
Abstract 
Energy storage (ES) is seen as the key to unlocking the true potential of renewable generation as it 

potentially supports their integration into the grid by providing capability for services such balancing 

and frequency regulation. It also has the potential to reduce peak power demand reduction (a form 

of arbitrage) and this service will be important for distribution companies as it frees capacity on the 

grid. The first part of this study presents an energy management strategy (EMS) that reduces the peak 

power drawn from the grid by a community of 60 homes using ES and local generation (in this case 

photovoltaic panels (PVs)). The EMS is tested on hundreds of cases and shows an average yearly peak 

reduction of around 30% in the best cases. The second part of the paper tests the economic viability 

and greenhouse gases (GHG) emissions of the cases explored and shows that trade-offs exist between 

electricity supply costs, peak power reduction, and life cycle GHG reductions. PV generation provides 

a significant reduction in GHG emissions but makes little contribution to reducing peak demand from 

the grid. In contrast, community energy storage (in batteries) is effective at reducing peak demand, 

but at significant additional costs, and may result in a modest increase in GHG emissions due to 

emissions associated with battery manufacture and roundtrip efficiency. Future cost projections for 

2040 for PV and battery, together with longer a battery cycle life, show that considerable reductions 

in the cost of community electricity generation and storage can be made to encourage the 

management of peak grid demand. 
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1. Introduction  
During the last decades, global warming caused by greenhouse gas (GHG) emissions has become an 

increasing cause for concern and part of the political agenda of most of the world's nations. The "Paris 

climate agreement" of 2015 was part of the global strategy to tackle climate change and one of the 

essential steps towards this goal is the switch from fossil fuels energy to renewable energy [1]. The UK 

government has set the renewable energy target to be delivered as 15% of the total energy demand 

by 2020 [2] and consistently reduce overall GHG emissions by 2032 as planned in the 5th carbon budget 

[3] and reach net-zero emissions by 2050 [4]. Onshore and offshore wind and solar photovoltaic are 

among the fastest growing renewable electricity generation in comparison to alternatives. In 2019, 

they accounted for 64.1 percent share of the total renewable generation in the UK [5]. These sources, 

however, are intermittent in nature, which could pose a challenge to the distribution systems in terms 

of the grid stability and reliability.  

Deploying energy storage is one of the solutions proposed to help integrate these renewable sources 

into the grid [6, 7]. The use of energy storage (ES) systems at community scale has recently seen 

considerable interest from the research community, as it can potentially address the reverse power 

flow problem and provide better regulation of system voltage. It may also provide a mechanism to aid 

in the foreseeable increase in electrical loads (electric vehicles, heating, ventilation and air 

conditioning) without the need for upgrading the distribution system infrastructure [8, 9]. However, 

while ES coupled with photovoltaics (PV) can increase self-consumption reducing the use of fossil fuels 

for electricity generation, the environmental benefits should not be outweighed by the ES production 

and use phases. Thus, a life cycle assessment (LCA) is necessary to understand the overall system 

sustainability. Economic viability is also crucial since no investment in ES is made if not economically 

profitable. Both the LCA and the economic analysis are very dependent on how the system is designed 

and operated so it is important to couple them with a technical analysis aiming at finding an optimal 

configuration that minimises costs and maximises the technical and the environmental performance.   

Several technologies for storing energy are under research or deployed, for example pumped 

hydroelectricity storage, compressed air, flywheels, supercapacitor, superconductive magnetic energy 

storage and all sort of batteries to name a few. They have different purposes and can store different 

quantities (and types) of energy, but when dealing with residential storage, especially if coupled with 

PV, most of the literature focuses on the use of batteries [10-13] for increased self-consumption and 

peak-shaving. To achieve these two goals, advanced energy management strategies must be in place 

and much research has been published on this topic over the last decade.  

In most of the studies, the electricity price is used as main objective of the control optimization since 

it reflects the peak demand defined by the distribution network operator (DNO). Following this 

method, [14-16] presented a dynamic programming (DP) approach, [17, 18] used a linear 

programming (LP) and mixed integer linear programming (MILP)  approach, and [19-21] proposed a 

model predictive control (MPC) technique. Other research disregards the electricity price and use a 

direct way to reduce the peak demand. For example, [22, 23] use a low-pass filter based simple moving 

average (SMA) technique where the high frequency component determines the operation of the 

battery energy storage. This however suffers from low frequency profile lagging and forecast error 

which reduces the performance of the battery. Pascual et al. [24] proposes a central moving average 

(CMA) approach to eliminate the lagging effect and uses the battery state of charge (SOC) feedback 

to deter the forecast error. This approach reduces the optimization complexity, but the use of energy 

storage is limited because it requires its oversizing to achieve daily demand smoothing. Others adopt 

the power pinch analysis (PoPA) concept to shift the load demand and manage the energy storage 



[25-27]. This is a simple technique that works effectively with fixed or predictable load requirements 

[26].  

