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Abstract—The Internet of Things (IoT) allows physical devices
to be connected over the wireless networks. Although device-
to-device (D2D) communication has emerged as a promising
technology for IoT, the conventional solutions for D2D re-
source allocation are usually computationally complex and time-
consuming. The high complexity poses a significant challenge to
the practical implementation of wireless IoT networks. A graph
neural network (GNN) based framework is proposed to address
this challenge in a supervised manner. Specifically, the wireless
network is modeled as a directed graph, where the desirable
communication links are modeled as nodes and the harmful
interference links are modeled as edges. The effectiveness of
the proposed framework is verified via two case studies, namely
the link scheduling in D2D networks and the joint channel and
power allocation in D2D underlaid cellular networks. Simulation
results demonstrate that the proposed framework outperforms
the benchmark schemes in terms of the average sum rate and
the sample efficiency. It shows potential generalization to different
system settings and robustness to corrupted input features.
Besides, the proposed GNN approach accelerates the execution
time of the conventional optimization algorithms to only a few
milliseconds.

Index Terms—Resource allocation, Graph neural network
(GNN), Link scheduling, Device-to-device (D2D), Internet of
Things (IoT)

I. INTRODUCTION

Device-to-device (D2D) communication is considered as
a key enabling technology for the Internet of Things (IoT)
ecosystem, where the devices communicate with each other
directly without the essential interventions of the central agents
such as base stations (BSs) and access points (APs) [1].
The main advantages of D2D communications include the
efficient use of network resources with traffic offloading and
the robustness against single point of failure [2]. However,
resource allocation problems in D2D communications such
as channel allocation [3] and link scheduling [4] that involve
integer variables are usually challenging to obtain global
optimal solutions. Conventional algorithms such as the branch-
and-bound (B&B) algorithm [5] are time-consuming and of
high computational complexity. Hence these global optimiza-
tion algorithms are usually inappropriate for solving practical
problems in wireless IoT networks. Therefore, many studies in
the literature focus on the sub-optimal algorithms that reduce
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the computational complexity while achieving near-optimal
results. The authors in [4] proposed a fractional programming
based design called FPLinQ to find the sub-optimal solutions
to the link scheduling problem in D2D communications. The
authors in [6] demonstrated that the convex optimization based
beamformer design can be efficiently implemented via ap-
proximation solutions. In recent years, the sub-optimal cross-
entropy (CE) algorithm was proposed to solve the resource
allocation problems such as joint antenna selection problem [7]
and cache content placement problem [8] in wireless networks.

More recently, machine learning (ML) techniques have
been introduced to solve the resource allocation problems in
wireless communications which have the ability to accelerate
the execution time of algorithms [9] [10]. The authors in [11]
proposed a framework named learning to optimize for resource
management (LORM) to accelerate the optimal pruning pol-
icy in the B&B algorithm for the mixed integer nonlinear
programming problems, and verified it via a network power
minimization problem in cloud radio access networks. In
[12], an imitation learning method was proposed to accelerate
the B&B algorithm for resource allocation in D2D underlaid
cellular networks. Two ML techniques including classification
and regression were utilized in [13] to speed up the generalized
benders decomposition algorithm for wireless resource alloca-
tion. Although existing works (e.g., [11] - [13]) have made
great efforts to accelerate the conventional algorithms, these
techniques can reach at most 10−2 second completion time,
which is still far longer than the millisecond level real-time
requirement [14] in wireless networks.

Although the ML based schemes can improve the time
complexity performance in wireless communication design
problems, the integration of wireless network topologies is
still a challenge. Fortunately, the graph theory can be adopted
to address this challenge due to the natural similarities of
topologies between the wireless networks and the graphs.
Graph coloring algorithms have been successfully applied to
solve the resource allocation tasks in femtocell networks [15],
D2D communication in the long term evolution system [16]
and D2D communication in cellular networks [17]. Besides,
graph embedding techniques can be applied to node, edge
and graph related applications, such as node classification and
link scheduling [18]. The combination of the graph theory
and the ML technologies has brought a lot of attention in
the wireless research community, as it benefits from both
the graph properties and performance acceleration [19] [20].
An edge learning was considered in [21] with distributed
implementation and the energy efficient federated learning
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was studied over wireless communication networks. A spatial
convolution method was proposed in [19] to solve a D2D
link scheduling problem, wherein the convolution operation
is applied to the density grid which is quantified based on
the numbers of transmitters and receivers in each grid. Their
proposed method, nevertheless, requires a large number of
training samples. The acquisition of large training dataset in
real-world wireless networks is expensive or even impractical.
Accordingly, a graph embedding method with a multi-layer
classifier was proposed in [20] to address this problem, where
each D2D pair is represented by a low-dimensional vector
with the features from itself and its neighbors, and only
hundreds of training samples are required. However, both
[19] and [20] only take distances into consideration and are
not compatible with channel information, which may lead to
performance degradation in small scale fading environment.
Graph neural networks (GNNs) that have been proven to be
successful in a wide range of applications including computer
vision, natural language processing and chemistry [22], can
effectively exploit non-Euclidean data such as channel state
information (CSI). In [23], an interference graph convolutional
neural network was proposed to learn the optimal power
control in an unsupervised manner in a K-user interference
channel, where the instantaneous CSI was incorporated. It was
extended to solve the radio resource management problems
through a message passing graph neural network in [24],
and the proposed method was tested on both power control
and beamforming design problems. Additionally, a random
edge graph neural network was proposed in [25] to solve the
power optimization problems in wireless ad-hoc networks and
cellular networks. However, their proposed designs [23] - [25]
are limited to homogeneous wireless systems and may not
be compatible with the heterogeneous IoT systems. Besides,
these works only studied continuous optimization problems
and their proposed approaches may not handle discrete opti-
mization problems. Different from them, our work proposes a
general framework focusing on discrete resource optimization
problems and it performs well for both homogeneous and
heterogeneous networks.

Inspired by the previous works, a GNN based framework is
proposed to tackle the resource allocation problems in wireless
IoT networks in a supervised manner in this paper. The
proposed framework has a layer-wise structure combining the
convolutional neural network (CNN) with an average operation
and the deep neural network (DNN) to aggregate and combine
feature information iteratively. The main contributions are
summarized as follows:
• The wireless IoT networks are modeled as directed

graphs, where the communication links and interference
links are treated as nodes and edges, respectively. A GNN
based framework is proposed to solve several resource
allocation problems involving integer parameters in wire-
less networks, where each node iteratively aggregates
feature information from its adjacent nodes and edges,
and combines its own feature with the aggregated infor-
mation. The constrained cross-entropy (CCE) algorithm
is employed for sample generation to further reduce the

computational complexity.
• The proposed framework is verified using two resource

allocation problems, namely the link scheduling prob-
lem in the D2D networks, and the joint channel and
power allocation for D2D underlaid cellular networks.
The proposed framework is compared to three benchmark
schemes: the unsupervised GNN [23], the graph embed-
ding method [20] and the conventional DNN. Simulation
results demonstrate that this framework outperforms the
benchmark designs and maintains a stable end perfor-
mance with various system settings and network scales.

