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Abstract: We conducted a systematic review of the literature on the effects of cordycepin on cell
survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 pub-
lications on cordycepin were found by the cut-off date of 1 February 2021. After application of the
exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were
extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and
calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed
cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal
transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation
of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were
the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The exam-
ination of 150 animal studies indicated that purified cordycepin has many potential therapeutic
effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation
(9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac condi-
tions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are
consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting
PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has
excellent potential as a lead for drug development, especially for age-related diseases. In addi-
tion, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution
of cordycepin.

Keywords: cordycepin; natural product; signal transduction; AKT; mTOR; AMPK; ERK; inflamma-
tion; cell viability; review

1. Introduction

Cordycepin is the adenosine analogue 3’-deoxyadenosine, which is isolated from
the caterpillar fungus Cordyceps militaris [1]. The caterpillar fungi are a popular health
food and traditional medicine in China [2]. This interest has led to a large increase in the
numbers of publications on cordycepin as a bioactive substance and potential medicine, as
we illustrate in this study. The literature is fast growing, but some papers are lacking in
rigour and many papers contain similar data gathered in different systems that are less
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than convincing on their own. In most cases, only a small selection of the available similar
data are cited, hiding the repetitive nature of much of the published work. To review
all the available evidence on the biological activities of cordycepin, we, therefore, chose
an approach akin to the systematic reviews developed for social and clinical research,
examining all relevant papers and attempting to pool data where possible. We focussed on
five topics for which a lot of evidence was available: cell survival and proliferation, cell
migration, cellular inflammation, signal transduction and animal models of disease. In the
discussion, we indicate remaining issues that must be addressed in order for cordycepin to
progress towards a medical application.

2. Results
2.1. History of the Field

Cordycepin was first isolated from Cordyceps militaris and characterised in 1950 [1].
It was widely used as a tool to investigate RNA processing in the early days of molecular
biology research, especially after it became commercially available in the early 1970s [3–7].
This use of the compound waned in the 1980s, when molecular biology started focussing
on the study of individual genes, which had often just been cloned and sequenced. Small
molecule inhibitors were becoming less popular and regarded as inadequately specific
for most purposes. This led to a marked reduction in publications on cordycepin, with
only five publications in our database for 1997 (Figure 1a). Since then, publications on
cordycepin are on the rise again, with an especially steep increase in the last decade. It is
clear this is driven by the interest in cordycepin as the active component of a traditional
medicine, with the majority of publications coming from Asia, especially China (Figure 1b).

2.2. Cell Death, Survival and Division

Early in the study of cordycepin, it was observed that high doses can kill cells in
culture and affect cell proliferation [8,9]. The idea that cordycepin may be a potential cancer
treatment has led to many studies examining the doses at which cordycepin reduces cell
numbers in culture. The vast majority of the data for this category is in vertebrate cells,
and we concentrated exclusively on these papers for this section.

A total of 103 papers contained data on effect of cordycepin on cell numbers in
vertebrate tissue culture, 65 of which attributed this cytotoxicity at least in part to the
induction of apoptosis (see the Methods section). In eight cases, autophagy was reported
in addition to apoptosis [10–17]. MCF-7 breast cancer cells were found to die by autophagy
in one study and by apoptosis in another [18,19].

The 50% inhibitory concentration (IC50) is commonly used to compare the effects of
cytotoxic drugs on cell lines. This number incorporates both effects on cell death and on
proliferation during the incubation time. The IC50 concentrations for cordycepin treatment
of various cell lines ranged from 15 µM to 2 mM, with the incubation time usually being
24 or 48 h. By collecting IC50 data for 126 experiments from 74 papers (see the Methods
section), we found that the average IC50 is 194 µM, with a standard deviation of 250 µM,
reflecting the very large variability. However, as can be seen in Figure 2, most of the IC50
data cluster around the median at 135 µM, with a small number of almost resistant cell lines
skewing the data. A caveat of this survey is that if a cell type does not reach the IC50 within
the dose range tried, it will not appear in our analysis, so these data are likely to have the
most validity for cell types and under conditions that do exhibit cordycepin sensitivity.

Many papers report that different cell types indeed have distinct sensitivities to
cordycepin [20–24]. In addition, we found that sometimes the same cell lines had widely
different IC50 values in different studies; some of these may be due to differences in the
method for determining viability [25,26], while others are less easy to explain [11,27].
One potential cause for the diversity is that differences in the serum used in culture
medium could differentially affect the stability of cordycepin in these experiments (see the
Discussion section on the pharmacokinetics of cordycepin).
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Figure 1. Number of publications on cordycepin by year and geographical origin. (a) Number of
publications on cordycepin per year of publication 1950–2018; (b,c) Geographical distribution of the
affiliation of the corresponding authors of publications on cordycepin in two periods: (b) 1950–1997
and (c) 1998–February 2021.

In contrast, we found 45 studies reporting no or very low cytotoxic effects of cordy-
cepin on cells in culture at concentrations at which a desirable bioactivity was evident
(cited in the Methods section). The doses ranged from 40 nM to 500 µM and had a median
of 50 µM. Moreover, 19 of these studies indicated that cordycepin can actively promote
cell survival or prevent senescence under conditions such as ER stress, oxidative stress,
radiation, etoposide exposure and other disease-related cellular stresses [28–43]. In four
cases, the survival was linked to the induction of autophagy [36–38,42,44]. These data
suggest that cordycepin is not exclusively a cytotoxic compound.

Cordycepin is known to affect the cell cycle in oocytes and early embryos, presumably
through its well-characterised effects on the cytoplasmic polyadenylation of mRNAs
encoding cell cycle regulators [45]. Indeed, we found 15 papers confirming these effects on
vertebrate oocyte maturation and embryonic cell division [46–61].
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Figure 2. Distribution of the IC50 data for cordycepin from the literature. The 50% inhibitory
concentration in µM was retrieved from 128 datasets described in 57 papers (listed in the Methods
section). The number of datasets with an IC50 in each concentration bracket indicated on the Y axis
was counted and graphed.