Research has also focused on techno-economic aspects of using batteries, and other energy storage 

technologies, for several different purposes [28, 29], including energy management at residential 

community scale or single house [30-35] or commercial buildings [36]. Different types of batteries are 

often investigated but most of the focus is on lithium ion (Li-ion) and lead acid. Between the two, the 

lowest cost choice is dependent on the application, however uncertainties in their technical 

parameters (i.e., cycle life, calendric life, round-trip efficiency) and other costs (i.e., balance of plant, 

power conversion system (PCS), operations and maintenance) exceed the difference in costs, making 

this a topic for further studies [30]. Lead acid batteries are a mature technology, but with a lower 

energy and power density than Li-ion batteries (not an issue for stationary application). However, Li-

ion could become the favourite technology when prices decrease due to their higher energy efficiency 

and aging features [28, 37]. Methodologies using linear optimisation are proposed to find the most 

advantageous component sizes for residential battery storage showing effective results in maximising 

the electricity cost savings while minimising the storage degradation costs [38]. Pinch analysis is also 

used to identify appropriate storage options in relation to the community needs [39]. Some studies 

focus on analysing different energy management strategies to maximise self-consumption or 

maximise peak-reduction in order to evaluate their impact on the system costs [40] and their results 

show that energy storage is generally found unprofitable [31, 35, 36] unless it provides several paid 

services on different markets (capacity, frequency regulation, balancing, energy arbitrage, network 

support, wind support etc.) [41].  

The environmental impacts, mostly GHG emissions, of PV and battery production are also broadly 

investigated. Several LCA of PV were performed as shown by the review of Nugent et al. [42] and 

Gerbinet et al. [43]. The environmental impacts of batteries has also been investigated with LCA, and 

of the different technologies, the Li-ion one is found to be the least impacting in delivering 1 kWh of 

electricity for different stationary applications when accounting for manufacture and use phase [44]. 

The techno-economic and the environmental aspects are rarely combined although welcomed [31, 

45]. One study from Abdon et al. [46] comparing different energy storage technologies found that 

batteries are the cheapest solution for short time scale (minutes) but also with applications for 

medium time scale (4 hours). Moreover, batteries show low impacts for global warming potential 

(GWP) compared with other type of storage. 

Only one study was found that offers a combination of techno-economic and environmental analysis 

for PV and community storage. It shows the benefits of installing PV and storage from both the 

environmental and economical perspective [47] even though it stresses the problem of the large initial 

investment with a long payback time (up to 14 years). To the best of our knowledge, no previous study 

provides a techno-economic and environmental evaluation of a configuration of PV and storage that 

adopts a novel energy management strategy (EMS) aimed at maximising peak-shaving to allow for 

more spare capacity on the grid. In other words, the batteries are not charged primarily when the 

electricity price is lower, but when necessary to have them ready to shave the peak demand. 

Secondarily, this study evaluates the results from the retail market perspective.  

The aim of this paper is, therefore, to provide an optimal solution for peak shaving while aiming at 

reducing the overall cost from a wholesale perspective (i.e. lower the cost of electricity at wholesale 

market price) and environmental impacts for the community. This study introduces a novel battery 

management strategy for a grid-connected energy storage system with PV for a community of 60 

homes based on a combination of the PoPA technique and the battery SOC feedback closed loop 

control. This novel strategy is applied to different battery and inverter sizes and different number of 



PVs installed to find an optimal solution for the community. A techno-economic and environmental 

analysis is also performed on all scenarios with the aim of finding a trade-off among the technical 

performance, the cost, and the environmental impacts.  

2. Methodology 
The electricity consumption profiles of a small community have been investigated to better 

understand the trade-offs between investment costs, environmental impacts, and the influence of an 

energy storage system (ESS) on the community’s electricity usage. The community is made up of 60 

dwellings, and its consumption over a full year has been analysed, with different amounts of installed 

local PV generation, and different sizes of energy storage system. The profiles with and without the 

PV and ESS are obtained from simulation studies, and the following sections describe the energy 

management strategy, the data sources and the prediction algorithms used to forecast consumption 

and generation in these studies. The methodology of the analysis and comparison will then be 

described. Before doing this, though, it is necessary to define an EMS.  

The EMS controls the operation of the ESS so that the electricity consumption of the community 

follows a specified trajectory to fulfil three control objectives. These objectives are to minimise the 

reduction of the power drawn during peak consumption periods (peak shaving), reduce the cost of 

power drawn from the supply utility and to maximise self-consumption of locally generated power 

(i.e. from PV systems). A real time pricing tariff together with predictions of future demand and 

generation are used to create a profile for the desired half-hourly community power consumption for 

the next day. The PoPA then optimises this target based on knowledge of battery capabilities and an 

objective rule-base to guarantee daily power smoothing. To account for system losses and prediction 

errors in real time, a faster control loop is employed which compares the desired profile with the 

measured community power flow on a minute by minute basis and modifies the ESS commands to 

ensure desired profile is followed correctly.  