• The proposed framework is sample efficient since it
achieves near-optimal results with only hundreds of train-
ing samples. Besides, the execution time of solving the
considered resource allocation problems is reduced to a
few milliseconds by the proposed GNN based frame-
work, making it attractive for real-time implementation
of wireless IoT systems. Furthermore, simulation results
suggest that it has good generalizability to different
system settings such as pairwise distances and network
sizes without further training. It is also robust to missing
input features.

The remainder of this paper is organized as follows. Section
II introduces a generalized resource allocation problem in
wireless IoT networks. The proposed GNN based framework
for resource allocations in wireless networks is presented in
Section III, which includes a CE based algorithm for training
samples generation, a graph modeling of wireless networks,
and a GNN that is operated in a supervised manner. Sections
IV and V present two applications of the proposed framework
and their performance. Finally, conclusions are drawn in
Section VI.

II. A GENERALIZED RESOURCE ALLOCATION PROBLEM

Many resource allocation problems such as link scheduling
and channel selection problems in wireless IoT networks
can be formulated as a discrete optimization problem, which
is usually difficult to find the optimal solutions. A general
formulation of this kind of problems can be written as follows,

min
x

f (x)

subject to xi ∈ N ,

gn(x) ≤ 0 ,
(1)

where f (·) represents an objective function that measures the
system performance such as the network capacity and the
outage probability. x = {xi} denotes the discrete optimization
variable, which indicates the decision of the resource allo-
cation, such as user association or channel allocation in the
IoT networks. xi denotes the i-th element of the optimization
variables x and N refers to a set of non-negative integers.
Besides, gn(x) ≤ 0 represents a series of constraints involving
the discrete variable x, e.g., the number of devices that can
be served by each AP and the quality-of-service constraint at
each individual device.

This work proposes a GNN based framework to solve
the optimization problems in (1) via end-to-end learning,
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such that the time consumption is promising for real-time
implementation in wireless IoT networks.

III. A GNN BASED FRAMEWORK FOR RESOURCE
ALLOCATION IN WIRELESS NETWORKS

In this section, a general framework based on supervised
GNN is proposed to approximate the optimization problem in
(1) by learning directly the input-output mapping. Firstly, the
CE method that can simplify the training sample generation is
introduced. Then, the graph modeling of wireless networks is
described, followed by a GNN that is operated in a supervised
manner. An illustration of the proposed framework is given in
Fig. 1.

Fig. 1 The proposed GNN based framework for resource
optimization in wireless IoT networks.

A. Training Samples Generation

The proposed GNN based framework is operated in a
supervised manner, which requires sufficient labeled training
samples. The optimal algorithms such as the B&B algo-
rithm have an exponential computational complexity, which
poses significant challenges to generate a large dataset for
the training purpose. Therefore, in order to further reduce
the computational complexity and time consumption for the
sample generation, the CCE algorithm is employed for training
samples generation.

The CE method is mainly based on Kullback-Leibler cross-
entropy and importance sampling, and it involves an iterative
procedure where each iteration can be divided into two phases
[26]:

1) Generate random samples according to a specified mech-
anism.

2) Update the parameters of the mechanism based on the
data for “better” samples in the next iteration.

In order to solve the general constrained resource allocation
problem in (1), the CCE algorithm is adopted in the proposed
framework. The steps of the CCE algorithm are summarized
in Algorithm 1, where the independent Bernoulli distribution
is utilized for generating random samples.

In Algorithm 1, ρ denotes the quantile and it typically
ranges from 0.01 to 0.1 [26]. Any infeasible samples generated
in Step 2 will be converted to the feasible ones via the
projection in Step 3. After iterations, the near-optimal results
can be obtained by the CCE algorithm and can be used as
training labels for the GNN as will be introduced in the
following subsections.

Algorithm 1: The General CCE Algorithm for Dis-
crete Optimization Problem in (1)

Step 1: Initialize the Bernoulli probability vector
P0 = {P0

i }, P0
i = 0.5,∀i. Set the iteration index t = 1.

Step 2: Randomly generate a large number M samples
{xj}M

j=1 according to the probability P(t−1), where the i-th
element of xj is denoted by x j

i .
Step 3: Project any infeasible samples into feasible
samples.
Step 4: Sort {xj}M

j=1 in an ascending order as {xσj }Mσj=1
with respect to the scale values calculated by the objective
function f (xj).
Step 5: Select the best dρMe samples from {xσj }Mσj=1 and
update the probability vector Pt as follows,

Pt
i =

∑ dρM e
σj=1 xσj

i

dρMe
, ∀i . (2)

Step 6:
if Pt does not converge to a binary vector then

Set t = t + 1 and go to Step 2.
else

x = Pt .
end if

B. Graph Representation of Wireless Networks

Graphs provide a structured view of the abstract concepts,
especially with regard to the relationships and interactions
between the graph elements. This feature is favorable in
modeling the transmitters and receivers in the wireless IoT
networks as the geometrical information can be embedded
in the graph features. In wireless networks, the links be-
tween communication agents can be generally categorized as
beneficial and harmful links, which represent communication
links and interference links, respectively. The functions of the
communication links and interference links are completely
contrary. Therefore, it is better to distinguish them in the graph
modeling. By the nature of nodes and edges of a graph, edges
can model the interactions between nodes. Thus, edges are
rational to represent the interference links. Accordingly, the
wireless communication system can be modeled as a directed
graph, where the communication link between a transceiver
pair can be treated as a node, and the interference link between
two nodes can be treated as an edge. The properties such as
the distance, channel information, weight and priority that are
related to communication links can be taken as node features.
The properties such as the distance and channel information
that are related to interference links can be treated as edge
features. After graph modeling of the wireless network, the
advanced algorithms based on graphs, such as graph coloring
and graph embedding, can be utilized to solve the challenging
problems in the wireless networks effectively.

