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A B S T R A C T   

As machine learning becomes more popular in the precision engineering sector, the need for large datasets of 
measurement data increases. Due to the often manual, user dependent and labour-intensive measurement pro
cesses, collecting a large amount of data is often infeasible. It would, therefore, be desirable to collect a small 
amount of data on which to train a model to generate synthetic data that is representative of the real mea
surement data. To this end, we present an approach to numerical surface texture generation based on a pro
gressively growing generative adversarial network. We show that by encoding height data into grayscale values 
within an image, the network can create realistic synthetic surface data both qualitatively and quantitatively. 
The proposed approach is general to any encoded surface; we demonstrate the model trained on two example 
datasets consisting of surfaces from different manufacturing processes and measured with different techniques. 
We finally present an extension to the generator model which automatically categorises the produced surfaces, 
allowing a surface of a desired category to be generated. Finally, we calculate the distributions of areal surface 
texture parameters for each type of surface and show that there is good agreement between the synthetic and real 
data.   

1. Introduction 

The ability to generate synthetic surface texture data which 
convincingly represents the result of a real measurement has many ap
plications [1–3]. For example, often large quantities of data are required 
to train statistical models that would be difficult if not infeasible to 
collect manually [1]. Furthermore, representative synthetic textures are 
useful for other applications such as for use within virtual instruments 
[2], or for accurate image rendering [3]. Previous approaches for 
simulating surface data have been computationally intensive at runtime, 
limited to the representation of a single manufacturing process, or 
requiring an analytic representation of the surface [3–10]. Work by 
Eastwood et al. [3] used a synthetic surface texture of an additively 
manufactured (AM) part to produce photorealistic renders. These ren
ders were then used to train a convolutional neural network (CNN) for 
object pose estimation. Here, the synthetic texture was simulated by 
analysing the real surface data of a part made with the same AM process, 
extracting the dominant spatial frequencies and amplitudes, and layer
ing various pseudo-random noise functions at these frequencies and 
amplitudes. While this approach produces a good estimation of the 

surface parameters, it does not capture properties related to the surface 
features, such as feature shape and surface anisotropy. Software devel
oped by Todhunter et al. [4] defined the surface to be simulated as a sum 
of cosine waves; the surface complexity can be increased further with 
the addition of pseudo-random noise in the form of multi-scale Fourier 
space Gaussian blur. This Fourier approach has some advantages as the 
generated surface parameters can be known explicitly, but the ‘realism’ 
of the generated surface is user-dependant. Another study used an an
alytic representation to generate surface form combined with smaller 
scale noise to simulate texture, resulting in a full synthetic topography 
[5]. The synthetic surface data was then used in the creation of synthetic 
interferometry data by phase-wrapping the simulated surface. 

An alternate approach to realise synthetic surface data is to produce 
a full physics-based simulation of the manufacturing process of interest 
using numerical methods [6–8]. For example, Zhou et al. [9] focused 
specifically on the melt-pool of an arc-welding additive manufacturing 
(AM) process. Using a combination of a volume of fluid model and 
continuum surface force model to simulate both heat and mass transfer 
in the powder bed, they were able to predict the final surface profiles, 
which compare favourably with experimental data. This physics-based 
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approach is wholly reliant on the accuracy of the physical simulation 
and is computationally expensive. Physical simulation models have the 
further disadvantage of being specific to a single manufacturing process; 
if surfaces are required to be simulated across a range of processes and 
materials, a large amount of development time would be required to 
develop new physical models. 

Our proposed method overcomes many of the shortcomings of these 
previous approaches. Firstly, our model can simulate any process and 
measurement method that can be represented as a depth map and this 
same model can be retrained on a different dataset. Furthermore, the 
model can be trained to represent a range of surface types simulta
neously (i.e. without the need for retraining) so long as the desired 
variation is represented within the training data. Moreover, we show 
that the produced surfaces are representative of real data without the 
need for manual analysis of the desired surface features. 

