in this simulation because there is shock development388
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Figure 8: Time series of water depth h and depth-averaged u at PIV 1.

in this dam-break driven swash event.389

4.1. Shoreline movement390

The comparison for shoreline movement is shown in Fig. 9. The contours391

of h = 0.005 m, corresponding to the value chosen to identify the measured392

shoreline, for both BBL models (with and without spatial gradients) are in393

close agreement with the measured shoreline position, and better comparison394

is achieved compared to Briganti et al. (2011). The modelled shorelines of395

h = 0.001 m and 0 m, retreat much slower in the backwash compared to those396

of h = 0.005 m, indicating very thin backwash flows in the swash zone. The397

shoreline positions of both h = 0.001 m and 0.005 m predicted by Briganti398

et al. (2011) are retreating faster in the backwash.399

The maximum run-ups predicted in the present work are close to the400

measured value with the relative errors of 0.15% and 1.7% in h = 0.005 m for401

the simulations without and with spatial gradients. When spatial gradients402

are included, the maximum run-up is slightly larger indicating the relatively403

smaller bed shear stress.404

The Root Mean Squared Error (RMSE) values of the numerical shore-405

line positions of h = 0.005 m against the measured ones are calculated for406
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Figure 9: Comparison of the measured (circles) and simulated (solid and dashed lines)
shoreline movement of the swash event. Solid line: without spatial gradients; dashed
lines: with spatial gradients.

quantitative analysis,407

RMSExs =

√∑Nxs

i=1 (xs,mi − xs,ni)2
Nxs

, (17)

where Nxs is the number of measured shoreline positions xs,m, and xs,mi408

(xs,ni) is the ith measured (numerically modelled) shoreline position. The409

RMSE values are shown in Table. 1, which suggest overall good agreement410

of all numerical results with the measured ones, and closer agreement of the411

present model results.412

Table 1: RMSE values of the shorelines of h = 0.005 m calculated from the present model
results and those of Briganti et al. (2011).

Simulation RMSExs

Without spatial gradients 2.35× 10−2

With spatial gradients 1.01× 10−2

Briganti et al. (2011) 6.90× 10−2
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4.2. Spatial variation413

The snapshots of the modelled swash lens at different times are shown in414

Fig. 10. They are in close agreement with Briganti et al. (2011). Also shown415

on these plots is the top of the boundary layer as predicted by momentum in-416

tegral method with (grey) and without (red) spatial gradients included. The417

overall picture is of the boundary layer occupying the whole water column418

in the mid- to late run-up, and growing more slowly and more uniformly in419

the backwash, consistent with the Carrier-Greenspan case.420

4.3. Time series421

The time series of h and u at PIV 2, 4 and 5, the positions of which are422

x = 0.072 m, 1.229 m, 2.356 m respectively, are compared against the mea-423

surements and numerical results from Briganti et al. (2011) in Fig. 11. Note424

that the results with spatial gradients are very close to those without spatial425

gradients, and therefore not included in Fig. 11. This indicates that the in-426

clusion of spatial gradients in the BBL model have negligible effects on the427

hydrodynamics in this case. Fig. 11 shows that the present numerical results,428

and those of Briganti et al. (2011), overpredict the water depths throughout429

the swash. The simulated results in the present work correspond very closely430

to those from Briganti et al. (2011) in the uprush, while the velocities in the431

backwash are closer to the measured values than those from Briganti et al.432

(2011). The discrepancies in the numerical backwash velocities are probably433

attributable to different numerical solver and especially different shoreline434

treatment in Briganti et al. (2011) from the present work. The shoreline435

motion shown in Fig. 9 illustrates clearly the faster offshore movement of436

the shoreline in the backwash predicted by Briganti et al. (2011). This per-437

haps results in the larger offshore velocities at PIV 2, 4 and 5. Furthermore,438

the expression for U0 used when δ = h, which occurs in the later stage of439

the backwash, in the boundary layer model in Briganti et al. (2011), differs440

slightly from the one in the present work.441

The RMSE values of the numerical results h and u against the measured442

results are calculated for quantitative analysis,443

RMSEh =

√∑Nh

i=1(hmi − hni)2
Nh

and RMSEu =

√∑Nu

i=1(umi − uni)2
Nu

(18)
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Figure 10: Snapshots of the modelled swash flow (B, η and B+δ) at different times. Thin
black lines: B; thick black lines: η without spatial gradients; red lines: B + δ without
spatial gradients; and grey lines: B + δ with spatial gradients.