The role of cytoplasmic polyadenylation in normal mitotic cell division is, however,
less clear [60,62]. This is an important question, as microtubule disrupting agents, which
are common in nature, affect cell cycle progression and are potent cancer drugs [63].
To determine if cordycepin has distinct effects on the mitotic cell cycle, we selected papers
with flow cytometry data obtained with a fluorescent DNA stain. With this method,
the phase of the cell cycle that is halted by treatment can be determined by counting cells
that have unreplicated DNA (G1 or G0 phase) have undergone replication but not cell
division (G2 or M phase, double the amount of DNA) or are undergoing DNA replication
(S phase, intermediate amount of DNA). Classical cell cycle inhibitors cause accumulation
of cells in one of these cell cycle stages. We examined 31 sets of FACS data, which matched
our criteria from 20 papers for the effects of cordycepin on cell cycle progression (for details,
see the Methods section). Cordycepin doses that affected the cell cycle ranged from 5 µM to
1.6 mM, with a median of 80 µM and an average of 136 µM. It is interesting that these doses
are lower but similar to those observed for the IC50 (median 135 µM). However, as dose-
response data were not widely available, it is not possible to be sufficiently quantitative for a
firm conclusion. As can be seen in Figure 3, although more datasets showed arrest in G2/M,
similar numbers of studies found arrest in other single stages (G0/G1: 8, S: 8, G2/M: 11)
and four experiments showed accumulation in both S and G2/M phase. Indeed, in several
cases, different cell cycle effects were described in a single paper and these differences were
associated with cell type, dose or timing of cordycepin treatment [27,64–66]. It has also
been reported that the effects of cordycepin are dependent on the cell cycle phase of the
cell at the time of treatment [67]. We can conclude that cordycepin commonly affects cell
division, but does not have the distinct stage-specific effects associated with microtubule
disruptors or other cell cycle inhibitors.



Molecules 2021, 26, 5886 5 of 34

Figure 3. Cordycepin arrests cells in different cell cycle stages. 31 flow cytometry datasets from
18 papers were examined for the cell cycle stage in which cell numbers are significantly increased
after cordycepin treatment.

2.3. Cell Migration

Cell migration plays a large role in normal tissue development and the function of
the immune system, but it is also associated with the metastasis of cancer cells and the
progression of inflammatory diseases. We surveyed the papers with data on cordycepin in
vertebrates for effects of cordycepin for data on cell migration and found 27 such papers;
26 of these papers reported a repression of cell migration in a variety of cell types including
cancer derived cell lines, macrophages, smooth muscle cells and endothelial cells at doses
between 0.4 and 400 µM and with a median of 100 µM (see the Methods section). Only one
paper reported no effect of cordycepin on cell migration in myeloid leukemic cells, but the
relevant data were not included in this paper [8]. In eight cases, the reduction of migration
was associated with a cordycepin-mediated repression of metalloproteinases, enzymes
which can degrade extracellular matrix to allow cells migrate through tissues and can acti-
vate the TGFβ family of cytokines [68–76]. Just one paper reported a cordycepin-mediated
increase in metalloproteinases [77]. Other frequently noted changes in connection with
cell migration were a reduction in the active form of Focal Adhesion Kinase (FAK, PTK2),
a key player in metastatic cancer [74,78–81], and upregulation of the epithelial marker
E-cadherin, suggesting a reversal of the epithelial-mesenchymal transition [66,73,77].
Induction of NFkB-mediated transcription by inflammatory signalling is associated with
the induction of cell migration and is discussed in the section on inflammation. The
combined data clearly demonstrate that cordycepin is an inhibitor of cell migration.

2.4. Effects on the Inflammatory Response

At the cellular level, the inflammatory response is a well-characterised set of gene
expression programmes that is activated by signals indicating tissue damage or infec-
tion [82]. The induced inflammatory genes include cytokines (e.g., TNFα, IL1β and TGFβ),
prostaglandin synthases (e.g., COX-2 and PTGES), nitric oxide synthase (iNOS) and genes
involved in cell migration and tissue remodelling, such as the cell adhesion molecule
VCAM-1, and metalloproteinases, such as MMP9 (see also above). Many cells are capable
of an inflammatory response, but cells such as macrophages and microglia are most sensi-
tive. These specialised cells respond to a larger number of stimuli and amplify the response
in tissues. In a healthy situation, the inflammatory response resolves following removal
of the stimulus and tissue repair. In contrast, chronic inflammation is involved in many
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disease processes, including cancer metastasis, the induction of chronic pain, fibrosis and
neurodegeneration [83–86]. In addition, the appearance of chronic low-grade inflammation
is a recognised feature of the aging process and age-related diseases [87]. Therefore, we de-
cided to evaluate the evidence for an effect of cordycepin on the inflammatory response.

We found 38 papers which described effects of cordycepin on inflammatory gene
expression (see the Methods section). Of these papers, 36 reported a reduction of inflam-
matory products by cordycepin. A single paper reported inhibition of iNOS but induction
of TNFα [88] and only one paper reported induction of multiple inflammatory genes by
cordycepin [89]. The overwhelming evidence, therefore, indicates that cordycepin has
anti-inflammatory effects in tissue culture in many cell types.

TGFβ is a cytokine family which is normally involved in stem cell maintenance,
wound healing and resolution of the inflammatory response [90]. Chronic expression of
these peptides is associated with cancer and pathogenic tissue remodelling, for instance
in osteoarthritis, chronic kidney disease, heart failure and idiopathic pulmonary fibro-
sis [83,91–93]. We found five papers that indicated that cordycepin reduces responses to
TGFβ in cell culture [36,78,94–96] and none that reported no effect or repression. In combi-
nation with the repressive effect on the TGFβ activating metalloproteases discussed above,
these data suggest that cordycepin can inhibit TGFβ activity by both reducing activation
and blocking the cellular response.

NFkB is a transcription factor with key roles in activating genes during inflammation
and wound healing [82]. Activation of inflammatory signalling cascades leads to transloca-
tion of NFkB from the cytoplasm to the nucleus and binding to DNA. We found 11 papers
reporting a cordycepin-mediated reduction in the nuclear levels of NFkB [28,43,97–105].
In contrast, two papers reported no changes in the nuclear localisation of NFkB [72,106].
The total protein or mRNA levels of NFkB subunits were found to be reduced in four
studies [107–110]. DNA binding or chromatin association of NFkB in nuclear extracts was
reported to be reduced in one paper [70], but unchanged in three papers, despite clear
repressed inflammatory gene expression [72,97,111]. Four papers found a reduction in the
phosphorylation of NFkB subunits [105,109,112,113]. Surprisingly, one paper reported that
NFkB binding was required for the activation of a cordycepin-induced gene, indicating that
for some genes, its activity is retained [114]. The data suggest that effects of cordycepin on
NFkB-mediated transcription occur at multiple levels and are somewhat variable, probably
depending on which combination of gene, cell type and stimulus is studied.

In addition, when we were examining animal studies (further discussed below) we
found 28 papers that indicated that inflammatory processes were inhibited by cordycepin in
a variety of animal models of disease [28,37,94,97,110,115–135]. Collectively, the literature
indicates that cordycepin has robust anti-inflammatory activity in both cells and animals.