In this paper we present a new method to produce surface texture 
data based on an approach initially developed for generating high res
olution synthetic images: a progressively growing adversarial network 
(PGGAN) [10]. By encoding training measurements as high-resolution 
images with height data represented by the pixel values, we can create 
a dataset to train the PGGAN. Once the model is trained, it will generate 
images with the same encoding, which can then be decoded back into 
height data. By front loading the computational expense to training 
time, once deployed, the model can quickly generate large quantities of 
new surface data. Further, we show that a single model can simulate a 
variety of surface types simultaneously and then extend the PGGAN 
model to automatically categorise the generated surfaces into pre
defined surface types. The performance of the proposed method is 
validated on two very different datasets: a collection of industrial 
coatings measured using fringe projection measurement and an AM part 
measured using focus variation microscopy. We then extend the surface 
generation model to perform a categorisation of the generated surface 
types creating a model that can produce surfaces with predictable 
properties. Finally, we perform a quantitative comparison of the cat
egorised generated surfaces with their real counterparts and show the 
model provides a sound representation of the surface types. 

2. Surface generation model 

A generative adversarial network (GAN) is a system of two sub- 
networks trained in a zero-sum-game (first proposed in 2014 by Good
fellow et al. [11]). Given some set of input data, the task is to generate 
some new data that cannot be distinguished from the original dataset, 
while capturing the variation present within the original data. To 

achieve this task, a sub-network, called the generator (G(z) → i) takes 
some input vector as a seed value from which it produces data of the 
same type as the input (for example, an image). Initially, the generator 
output is pseudo-random over the input. The second sub-network, called 
the discriminator (D(i) → p), uses data i sampled from G(z), or taken 
from the initial dataset, and produces a prediction p as to whether i is 
‘real’ (from the dataset) or ‘fake’ (from the generator). The training is a 
zero-sum-game because the generator loss function is low when the 
discriminator loss function is high, i.e., when the generator successfully 
tricks the discriminator into believing some generated data is real. In the 
original publication [11], both G and D were differentiable functions 
represented by multi-layer perceptrons; however, it is now more com
mon to use convolutional layers, especially when dealing with images, 
as is the case in this work. A generic convolutional GAN architecture is 
shown in Fig. 1. 

A PGGAN is an extension of the traditional GAN architecture that 
was originally proposed by NVIDIA [10]. A PGGAN improves variability 
and stability when operating on high resolution images by beginning 
with a highly down-sampled version of the training data, in our case (4 
× 4) pixels. After a predefined number of training periods (epochs), an 
additional transpose convolution layer is appended to the generator 
model and a conventional convolution layer is prepended to the 
discriminator, doubling the resolution of the generated image. The 
resolution doubling is repeated until the final resolution is achieved (in 
this case (512 × 512) pixels). The additional layers are faded-in to the 
model smoothly over a period of epochs to avoid any jerk to the network 
and encourage stability; this is shown in Fig. 2. 

This smooth fading is achieved by adding a 2 × up-sampling layer to 
the generator and a 2 × down-sampling layer to the discriminator. The 
output of the new convolutional layers is combined in a weighted sum 
with the up-sampling/down-sampling output, where the relative 
weighting of each contribution is controlled by a parameter α. Over a 
predefined number of epochs (where this number is a hyper-parameter 
of the PGGAN model) the weighting parameter linearly increases until 
the up-sampling/down-sampling layers no longer contribute to the 
model and can be removed. 

The input vectors to the generator are sampled from a ‘latent space’; 
in our case this space is the unit hypersphere S99 which is defined by, 

S99 = {x ∈ R100 | ‖x‖ = 1}. (1) 

In the case of the PGGAN, the discriminator, rather than classifying 
the input as either real or fake, assigns a continuous ‘realness’ value to 
the input. Using a continuous realness value rather than discrete clas
sification supplies a smoother gradient and leads to more stable training 

Fig. 1. A generic GAN showing the generator model, the discriminator model and the zero-sum optimisation through which they are trained. A variety of loss 
functions are available for calculating the real and fake losses but it is common to use the binary cross-entropy. 
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[12]. In turn, these realness prediction values are fed into a loss function 
based on the Wasserstein distance, a measure of the minimum amount of 
work required to turn one distribution into another [13]; in the case of a 
GAN, this is the distribution of the critic predictions compared to the real 
distribution of real/fake images. A Wasserstein based loss prevents 
vanishing and exploding gradients when compared to cross-entropy 
approaches (which is the popular alternative). 