This proposed strategy therefore offers a simple and robust approach to EMS implementation, but to 

check its effectiveness, a techno-economic and environmental analysis has been performed. More 

than 300 scenarios were analysed where different sizes are used for the PV array, power conversion 

system (PCS) and battery capacity, to understand how these parameters affect the peak-shaving 

performance, self-consumption and electricity costs for the community. For each scenario, GHG 

emissions and equipment costs are calculated and annualised on the equipment lifetime bases. The 

best performing scenarios in terms of peak-shaving, electricity and infrastructure cost, and GHG 

emissions were selected and compared to understand the trade-offs between these factors. 

2.1 Energy Management Strategy 
The EMS achieves the tree main objectives by controlling the net power drawn from the main grid by 

the community on a minute-by-minute basis. This net power (called here the “Community Power 

Flow” or CPF) is a combination of the community’s consumption and PV generation together with any 

charge (discharge) of the community’s batteries, and therefore it is the battery that is controlled to 

achieve the objectives.  

The proposed strategy consists of three control layers as shown in Figure 1. The first layer aims to 

determine the best target for the community’s CPF – here called the Community Power Flow target 

or CPFT. It sets a profile for the CPFT for a day ahead with the objectives of reducing peak load (peak 

demand shaving), demand smoothing and increasing the self-consumption of locally generated 

renewable energy. The calculation of this CPFT uses knowledge of the community’s previous energy 

usage, its previous renewable energy generation, real time pricing (RTP) from the electricity markets, 



and also knowledge of the battery’s operating condition (capacity, state of charge, maximum power 

capability). These prices are used because the RTP normally reflects when peak power demand occurs 

(i.e. high price periods) and when it is financially beneficial to reduce consumption from the grid. This 

first layer calculates the best power consumption profile (CPFT) for the next 24 hours by means of an 

autoregressive predictive model using the data from same day of the week before. It is assumed that 

patterns of behaviour within the community follow weekly rather than daily patterns. 
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Figure 1 – Community energy management strategy: three control layers 

The second layer takes the CPFT obtained from the first layer for the next half hour period and 

modifies it using feedback from the battery – its state of charge (SOC) – to adjust for system losses 

and prediction error. This means that any deviation of the predictive first layer from the real 

consumption of the community is corrected for the next half hour. To do this, the second layer uses 

the same auto-regressive prediction technique but with a half hour time resolution and always for the 

same half hour of the same day of the week before.  

The third layer forces the grid demand to follow the CPFT by charging or discharging the battery based 

on the residual energy between the CPFT and actual community power flow. It runs in real time with 

a one-minute sample time and by evaluating the difference between the load predicted by the second 

layer and the real load, it decides whether to charge or discharge the battery. More details on the 

three layers are available in the supporting information (SI) in section S1 and S2. 

2.2 Load and PV energy forecasting 
There are many load forecasting methods that have been reported over the last decade from simple 

persistence based methods [24], which select historical data from a similar day for use as a prediction, 

to more complex methods such as those using mathematical models with time series, artificial neural 

networks, fuzzy logic, expert systems or statistical learning algorithms [48, 49]. In this work, a time 

series method based autoregressive model (AR) is used to predict the load and PV generation profiles. 

This method is relatively simple and has the advantage of only using historical data in the prediction 



i.e. the predicted load is assumed to be a linear combination of previous loads. To improve the 

prediction accuracy, the coefficients of the AR model need to be obtained using a training algorithm 

and data collected from the community and PV generation. For the load forecast model, the training 

data is based on the same day of the week and also the season (as consumption patterns can vary 

seasonally). For the PV prediction, the data from the same month in the previous year is used to train 

the PV prediction data.    

To test the effectiveness of the strategy for different prediction approaches three approaches have 

been evaluated through simulation, namely 1) persistence (PS – uses the same values of the week 

before), 2) autoregressive (AR – uses the autoregressive approach tested in this analysis) and 3) 

perfect foresight (PP – use perfect data prediction, impossible in real life).  

2.3. Data Sources  
The EMS has been evaluated by applying it to the control of an ESS in a community of 60 dwellings. 

The real time pricing tariff, which has a half hour price variation, can be obtained from the New 

Electricity Trading Arrangements (NETA) website [50].  