where Nh (Nu) is the number of points of measured water depths hm (veloc-444

ities um), hmi (umi) is the ith measured water depth (velocity), and hni (uni)445
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Figure 11: The comparison of time series of water depth h and depth-averaged velocity u
at PIV 2, 4 and 5. Black: measured; blue: Briganti et al. (2011); red: present work (only
results for the simulation without spatial gradients are shown).

is the ith modelled water depth (velocity). The RMSE values for h and u446

at PIV 2, 4, 5 calculated from both the present model results and Briganti447

et al. (2011) results are shown in Table 2. The RMSE values are generally448

small: for h they are of the order of 0.001 m, and those of u are of the order449

0.01 ms−1. The smaller RMSE values for the present model results suggest450

closer agreement with the measurements than Briganti et al. (2011), which451
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is consistent with the comparison in Fig. 11.452

Table 2: The RMSE values of the modelled time series results of h and u at PIV 2, 4, and
5.

h
Simulation PIV2 PIV4 PIV5
Without spatial gradients 1.51× 10−4 4.89× 10−5 4.51× 10−5

With spatial gradients 1.52× 10−4 4.49× 10−5 3.96× 10−5

Briganti et al. (2011) 1.06× 10−3 2.38× 10−4 1.51× 10−4

u
Without spatial gradients 2.03× 10−2 9.67× 10−3 3.52× 10−3

With spatial gradients 2.32× 10−2 1.14× 10−2 5.25× 10−3

Briganti et al. (2011) 9.24× 10−2 6.96× 10−2 4.01× 10−2

4.4. Boundary layer development453

Fig. 12 shows the contour plots for h, u and δ in the swash event. It can454

be seen that there are three shocks forming: an incoming bore, a reflecting455

shock, and a backwash bore, which changes its direction of movement and456

becomes an incoming bore (Fig. 12(b)).457

Both Fig. 12(c) and (d) show the rapid development of the boundary458

layer in the uprush, the flow reversal, at which the boundary layer growth is459

assumed to re-start, and its development once more later in the backwash.460

The difference between Fig. 12(c) and (d) shows the effect of the spatial461

gradient terms. In the uniform simulation the boundary layer grows only462

due to local conditions, and does so in the uprush at a fairly uniform rate463

(note that the contours in δ are approximately equidistant in time for all464

x), until it becomes depth limited. In contrast, boundary layer thinning and465

thickening can be observed when spatial gradients are included. The thinner466

boundary layer in the early uprush is caused by the positive gradients in U0467

(advective accelerations), which, however, are subsequently overcome by the468

mostly negative spatial gradients in Z, which thicken the boundary layer in469

the later uprush. Note also that later in the swash, spatial gradients cause the470

boundary layer to occupy the whole water depth near to the tip, consistent471

with Fig. 10 at t = 2.44 s, and 3.41 s. In the backwash the main difference472

is caused by the increase in δ seaward of the backwash bore via the shock473

conditions, as U0 decreases.474
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Figure 12: Contour plots for h (a), u (b), and δ (c, d). (c): without spatial gradients, and
(d): with spatial gradients. The red lines represent the shock paths, and the green line
represents the shoreline position of h = 0.005 m.