2.5. Effects on Signal Transduction Pathways

A key goal of this systematic review was to obtain a clearer picture of the effect of
cordycepin on signal transduction. We collected the papers studying the effects of cordy-
cepin on signal transduction. After screening of the content, 79 papers were retrieved
for detailed assessment of the effect of purified cordycepin on specific signal transduc-
tion pathways in tissue culture (Figure 4). Our assembled data showed that particular
pathways were better investigated than others. The PI3K/Akt, mTOR, AMPK and MAPK
signalling cascades were well represented and are depicted in Figures 5–7, respectively.
Disappointingly, 50 articles had to be excluded as the precise phosphorylation sites of the
proteins were not indicated, neither in the description of the antibody, nor in the text of
the paper, leading to ambiguity on which site was being studied. In the remaining papers,
PI3K/Akt/mTOR signalling was the most commonly studied pathway (14 articles, 50%)
followed by MAPK (13 articles, 43.33%) and finally AMPK (9 articles, 30%). A diverse set
of cell culture models was used, the most common being various cancer cell lines, immune
cells and neuronal cells. For a detailed flow chart of the study selection process including
reasons for exclusion, see Figure 4.
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Figure 4. Diagram presenting the selection process for inclusion of publications in this review;
n = number of articles.

Figure 5. A schematic model of the PI3K/Akt/mTOR signalling pathways. This model integrates
PI3K/mTOR/Akt and AMPK signal transduction pathways. Arrows indicate activation and T ends
indicate inhibition. Triggered PI3K activates Akt/mTOR cascade, through activation of PDK1 and
phosphorylation of AKT in the activation T-loop. mTOR complex 2 (mTORC2), is activated by an as-
yet unknown pathway and contributes to the activation of AKT by phosphorylation in the C-terminal.
AKT inhibits TSC2, which leads to activation of the small GTPase Rheb and activation of the mTOR
complex 2 (mTORC2). The pathway is negatively regulated by AMPK, through activation of TSC2.
The PI3K/Akt/mTOR signalling pathway increases protein synthesis through the phosphorylation
of the cap-dependent translation inhibitor protein 4EBP1 and inhibits autophagy, leading to the
promotion of growth and the anabolic state.
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Figure 6. A schematic model of the AMPK signalling pathways. This model shows the activation
of AMPK in response to low adenosine triphosphate (ATP) levels, and an increased adenosine
diphosphate (ADP) and adenosine monophosphate (AMP). As a result, it activates pathways that
produce ATP, thus increasing ATP levels. Conversely, pathways that deplete ATP are repressed
by AMPK. AMPK is activated by an increased AMP + ADP to ATP ratio and phosphorylation by
CAMKK or LKB1. Activated AMPK inhibits acetyl-CoA carboxylase (ACC), HMG-CoD reductase
and mTORC1, leading to an increase of fatty acid oxidation and a reduction in sterol and protein
synthesis. Active AMPK inhibits autophagy. An arrow indicates an upregulation of the process and
a T end represents a downregulation of the process.

Figure 7. A schematic model of the MAPK signalling pathways. This model shows the three major
pathways of MAPK: extracellular signal-regulated kinase (ERK) 1 and 2, c-Jun N-terminal kinases
(JNK) 1–3 and p38 MAPK. In all these pathways, the activation of a small GTPase (RAS, RHO or
RAC/CDC42) leads to the activation of a MAP kinase kinase kinase (MAPKKK: RAF, MEKK1/MLK,
TAK/MTK1), which activates a MAP kinase kinase (MAPKK) by phosphorylation. These MAPKKs
finally phosphorylate and activate the MAPKs (ERK1/2, JNK1/2/3 and p38).
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2.6. Effects on the PI3K/mTOR/Akt Pathway

The phosphatidylinositol 3-kinase (PI3K) and its downstream effectors mammalian
target of rapamycin (mTOR) and protein kinase B (AKT) pathways are closely intertwined
pathways that regulate biological processes such as metabolic balance, growth, differentia-
tion, cell migration and angiogenesis. They play a key role in a variety of human diseases,
such as cancer, type 2 diabetes mellitus and neurodegenerative diseases, and have been
implicated in aging[136–140]. Figure 5 shows a diagram giving the key features of this
pathway.

The effect of cordycepin on mTOR activity is commonly assessed by its effect on the
phosphorylation of S6 kinase (S6K), which is a major mTOR downstream substrate. This
phosphorylation results in an increase in S6K activity. Conversely, it has been shown that
S6 kinase phosphorylates mTOR at Ser2448 [141], which leads to inactivation of mTOR,
indicating a negative feedback loop [12,66,142–146]. Three of the reviewed studies found
a repressive effect of cordycepin on mTOR phosphorylation at site Ser2448 [11,44,142].
In contrast, one paper suggested that cordycepin increases phosphorylation of mTOR at
Ser2448 [38] (Figure 8a).

AKT phosphorylation is the most widely studied modification in cordycepin-treated
cells. AKT is a family of serine/threonine protein kinases that plays a key role in cellular
proliferation, apoptosis and migration. AKT kinases consist of three conserved domains:
an N-terminal PH domain, a central kinase CAT domain and a C-terminal extension (EXT)
containing a regulatory hydrophobic motif (HM). AKT kinases are phosphorylated by
their activating kinases at a threonine residue in the activation T loop (T308 in AKT1,
T309 in AKT2 and T305 in AKT3) and a Serine residue in the C-terminal HM (S473 in
AKT1, S474 in AKT2 and 41 S472 in AKT3) [147,148]. AKT1 is phosphorylated at Thr308

by PDK1 during growth factor stimulation. For maximal activation, phosphorylation
at Ser473 by mTORC-2 further increases its activity[147,148]. In reviewing the impact of
cordycepin on the phosphorylated level of Akt, the Ser473 site was extensively studied
(11 papers). Most studies (nine articles) demonstrated an inhibitory effect of cordycepin
on Akt phosphorylation at Ser473 [11,101,103,142,144,149–153]. Only one study found no
effect [145]. These data are summarised in Figure 8b. Furthermore, only two studies
investigated the effect of cordycepin on Akt phosphorylation at site Thr308; one concluded
that cordycepin has no effect on Akt activation at this site [145] and the other showed a
repressive effect [154]. In addition, total Akt has been reported to be reduced [152,155].
Overall, the surveyed literature indicates that cordycepin represses Akt phosphorylation
by mTOR at Ser473.