Once the PGGAN is trained and the discriminator is discarded, the 
generator can be used to generate new images that have been shown to 
be indistinguishable from the real dataset discriminator. For our appli
cation, we extend the generator by piping the output of the generator 
into the input of a CNN to classify the type of surface produced. This 
process allows us to make meaningful comparisons of statistical surface 
texture parameters to ensure that the synthetic surfaces are represen
tative of the full space of real measured surfaces. Full details of the CNN 
extension are given in section 6. 

3. Datasets 

Two datasets were developed to train, validate and test the model: 
industrial coatings and AM surfaces. To show that the approach is 
applicable to a range of measurement techniques and surface types, the 
datasets described below use different measurement techniques on 
different surface types. In both cases, the same procedure was used to 
convert the measured data into the final set of (1024 × 1024) pixel 
images. The measured data were first converted into depth maps before 
a polynomial form removal was applied. The height data were then 
encoded as a set of grayscale images. A process of dataset augmentation 
was used to expand the datasets. This process involved rotating, mir
roring and cropping the images to a size of (512 × 512) pixels. 

3.1. Industrial coatings 

A set of sample surfaces created from a variety of industrial coatings 
were produced which were then measured using a fringe projection 
surface texture measurement system [14]. The procedure for data 
treatment described above was applied; in this case each encoded image 
represents a (20 × 20) mm area and depth values are encoded as a linear 
mapping to grayscale values in the range (0–1) from depth values in the 
range (− 50 to 50) μm. A sample of the final treated data is shown in 
Fig. 3. The industrial coating surfaces were considered a suitable case 
study because there are various combinations of process parameters that 
can create a large range of resultant surfaces, however, there is a 
fundamental limitation on how many surfaces could be economically 
produced – making the ability to simulate the potential “design-space” 
of all possible surfaces a valuable endeavour. 

3.2. AM surfaces 

Another dataset was constructed from focus variation microscope 
measurements of a metal AM part [15]. The ‘bracelet’ artefact consists of 
a series of thirty-six plane faces at 10◦ increments with minimal supports 
produced by electron beam powder bed fusion (EBPBF) [16]. This 
artefact was chosen as it will give a range of surface types dependent on 
the relative orientation of the face to the powder bed. The CAD of this 
part is shown in Fig. 4(a). 

Fig. 4(c) shows the part manufactured from Ti6Al4V using an Arcam 
A2X EBPBF process. These data were collected using a focus variation 
microscope with the following instrument settings: 20× objective lens 
(numerical aperture 0.4; field of view (0.81 × 0.81) mm); lateral reso
lution 3.51 μm; vertical resolution: 12 nm; ring light illumination; 
measured area (3 × 3) mm. The data processing steps outlined previ
ously were applied, this time mapping depth values of (− 70 to 70) μm to 
grayscale (0–1) and the image size representing (1 × 1) mm. Fig. 5 

Fig. 2. The process of doubling the resolution smoothly in a PGGAN using the α parameter.  
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shows a sample of the measured data with the post processing steps 
applied. 

It is clear that there is a large variation in the types of surfaces 
measured from the part. This variation is dependent on the relative 
angle of the measured face to the powder bed [15]. For example, the 
large-scale features that can be seen in Fig. 5 are the remnants of the 
support structures shown in Fig. 4(b), which were required for the 
printing process and then removed post-process. These support struc
tures only occur on the down-skin surfaces. Additionally, the smooth, 
straight weld tracks only occur on the top face, which is parallel to the 
powder bed. As the surface angle increases relative to the build plane, 
the presence of particles agglomerated to the surfaces increases, even
tually occluding the weld tracks entirely. Fig. 6 shows these surface 
types, their location on the artefact, and an example from the final 
dataset of each type. Section 6 discusses these surface types in more 
detail and how the generator can be extended to produce surfaces of a 
known type. 

Fig. 3. Twelve example encoded images taken from the industrial coatings dataset, showing the range of different surface types present in the training data.  