Fig. 13 shows the evolution of boundary layer at PIV 2, 4, 5 in the475

simulations with and without spatial gradients. In the uprush, if ∂u
∂x

= 0476

and ∂Z
∂x

= 0 are assumed, the boundary layer thickness at PIV 2 gradually477

increases, and reaches the whole water column after some time. When spatial478

gradients in u and Z are considered, the boundary layer at PIV 2 increases479

at a similar rate in the early stage of inundation, due to the combined effect480

of boundary layer advection and positive velocity gradient, which counteract481

each other. It later rapidly increases to the whole water column. This is due482

to the arrival of the boundary layer feature extending shoreward from the483

reflected bore (Fig. 12(d)). The backwash at PIV2 is qualitatively similar to484

that observed for the Carrier-Greenspan case at x = 5 and 8 m, with slow485

growth in δ from 0 followed by spatial gradients creating a thicker δ later on,486

due to ∂u
∂x

.487
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As we move into the mid- and upper swash (Fig. 13(b) PIV 4 and (c) PIV488

5) we see that advection increasingly implies that the boundary layer is fully489

developed in the uprush. This is consistent with the conclusion drawn by490

Baldock (2018) and Baldock and Torres-Freyermuth (2020) that the bound-491

ary layer near the tip is not locally developed but advected. The backwash at492

PIV4 and PIV5 also shows growth qualitatively similar to that in PIV2, but493

δ for the non-uniform case is now slightly smaller than its uniform equivalent,494

in contrast to PIV2 and the Carrier-Greenspan case.495
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Figure 13: Boundary layer thickness δ (solid line) and water depth h (dashed line) at PIV
2, 4, and 5.
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4.5. Velocity profile in the boundary layer496

The velocity profiles are compared against the measured results in Fig. 14.497

Note that there are differences in water depths and velocities from the hy-498

drodynamic models, which affect the comparison in velocity profiles.499

At PIV 2, the boundary layer thickness in the uprush is overpredicted500

by both simulations with and without spatial gradients. In the backwash,501

the fast development of boundary layer at PIV 2 is well captured by the502

simulation with spatial gradients. At PIV 4 and 5, the more developed503

boundary layer in the early unprush and less developed boundary layer in504

the backwash are better captured by the simulation with spatial gradients.505

The velocity profiles are generally well simulated at PIV 4 and 5 in the506

backwash. However, the modelled water depth is larger for similar U0 values,507

which corresponds to larger depth-averaged velocity magnitudes, consistent508

with that observed in Fig. 11.509

4.6. Bed shear stress510

The bed shear stresses at PIV 2, 4 and 5 are shown in Fig. 15. The511

maximum bed shear stress occurs at the swash front, and the bed shear512

stress is larger in the backwash, which is consistent with the experimental513

findings of Howe et al. (2019).514

The numerical simulations generally underestimate the bed shear stress at515

PIV 2, but slightly overpredict the bed shear stress at PIV 4 and 5. However,516

at all measuring stations the backwash velocity magnitudes are overestimated517

(see Fig. 11), which indicates the dependence of τb on effects other than u (U0)518

alone. The overall better correspondence between simulated and measured τb519

at PIV4 and 5 is also reflected in the better reproduction in U(z) (Fig. 14(b)520

and (c)).521

The difference between simulations with and without spatial gradients is522

only noticeable in the early stage of inundation at PIV 4 and 5; the bed shear523

stress is smaller when spatial gradients are considered because of the more524

developed boundary layer. The peak in τb in the uprush also arrives slightly525

earlier, especially at PIV5. Again, this is linked to a fully developed boundary526

layer at the tip. At the tip, however, measurements of τb are mostly absent,527

and show much scatter, due to the difficulty in obtaining measurements there528

(Kikkert et al., 2012). However, there does seem to be some evidence that529

the inclusion of spatial gradients is indeed capturing τb a little better in the530

uprush.531
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Figure 14: Comparison between the predicted (solid and dashed coloured lines) and mea-
sured (dots) profiles for the horizontal velocity for IMP015 set at PIV 2, 4 and 5. The
values above the velocity profiles in (a) indicate times at which the velocity profiles are
shown.

The bed shear stress is slightly larger at PIV 4 and 5 in the backwash532

because of the thinner boundary layer with spatial gradients. However, the533
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difference of bed shear stress in the backwash is hard to discern.534
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Figure 15: Comparison of bed shear stresses at PIV 2, 4 and 5. Circles: values estimated
from measured velocity profiles; solid lines: numerical results.