The community load profile considered is based on the real measurement of sixty residential dwellings 

in Milton Keynes, UK [51]. The load dataset provides a minute-by-minute profile for electricity power 

consumption for the whole year. PV generation is included for most of the simulation scenarios and 

the PV profile used for these studies was obtained from actual power data measurements recorded 

with a sample rate of 10-minutes available at www.pvoutput.org.   

The power converter model used in this work is characterised from empirical data obtained at the 

University of Nottingham. A 12kW DC-AC power converter was tested across a range of operating 

powers to determine how its efficiency changes as a function of power processed. The converter was 

then modelled using the efficiency curve fit presented in the SI section S3 and its minimum operating 

limit set at 10% of its rating to maintain an efficiency of at least 88%.  

The battery model is based on measurements performed at the University of Nottingham on a 24 kWh 

lithium-ion battery pack. By cycling the battery and measuring the voltage and current at the battery 

terminals the battery open-circuit voltage (Voc) and battery internal series resistance (Rbatt) can be 

determined, indicating roundtrip efficiency of charging/discharging battery under various conditions 

(see SI section S4 for details). The parameters used to describe the battery state are the instantaneous 

values at the battery terminals. The battery voltage changes with the battery state of charge. This 

parameter will determine the maximum charge and discharge power of the battery as well as the 

maximum battery capacity. The battery SOC is kept between 10% and 90% to prolong its lifetime as 

recommended by [52] to maximise battery life. Note that the battery capacity and power rating of the 

converter will be varied as part of the techno-economic analysis described in the next section. 

2.4 Modelling 
The community is modelled using a bespoke MATLAB program which inputs consumption and 

generation data on a minute by minute basis and combines this with the modelled charge/discharge 

of the battery to obtain the community power flow for that minute. The EMS layers are executed at 

their appropriate sample times. A full year is simulated for each scenario so that it can be compared 

with the baseline scenario of the community without PV or ESS. To illustrate the data that is presented 

from this simulation, Figure 2 shows the data for three days resulting from a typical simulation. 

This scenario is for three consecutive typical summer days for a scenario in which 10 community 

houses have PV panels installed (3.89 kWp each) together with a battery system rated at 147 kWh and 



a 50 kW power converter. The top graph shows the community power flow (red) with no battery, the 

PV generation (green) and the community power flow when the battery and the proposed algorithm 

is used (blue). The bottom graph shows the battery’s state of charge. The chart shows that the battery 

pre-charges by a small amount from the grid overnight (low cost energy) and then discharges during 

the early morning peak. Then the battery starts to charge from approximately 9.00 hrs using surplus 

PV energy (i.e. PV generation in excess of local load requirements) to store sufficient energy to be 

ready for discharge during the evening peak period.  An important point to note is that export seen in 

the red trace (negative grid power) is virtually eliminated in the blue trace i.e. the battery has ensured 

that the community can consume all of its locally PV generated energy. 
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Figure 2 – Typical Simulation results  

Community demand and PV generation profiles (Top) and SOC (Bottom) on typical days in July 

By comparing the red and blue traces, the ability of the battery to move energy from high tariff to low 

tariff periods can be quantified – this is termed “peak demand reduction”. The peak demand reduction 

is calculated by determining the energy drawn from the supply utility before the battery system is 

added to the community during peak tariff periods and comparing it with the same value when the 

battery has been added to the community (more details in the SI section S5).  In addition, the 

smoothing capability can be determined by considering how precisely the demand follows the target. 

The percentage root mean square error (%RMSE) between the community power flow target and the 

actual community power flow is used to assess the EMS performance (calculated as shown in the SI 

section S6). Finally, the community self-consumption (of its locally generated PV energy) enabled by 

the energy storage system is also presented to demonstrate the benefits to the community as a whole 

(SI Section S5). 

2.5. Financial and environmental analysis 
The financial and environmental analysis focuses on understanding trade-offs between cost of 

electricity provision, renewable energy self-consumption, and life cycle greenhouse gas emissions for 

the 60 homes community. The parameters of the different scenarios vary as follows: the PV 

installation can vary from 0 to 20 houses. The total generation capacity of the community therefore 

varies from 0 to 77.8 kW.  The battery capacity can be increase by adding two packs of 10.5 kWh in 

parallel at a time. The minimum size is 63kWh (Six packs in parallel) and the maximum size considered 

588 kWh (26 packs) for the cases in which 20 houses are equipped with PVs. The power converter 

rating has also been varied from 20 kW to 80 kW (10 kW intervals). For all scenarios, export of excess 



electricity from the community to the grid is allowed. In total, 364 combinations of PV and ba ttery 

capacity are evaluated. Key scenarios highlighted in the paper are: 