Fig. 4. (a) Bracelet artefact CAD model, (b) bracelet artefact support structures, (c) photograph of manufactured artefact.  

Fig. 5. Twelve example encoded images taken from the AM dataset showing the large variation present between surfaces included the dataset.  

Fig. 6. Surface types and their locations on the bracelet artefact with examples 
taken from the AM surface dataset. 
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4. Surface generator results 

For both datasets, the PGGAN took five days to complete training on 
a high-performance computing (HPC) graphics processing unit (GPU) 
node on the Augusta HPC at the University of Nottingham [17]. The 
specifications of the HPC node used were: two Intel Xeon Gold 6138 20C 
2.0 GHz CPU, 192 Gb RAM, and two NVIDIA Tesla V100 GPUs. The 
length of the training time is in agreement with the original PGGAN 
paper [10] for producing images of a similar resolution and once trained 
the model can produce new surface texture data in less than a second. 
Once training had concluded, the trained generator model was deployed 
to create 1000 images of both the coated surfaces and the AM surfaces. 
Fig. 7 shows a comparison of the real and synthetic images for the 
industrially coated dataset. 

The examples shown in Fig. 7(a) were selected to show the range of 

possible surface data contained within the training dataset. It can be 
seen in Fig. 7(b) that this variation is captured by the generator with 
considerably different features visibly present across the output data. 
Fig. 8 shows a similar comparison for the AM dataset. 

The model outputs still need to be decoded from grayscale images 
into true height data. To do this, the reverse of the encoding process 
described previously is applied to the 1000 generated images. Fig. 9 
shows example decoded surfaces compared with real surfaces of the 
same type from the training data. 

As can be seen in the scale of Fig. 9, the heights generated and scales 
of features generated match closely with those in the training data. Fig. 9 
(d) shows the model has learned to represent defects in the weld tracks 
which indicates this method could be useful for training defect detection 
models - a common issue within the field (see review by Meng et al. 
[18]). Simulated surfaces that possess features found in the real surface 

Fig. 7. A random sample of twenty-eight surface images taken from (a) the real encoded depth data from the industrial coating dataset, (b) the synthetic encoded 
depth data created by the trained PGGAN generator. 
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case could also allow for more training data for the development of 
improved feature-based characterisation approaches. 

5. Generating categorised surfaces 

The trained model generates surfaces by randomly sampling a point 
from S99 and passing the input coordinate through the generator, pro
ducing a randomly sampled surface from the possible output-space. As 
discussed in section 4, in the case of the AM dataset specifically it is clear 
that there are distinct types of surfaces encapsulated by the dataset, 
which were shown in Fig. 6. Top surfaces are characterised by distinct 
weld tracks and the absence of agglomerated particles, top surfaces are 
produced when the face is parallel with the powder bed. In up-skin 
surfaces, the weld tracks can still be seen but, as the angle relative to 

the powder bed approaches 90◦, particle agglomeration begins to 
dominate. Finally, down-skin surfaces are fully dominated by agglom
erated particles due to the increased interaction with the powder bed 
and the remnants of support structures (from those shown in Fig. 4(b)) 
can sometimes be seen. 

Given these categories, the model would be more useful if it could be 
used to generate surfaces of a known type rather than a random surface. 
To this end, we extend the generator model by piping the output directly 
into the input of a secondary CNN that predicts the generated surface 
type. The categorisation CNN architecture is shown in Fig. 10. 

Moreover, we can use the same AM surface training set used for the 
PGGAN to train the categorisation model. During the measurement, the 
angle of the face being measured was recorded and stored in the meta- 
data associated with the measurement data. It is a straightforward 

Fig. 8. A random sample of twenty-eight surface images taken from (a) the real encoded depth data from the AM dataset, (b) the synthetic encoded depth data 
created by the trained PGGAN generator. 
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process, therefore, to propagate this metadata through the data 
augmentation process to supply ground-truth labels. Measurement data 
originating from the 0◦ face were labeled as top, data from faces in the 
10◦–90◦ interval were labeled as up-skin, and 100◦–180◦ as down-skin. 
There is some ambiguity as to whether the 90◦ face should be cat
egorised as up-skin or down-skin and, because the physical character
istics transition smoothly between these two categories, there is likely to 
be some misclassification of surfaces near the boundary. For other 
datasets it may be optimal to set the boundaries at different angles, due 
to the effect of gravity during processing for example, however it was 
found that the classification in this case was most accurate when using 
the boundaries detailed above. 