Time series of τb,wo/τb,w are shown in Fig. 16. Differences are generally535

smaller than for the Carrier and Greenspan (1958) case, except at the begin-536

ning of uprush and backwash, at which τb,wo is larger. These differences are537

in part caused by the aforementioned more well-developed boundary layer538

at the swash tip in the uprush when spatial gradients are included, as well539

as by small phasing differences. The large peak values occur because of the540

phasing differences. Note that shortly following these peak values, the ratio541

dips such that τb,w > τb,wo, particularly at the seaward extent of the swash542

(PIV 2), again indicating that the spatial gradients may contribute to on-543

shore sediment movement at the beginning of the uprush. In the backwash544

at PIV2 we also see reduced bed shear stress in the presence of spatial gra-545

dients, also suggesting reduced offshore sediment transport in the backwash.546
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Figure 16: Time series of τb,wo/τb,w at PIV 2, 4 and 5.

547

5. Conclusions548

The boundary layer model used by Briganti et al. (2011) is extended549

to include spatial gradients in velocity and boundary layer thickness. This550

boundary layer model is incorporated in a NSWE hydrodynamic model solved551

by Specified Time Interval Method of Characteristics.552

The periodic waves formulated by Carrier and Greenspan (1958) are sim-553

ulated numerically with close agreement with the exact solutions, and the554

corresponding boundary layer development is examined. The results show555

that the boundary layer also develops periodically. The boundary layer grows556

in the uprush, vanishes at flow reversal, and grows again, more slowly in the557

backwash. The inclusion of spatial gradients makes a larger difference in the558

lower swash zone and further offshore, where it thins the boundary layer in559

the onshore flow and thickens it in the offshore flow. Therefore, the bed shear560

stress is enhanced in the uprush, and slightly diminished in the backwash.561

This implies that spatial gradients might enhance onshore sediment transport562

in non-breaking waves, potentially contributing to the formation of a swash563

berm, and thereby helping formation of cusps, by providing another onshore564

sediment transport mechanism in addition to infiltration (Dodd et al., 2008).565

The Kikkert et al. (2012) dam-break swash event is also simulated and566

the numerical results are compared against laboratory measurements. The567

shoreline trajectories are in very good agreement with the measurements.568
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The velocities at PIV 2, 4, 5 in the later backwash agree more closely with569

the measurements than those of Briganti et al. (2011). Overall the Briganti570

et al. (2011) model resulted in lower values of τb in the backwash, as the571

comparison between Fig. 15 of the present work and Fig. 13 of Briganti572

et al. (2011) shows. However, the numerical simulations still overestimate573

the backwash velocities. The differences in the backwash velocities predicted574

by Briganti et al. (2011) and this work are most likely due to the differences575

in the NSWE solver and particularly the shoreline treatment. The shoreline576

motion shown in Fig. 9 implies the faster movement of the shoreline in the577

backwash predicted by Briganti et al. (2011).578

For this bore-driven swash event the inclusion of spatial gradients results579

in an earlier initial increase of boundary layer thickness in the uprush, par-580

ticularly higher up the swash. This also implies a diminution in slightly later581

uprush bed shear stress predictions, compared to those from the spatially582

uniform momentum integral model of Briganti et al. (2011). These results583

are consistent with the modelling of advection of the boundary layer near584

to the tip in the present model, which also shows consistency with earlier585

work (Baldock, 2018; Baldock and Torres-Freyermuth, 2020), and with the586

experiments of Kikkert et al. (2012). The results also show that the inclusion587

of spatial gradients makes little difference to the hydrodynamics as described588

in terms of depth and depth-averaged velocity. The boundary layer as pre-589

dicted by the present method shows largest significant differences from that590

predicted by the equivalent spatially uniform method primarily at and near591

the base of the swash, in the flow near bore collapse, and in the region just592

seaward of the backwash bore.593

In summary, the nonuniformities of velocity and boundary layer have a594

clear effect in wave-driven swash, potentially promoting onshore sediment595

transport; the feedback onto the flow still needs to be examined. In bore-596

driven swash significant differences are also observed in the boundary layer597

predictions. Differences in τb are smaller, but, near the base of the swash,598

spatial gradients are also expected to promote onshore sediment movement,599

both in the uprush and backwash. The most notable qualitative differences600

in bed shear stress are observed in the upper swash, connected to advec-601

tion of the boundary layer at the tip. This extended momentum integral602

approach, including spatial gradients in the boundary layer, captures some603

realistic effects, compared to its spatially uniform counterpart, whilst re-604

maining computationally achievable in the context of NSWE modelling. A605

remaining limitation is that of the logarithmic boundary layer.606
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Appendix A. Free stream velocity613