A. Grid only 

B. 10 PV (3.89 kW PV installations at 10 houses; 38.9 kW total) 

C. 20 PV (3.89 kW PV installations at 20 houses; 77.8 kW total) 

D. 0 PV – 40 kW – 105 kWh (grid only + 105 kWh storage capacity and 40 kW inverter) 

E. 10 PV – 50 kW – 147 kWh (10 PV case + 50 kWh storage capacity and 147 kW inverter) 

F. 20 PV – 50 kW – 168 kWh (20 PV + 168 kWh storage capacity and 50 kW inverter)  

2.5.1 Cost model 

The cost model estimates the electricity provision cost for the scenarios A-F [50], based on wholesale 

electricity costs. UK-specific cost data on PV installations is used [53], assuming no economy of scale 

for multiple, single-house installations within the community, and operating and maintenance costs 

are assumed to be negligible. Installed lithium-ion battery cost data is taken from a review comparing 

electricity storage systems [34], accounting for the base battery cost, balance of plant (including 

installation, power conversion system), and fixed/variable operating and maintenance costs, and 

assuming that specific costs of grid-scale energy storage would be achievable at community energy 

storage scale. Average values from [34] are employed, and linearly scaled with the capacity considered 

in each scenario. As battery cost has significant uncertainty, a sensitivity analysis is developed to 

evaluate implications on overall results.  

All costs and revenues are considered on an annual basis to determine the annual energy supply cost 

to the community, with upfront capital costs converted to equivalent annual costs using the capital 

recovery factor: 

𝐶𝑅𝐹 =
𝑟

1 − (1 + 𝑟)−𝑛
 (1) 

where r is the project discount rate (assumed here as 8%) and n is the project life, assumed to be 10 

years for the PCS and 30 years for the PVs. Degradation of PV efficiency capacity over time is not 

considered within the models. Battery lifetime is assumed to be 3000 cycles at 80% depth of discharge 

or 20 year (the earliest reached), after which is considered replaced with an identical battery. This is 

a conservative estimate of battery life  [38, 54], as values up to 30,000 cycles have been reported [30]. 

To test the effect that potential price variations have on the system performance, future scenarios are 

simulated. Forecasted prices for batteries (60% reduction) [55] and PV for 2040 (65% reduction) [56] 

are tested. A longer battery lifetime of 6000 cycles (as in [54]) is also considered. In detail the scenarios 

are described as follows: 

• Original (cases presented in previous sections) 

• 65% PV cost reduction (original scenario with 65% PV cost reduction) 

• 65% PV & 60% battery cost reduction & 6000 cycles (same as above with battery lifetime 

extended to 6000 cycles) 

Future scenarios do not consider improvements in the efficiency of equipment, nor changes in the UK 

grid mix.  

2.5.2 Greenhouse gas emissions model 

The calculation of GHG emissions over the full life cycle considers the generation of grid electricity, as 

well as the production of the PV system and the battery storage infrastructure. Upfront impacts of 



producing the PV generation and battery storage equipment is amortised across the project life with 

no discount rate applied (e.g., straight-line amortisation).  

Impacts associated with grid electricity consumption are estimated based on the average grid mix. The 

grid electricity supply analysis is taken from the 2020 GHG reporting conversion factors [57]. The 

model does not consider the marginal electricity source consumed/displaced at times of electricity 

exchange between the grid and community. By reducing demand on grid electricity at peak times, the 

community energy storage system may reduce demand for high-GHG electricity generation sources 

(e.g., peaking natural gas turbines), while charging storage with PV-generated or lower GHG grid 

sources at times of low demand. We have also calculated the difference in GHG intensity between 

electricity input to storage and that avoided by use of stored electricity in peak times that is required 

to fully compensate for GHG emissions associated with the energy storage system.   

For PV, only their production is considered as there are no major environmental impacts during their 

use-phase. The panel production emissions are calculated based on harmonised results presented in 

Hsu et al. [58]. GHG emissions are adapted for the study location (Nottingham, UK), with annual solar 

insolation of 923/m2 [59]. Similarly, GHG emissions associated with battery manufacture are extracted 

from a previous harmonisation study [60]. The GHG emissions are linearly scaled based on the energy 

storage capacity of the system (kWh). The battery emissions are annualised using their calculated 

lifespan (the earliest between 3000 cycles and 20 years). As a wide range of GHG impacts of battery 

manufacture have been reported in the literature, we undertake a sensitivity analysis of this 

parameter to consider its influence on results. Emissions associated with the power conversion system 

(PCS) are obtained from Ecoinvent 3.4 [61] and are linearly scaled based on capacity (kW). End of life 

management of the PV and energy storage system components are not considered in this study, as 

there is limited understanding of how these components will be managed at end of life. 

3. Results 

3.1 Energy Management Strategy – Peak Reduction 
The performance of the EMS was illustrated in Figure 2 in section 2.4, where it can be clearly be seen 

that the EMS significantly reduces export to the grid and reduces the consumption peaks. In particular, 

the battery has a significant influence on reducing the energy drawn by the community during the 

typical period of “evening peak” consumption.  