A softmax function (a normalised exponential function which can be 
thought of as a generalisation of the logistic function to n-dimensions 
[19]) was used as the activation function in the output layer of the 
model. The Adam optimiser [20] with a learning rate of 0.0001 with a 
categorical cross-entropy loss function were used in the training of the 
CNN. Due to the relative simplicity of the categorisation model when 

compared to the PGGAN model, a HPC compute node was used for 
training, which was completed within 12 h. Fig. 11 shows a plot of the 
training history. The loss values shown are the values of the 
cross-entropy over that image batch; the accuracy is calculated by 
simply taking the argmax (the index of the output tensor containing the 
maximum value) of the values of the output nodes. 

As can be seen in Fig. 11, the validation loss reached a minimum at 
around 1000 training steps (batches of sixty-four images) after which 
overfitting began to occur. To prevent overfitting, two mitigation stra
tegies were employed. The first strategy was to use an early stopping 
criterion which monitored validation accuracy and ceased the training 
procedure if no improvement was observed within ten epochs. The 
second strategy was to use a model checkpointing system which, once 
training is finished, restores the model weights to the point at which 
validation accuracy was a maximum. In this case, the maximum vali
dation accuracy achieved was 96%. 

When deployed, rather than simply taking the argmax of the output 
nodes to perform the categorisation, a ‘certainty threshold’ was set at 

Fig. 9. Surface topography height maps of real measurement data from the AM surface dataset compared to decoded fake data from the generator.  

Fig. 10. Categorisation CNN, which takes an input image, extracts features through a sliding window kernel convolution, flattens the feature maps, feeds through a 
fully connected layer and produces a predicted class label (T: top,U: up-skin, D: down-skin). 
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80%. That is to say, the input was only assigned to the predicted class if 
the value of the corresponding output node was larger than 80%; if this 
condition was not met, the image was instead categorised as ‘uncertain’. 

In order to train on the labeled real data, the categorisation operation 
can be performed on the 1000 generated surfaces (a sub-sample of which 
is shown in Fig. 7(b)). Of these 1000 images, 4.6% were classified as 
uncertain. This level of uncertainty is an indication that the generated 
data does in fact accurately capture the input space as the rate of un
certainty correlates with the misclassification rate of the model during 
validation. When inspecting which surfaces are misclassified, the ma
jority bear similarities to the surfaces around the 90◦ angle relative to 
the powder bed, as was expected. An example of this is shown in Fig. 12. 

Forty-three of the forty-six ‘uncertain’ images fell into the category 
shown in Fig. 12; the remaining three images had a different failure 
mode. These generated surfaces are classed as uncertain because they 
are not representative of the surfaces contained in the training data. 
Specifically in this case, they are all surfaces that have the distinctive 
weld track features of the top surfaces but also the large amount of 
particle agglomeration of the other surface types. Fig. 13 shows an 
example of this surface. 

As the unrepresentative images, such as the example shown in 
Fig. 13, occur at such a low rate (0.3% in this test) and we have now 
trained a model to sort them from the generated images which are 
representative of the real data, we can simply discard these surfaces and 
consider only the successfully categorised surfaces in our analysis. 

6. Quantitative comparisons 

A benefit of our extended model is that we can compare surface 
statistics between the surface categories independently rather than 
averaged statistics for the complete dataset. As these surfaces have such 
different features, this method will provide a much more robust analysis 
than without this extension. First we consider parameters based on the 
surface height distribution relative to the mean plane: Sq is defined as 
the root-mean-square height deviation and Sz is simply the maximum 

Fig. 11. Categorisation CNN training history. To prevent overfitting, ten percent of the dataset was used for cross validation and model weights restored to the 
maximum validation accuracy. 