The logarithmic velocity profile inside the boundary layer is614

U(x, z, t) =
Uf
κ

ln

(
z

z0

)
. (A.1)

If δ ≤ h, the free stream velocity is615

U0 =
Uf
κ

ln

(
z0 + δ

z0

)
=
Uf
κ
Z. (A.2)

The depth-averaged velocity can be related to the horizontal velocities in the616

vertical profile,617

u =
1

h

[∫ δ+z0

z0

Uf
κ

ln

(
z

z0

)
dz + (h− δ)U0

]
=

1

h

[
Uf
κ

((δ + z0)Z − δ) + (h− δ)U0

]
=

1

h

[
U0

(
(δ + z0)−

δ

Z

)
+ (h− δ)U0

]
, (A.3)

which thus gives618

U0 =
hu

z0 + h− δ/Z
. (A.4)

In the case δ > h, the assumptions of δ = h and U(z = z0 + h) = U0 are619

introduced. Thus,620

U0 =
Uf
κ

ln

(
z0 + h

z0

)
. (A.5)
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The depth-averaged velocity is therefore621

u =
1

h

[∫ z0+h

z0

Uf
κ

ln

(
z

z0

)
dz

]
=

1

h

Uf
κ

(
(h+ z0) ln

(
z0 + h

z0

)
− h
)

(A.6)

=
1

h

U0

ln
(
z0+h
z0

) ((h+ z0) ln

(
z0 + h

z0

)
− h
)

(A.7)

⇒ U0 =
hu ln

(
z0+h
z0

)
(h+ z0) ln

(
z0+h
z0

)
− h

. (A.8)

Appendix B. Bed shear stress at the swash tip622

The boundary layer and in particular bed shear stress at the moving623

swash tip need careful treatment. Consider the fundamental assumption of624

the boundary layer form625

U(z) =
Uf
κ

ln

(
z

z0

)
⇒ U0 =

Uf
κ

ln

(
z0 + δ

z0

)
=
Uf
κ
Z. (B.1)

Now, if δ → 0 at the tip, then, because U0 6= 0 at the tip, this ⇒ Uf → ∞.626

Instead, we do not insist that δ → 0 anywhere, but impose a minimum value627

for h.628

Accordingly, we take h→ nz0 at the tip, then, utilising (A.6) we get:629

τb = ρκ2
n2

{(n+ 1) ln (1 + n)− n}2
u2 = ρκ2fnu

2 (B.2)

Note that (B.2) decreases as n increases, but that the sequence {fn} decreases630

increasingly slowly as n→∞. Note also that κ2fn ≡ cd, where cd is a Chezy631

friction coefficient.632

We can then evaluate the effect of varying n on the τb(xs) values. For633

both Carrier and Greenspan (1958) case and Kikkert et al. (2012) case, we634

have z0 = 0.1 mm. If we take u = 0.1 m/s, the variations of κ2fn and τb with635

h are shown in Table B.3 alongside typical values for a friction coefficient636

cd = 0.025.637
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Table B.3: Variations of κ2fn and τb (N/m2) with h = nz0 (m).

n h κ2fn cd τb(xs) τb(cd)
1 0.0001 1.0722 0.0250 10.722 0.250
2 0.0002 0.3811 0.0250 3.811 0.250
3 0.0003 0.2223 0.0250 2.223 0.250
5 0.0005 0.1210 0.0250 1.210 0.250
10 0.0010 0.0597 0.0250 0.597 0.250
50 0.0050 0.0177 0.0250 0.177 0.250
100 0.0100 0.0119 0.0250 0.119 0.250