2.6.1. Effects on AMPK Signalling

5’-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a highly
conserved serine/threonine kinase. The AMPK kinase is a heterotrimeric protein complex
containing a catalytic alpha subunit, an AMP-binding gamma subunit, and a scaffolding
beta subunit. It is considered to be the master regulator of cellular energy homeostasis and
is activated by upstream kinases, such as LKB1, CaMKKβ and Tak1 [156,157]. AMPK is
allosterically regulated by the binding of AMP, or less commonly ADP, to its gamma subunit.
This binding blocks the access of phosphatases and, thus, enhances the phosphorylation
of Thr172 residue [158]. In the last decade, it has emerged that AMPK plays a central
role in regulating a variety of metabolic and physiological processes. It is repressed in
diverse medical conditions, such as overnutrition, inflammatory diseases, diabetes and
cancer. Activation of AMPK also is the mechanism of action for the type II diabetes drug
metformin. Therefore, activating AMPK could be a potential therapeutic target in treating
these diseases [159–161].
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Figure 8. Effects of cordycepin on widely studied signal transduction pathways. Papers were selected
as described in the Materials and Methods section and classified according to the effect observed on
the indicated phosphorylation sites. (a) Effects of cordycepin on the Ser2448 phosphorylation site on
mTOR; (b) Effects of cordycepin on the Ser4738 phosphorylation site on AKT; (c) Effects of cordycepin
on the Thr172 phosphorylation site on AMPKα; (d) Effects of cordycepin on the Thr202/Tyr204

phosphorylation sites on ERK; (e) Effects of cordycepin on the Thr180/Tyr182 phosphorylation site on
the p38 kinase; (f) Effects of cordycepin on the Thr183/Tyr185 phosphorylation site on the Jun kinase.
The papers from which these data were extracted can be found in Table 1 in the Methods.
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The best-studied mechanism of AMPK activation is phosphorylation of the alpha
subunit at Thr172, as depicted in Figure 6. AMPK activity is stimulated more than 100-fold
by phosphorylation of Thr172 [162]. It has also been shown that phosphorylation at Ser108 of
the beta subunit plays a key role in cell cycle regulation and promotion of pro-survival path-
ways in response to energy stress [163]. Although the Ser108 residue is auto-phosphorylated
after prior phosphorylation at Thr172 residue, this residue is also the phosphorylation target
of kinases other than AMPK such as ULK1 [163]. The literature search identified that a
total of nine papers showed that cordycepin increases AMPK phosphorylation at Thr172

and Ser108, indicating activation in all cases [113,142,145,146,152,164–167]. Strikingly, we
did not find a single article that suggested a repression or no effect on AMPK (Figure 8c).
The literature unequivocally indicates that cordycepin treatment activates AMPK.

2.6.2. Effects on MAPK Signalling

Various extracellular stimuli activate the mitogen-activated protein kinase (MAPK)
cascade pathways [168]. Three distinct MAPKs have been widely investigated: p38 MAPK,
c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinases (ERK), as de-
picted in Figure 7.

P38 proteins are a main subgroup of mitogen-activated protein kinases (MAPKs) that
have been implicated in diverse biological processes, such as proliferation, differentiation,
apoptosis and migration. Recent studies demonstrated that dysregulation of p38 has a
key function in a wide variety of pathological conditions, such as solid tumours, arthritis
and inflammation of the liver, kidney, brain and lung [169–172]. The activation of p38 is
carried out by dual phosphorylation of their Thr–Gly–Tyr motif by MKK3 and MKK6 [173].
Nine studies investigating the effect of cordycepin on P38 met the eligibility criteria. Four
studies showed a repressive effect [101,103,112,174], whereas four papers described that
cordycepin activates P38 by increasing the phosphorylation at Thr180/Tyr182 [11,175–177].
A single study reported that cordycepin has no effect on P38 activation [178] (Figure 8d).
Therefore, no clear trend for the effects of cordycepin treatment on p38 signalling could be
discerned.

The c-Jun N-terminal kinases (JNKs) belong to the superfamily of the mitogen-
activated protein kinase (MAPK) family involved in regulating eukaryotic cell reaction to a
diverse range of cellular stress insults. They also coordinate essential physiological pro-
cesses, including neuronal plasticity, immunological reactions, and embryonic development
through their influence on gene expression, cytoskeletal protein dynamics, and cellular
senescence [179,180]. Based on the search strategy employed, five articles investigating
the effect of cordycepin on JNK met the inclusion criteria. Three of the studies showed a
repressive effect of cordycepin on the phosphorylation of JNK at Thr183/Tyr185 [35,103,177],
whilst the remaining two studies showed an activating effect on the same phosphoryla-
tion site [11,176] (Figure 8e). The effects of cordycepin treatment on JNK signalling are,
therefore, ambiguous.

The extracellular signal-regulated kinases (ERK1 and ERK2) are evolutionarily con-
served, highly regulated serine-threonine kinases that control cellular processes such as
proliferation and differentiation. ERK plays a key role in development, and its upreg-
ulation is associated with the development and progression of diseases such as cancer.
The ERK cascade is activated by signals such as growth factors, cytokines, viruses and
G-protein-coupled receptor ligands [181]. The literature search yielded 38 publications
related to effects of cordycepin on ERK signalling. Of these, only nine papers were included
in the final analysis, as the majority did not indicate which phosphorylation sites were
investigated. ERK1 and ERK2 are activated by dual phosphorylation by the upstream
kinases MEK1/2 at a conserved threonine-glutamate-tyrosine (TEY) motif (Thr202 and
Tyr204 in human ERK1, Thr185 and Tyr187 in human ERK2) [182]. Seven of the nine selected
papers indicated an inhibitory effect of cordycepin on the phosphorylation of ERK at
Thr202/Tyr204 [55,103,143,151,174,177,178]. A single article reported an activating effect of
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cordycepin on ERK [11], and another article reported no change [176] (Figure 8f). Overall,
the literature suggests that cordycepin treatment usually inhibits the ERK pathway.

2.6.3. Signal Transduction Effects in Animal Models

In reviewing the effect of cordycepin on signalling cascades in animal models (detailed
below), eight articles were identified with data on signal transduction. Five of these met
the eligibility criteria (see the Methods section). The outcomes were activation of AMPK
indicated by increasing phosphorylation at Thr172 (three articles) and also inhibiting mTOR
indicated by reduced the phosphorylation at Ser2448 (two articles), confirming the effects
observed in tissue culture [35,142,164,183,184]. For details see Table 2.

2.7. Cordycepin Activity in Animal Models

Figure 9a reports the doses of purified cordycepin used in 131 animal studies in mg/kg.
As can be seen, most studies use doses at 50 mg/kg or less, with 39 studies using 10 mg/kg
or less. A few studies use very high doses. The routes of cordycepin administration to
animal models were also evaluated. Figure 9b shows that 66 studies use intraperitoneal (IP)
administration, followed by oral or intragastric administration (54), with only five studies
using the intravenous route.