To determine the effect of the techniques used for predicting load and PV generation (section 2.2), a 

set of simulation scenarios were examined for a community with 10 houses, each with a PV system. 

Battery capacity was set at 147kWh and the power convertor was rated at 50kW. The results are 

shown in Table 1Table 1. 

Table 1 – Prediction algorithm results 

 Average Peak Energy Reduction % RMS error 

Perfect prediction 39% 6% 

Autoregressive prediction 30% 7% 

Persistence prediction 26% 8% 

 

The use of an EMS with a battery storage system significantly reduces peak energy consumption (peak 

shaving) and the EMS also follows the reference with a good accuracy (low RMS error). The choice of 

prediction technique demonstrates that the two computationally simple approaches (Autoregressive 

and Persistence) are effective – it is questionable whether a more computationally or data intensive 



algorithm (based on artificial intelligence for example) would provide significant benefit as it is still 

unlikely to come close to perfect prediction. The approach used for the following economic analysis 

uses the autoregressive prediction algorithm. 

Energy balance data are shown for the six key scenarios in Table 2; results for additional iterations of 

PV and energy storage capacity can be found in the SI (section S8).  As to be expected, increasing PV 

capacity reduces demand on grid electricity and can result in significant electricity exports when PV 

generation exceeds local demand. Electricity exports account for approximately one third of PV 

generation when PV is installed on 20 of 60 community houses; this can be reduced to less than 10% 

with community energy storage available. PV generation alone is unable to appreciably reduce peak 

demand for grid electricity (2% to 3% reduction), due to mismatch between times of PV generation 

and community electricity consumption. Energy storage is thus essential to reduce grid peak demand, 

achieving an average reduction in peak demand of ~30%.  

Table 2 – Selected cases: technical properties   
Grid import 

(MWh-y) 
PV gen.  

(MWh-y) 
Export 

(MWh-y) 
Storage roundtrip 

efficiency (%) 
Average peak 

demand 
reduction (%) 

Grid only 229.1 0.0 - - - 

10 PV 191.7 42.5 5.1 - 2% 

20 PV 173.0 84.9 28.9 - 3% 

0 PV - 30 kW - 84 kWh 240.32 0.0 - 76% 24% 

10 PV - 50 kW - 147 kWh 202.8 42.5 0.2 74% 30% 

20 PV - 50 kW - 168 kWh 169.6 84.9 8.2 76% 32% 

 

3.2 Cost model 
The capital costs associated with installing PV generation and energy storage capacity within the 

community are significant and result in a net increase in energy costs to supply the community despite 

reducing demand for grid electricity to various degrees.  

 
Figure 3 – Selected cases annualised cost 

12.8

16.9

22.0

28.7

39.0

46.8

2%

3%

24%

30%

32%

0%

3%

6%

9%

12%

15%

18%

21%

24%

27%

30%

33%

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Grid only 10 PV 20 PV 0 PV - 30 kW -
84 kWh

10 PV - 50 kW
- 147 kWh

20 PV - 50 kW
- 168 kWh

Ye
ar

ly
 a

ve
ra

ge
 p

ea
k 

sh
av

in
g 

(%
)

A
n

n
u

al
is

ed
 e

n
er

gy
 c

o
st

 (
£

 x
1

0
0

0
)

Grid PV

Storage Avg yr peak shaving %



Results for the key scenarios are shown in Error! Reference source not found.Table 3 Error! Reference 

source not found. and Error! Reference source not found.Figure 3, and data for additional 

configurations are available in the Supporting Information.  

Systems with PV generation are able to reduce demand for grid electricity by 17% (10PV scenario) and 

25% (20PV scenario) (Table 2) and are able to export excess generation as a revenue source. The 

financial benefits of PV generation – reduced grid electricity purchases and revenues from excess 

generation sales at wholesale value - do not balance the upfront cost of installing PV capacity, 

increasing annual energy costs by 30% (10 PV case) and 70% (20 PV case). 

Table 3 – Selected cases: annualised cost breakdown (grid + capital costs) 

 Annualised costs (1000£) Cost of storage 
(£/kWh) 

 
Grid PV Storage Total 

Grid only 12.8 0.0 0.0 12.8 - 

10 PV 10.7 6.2 0.0 16.9 - 

20 PV 9.6 12.4 0.0 22.0 - 

0 PV - 30 kW - 84 kWh 12.5 0.0 16.2 28.7 0.46 

10 PV - 50 kW - 147 kWh 10.3 6.2 22.5 39.0 0.51 

20 PV - 50 kW - 168 kWh 8.5 12.4 25.9 46.8 0.49 

 
Installing energy storage capacity alone (without PV generation) reduces demand at times of high 

electricity cost by purchasing and storing electricity at lower cost times. Peak demand is reduced by 