Let V and E denote a set of nodes and edges of a graph,
respectively. The edge connecting the two nodes u, v ∈ V
can be defined as e(u, v) ∈ E. In a wireless network, edges are
directional, for example, e(u, v) and e(v,u) denote respectively,
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the interference from node u to node v, and vice versa. Let V
and E represent node features and edge features, respectively.
To differentiate the contributions of the communication links
and the interfering links, the desired direct channel gains are
modeled as the node features while the harmful interference
channel gains are modeled as the edge features. Meanwhile,
the CSI including both small scale fading and large scale
fading is taken as the input features of the proposed GNN
based framework.

C. Graph Neural Network
The GNN was firstly proposed to extend the existing neural

network mechanisms for processing the data represented in
graph domains [27]. GNNs have multi-layer structures. In each
layer, each node aggregates the features from its neighborhood,
and the central node will then combine its own features with
the aggregated features. GNNs iteratively update the repre-
sentation of each node by the aggregation and combination
functions. The update rule of the m-th layer at the node v is
given as follows [28],

α
(m)
v = AGGREGATE(m)({β(m−1)

u : u ∈ N(v)}) ,

β
(m)
v = COMBINE(m)(β(m−1)

v , α
(m)
v ) ,

(3)

where β
(m)
v is the feature vector of the node v at the m-th

iteration/layer. N(v) denotes the set of the adjacent nodes of
the node v. α(m)v represents an intermediate variable to denote
the features aggregated by node v from its neighboring nodes
at the m-th layer. In brief, the variety of AGGREGATE and
COMBINE functions forms different GNNs [28].

Based on the graph modeling introduced in the previous
subsection, a GNN framework incorporating the node and edge
features (e.g., CSI) is proposed to address the resource alloca-
tion problems in (1). Since the feature aggregation operation in
GNNs is analogous to the behavior of the convolutional kernels
in CNNs [29], our proposed GNN framework utilizes the CNN
to aggregate feature information on a local graph-structured
neighborhood. Additionally, the neighborhood aggregation is
expected to possess a property of the permutation invariance
where the aggregated feature is invariant no matter the order
of the neighboring nodes. This property can be achieved
by a permutation-invariant function, such as a sum, mean,
maximum and minimum, to reduce a set of aggregated neigh-
borhood features to a single vector [29]. The permutation-
invariant operation on the aggregated neighborhood features
can be different depending on specific problems. In the sequel,
the mean operation is adopted as an example. Since the model
is more powerful by combining the aggregated information
with feed-forward neural networks [29], a DNN is adopted
as a combination function after the aggregation operation.
Accordingly, the update rule of the proposed GNN is given
below,

α
(m)
v = Eu(CNN(Vu, Euv, Evu, β

(m−1)
u )) , u ∈ N(v) ,

β
(m)
v = DNN(Vv, β

(m−1)
v , α

(m)
v ) ,

(4)

where α
(m)
v ∈ R1×d1 represents the aggregated neighborhood

feature vector of node v at the m-th layer, and d1 is self-
defined output size (out channels) of the CNN. β(m)v ∈ R1×d2

denotes the embedding feature vector of node v at the m-
th layer, and d2 shares the same size with the number of
classes depending on specific problems. The β

(m)
v at the last

layer of the GNN also denotes the final output of the GNN. E
denotes a mean operation with respect to u, which provides the
permutation invariance property for the aggregated features.
In the DNN, the Softmax function is adopted as the last
activation function. As aforementioned, the communication
link between a transceiver pair is modeled as a node and the
direct channel gain is taken as the node features, while the
interference link between two nodes is modeled as an edge
and the interference channel gain is taken as the edge feature.
Hence, Vu , u ∈ N(v) denotes the node feature (direct channel
gain) of node u which is a neighbor of node v. Euv represents
the edge feature (interference channel gain) from node u to
node v, and similarly Evu denotes the edge feature from node
v to node u. β(0)v is initialized with a zero vector, whose size
varies depending on specific problems. Note that only α and
β need to be updated at each layer of the GNN, and the other
parameters (e.g., Vu and Euv) are constant. Fig. 2 illustrates
the update rule of one node at the m-th layer of the GNN,
where node 1 aggregates information from its neighborhood
(nodes 2-4 and edges) and then the aggregated information
forms α(m)1 which is combined with the local information of
node 1 as formulated in (4). Since the properties related to
communication and interference links can be mapped to the
node and edge features in a graph domain, the proposed GNN
framework can be generalized to the problems in wireless IoT
networks following the similar mapping rules.

Fig. 2 An illustration of the aggregation and combination of
one node at the m-th layer of GNN.

The resource allocation problems in wireless IoT networks
as formulated in (1) can be viewed as multi-class classification
problems. Let C denote the number of classes and let S =
{0,1, . . . ,C − 1} denote the indexes of classes. Accordingly,
the output of the GNN consists of C neurons which indicate
the class probabilities of each individual node. Let x = {xv},
xv ∈ S, v ∈ V denote the target labels generated by the
CCE algorithm, wherein xv indicates the resource allocation
decision of node v. Let Yv = {yvc}, c ∈ S denote the one-hot
classification of node v. For each node v, yvc = 1 if node v is
labelled as class c, yvc = 0 otherwise. Let Ỹv = { ỹvc}, c ∈ S
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represent the output class probabilities of the GNN for node v,
where ỹvc denotes the probability of node v to be in class c.
The cross-entropy is adopted as the loss function as follows,

` = −
∑
v∈V

∑
c∈S

yvc ln ỹvc . (5)

By minimizing the loss function in (5), the parameters of the
GNN are updated.

For adaptation to various problems, the proposed GNN
based framework may involve pre-processing and post-
processing steps, as shown in Fig. 1. The pre-processing
and post-processing steps are optional depending on practical
problems as well as the availability of the expert knowledge.
For example, the graph representation can be pre-processed by
setting a distance threshold or considering a fixed number of
nearest neighboring nodes rather than using full connections to
further reduce the complexity. For post-processing, the output
of the GNN may not satisfy the constraints or may need further
steps to achieve the final objective, hence expert knowledge is
required to address these issues, such as projection algorithm,
power allocation and recovery. The proposed framework has
the potential to be adapted to the general resource allocation
problem in wireless networks via the integration of expert
knowledge in pre-processing and post-processing steps.

D. Complexity of GNN

In each layer of the GNN, an aggregation operation is
applied to all the edges, and a combination operation is applied
to all the nodes. Therefore, the time complexity of each layer
is O(|V| + |E |) , then the total time complexity of a M-layer
GNN is O(M(|V| + |E |)).

In the next two sections, the effectiveness of the proposed
GNN based framework is verified by two case studies of
resource allocation problems, namely the link scheduling in a
homogeneous D2D network and the joint channel and power
allocation in a heterogeneous D2D underlaid cellular network.