Figure 9. Dose of cordycepin administered to animal models in mg/kg. (a) A total of 133 studies
were classified according to the range of cordycepin dose administered to the animal model; (b) The
route of administration of cordycepin in 146 studies.In this systematic review, 167 articles studying
the effects of purified cordycepin in a variety of animal models were found (see Table 3). We noted
the details of the experimental set-up (species, model of human disease, dose in mg/kg basis and
route of administration). The disease models were classified and counted (Figure 10). The majority of
studies were of animal models of cancer, closely followed by cardiovascular diseases, infections and
central nervous system disorders.

One of the first animal studies on the effects of cordycepin examined the effect of cordy-
cepin on the growth of tumour cells in mouse ascites [185], but the follow-up of these studies
took was long. However, we identified a total of 32 studies examining the effect of cordycepin on
cancer animal models. Different cancers studied included those of the immune system, gastroin-
testinal tract, liver, breast and lung [11,18,23,24,64,66,74,79,80,107,108,134,142,143,186–203].
In most cases, cordycepin suppressed tumour growth, but it did not cause complete
regression.

Concerning the cardiovascular system, 15 articles were found for a variety of animal
models. Cordycepin was reported to have beneficial effects for cardiac hypertrophy [184],
ischemia [122,183,204–206], dyslipidaemia [37,164,207,208] and other heart disease mod-
els [76,120,209–211].



Molecules 2021, 26, 5886 13 of 34

Figure 10. Classification of animal models. A total of 139 articles were classified according to the
type of human disease modelled. CNS: central nervous system. Categories which had only one entry
were excluded, as described in the Methods section. The exact allocation of papers to disease classes
can be found in the Methods section (Table 3).

Fourteen articles reported that cordycepin alleviates inflammation and pain in dif-
ferent animal models. Furthermore, cordycepin is described to have anti-inflammatory
(reduced synovial inflammation) and analgesic effects in osteoarthritic animal models
and in other conditions associated with pain and inflammation. Different mechanisms
were proposed to potentially explain the effect of cordycepin on pain behaviour, such
as inhibition of inflammatory signalling as well as direct effects on the primary afferent
nociceptors [42,97,110,121,131,133,212–219].

Several studies strongly suggest that cordycepin can be used for treatment of try-
panosomiasis, but that it needs to be stabilised to do so. Treatment with cordycepin,
when combined with an inhibitor of adenosine deaminase, can prolong the survival of T.
evansi-infected animal models and confer antiparasitic activity. In addition, the in vivo and
in vitro activity of synthetic cordycepin derivatives has been studied in order to explain
the structure–activity relationship [130,220–231].

We found 10 papers indicating that cordycepin can have protective effects on the brain
in various models of brain dysfunction. For instance, it reduces the effects of chronic unpre-
dictable mild stress in animal models and improves depression-like behaviour [119,232].
Some studies have also shown that cordycepin ameliorates learning and memory deficits in
ischemic animal models [233–236] and sleep disturbances [237]. In addition, a substantial
neuroprotective effect of cordycepin was noted in Machado-Joseph disease and Parkinson
disease models [28,38,116].

Effects of cordycepin on animal models of respiratory disease were reported in eight
papers. Multiple studies have shown an anti-asthmatic effect, which appears to be mediated
by the inhibition of inflammation [123,124,128]. Other studies showed a protective effect of
cordycepin in animal models of lung injury of inflammatory origin [117,118,129] and lung
fibrosis [94].

The effect of cordycepin was also studied in animal models of metabolic diseases,
including diabetes and obesity. Cordycepin has been shown to reduce body weight and
change fat metabolism in animal models of obesity [166,238–240]. Studies in models of type
II diabetes found that cordycepin treatment reduced plasma glucose level, hyperphagia
and polydipsia. They also showed that hepatic glycogen content was dramatically in-
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creased, and oral glucose tolerance was enhanced after cordycepin treatment. Importantly,
protective effects of cordycepin against diabetes-related kidney and spleen injury have also
been reported. This effect is thought to be mediated through inhibiting cellular apoptosis
and fibrosis, and inducing autophagy in diabetic nephropathy [241–243]. Thus, cordycepin
appears to have beneficial effects on metabolic disorders and their related complications.

Eight studies indicated the effects of cordycepin on reproductive disorders [244–251].
These studies investigated the effect of cordycepin on testicular function, sexual behaviour
and sperm production in rodent animal models.

3. Discussion

Our systematic review of the literature shows that cordycepin has significant effects
in many animal models of disease and is an anti-inflammatory compound in both tissue
culture experiments and animal models. The repression of inflammation is likely to be
one of the key events in the therapeutic effects of cordycepin. While the mechanism by
which cordycepin inhibits inflammation is not fully elucidated, it appears likely that the
effects on signal transduction at least contribute. mTOR/AKT and AMPK are known to be
involved in the regulation of inflammation and link metabolic changes to the inflammatory
response in macrophages [252–255]. In addition, many of the disease models described
attempt to mimic age-related conditions, such as arthritis, type II diabetes, heart disease
and neurological damage, which are indeed linked to chronic inflammation [87]. Strikingly,
other mTOR inhibitors (e.g., rapamycin/sirolimus) have been reported to increase lifespan
(and therefore age) in low doses. Similarly, other AMPK activators (e.g., metformin) are
well documented to improve metabolic health in aging individuals [140]. It is, therefore,
not as unlikely as it first might appear that cordycepin has beneficial effects in so many
apparently distinct, but age-related, conditions.

The cordycepin literature is overall of modest quality, as can be observed from common
study flaws, such as the lack of information on which phosphorylation sites were examined,
a frequent lack of primer sequence data and the few cases of image duplication (see the
Methods section). This is likely due to the combination of meagre funding but high public
interest for research into natural products, leading to large numbers of relatively low-
budget studies and publications which are sometimes insufficiently critically reviewed.
Nevertheless, this systematic review shows that the volume of studies indicating promising
biological effects is now so large that the number of replicates is making up for any noise
in the data. Our meta-analysis clearly shows that cordycepin has anti-proliferative and
anti-inflammatory effects and that it activates AMPK, represses phosphorylation of AKT
by mTOR and often reduces phosphorylation of ERK by MEK. While it can be argued that
many of the animal models that have been used do not accurately replicate human disease,
there can be no doubt that cordycepin has clear beneficial effects in many animals with a
variety of disease-related symptoms.