Note the very large decrease in τb(xs) from h = z0 to h = 2z0. Thereafter,638

the decrease gets progressively smaller.639

In the numerical simulations, we adopt h = 10z0 at the tip in the BBL640

submodel. h = 10z0 is also used for the calculation of bed shear stress at the641

grid next to the tip if h < 10z0 there.642

Appendix C. Early time analytical approximations643

It is assumed that Eq. (11) describes the boundary layer development,644

starting from (uprush in the swash zone) the time of inundation (U0(t =645

t0) 6= 0), or the time of flow reversal (U0(t = t0) = 0), for all x. In both cases646

the initial condition is Z(t0) = 0, where t = t0 represents either the time of647

inundation or time of flow reversal.648

As t→ t0, Eqs. (10) and (11) become649

∂Z

∂t
∼ κ2

z0

2

Z2
|U0(t)|−Z

∂

∂t
lnU0(t). (C.1)

If we now treat partial derivatives as ordinary derivatives, then Eq. (C.1)650

becomes a Bernoulli equation. Under the transformation w(t) = Z(t)3 we651

then get652

dw

dt
+ 3

d

dt
lnU0(t)w ∼ 6

κ2

z0
|U0(t)|. (C.2)

Transforming back we get a general solution653

Z3 ∼ 6
κ2

z0

1

U3
0

∫ t

|U0(t
′)|U3

0 (t′) dt′ +
C

U3
0

, (C.3)
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where C is a constant of integration. If we then expand U0 in a Taylor series654

about t = t0 we get two short-time asymptotic solutions. In the swash uprush655

(U0(t0) > 0, dU0

dt
bounded):656

Z ∼
{

6
κ2

z0

U

|U |
U0(t0)(t− t0)

} 1
3

, (C.4)

and otherwise (U0(t0) = 0, dU0

dt
6= 0):657

Z ∼

{
6

5

κ2

z0

U

|U |
dU0

dt

∣∣∣∣
t=t0

(t− t0)2
} 1

3

. (C.5)

Note that as Z → 0, in Eq. (C.1) the boundary layer growth term over-658

whelms the thinning effect of the acceleration, which is why the acceleration659

in Eq. (C.5) promotes boundary layer growth. Thus, both solutions have660

unbounded growth in Z from Z(t0).661

Appendix D. Derivation of the shock condition for boundary layer662

thickness δ663

Eq. (3) - Eq. (4)⇒ ∂(U0 − U)

∂t
+

1

2

∂(U2
0 − U2)

∂x
= −1

ρ

∂τ

∂z
. (D.1)

Integrating it over the boundary layer,664 ∫ z0+δ

z0

∂

∂t
(U0 − U) dz +

1

2

∫ z0+δ

z0

∂

∂x

(
U2
0 − U2

)
dz =

τb
ρ

= U2
f

U2
f =

∂

∂t

∫ z0+δ

z0

(U0 − U) dz +
1

2

∂

∂x

∫ z0+δ

z0

(
U2
0 − U2

)
dz. (D.2)

Substituting Eq. (5) into (D.2) gives665

U2
f =

∂

∂t

(
−z0U0 +

Uf
κ
δ

)
+

1

2

∂

∂x

(
−z0U2

0 + 2
Uf
κ
U0(z0 + δ) + 2

U2
f

κ2
δ

)
=

∂

∂t

(
−z0U0 +

U0

Z
δ

)
+

1

2

∂

∂x

(
−z0U2

0 + 2
U2
0

Z
(z0 + δ) + 2

U2
0

Z2
δ

)
.

(D.3)
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Therefore, the shock condition for δ is666

−W
[
−z0U0 +

U0

Z
δ

]R
L

+
1

2

[
−z0U2

0 + 2
U2
0

Z
(z0 + δ) + 2

U2
0

Z2
δ

]R
L

= 0, (D.4)

where the subscripts L and R represent the left and right sides of the bore.667

If spatial gradients are neglected, Eq. (D.4) reduces to668 [
−z0U0 +

U0

Z
δ

]R
L

= 0. (D.5)

669

Appendix E. Carrier and Greenspan (1958) verification670

The shoreline movement comparison between the numerical results and671

the analytical results (Carrier and Greenspan, 1958) are shown in Fig. E.17672

with very close agreement. The maximum run up is slightly underpredicted673

(Fig. E.17).674
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