IV. APPLICATION ON LINK SCHEDULING PROBLEM IN
D2D NETWORKS

This section presents the link scheduling problem in the
D2D network. The proposed supervised GNN framework
is applied to address this problem and its effectiveness is
demonstrated by the simulation results at the end of this
section.

A. System Model and Problem Formulation

Let us consider a wireless IoT network with L D2D pairs,
where the D2D pairs are randomly located in a square region
with an edge length of darea. The set and the indexes of
all D2D pairs are denoted by D = {D1,D2, . . . ,DL} and
L = {1,2, . . . , L}, respectively. For each D2D pair Dl ∈ D,
its transmitter and receiver are denoted as Tl and Rl , l ∈ L,
respectively. It is assumed that each D2D pair is within a
pairwise distance between dmin and dmax. Let us denote pl
the fixed transmit power of D2D pair l, l ∈ L. All D2D pairs
share the same spectrum. A simple network with three D2D
pairs is shown as an example in Fig. 3a.

(a) A D2D network. (b) Graph representation of (a).

Fig. 3 A three-pair D2D network and its corresponding graph
representation.

Let hll denote the communication channel between the
transmitter and receiver of Dl , and hlk denote the interference
channel from Tl to Rk , l, k ∈ L and l , k. Let x = {xl}
denote the indicator vector of the status of the D2D pairs,
where xl , l ∈ L denote the binary decision variable of Dl ,
and xl = 1 if Dl is active and xl = 0 otherwise. Then the
signal-to-interference-plus-noise ratio (SINR) of Dl denoted
by ξl is given as

ξl =
|hll |2pl xl∑

k,l |hkl |2pk xk + σ2
N

, l, k ∈ L , (6)

where σ2
N denotes the power of the additive white Gaussian

noise (AWGN). Generally, the objective is to maximize the
sum rate by finding the optimal link scheduling. This problem
can be formulated as

max
x

∑
l∈L

log2(1 + ξl)

subject to xl ∈ {0,1}, ∀l ∈ L .
(7)

Note that the data rate is normalized by the channel bandwidth,
hence the unit is in bits per second per hertz.

B. Graph Representation

The D2D wireless network is modeled as a fully connected
graph, where each D2D pair is treated as a node, and each
interference link between D2D pairs is treated as an edge, as
depicted in Fig. 3b. Given an example of feature mappings,
for node v = 1, node u = 2 is one of its neighbors and then the
mappings between the channel information and the node/edge
features are as follows, Vv = h11, Vu = h22, Euv = h21 and
Evu = h12. In this case study, the aim of the GNN is to map
from the channel matrix to binary decisions of whether each
individual D2D pair is active or not, therefore, d2 = C = 2.

The CCE algorithm for link scheduling in D2D networks
is described in Algorithm 1. In this considered scenario, the
projection in Step 3 of Algorithm 1 can be ignored as there are
no other constraints except the binary constraints. Besides, it
does not require any pre-processing and post-processing steps
for the learning stage.
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C. Numerical Results

For both case studies, the simulation was conducted with
processor Intel Core i5-9600KF CPU using PyTorch. The per-
formance of the proposed supervised GNN based framework
is compared against the following four benchmark schemes:
• CCE: The CCE algorithm with corresponding adaptations

is utilized to generate training samples, and it also serves
as an upper bound. The performances of the ML based
schemes are given with respect to this CCE algorithm.

• Unsupervised GNN : The unsupervised GNN has the
same structure and parameters as of the proposed su-
pervised GNN, while the loss function is defined as the
negative sum rate as in [23].

• Graph embedding: Distance with quantization is taken
as the node and edge features for graph embedding.
The embedding feature of nodes is learned by a 3-layer
classifier in a supervised manner as in [20].

• DNN: A 4-layer conventional supervised DNN is
adopted. The channel matrix is taken as the input of the
DNN.

To ensure fair comparisons, the performance of the pro-
posed framework and the benchmark designs are evaluated
using the following settings. All samples are generated by
the corresponding CCE algorithms. The size of the testing
dataset is set to be 200 for all simulations. The adaptive
moment estimation (ADAM) [30] optimizer is adopted to
update network parameters for both problems.

For both cases, the performance comparisons between the
proposed method and the benchmark schemes are presented in
terms of the average classification accuracy, sum rate and time
consumption. The classification accuracy is the first metric
to measure the performance of the proposed design, which
reflects the similarity between the classification results gener-
ated by the proposed design as well as the benchmark schemes
and the target produced by the CCE method. Additionally, the
average sum rate is taken as the second metric to measure the
end performance, which is the normalized sum rate achieved
by the proposed design as well as the benchmark schemes with
respect to that generated by the CCE algorithm. Moreover, the
time consumption is examined for running time comparisons
between the proposed framework and all benchmark schemes.

In this case study, the transmitter of each D2D pair is
generated randomly according to the uniform distribution in
a square area, and the corresponding receiver is uniformly
distributed with a specified pairwise distance away from the
transmitter. A distance dependent path loss model is adopted
as the large scale fading model, and the Rayleigh fading with
zero mean and unit variance is modeled for the small scale
fading. The main system and GNN parameters are listed in
Table I.

1) Performance Comparisons with Different Number of
Training Samples

The performance comparison results with the different num-
ber of training samples are summarized in Table II, for L = 30
D2D pairs.

As shown in Table II, the performance of the proposed
supervised GNN is slightly increasing with the number of

TABLE I System and GNN Parameters
Parameters Values

Edge length, darea 500 m
D2D pairwise distance, dmin − dmax 2 – 65 m
Transmit power of activated link, pl 0 dBm

Path loss model 148 + 40 log10(d[km]) [31]
The number of layers of GNN 5

Sizes of CNN in GNN {5, 32, 32, 6}
Sizes of DNN in GNN {9, 32, 32, 2}

training samples. The proposed supervised GNN approach
achieves an accuracy of 0.9027 and a normalized sum rate
of 0.9724 with only 100 training samples, wherein the gap
of the end performance between the proposed supervised
GNN and the CCE algorithm is only 2.76%. This feature
of high sample efficiency is preferred for practical problems
in wireless networks as the acquisition of sufficient training
samples in wireless networks can be expensive or even im-
practical. The performance can be further improved with a
larger number of training samples. As can be observed from
Table II, with 1000 training samples, the accuracy and sum
rate can reach 0.9277 and 0.9827, respectively. The gap of the
end performance is further reduced to 1.73%. As a conclusion,
the end performance of the proposed method is improved by
approximately 0.01 with increasing the number of training
samples from 100 to 1000.