A weakness of all systematic reviews is that conclusions can only be drawn on sub-
jects that are widely researched and the choice of these subjects is dependent on the
interests of the research community. It is, therefore, possible that the key biological ef-
fects or highest therapeutic potential are not summarised in this review. Nevertheless,
the findings discussed above strongly indicate that cordycepin is an excellent lead com-
pound for drug discovery, especially in cancer and age-related diseases. Indeed, we found
18 publications describing drug development projects tackling cordycepin modification
and formulation [42,120,198,218,228,256–267].

A major outstanding issue that is hampering the development of cordycepin as a lead
compound is the lack of a clearly identified cordycepin-binding target molecule and a mecha-
nism of action that connects this binding with the therapeutic effects. Proposed binding targets
include poly (A) polymerases, adenosine receptors, CDK2, PARP1, AKT, AMPK, FGFR2
and RuvB-like ATPase 2 (RUVBL2) [31,32,35,40,65,66,106,145,155,167,201,210,239,268–278].
A recent careful evaluation of AMPK as a cordycepin target concluded that although it is
bound and activated by cordycepin monophosphate, AMPK activation is not responsible
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for the effects of cordycepin on cell survival [166]. However, the other proposed targets
still remain to be fully characterised. It is noteworthy that we found four publications
indicating that cordycepin has a repressive effect on an unidentified phosphorylation site
of PI3K, suggesting the effects of cordycepin on mTOR may be caused by changes in
upstream signalling events [26,239,279,280]. As cordycepin is a product of evolution, it is
also possible that it has multiple targets that synergise to cause the biological effects [281].
A full discussion of the outstanding issues on the target identification of cordycepin is
outside the scope of this review, but the large variety of systems and the similarities of the
response discussed here indicate that the main target(s) of cordycepin cannot be very cell-
or tissue-specific.

Several studies showed that cordycepin is efficiently converted to cordycepin triphos-
phate and trapped in cells, leading to accumulation. The inhibition of import and phospho-
rylation of cordycepin has been shown to reduce its effects, suggesting that intracellular
and phosphorylated cordycepin is indeed at least one of the active metabolites of cordy-
cepin [35,95,106,144,152,273,274,282–285]. As indicated in our results, cordycepin has
shown biological activity in animal models when administrated intraperitoneally, intra-
venously or orally. In blood or tissue culture media, cordycepin is rapidly deaminated
by adenosine deaminase, forming 3’ deoxyinosine [165,228,286–289]. After oral admin-
istration, even sensitive assays cannot detect any cordycepin in the circulation, causing
some doubts as to the active metabolite of cordycepin. However, we recently showed
that 3’ deoxyinosine can be converted into cordycepin triphosphate in at least some cell
types [286]. This raises the possibility that cordycepin specifically targets particular tissues
in the whole organism, not because of a tissue-specific molecular target, but because of
tissue-specific conversion of 3’ deoxyinosine to cordycepin triphosphate. In addition, by cir-
culating as 3’ deoxyinosine, cordycepin may be avoiding toxic effects, which can be caused
by the accumulation of adenosine-like compounds [290]. It is, therefore, very important for
further drug development that biodistribution studies of cordycepin, 3’ deoxyinosine and
cordycepin triphosphate are performed to resolve this issue.

Another complicating factor in cordycepin research is the lack of commercially avail-
able highly purified and/or synthetic preparations. The most widely used preparation from
Sigma (now Merck) is isolated from Cordyceps militaris and only 98% pure. As cordycepin
is generally used in micromolar quantities, it is possible that there are contaminants active
in the nanomolar range that contribute to the biological effects of cordycepin. The fact that
similar effects have been observed over time and with different suppliers suggests that,
if there are important bioactive contaminants, these should be very consistently present.
Thankfully, in a few cases, purer and synthetic cordycepin preparations have been shown to
have similar effects to those observed with the standard preparations [70,239,291]. It would
help the field significantly if purer cordycepin preparations became commercially available
as analytical standards and for the comparison of activities.

The toxicity of cordycepin in animals has been reported to be low in the absence of
adenosine deaminase inhibitors [193,207,231,292], but we did not find any publications
with dose escalation studies of cordycepin to several fold the therapeutic dose for intra-
venous or oral administration. For intravenous doses, this is understandable, as they are
limited by the solubility of cordycepin in simple formulations [257]. Three studies with
cordycepin administered intraperitoneally have yielded somewhat conflicting results, with
one study claiming no adverse effects at 900 mg/kg and another reporting 50% lethality at
400 mg/kg and significant deaths after 3 days of 150 mg/kg daily [185,293]. A third study
indicated that three of seven animals suffered weight loss, convulsions and death after
a 3.6 g/kg intraperitoneal dose, while the other four survived [243]. Ames tests suggest
that cordycepin has very weak or no mutagenic activity [193,294]. Moreover, chronic oral
administration of lower doses of cordycepin appears to improve rather than decrease hep-
atic health [127,295]. Given the effects of cordycepin on the mTOR pathway, a remaining
worry is that it might suppress the immune system, as does the mTOR inhibitor rapamycin
(sirolimus). On the other hand, it is worth noting that low doses of mTOR inhibitors can
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improve immune responses in elderly patients [296]. Similarly, the inhibition of growth fac-
tor signalling could affect wound healing, although so far, cordycepin appears to promote
healing [145]. Another concern is the documented effects of cordycepin on the meiotic
cell cycle and early embryogenesis (see above) may affect especially female fertility. Full
dose escalation experiments and careful study of the long-term effects of therapeutic doses
with an emphasis on immunity, wound healing and fertility will be important to assess the
safety of cordycepin.

Promising effects in animal models do not always translate into good medicines for
human patients, and we will have to await the reports of clinical trials to know if cordy-
cepin and its derivatives are also bioactive in people (e.g., NCT00003005, NCT00709215,
NCT03829254, ChiCTR-INR-17014074). A trial of cordycepin in combination with the
adenosine deaminase inhibitor pentostatin for acute lymphocytic leukaemia issued a pre-
liminary account in 2000 [194], but unfortunately, this study has still not issued a final
report. Promisingly, a trial of a partially purified cordycepin preparation for patients with
chronic kidney disease has reported improvements in kidney function [109].

In conclusion, cordycepin has clear biological effects in a large number of animal
models of disease. It has inhibitory effects on the PI3K/AKT/mTOR signalling pathway
and activates AMPK. Most therapeutic effects of cordycepin are consistent with them being
mediated by these effects on signal transduction. Moreover, the wide range of therapeutic
effects reported in animal models is similar to other AMPK activators and mTOR inhibitors.
Remaining challenges are the obscure mechanism of action of cordycepin, the lack of
commercial availability of high purity cordycepin and the incomplete understanding of
cordycepin biodistribution. Nevertheless, cordycepin appears to be an excellent drug lead
for many common diseases and deserves to be further investigated.