Fig. 12. Comparison of encoded depth data for an example of a common misclassified surface with real surfaces around the borderline of the up-skin/down- 
skin categories. 

Fig. 13. An unrepresentative image showing encoded depth data produced by 
the generator showing clear weld tracks and noise from agglomerated particles. 
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height [21,22]. The distributions of these two parameters are shown in 
Fig. 14 for real and simulated surfaces across each surface category. 

As can be seen, the distributions produced by the generator show 
good agreement with the training data. While the comparison of height 
parameters is useful to begin to show good representation, it is not the 
full picture, for example, two very different surfaces could have similar 
Sz values. Considering spatial parameters in addition to amplitude pa
rameters can provide a more complete comparison. Spatial parameters 
describe properties related to the distributions of the shape and size of 
the features that make up the surface texture. In this case, we compare 
three parameters: Sal, amplitude of the dominant spatial wavelength 
and dominant spatial wavelength. Sal is the fastest decay autocorrela
tion length, which is a measure of the distance from given point on the 
surface to a point which has minimal correlation with the starting point 
[21,22]. The distributions of these three parameters are given in Fig. 15. 

In both Figs. 14 and 15 the synthetic and real surface parameter 
distributions overlap in most cases or are different by small absolute 
amounts. For example, Fig. 15(a) shows the mean Sal of top surfaces 
differs by only two microns despite the distributions not overlapping. It 
makes sense that the top surfaces are less well represented than the other 
surface categories as they make up a relatively smaller proportion of the 
dataset (only 5% of the input data were top surfaces compared to 48.2% 
for the remaining categories), this is simply because there were fewer 
top surfaces to measure on the ring artefact. This is evidence that the 
synthetic surfaces are not only qualitatively similar to the real data but 
quantitatively similar, and that any differences are small. This similarity 
shows that the output space of the model is at least partially represen
tative of the input surfaces. It is interesting to note that, particularly for 
the spatial parameters, the distributions of the generated surfaces are 
much tighter than the distributions present in the training data. This 
tighter spread is likely due to the generator learning to represent a subset 
of the input space - this is discussed in section 7. 

7. Discussion 

We selected the PGGAN model over other generative methods for 
two main reasons. Firstly, it has been developed specifically to 
encourage stability and variation in the generator outputs at high res
olution. This means that the model is likely to learn to represent a larger 
portion of the input space than competing methods at the resolution of 
data within our example datasets. Secondly, recent variations of the 
PGGAN have been developed for more specific applications, such as 
style transfer (see StyleGAN [23] and Cycle-GAN [24]), whereas the 
original PGGAN implementation can be applied generically to any input 
image dataset. 

As was noted at the end of section 6, the distributions of areal surface 
texture parameters show good agreement between the real and gener
ated surface but do not match exactly. Firstly, the variance in the 

generated data is, in general, smaller than the variance among the 
training data. It is a known shortcoming of GANs that commonly only a 
subset of the possible variation is represented by the trained model [25]. 
This is intuitive, as it is simpler for the model to learn to represent a 
subset of the input space to a high enough quality to trick the discrim
inator than to learn to represent the entire space. As stated previously, 
many of the features of the PGGAN are specifically designed to increase 
variation in the output (this is discussed at length in the original PGGAN 
paper [10]) but, at least for our application, there is still some work to do 
in this area. 

A feature of using a machine learning approach is that the model will 
learn to represent patterns that are present within the training data. This 
means that any measurement errors present in the training data will be 
replicated in the synthetic surfaces. Replicating measurement errors 
could be disadvantageous to some applications where it is desirable to 
produce simulations of true surface topographies, however, it is an 
advantage if the application calls for simulated measurement data from 
a real instrument. This method has been shown to be effective at 
generating both fringe projection and focus variation measurement 
data, however, it is general to any technique where the data can be 
represented by a height map. Fringe projection surface measurement 
operates at larger scales than most optical texture instruments and focus 
variation has relatively low resolution when compared to a technique 
such as coherence scanning interferometry, and these characteristics are 
replicated in the generated data. If the proposed approach was applied 
to another measurement technique, we would expect limitations 
inherent to that technique to be reproduced by the trained model. 