It is indicated in Table II that the proposed supervised GNN
method outperforms the benchmark schemes. The reason that
the supervised GNN outperforms the unsupervised GNN is
probably due to the fact that the D2D link scheduling is
a discrete classification problem. Besides, the unsupervised
GNN may need more samples to obtain a better performance.
The proposed GNN based framework outperforms the graph
embedding method. The reason is that the small scale fading
information has been neglected by the nature of the graph
embedding method. In other words, the full information of the
fading channel has been included as the input feature of our
proposed approach while the graph embedding method only
considered the distance information as embedding features.
In addition, the conventional supervised DNN has the worst
performance amongst all designs. The reason is that the super-
vised DNN is a data-driven approach that normally requires
a large training dataset. Besides, the conventional DNN, by
its nature, ignores the node/edge features incorporated in the
graph theory.

2) Performance Comparisons with Different Number of
D2D Pairs

The performance of the proposed method is evaluated under
the different number of D2D pairs with L ∈ {10,30,50}. For
the performance evaluation, 500 training samples are generated
by the CCE algorithm in each case. The simulation results are
shown in Table III. The performance of the CCE algorithm is
evaluated by comparing it with the FPLinQ algorithm [4]. The
ratio between the sum rate achieved by the FPLinQ algorithm
and that generated by the CCE algorithm is given, and it
indicates that the performance of the CCE algorithm is close
to the FPLinQ. Although the CCE algorithm can not beat the
FPLinQ, it has much wider applications than the FPLinQ al-



7

TABLE II Performance Comparisons with Different Numbers of Training Samples
Number of Training Samples 100 200 500 1000

Metrics Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate
GNN (Supervised) 0.9027 0.9724 0.9100 0.9758 0.9143 0.9780 0.9277 0.9827

GNN (Unsupervised) 0.7570 0.8385 0.7623 0.8478 0.7767 0.8485 0.7622 0.8393
Graph Embedding 0.7578 0.8328 0.7645 0.8452 0.7742 0.8519 0.7805 0.8642

DNN 0.6500 0.7309 0.7122 0.7976 0.7128 0.8005 0.7218 0.8147

TABLE III Performance Comparisons with Different Number of D2D Pairs
Number of D2D Pairs 10 30 50

Metrics Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate
FPLinQ - 1.0052 - 1.0099 - 1.0151

GNN (Supervised) 0.8955 0.9751 0.9143 0.9780 0.9232 0.9787
GNN (Unsupervised) 0.7385 0.8599 0.7767 0.8485 0.7966 0.8417

Graph Embedding 0.7955 0.9057 0.7742 0.8519 0.7902 0.8430
DNN 0.7945 0.8952 0.7128 0.8005 0.7044 0.7846

TABLE IV Performance Comparisons with Different Pairwise Distances
Pairwise Distance (m) 2 – 65 15 – 65 15 – 50 fixed 30

Metrics Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate
GNN (Supervised) 0.9100 0.9758 0.9115 0.9691 0.9003 0.9676 0.8847 0.9608

GNN (Unsupervised) 0.7623 0.8478 0.7413 0.7712 0.7168 0.7922 0.6865 0.7623
Graph Embedding 0.7645 0.8452 0.7430 0.7730 0.7140 0.7779 0.6333 0.7012

DNN 0.7122 0.7976 0.6755 0.7014 0.6785 0.7479 0.6395 0.7366

gorithm. Table III shows that the proposed approach maintains
the best and the most stable performance with the increasing
system scale. Whereas, the performance of all benchmark
designs either fluctuates or degrades for larger scale systems.
This proves that the proposed supervised GNN framework
can handle large scale systems with stable performances.
The accuracy and sum rate of the proposed method for all
considered cases remain over 0.89 and 0.97, respectively. By
contrast, although the graph embedding method can achieve a
normalized sum rate of 0.9057 at L = 10, and the performance
degrades to 0.8430 at L = 50. The performance degradation of
the graph embedding method is around 6% when the network
size increases from 10 to 50.

3) Performance Comparisons with Different Pairwise Dis-
tances

The performance of the proposed approach and the bench-
mark schemes with varying D2D pairwise distances are com-
pared in Table IV with 200 training samples and L = 30 D2D
pairs. When the distribution of the pairwise distances changes,
the accuracy of the proposed method can achieve at least 88%
of the target scheduling results, and the average normalized
sum rate can maintain above 96% of that achieved by the CCE
algorithm. The performance of the proposed framework on the
scenario with a fixed pairwise distance is the worst amongst all
system settings. This is due to the fact that the channel gain
largely depends on the distance, hence embedding the fixed
pairwise distance into node features will lose the geometrical
information of wireless network to some extent. As shown in
Table IV, the proposed supervised GNN outperforms the three
benchmark schemes in all four tested parameter settings.

4) Running Time Performance Comparisons
Three network settings with L ∈ {10,30,50} at pairwise

distance 2 – 65 m are considered to compare the running time
performance of the supervised GNN method, the benchmark
schemes and the CCE algorithm. The average results of the
running time are shown in Table V.

TABLE V Average Running Time Comparisons
Number of D2D Pairs 10 30 50

CCE (ms) 1527.3 19567.6 58822.1
GNN (Supervised) (ms) 0.1645 0.6258 1.5053

GNN (Unsupervised) (ms) 0.1668 0.6426 1.5165
Graph Embedding (ms) 0.9046 6.3865 17.0046

DNN (ms) 0.0094 0.0135 0.0188

It can be observed from Table V that the conventional
CCE method consumes significant time when the number of
D2D pairs is increasing since the scheduling problem becomes
more complicated with larger networks. The traditional algo-
rithms for D2D link scheduling problems are usually time-
consuming, which are not suitable for real-time applications,
and may result in significant performance degradation for
real-time implementation in wireless networks. By contrast,
the supervised GNN method significantly accelerates the link
scheduling problem in D2D networks. It is around 104 times
faster than the conventional CE algorithm for L = 10, 3× 104

times faster for L = 30, and 4 × 104 times faster for L = 50.
Such significant acceleration by the proposed approach is very
promising for real-time implementation in wireless networks.
The proposed supervised GNN approach has a similar running
time performance with the unsupervised GNN since they share
similar network structure and input features. Whereas, it out-
performs the graph embedding method on time consumption
because the latter takes time to obtain the embedding features
of nodes, where a distance quantization is required and each
node iteratively updates its embedding feature from itself and
all its adjacent nodes. Although the DNN achieves a better
running time performance due to the negligence of the graph
features, it has inferior end performance and sample efficiency
as compared to the GNN based design.