4. Materials and Methods
4.1. Scoping of the Review

Only papers recorded in PubMed were considered. A PubMed search on “cordycepin”
found 1167 publications entered in PubMed by 1 February 2021. We found 37 additional
papers on the subject through references in other papers and by examining the abstracts for
a PubMed search for “3’-deoxyadenosine NOT cordycepin” for relevant papers, yielding
1204 papers for initial examination.

We removed 39 articles not written in English from consideration. For the remaining
papers, abstracts were then read to exclude publications solely containing data on cordy-
cepin preparation, fungal production of cordycepin, crude Cordyceps extracts and chemical
synthesis of cordycepin. We also excluded papers only containing data on chemical deriva-
tives of cordycepin, with the exception of studies of the intracellular metabolite cordycepin
triphosphate and animal studies. These filters removed 204 papers.

A total of 33 previous reviews not containing original data were also removed from
consideration. Two corrections on included papers were removed from the database. The
remaining publications were collated in an excel spreadsheet. Full articles were obtained
from online sources, the University of Nottingham library and through the British Library.
We failed to obtain full text copies for eight papers. Data on the biological effects of
cordycepin were extracted from each paper by a member of the team using a spreadsheet.

A total of 910 papers potentially containing data on the biological effects of purified
cordycepin remained at this stage.

4.2. Selecting Sources of Data

After initial reading, we classified these papers according to the system studied
(vertebrate, arthropod, other animal, fungus, plant, protists, bacteria, Archaea and cell-free
systems only). Viruses were classified with their host. If more than one system was studied,
the earlier listed system (as above) was entered. Notes were entered on the characteristics
and species studied and themes were extracted for further analysis.
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We decided to exclude the papers on plants, as cordycepin is primarily used as a
transcription inhibitor to elucidate contributions of this process to biological changes
(123 papers). Some differences to other transcription inhibitors have been noted in seed
germination, but the nature of this difference is unclear [297].

A total of 791 other papers remained containing data on effects of cordycepin (for a
full list, see Supplementary Data). The organisms studied were vertebrates (655 papers),
other animals (14 papers), fungi (31 papers), protists (30 papers) and cell-free systems
(31 papers). Despite the fact that the most likely natural target of cordycepin is insects,
only 13 papers tackled effects on arthropods. One paper on Archaea and 16 papers on
bacteria were found. In most of this review, we concentrated on the effects on vertebrates.

For the third stage, papers describing vertebrate research were read in full to find
data relating to our selected subjects. For each subject, the numbers of papers found are
indicated in the relevant section. For tissue culture experiments, notes were entered in a
standardised Excel spreadsheet under the following standardised headings: dose, time,
cell survival, cell proliferation, cell migration, signal transduction (PI3K/mTOR/AKT,
MEK/ERK, p38 and JunK, others), gene expression (inflammatory and other) and other
effects. For papers describing animal experiments, notes were added on the following
subjects: animal model, dose, administration route, inflammation, other immune system
effects, bone and cartilage, tissue remodelling and fibrosis, tumour growth, neuronal effects,
metabolic effects and other effects.

4.3. Quantifications
4.3.1. Publication Year

The original 1204 papers were used to explore the publication year of cordycepin
papers. Publication year was used as stated by PubMed.

4.3.2. Geographic Origin

First affiliation of the last author was determined from the PubMed entry, or if absent,
by consulting the paper if it was available to us. The continent of the affiliation was entered.
If the last author had affiliations in more than one continent, the first stated was used. We
determined the origin for 932 papers after excluding papers with unclear affiliation.

4.3.3. Cordycepin Concentrations and Cell Viability in Mammalian Tissue Culture

We found 196 papers containing data on the effects of cordycepin on cell viability,
death or proliferation and these were examined further for effects on cell number, cell
survival and cell cycle.

A total of 103 papers contained data on the effects of cordycepin on cell numbers in verte-
brate tissue culture. Data for modified cordycepin, cordycepin with other compounds such as
pentostatin, cordycepin in protective or slow-release formulations or for cells in 3D culture were
excluded. Of these 103, 74 papers included cell viability experiments which used colorimetric
assays with tetrazolium salts (e.g., MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) or employed a live/dead cell counting method, e.g., trypan blue or propidium
iodide, for which the 50% inhibitory concentration (IC50) for cells in conventional (2D) culture
was determined or could be estimated from the data for the 24 h or 48 h timepoint for one or
more cell lines (48 h was selected if both were available). These studies were used for the graph
in Figure 2 [11,27,66,68,70,73,81,88,99,105,107,114,117,142,143,146,149–151,165,178,186,192,
195,196,200,202,203,256,259,264,265,267,276,279,280,298–320]. A total of 65 papers were
found to report cell death by apoptosis [10,27,65,66,73,77,88,99,107,142,143,146,150,151,155,
174,178,186,189,192,196,198,200–203,264,276,279,280,299,300,302–305,307–311,314,319–325].
We did not filter these papers by the assay or by timing.

We noted 45 papers claiming that the cytotoxic effect of cordycepin at bioactive
concentrations was low. We noted the highest concentration which promoted cell survival
or did not cause statistically significant cell death in these papers and determined the
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median and the range [28–30,32–44,69,70,80,95,98,102,105,106,117,142,145,164,184,240,270,
301,315,317,326–336].

Papers with notes on cell proliferation were examined for descriptions of the effect of cordycepin
on cell cycle in vertebrate cells. A total of 58 papers containing data on cell cycle effects were found.
We identified 20 papers with data generated by DNA staining and fluorescent automated cell count-
ing that met our criteria [24,27,65,66,73,80,132,151,176,198,202,280,314,316,317,324,337,338].
We recorded cordycepin concentration and the effects on the distribution between G1/G0,
S and G2/M for each cell line as increased, decreased or no significant change and the
arrested stage was classed on the basis of these changes. Papers which did not separate the
three cell cycle phases or which neglected to show replicated quantified data with statistical
analysis were excluded. Data for modified cordycepin or cordycepin in combination with
adenosine deaminase inhibitors were also excluded.

4.3.4. Cell Migration

We found data on the effect of unmodified cordycepin in solution on the migration of verte-
brate cells in 28 papers. Notes were entered on these experiments, including on effects on known
regulators of cell migration. The lowest dose reported to give effects in scratch or transwell assays
for each cell type was obtained from 19 papers [23,66,68–74,76,79–81,88,99,196,210,322,339].
Data in which cordycepin was combined with adenosine deaminase inhibitors, siRNAs or
administered in a specific formulation (e.g., nanoparticles) were excluded from this analysis.