24%. However, due to roundtrip efficiency of the storage system, total electricity demand increases 

by ~10% in this case, resulting in a net reduction in the cost of grid purchases of only 3%. The small 

reduction in grid purchase costs is dwarfed by the cost of the energy storage system, increasing 

community by 124%. Scenarios with both PV and energy storage can achieve further reductions in 

peak electricity demand of 30% and 32% in the selected scenarios but at a further increase in supply 

costs of nearly 300%. Further increasing storage capacity results in rapidly increasing costs and 

achievement of marginal additional reduction in peak demand from the grid (see Figure S.XX in the 

SI). The cost of storing and delivering electricity in the community energy system evaluated here 

ranges from £0.43/kWh to more than £1/kWh. Costs of energy storage are unlikely to be significantly 

improved with larger scale energy storage (e.g., by considering larger community, or city). Costs 

assessed in this study assume that utility-scale specific energy storage costs ($/kWh capacity) could 

be achieved in community energy storage systems. Further, the specific energy storage requirement 

for community energy systems (kWh capacity per household) has been previously found to not 

decrease significantly beyond a community size of 30 households [62].  



 
Figure 4 – Future cost projection of selected cases for the year 2040. 

Expected cost reductions and lifetime improvements for the PV and energy storage systems will make 

community energy infrastructure more attractive for investment by 2040 with anticipated cost 

reductions of 65% and 60% for PV and storage costs, and doubling lifetime of battery storage systems 

[55,56,57] (Figure 4). All scenarios would still result in an increase in electricity cost compared to 

current grid retail prices (future grid electricity costs are not considered). Reducing upfront PV costs 

by 65% will realise a generation source that is only marginally higher than current grid electricity costs.  

Anticipated lower battery storage costs, and longer battery lifetimes, will still contribute to higher 

overall energy supply costs than the current electric grid. The cost of supplying electricity from the 

energy storage system decreases, to a lower range of £0.14 to £0.49 with anticipated cost reductions 

and extended lifetime.  

3.3 GHG emissions model 
Renewable electricity generation with PV is able to reduce GHG emissions associated with electricity 

supply to the community, whereas the energy storage system will increase GHG emissions at the 

community level due to the embodied emissions of the storage equipment and roundtrip efficiency 

losses. As shown in Error! Reference source not found.Table 4 and Error! Reference source not 

found.Figure 5, GHG emissions are mostly connected with electricity purchases from the current grid 

mix. The emissions associated with PV generation are less than grid-average GHG emissions, and so it 

achieves a net reduction in emissions through self-consumption or grid export, by displacing 

generation sources that currently supply either the community or other customers.  

In contrast, scenarios with energy storage increase net GHG emissions associated with electricity 

supply to the community. This results from embodied GHG emissions related to the manufacture of 

the storage system components (battery, inverter, balance of plant), and roundtrip efficiency-related 

losses. Storing grid electricity to shift demand from high-cost times to lower cost times requires the 

purchase of a greater quantity of electricity from the grid than direct consumption. Similarly, using 

storage to increase self-consumption is found to increase overall GHG emissions, as roundtrip losses 

to store and use PV generation within the community exceed distribution losses associated with grid 

export.  
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A key limitation of the assessment approach is that it does not consider the marginal effects of a 

community energy store on the grid generation mix. It is plausible that the peak shaving ability 

provided by the energy storage system could reduce demand from the grid at times where the 

marginal supply would be associated with higher than average GHG emissions (e.g., due to 

contribution of peaking power plants, or greater reliance on fossil fuel-fired generators). The 

additional GHG emissions burden of the energy storage system, approximately 70 gCO2eq./kWh 

supplied from battery for the key scenarios, ranges from 67 to 106 gCO2eq./kWh across all iterations. 

To put this in context, GHG emissions associated with relatively high efficiency natural gas combined 

cycle generation facilities is approximately 500 gCO2eq./kWh [63], whereas single cycle peaking gas 

turbines would be expected to have substantially higher emissions. If electricity stored in batteries 

comes from a low GHG-intensity mix, and peak shaving is able to avoid fossil fuel-fired generation, it 

is plausible that overall GHG emissions will be reduced overall. This is not considered in the present 

results. The anticipated increase in battery lifetime in future will reduce associated GHG emissions of 

electricity storage to a range of 30 to 106 gCO2eq./kWh delivered from the energy storage system, 

making a net reduction in GHG emissions more likely. The high end of the range is the same as the 

lifespan of large batteries is not extended by the increased cycling capability. 