5) Generalizability to Different System Settings
To demonstrate the generalization ability, the proposed

GNN framework is trained with 1000 samples at L = 30 and
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TABLE VI Generalizability to Different System Settings

Number of D2D Pairs Pairwise Distance (m) GNN (Supervised) GNN (Unsupervised) Graph Embedding DNN
Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate

30 15 – 65 0.9158 0.9699 0.6385 0.4753 0.5477 0.0887 0.6810 0.7004
30 15 – 50 0.9065 0.9665 0.5983 0.5108 0.4818 0.0913 0.6868 0.7354
30 fixed 30 0.8822 0.9489 0.4828 0.2082 0.4485 0.0325 0.6522 0.7164
10 2 – 65 0.8960 0.9759 0.5605 0.6343 0.3985 0.2787 - -
50 2 – 65 0.9168 0.9636 0.7567 0.7773 0.5403 0.0048 - -

pairwise distance 2 – 65 m, then apply the trained GNN model
directly to different system settings, such as pairwise distances
and system scales, without any further training.

Table VI shows comparison results of the generalization
ability, which indicates that the performance of the proposed
GNN approach is stable on scenarios with different pairwise
distances and system scales without any retraining. Regarding
the scenarios with various pairwise distances, when the pair-
wise distances are 15 – 65 m and 15 – 50 m, the generalization
can achieve almost the same performance with the training
of 200 samples as shown in Table IV, and there is only
1.19% performance loss even for the worst case with the
fixed pairwise distance. Regarding the scenarios with different
system scales, the generalization achieves nearly the same
performance at L = 10 and results in only 1.51% performance
loss at L = 50 comparing to the training of 500 samples as
illustrated in Table III. By contrast, the unsupervised GNN and
the graph embedding methods indicate significant performance
degradations on the generalizability. Although the DNN shows
a relatively good performance on the varying pairwise dis-
tances, it requires retraining when the network scales change.
In this case study, the size of the proposed GNN is independent
of L, hence it is promising to be generalized to the network
scales with different L where no further training is required.
Comparing to the neural networks where retraining is needed
once the system setting is changed, the generalization feature
of the proposed GNN framework is desirable in wireless IoT
networks to prevent expensive training cost.

6) Robustness
The situation with partial CSI is considered to test the

robustness of the proposed GNN framework. The pre-trained
model for L = 30 is adopted to test on the case where a
fixed proportion of the interference CSI is missing. The ratio
between the performance achieved by the proposed GNN with
partial CSI and that achieved by the case with full CSI is
reported in Fig. 4. It can be observed that the proposed GNN
achieves an accuracy of 0.85 and a sum rate of 0.91 with
respect to that of the case with full CSI when the CSI for
even 50% of the links is unavailable. This demonstrates that
the proposed GNN framework is robust to the corruption of
input features.

V. APPLICATION ON JOINT CHANNEL AND POWER
ALLOCATION PROBLEM IN D2D UNDERLAID

CELLULAR NETWORKS

In this section, a joint channel and power allocation problem
in the D2D underlaid cellular network is introduced, followed
by a solution based on the proposed GNN framework and its
performance.
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Fig. 4 Performance of GNN with missing CSI.

A. System Model and Problem Formulation

This case study considers an uplink single-cell system with
K cellular users (CUs) and L D2D pairs. Let K = {1, . . . ,K}
and L = {1, . . . , L} denote the indexes of CUs and D2D pairs,
respectively. The individual CUs transmit signals to the BS via
orthogonal channels. It is assumed that D2D pairs transmit
data by using the channels of CUs in the underlay mode. In
the D2D underlaid cellular networks, the number of D2D pairs
is usually smaller than that of CUs, hence we consider K ≥ L.
A simple system model is depicted in Fig. 5.

Fig. 5 An uplink single-cell with CUs and D2D pairs.

Let hCB
k

denote the channel gain between the k-th CU, k ∈
K and the BS, and let hD

l
denote the channel gain between the

transmitter and the receiver of the l-th D2D pair, l ∈ L. hDB
l
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denotes the channel gain of the interference link between the
transmitter of the l-th D2D pair and the BS, and hCD

kl
represents

the channel gain of the interference link between the k-th CU
and the receiver of the l-th D2D pair.

Let x = {xkl}, k ∈ K, l ∈ L denote the indicator vector of
the channel allocation, where xkl = 1 if the channel of the k-th
CU is utilized by the l-th D2D pair, and xkl = 0 otherwise.
Let pC = {pC

k
}, k ∈ K denote the transmit power vector of the

CUs, and let pD = {pD
l
}, l ∈ L represent the transmit power

vector of D2D pairs. It is assumed that each CU channel can
be accessed by at most one D2D pair. The SINR of the l-th
D2D pair on the channel of the k-th CU is formulated as

ξD
kl =

hD
l

pD
l

xkl
hCD
kl

pC
k
+ σ2

N

. (8)

The SINR at the BS achieved by the k-th CU can be written
as

ξC
k =

hCB
k

pC
k∑

l∈L hDB
l

pD
l

xkl + σ2
N

. (9)

Note that the data rate is normalized by the channel band-
width. Therefore the data rates of the l-th D2D pair and the
k-th CU can be expressed, respectively, as

RD
l = log2(1 + ξ

D
kl) (10)

and
RC
k = log2(1 + ξ

C
k ). (11)

The objective is to maximize the sum rate of both CUs and
D2D pairs by optimizing the channel allocation decisions x as
well as the power allocation decisions pC and pD , which is
formulated as

max
x,pC ,pD

∑
l∈L

RD
l +

∑
k∈K

RC
k

subject to xkl ∈ {0,1}, ∀k ∈ K, ∀l ∈ L ,∑
l∈L

xkl ≤ 1, ∀k ∈ K ,

RC
k ≥ RC

min, ∀k ∈ K ,

RD
l ≥ RD

min, ∀l ∈ L ,

pC
k ≤ pC

max, ∀k ∈ K ,

pD
l ≤ pD

max, ∀l ∈ L ,

(12)

where RC
min represents the minimum data rate requirement of

each CU. pC
max and pD

max denote the maximum transmit power
of each CU and each D2D pair, respectively. The second
constraint means that each CU channel can be utilized by at
most one D2D pair. The third and fourth constraints represent
the minimum data rate constraint of each CU and each D2D
pair, respectively. The fifth constraint denotes that each CU
has a limited maximum transmit power. The last constraint
indicates that the transmit power of each D2D pair should not
exceed a specific maximum value.