4.3.5. Cellular Inflammation

Papers selected for analysis were examined for data of effects of cordycepin on cy-
tokines, inflammation or regulation of inflammatory genes in tissue culture. We found
54 papers with data on these subjects [28,31,36,43,69–72,76,78,88,89,94,96–114,117,133,270,
274,286,326,328,330,332,340–352]. We further examined data for nine genes: the cytokines
Tumour Necrosis Factor α (TNFα), Interleukin 1β (IL1β) and Transforming Growth Factor
β (TGFβ), the prostaglandin synthases Prostaglandin Synthase 2 (PTGS2, also known as
cyclooxygenase 2-COX-2) and prostaglandin E synthase (PTGES), the inducible nitric oxide
synthase NOS2 (also known as iNOS), the Vascular Adhesion Molecule 1 (VCAM1) and
the metalloproteinases MMP-3 and MMP-9. Cordycepin-induced changes in the gene
products were noted as increased, unchanged or decreased. We found 38 papers describing
such changes [28,69–72,76,88,89,96–104,106,108–110,112,113,117,270,286,326,330,340–349].
In addition, notes were gathered on the effects on the nuclear localisation, level, phospho-
rylation and DNA binding of NFkB in the 54 papers found for this subject.

4.3.6. Signal Transduction

We found 76 papers on the effect of cordycepin on cellular signalling. Papers with
data about PI3K/Akt/mTOR, AMPK and MAPK signalling cascades were examined
for indicating the precise phosphorylation site of the studied kinases. A total of 47 pa-
pers were excluded because we could not find or infer which phosphorylation site was
studied (i.e., no mention of the site or the antibody catalogue number). A total of 29 ar-
ticles were finally included in the systematic review to study the effect of cordycepin on
the following kinases: mTOR [11,38,44,142], Akt [11,101,103,142,144,145,149,151–153,155],
AMPK [113,142,145,146,152,164,166,167], ERK [11,55,103,143,151,174,176–178], P38 [11,101,
103,112,174–178] and JNK [11,35,103,176,177] (Table 1). The effects were classed as re-
pressed, activated or unchanged/ambiguous (e.g., not statistically significant or conflict-
ing results).
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Table 1. Overview of the included publications on signal transduction: (a) PI3K/Akt/mTOR; (b) AMPK; (c) ERK; (d) P38,
JNK and MAPK signal transduction pathways.

(a) mTOR Ser2448 Akt Ser473 Akt Thr308 Akt Total

Repressed [11,44,142] [11,101,103,142,144,149–153] [154] [152,155]
Activated [38]

Unchanged/ambiguous [145] [145]

(b) AMPKα Thr172 AMPKβ Ser108

Repressed
Activated [113,142,145,146,152,164,166,167] [152]

Unchanged/ambiguous

(c) ERK Thr202/Tyr204

Repressed [55,103,143,151,174,177,178]
Activated [11]

Unchanged/ambiguous [176]

(d) P38 Thr180/Tyr182 JNK Thr183/Tyr185

Repressed [101,103,112,174] [35,103,177]
Activated [11,175–177] [11,176]

Unchanged/ambiguous [178]

4.3.7. Effects in Animal Models

We initially retrieved 160 papers studying the effect of cordycepin in diverse ani-
mal models. Ten articles were excluded because they did not use purified cordycepin
or employed cordycepin derivatives only. Papers studying combination treatment with
adenosine deaminase inhibitors were not excluded. Notes were entered from these papers
including animal species, type of human diseases models, dose in mg/kg and route of
administration. Data were also gathered regarding effects on inflammation, neuronal func-
tion and metabolism. While gathering data from papers studying the effect of cordycepin
on signal transduction in animal models, we excluded any papers that did not report
the precise phosphorylation site (included papers in Table 2). At this stage, the animal
models were classified depending on the human diseases and non-diseased models were
excluded. The classes were as following depending on the number of publications in each
class: cancer (breast cancer, liver cancer, glioma and leukaemia), cardiovascular diseases
(dyslipidaemia, cardiac hypertrophy and hypertension), infection, central nervous system
disorders (depressive disorders and learning disorders), respiratory diseases (asthma),
reproductive disorders, metabolic disorders, bone disorders (osteoporosis and osteoarthri-
tis), endocrine disorders, pain in hyperalgesic priming (a model of transition from acute
to chronic pain), inflammation, hepatic diseases, aging (such as age-related sexual dys-
function and oxidative stress), skin disorders and wound healing (Table 3 specifies the
allocation). If two relevant classes were identified in one animal model, the classifica-
tion was assigned to the first field listed. For example, in papers studying the effect of
cordycepin on osteoarthritic animal models where pain was also measured, the study
was categorised under bone disorders. The range of cordycepin dose administered to
the animal was examined in 131 papers, in which the cordycepin dose could be calcu-
lated as mg/kg [11,18,23,24,28,37,38,42,64,66,76,79,80,97,107,108,119–122,126,130,134,142,
143,145,150,164,183–188,190–199,202,204–216,218–234,236,237,293,328,353–355].
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Table 2. Overview of the included publications studying signal transduction pathways in ani-
mal models.

mTOR
Ser2448

Akt
Ser473

AMPKα

Thr172
ERK

Thr202/Tyr204
JNK

Thr183/Tyr185

Repressed [142,184] [142] [184] [35]
Activated [183] [142,164,184]

Unchanged/Ambiguous

Table 3. Classification of animal models treated with cordycepin. The animal models are classified
according to the type of human disease.

Animal Model Publications

Cancer [11,18,23,24,64,66,74,79,80,107,108,134,142,143,185–203]
Cardiovascular [37,76,120,122,164,183,184,204,206–209,211]

Infection [220–231]
Central Nervous System [28,38,116,119,232–237]

Respiratory Diseases [94,117,118,123,124,128,129]
Reproductive Disorders [244–251]

Metabolic Disorders [166,238–240]
Bone [59,126,334,342]

Inflammation/Pain [42,97,110,121,131,133,212–219]

4.3.8. Exclusion of Papers with Image Duplication

During this study, a key paper was retracted because of extensive data duplication
(PubMed ID 32764880), and we became aware of the problem of so-called paper mill
publications. To try to avoid including any so-far undetected paper mill publications, we
examined all articles we had selected for inclusion in the review on duplicated images. No
problems on a scale as large as the first paper were encountered, but we found three more
papers with clear duplication of one panel. While these may be due to honest mistakes, it
shows insufficient care and these papers were removed from consideration. We notified
the publishers of our concerns. In two other cases, two images were very similar, but not
identical, and we decided to include these but also notify the publishers of these papers.

Supplementary Materials: The Supplementary Data are available online.
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