 

 
Figure 5 – Selected cases annualised GHG emissions 

Table 4 – Selected cases: annualised GHG emissions breakdown 

 Annual GHG emissions (tCO2eq./yr) 
Additional emissions from 

storage (gCO2eq/kWh)  
 Grid PV Storage Export Net  

Grid only 57.99 - - - 57.99 - 

10 PV 48.54 3.52 - -1.30 50.77 - 

20 PV 43.81 7.05 - -7.32 43.54 - 

0 PV - 30 kW - 84 kWh 60.85 - 2.53 - 63.38 71 

10 PV - 50 kW - 147 kWh 51.34 3.52 3.24 -0.05 58.05 73 

20 PV - 50 kW - 168 kWh 42.93 7.05 3.79 -2.09 51.69 71 
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This is a delicate balance as to an increase in renewable generation/storage could be associated a drop 

in efficiency of gas turbines forced shutdown/start-up more often or even to run at a lower percentage 

of load. Gas turbines operating at 50% of their nominal load could suffer a drop in efficiency up to 70% 

[64]. It then becomes essential that storage is charged only with renewable energies and that 

electricity generation with gas turbines is made more efficient, for example by using a larger number 

of smaller turbines, or that more flexible technologies are used like a few internal combustion engines 

running in parallel that can be turned on and off when needed [65], or a combination of the two. 

4. Discussion and conclusions 
This study has proposed a robust and effective energy management strategy and tested it over a year 

of data under different operational conditions. It can achieve up to 40% peak reduction with perfect 

prediction of consumption and generation variables, and 32% with the autoregressive forecasting 

techniques. The limit of this type of approach, using real time prices as a proxy to identify the grid 

consumption peaks, is that when real time prices are not varying with the peak demand, peak shaving 

does not occur. An algorithm that keeps track of both prices and real time demand could be a solution, 

but this is material for further studies that might also include battery degradation and seasonal 

storage. Further studies could also investigate the benefits brought by the peak shaving such as the 

reduction of distribution network losses. As losses reduce as the square of peak power, this improved 

efficiency might bring benefits in terms of costs and emissions.  

In this paper we have also shown that trade-offs exist between electricity supply costs, peak reduction 

and life cycle GHG reductions. PV generation provides a significant reduction in GHG emissions, but 

makes little contribution to reducing peak demand from the grid. Community energy storage in 

batteries are effective at reducing peak demand, but at significant additional costs, and may result in 

a modest increase in GHG emissions due to emissions associated with battery manufacture. GHG 

emissions reductions with community-level energy storage would be possible, provided that they are 

charged with renewable (or low carbon) electricity sources and discharged at times where fossil fuel 

generation can thereby be avoided, but analysis of such a management strategy is outside of the scope 

of the current paper. Anticipated cost reductions for PV and battery, and longer battery cycle life, will 

considerably reduce the cost of community electricity generation and storage for managing peak grid 

demand. There are additional opportunities in future distribution systems for revenue which are not 

currently available, and these should be briefly mentioned. 

1) System losses 

Losses in the distribution system are proportional to the square of the load current. This means 

that if the peak power demands double, the system losses will quadruple. If consumption peaks 

can be reduced using energy storage (or at least maintained at a reasonable limit as the 

electrification of heating and transport increases overall electricity demand), then it should be 

possible to quantify savings if these additional system losses are not incurred. 

2) Deferment of Infrastructure Upgrade 

As mentioned in (1), domestic and commercial electricity loads will increase significantly over 

coming years with the move towards, for example, electric vehicles and heat pump technologies. 

Increasing loads can potentially overload existing infrastructure – cables, switchgear and 

transformers. Energy storage can help to defer any infrastructure upgrades. DNOs can potentially 

reward customers who invest in energy storage technology if it can reduce the immediate 

requirements for infrastructure overhaul. 

3) Additional benefits for System Power Quality 

The power convertors used to interface energy storage to the grid can provide additional benefits 

to power quality. For example, voltage levels may potentially change quite drastically in future 



distributions levels as they will be high during times of high generation (midday on sunny days) 

and low in the evenings when there is high load (cooking, charging EV). Power convertors can 

inject reactive power at relatively low operational cost to mitigate these swings. Again reward 

could be offered for this functionality. 

4) “Go Green” 

Energy storage technology at all levels of the grid is an essential part of moving to a smarter more 

sustainable electricity system. The cost of investing in energy storage technology could be 

considered as a necessary cost for “going green”. 

It is clear that additional reward should be obtained if these system level benefits can be provided by 

electricity prosumers. The advantages of working within a community are that the cost of energy 

storage infrastructure can be reduced per customer. The large load variations created by one 

household are largely smoothed when a community of over 30 is considered [62], leading to a 

significant reduction of energy storage capacity per household (from 6kWh to 3kWh). The concepts of 

Distribution System Operators (DSO) and Energy Service Companies (ESCo) are moving the idea of 

Community Energy forward [66]. 
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