Encoding the training data as a grayscale image does not affect the 
spatial resolution of the training data as each measured surface point is 
represented by a unique pixel value and the data is stored in a lossless 
format to ensure no compression artefacts are introduced. However, one 
shortcoming of the method is that the vertical resolution of the model is 
limited to 255 discrete pixel values. In the case of the AM dataset this 
introduces an uncertainty of ±0.25 μm when encoding the input data. 
This is close to the 0.1 μm spacing between stacked focus variation 
images so unlikely to have a large effect on the data quality. Replacing 
the input encoded image with a floating-point array would effectively 
eliminate these errors. 

8. Conclusions 

We have presented a novel approach to the generation of synthetic 
surface data by exploiting an approach initially designed for the syn
thesis of high-resolution images. We show that by encoding the surface 
height data into the grayscale channel of an image, we can train a 
PGGAN model to produce new data that represents a training set of 
images. By applying a process of dataset augmentation, we make the 
model robust to some transformations, such as rotation, and allow the 

Fig. 14. Comparison of the mean and 95% confidence interval of the spreads of (a) Sq and (b) Sz r for each surface category, for real surfaces in the AM surface 
dataset and generated surfaces from the PGGAN generator. 
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initial measured dataset to be relatively small (less than 100 measure
ments). We show that a CNN can be used to categorise the surfaces 
produced into categories that are known in the initial dataset. This 
categorisation allows the model to produce surfaces of a desired type, 
rather than a random sample from the space of all possible surfaces that 
the model can represent. Furthermore, this categorisation allows for 
specific comparisons between the distribution of areal surface texture 
parameters over the categories of surfaces, rather than the full datasets. 

We present two case study datasets, one derived from fringe pro
jection measurements of industrially coated surfaces and the other from 
focus variation measurements of metal AM surfaces. We show in both 
cases that the generated surfaces are visually similar to those in the 
original dataset. In the case of the AM surface, we show that our 
approach successfully classifies 96% of the unseen data. The 4% of the 
data classified as ‘uncertain’ was due to fuzzy boundaries between the 
up-skin and down-skin categories and a small number of generated 
images that poorly represented the training data (0.3%). Finally, a 
quantitative analysis of both amplitude and spatial areal surface texture 
parameters was conducted. The distributions of these parameters for the 
synthetic data shows relatively good agreement with the distributions of 
the real data. There is an indication, due to the tighter distributions in 
the synthetic data, that only a subset of the possible real surfaces have 
been represented by the generator model. This lack of variation is a 
known shortcoming of the GAN and although the PGGAN takes steps to 
increase variation in the generator, in the case of our AM surface data at 
least, this is an open issue. 

As the surfaces used have been shown to be quantifiably represen
tative of those within the training data, large quantities of synthetic 
surface data can be produced quickly to go on to be used in a variety of 

possible applications including, but not limited to, training statistical 
models, virtual instruments, and accurate surface simulation and 
rendering. 

9. Future work 

A simple further next step in analysis of this work would be to 
consider hybrid parameters such as Sdr (a measure of total developed 
area of all tessellations) and Sdq (mean quadratic slope) which could 
provide further insight into the synthetic surfaces. 

Taking the model further will include the use of principle component 
analysis (PCA) on the early activation layers of the generator model to 
map the latent space. An implementation of PCA on similar models has 
been presented recently (called GANSpace [26]) and has been shown to 
allow the development of semantic control over the generator output. 
For the application to surface texture, this could allow the generation of 
surfaces with prescribed properties. An area of particular interest is to 
generate interpretable controls for creating synthetic surfaces repre
sentative of those which would be produced through a specific combi
nation of process parameters. Additionally, further work refining the 
model architecture to be more performant specifically on datasets of the 
form presented here could yield generator models with greater stability 
and variation. 
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Fig. 15. Comparison of spatial parameters (a) Sal, (b) amplitude of the dominant spatial wavelength, (c) dominant spatial wavelength, for each surface type for 
surfaces from the AM surface dataset and surfaces produced by the PGGAN generator, showing the mean and 95% confidence interval in each case. 
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