B. Graph Representation

The link between the BS and each CU is treated as a node,
it is termed as a CU node. Each D2D pair is also treated as
a node, it is termed as a D2D node. The interference links
between each D2D node and each CU node are treated as
edges. The graph representation of the D2D underlaid cellular
network is illustrated in Fig. 6.

Fig. 6 Graph representation of D2D underlaid cellular net-
work.

In this case study, only the channel allocation for D2D
pairs are needed to be learned, so β

(m−1)
u is removed in the

aggregation function in (4). Since the target of the GNN is to
learn which CU channel can be utilized by each D2D pair, this
problem can be viewed as a K-class classification problem,
where K classes correspond to K orthogonal channels from
the CUs to the BS.

C. Adaptation

In this case, each CU channel can be accessed by at most
one D2D pair. In the CCE algorithm as described in Algorithm
1, the randomly generated samples in Step 2 may not meet
this constraint, therefore the projection algorithm is required
to convert them into feasible samples in Step 3.

Since this case study involves power allocation with con-
straints, the following optimal power allocation will be in-
tegrated into Step 4 in Algorithm 1 as the power allocation
solution for the sum rate calculation. Additionally, it will be
also applied to the channel allocation results produced by the
GNN in the post-processing steps of our proposed framework.

1) Optimal Power Allocation with Constraints
In the considered system, if the channel of the k-th

CU is accessed by the l-th D2D pair, then the power
allocation problem only involves one CU and one D2D
pair in a shared channel. To maximize the sum rate, a
closed-form solution of the power allocation for such
optimization problem was provided in [32] and the authors
proved that the optimal power must be in the set p∗ ∈
{(pC

max, p
D(RD

min)

min ), (pC
max, p

D(RC
min)

max ), (p
C(RC

min)

min , pD
max), (p

C(RD
min)

max , pD
max)},
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where

p
D(RD

min)

min , max{
(2RD

min − 1)(pC
maxhCD

kl
+ σ2

N )

hD
l

,0},

p
D(RC

min)

max , min{
1

hDB
l

(
pC

maxhCB
k

2RC
min − 1

− σ2
N ), p

D
max},

p
C(RC

min)

min , max{
(2RC

min − 1)(pD
maxhDB

l
+ σ2

N )

hCB
k

,0},

p
C(RD

min)

max , min{
1

hCD
kl

(
pD

maxhD
l

2RD
min − 1

− σ2
N ), p

C
max}.

(13)

If there is no minimum data rate requirement for D2D pair,
i.e., RD

min = 0, then we have p
D(RD

min)

min = 0 and p
C(RD

min)

max = pC
max.

The optimal power allocation will be the one in the set that
maximizes the sum rate of both CU and D2D pair and satisfies
the data rate and power constraints.

It is assumed that each channel can be utilized by at
most one D2D pair. However, the channel allocation results
generated by the GNN may not satisfy this requirement.
Therefore, a projection step is necessary to be incorporated
with the post-processing step of our proposed framework to
mitigate the problem of infeasible results.

2) Projection on the infeasible learning output
In this case study, the indicator vector of the channel

allocation x = {xkl}, k ∈ K, l ∈ L is denoted by a L × K
matrix. The output probabilities of the GNN also form a L×K
matrix denoted by Ỹ = { ỹlk}, k ∈ K, l ∈ L, where the l-th row
represents the probabilities of K classes for the l-th D2D pair.
The key procedures of the projection method are summarized
as follows. The algorithm will
• find the maximum value of Ỹ , e.g., ỹlk , and assign the

corresponding k-th CU channel to the l-th D2D pair, e.g.,
xkl = 1.

• set all elements of l-th row and k-th column of Ỹ to be
zeros to avoid that the same CU channel is allocated to
multiple D2D pairs.

• continue to find the maximum value of the updated
probability matrix, and repeat the above steps until all
D2D pairs are allocated with different CU channels.

D. Numerical Results
This section evaluates the performance of the proposed

framework on the joint channel and power allocation problem
in the D2D underlaid cellular network. The locations of CUs
and D2D pairs are randomly generated in a square area with
an edge length of darea. The BS locates in the centre of this
region. The Rayleigh fading with zero mean and unit variance
is modeled for the small scale fading. The main system and
GNN parameters are listed in Table VII.

A 2-layer GNN is adopted for performance evaluations due
to the simplicity of connections between D2D nodes and CU
nodes. Unless otherwise stated, the accuracy is given by the
value calculated after applying the projection step to the output
of the neural network. For fair comparisons, the same post-
processing steps (projection and closed-form power allocation)
have been applied to all benchmark schemes.

TABLE VII System and GNN Parameters
Parameters Values

Edge length, darea 1000 m
D2D pairwise distance, dmin − dmax 15 – 50 m

Maximum power of each D2D pair, pD
max 20 dBm

Maximum power of each CU, pC
max 20 dBm

Minimum data rate of CUs, RC
min 2 bits/s/Hz

Minimum data rate of D2D pairs, RD
min 0 bits/s/Hz

Path loss of cellular links 128.1 + 37.6 log10(d[km]) [31]
Path loss of D2D links 148 + 40 log10(d[km]) [31]

The number of layers of GNN 2
Sizes of CNN in GNN {3, 32, 32, 8}
Sizes of DNN in GNN { 9+K , 32, 32, K }

1) Performance Comparisons with Different Number of
Training Samples

The performances of the supervised GNN with different
number of training samples are investigated for K = 5, L = 2,
and compared against the benchmark designs, as shown in
Table VIII.

As indicated in Table VIII, the average accuracy and sum
rate of the proposed supervised GNN method are increasing
with the growing number of training samples. The normal-
ized sum rate achieves approximately 0.98 with 500 training
samples, and can be further improved to around 0.993 with
doubled training samples. For the benchmark schemes, the
performance of the normalized sum rate only fluctuates be-
tween 0.83 and 0.87. The comparison results demonstrate that
the proposed supervised GNN approach has a better capability
for handling the heterogeneous resource allocation problem
than the three benchmark schemes.

2) Performance Comparisons with Different Number of
CUs and D2D Pairs

The performance of the proposed framework with different
network sizes is examined with 1000 training samples. The
results are compared in Table IX and all results are given
with respect to the CCE algorithm. The optimal solution is
obtained by applying the exhaustive search. Since the consid-
ered network sizes with K = 5,7 are small, it is easy to obtain
the optimal solutions by the exhaustive search mechanism.
Note that the comparison between the optimal solution and
the CCE method is not given for the case K = 10, L = 5 due
to the exponential computational complexity of the former. It
is seen that the results of the CCE algorithm are very close
to the optimal results. In all considered parameter settings,
the normalized sum rates achieved by the supervised GNN
remain above 0.975 while the benchmark schemes can achieve
at most 0.91 approximately. It can be concluded that the
proposed framework surpasses all the benchmark schemes.
The possible reasons that the supervised GNN performs better
than the unsupervised GNN include the supervised method is
more suitable than the unsupervised method for the classifica-
tion problems, and the unsupervised learning usually requires
larger dataset for training to achieve better performances. The
proposed GNN approach outperforms the graph embedding
method since our approach utilizes more information (e.g.,
full CSI) than the graph embedding mechanism which only
uses distance. Moreover, the DNN underperforms the proposed
GNN because DNN by its nature is a data-driven approach and
cannot learn the topology of the wireless network.
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TABLE VIII Performance Comparisons with Different Numbers of Training Samples
Number of Training Samples 500 750 1000 1500

Metrics Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate
GNN (Supervised) 0.7375 0.9791 0.8200 0.9914 0.8075 0.9905 0.7850 0.9940

GNN (Unsupervised) 0.2575 0.8397 0.2475 0.8448 0.2500 0.8454 0.2825 0.8674
Graph Embedding 0.2250 0.8414 0.2175 0.8550 0.2225 0.8569 0.1800 0.8557

DNN 0.1775 0.8426 0.2150 0.8333 0.2075 0.8461 0.2025 0.8580

TABLE IX Performance Comparisons with Different Number of CUs and D2D pairs
System Scales K=5, L=2 K=5, L=3 K=7, L=2 K=7, L=3 K=10, L=5

Metrics Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate Accuracy Sum Rate
Optimal Solution - 1.0001 - 1.0100 - 1.0003 - 1.0062 - -

GNN (Supervised) 0.8075 0.9905 0.6700 0.9948 0.7375 0.9849 0.5867 0.9814 0.4730 0.9755
GNN (Unsupervised) 0.2500 0.8454 0.2067 0.8815 0.1725 0.8632 0.1467 0.8756 0.1180 0.9094

Graph Embedding 0.2225 0.8569 0.2067 0.8290 0.1709 0.8614 0.1367 0.8309 0.1110 0.8263
DNN 0.2075 0.8461 0.2383 0.8322 0.1600 0.8552 0.1650 0.8336 0.1240 0.8206

TABLE X Average Running Time Comparisons (including post-processing steps)
System Scales K=5, L=2 K=5, L=3 K=7, L=2 K=7, L=3 K=10, L=5

CCE (ms) 573.0 1394.4 682.9 1622.0 3905.0
GNN (Supervised) (ms) 1.0787 1.5524 1.1048 1.5841 2.4810

GNN (Unsupervised) (ms) 1.1627 1.6336 1.2148 1.6530 2.5773
Graph Embedding (ms) 1.7208 2.2610 1.9863 2.5718 4.3553

DNN (ms) 1.1316 1.5532 1.1823 1.6060 2.6187

TABLE XI Generalizability to Different System Scales
System Scales K=5, L=3 K=7, L=3

Metrics Accuracy Sum Rate Accuracy Sum Rate

GNN (Supervised) Training 0.6700 0.9948 0.5867 0.9814
Generalization 0.6140 0.9803 0.5987 0.9715

GNN (Unsupervised) Training 0.2067 0.8815 0.1467 0.8756
Generalization 0.2167 0.8178 0.1267 0.8257

Graph Embedding Training 0.2067 0.8290 0.1367 0.8309
Generalization 0.2047 0.8182 0.1520 0.8303

DNN Training 0.2383 0.8322 0.1650 0.8336
Generalization 0.2173 0.8145 0.1433 0.8333

3) Running Time Performance Comparisons
The time consumptions of the proposed framework and the

benchmark designs are evaluated with different network scales.
The comparison outcomes are illustrated in Table X.

As shown in Table X, the proposed GNN method sig-
nificantly accelerates the conventional CCE algorithm from
second level down to millisecond level, e.g., 1.58 ms for
K = 7, L = 3. The proposed supervised GNN method has
a similar time consumption with the unsupervised GNN and
the DNN because the same post-processing steps, such as the
projection algorithm and the closed-form power allocation,
are applied to all methods. Additionally, it is faster than the
graph embedding method since the graph embedding operation
is time-consuming. Since the running time of the proposed
framework is only a few milliseconds, it is very attractive for
solving practical problems in wireless networks which usually
have stringent real-time requirements.

4) Generalizability to Different System Settings
To evaluate the generalization capability of the proposed

GNN framework and the benchmark designs, they are trained
with 1000 samples at K = 5, L = 2 and K = 7, L = 2, then the
trained models are tested on the systems with a larger number
of D2D pairs at K = 5, L = 3 and K = 7, L = 3, respectively.

The results are shown in Table XI where the training
refers that testing samples share the same system scales
with the training samples, and the generalization means that

testing samples have different network scales with the training
samples. The generalization of the proposed supervised GNN
approach only generates 0.01 – 0.015 sum rate loss comparing
to the scenario with training. Some benchmark methods also
show good generalization performance in this case study,
but their final performance still has a remarkable gap to the
proposed supervised GNN method. The results suggest that
the proposed GNN approach has potential generalizability to
systems with larger L. In this case study, since the size of
the proposed GNN is related to K but independent of L, it
is possibly generalized to the network scales with larger L
without retraining when K is invariant.

5) Robustness
The pre-trained model of K = 5, L = 3 is used to test the

robustness of the proposed GNN approach in this case study.
The performance of the GNN with missing CSI is shown in
Fig. 7, when the CSI of half of the links are missing, the
proposed GNN can still achieve 90% of the sum rate generated
by the situation with full CSI. This robustness feature is
desirable in practical wireless IoT networks where some of
the CSI may be unavailable.

VI. CONCLUSION

In this work, wireless IoT systems are represented by
graphs. With the aid of graph modeling, a general GNN based
framework is proposed to solve the resource optimization
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Fig. 7 Performance of GNN with missing CSI.

problems in wireless IoT networks. The proposed framework
adopts a CNN with a mean operation for feature aggregations
and a DNN for feature combinations to update the feature
vector of each node in an iterative manner. The performance
of our proposed framework is verified in two case studies
of resource allocation in D2D wireless networks. Simulation
results prove that the proposed framework works well for both
the homogeneous systems and the heterogeneous networks.
It outperforms all the considered benchmark schemes and
is very promising for real-time implementation in wireless
IoT networks. Additionally, the proposed GNN framework
shows potential generalizability to various network settings
and robustness to partial CSI.
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