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Abstract. A pair of biadjoint functors between two categories produces a collection of elements
in the centers of these categories, one for each isotopy class of nested circles in the plane. If the
centers are equipped with a trace map into the ground field, then one assigns an element of that
field to a diagram of nested circles. We focus on the self-adjoint functor case of this construction
and study the reverse problem of recovering such a functor and a category given values associated
to diagrams of nested circles.
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1. Introduction

A biadjoint pair (F,G) of functors consists of two functors F,G and choices of natural trans-
formations making G both left and right adjoint to F . Biadjoint pairs of functors are common
in today’s mathematics and mathematical physics. Their popularity is related, in part, to their
natural appearance in extended topological field theories. Such an extended theory may associate

• a category C(K) to a closed (n− 2)-manifold K,
• a functor C(N) to an (n− 1)-cobordism N between (n− 2)-manifolds,
• a natural transformation C(M) to an n-cobordismM with corners between (n−1)-cobordisms.

The functors C(N) and C(N∗) are then naturally biadjoint, where N∗ is the reverse cobordism of
N , see [Kh1] for instance.

Furthermore, biadjoint functors appear throughout representation theory, algebra, and geometry,
including as

• projective functors in highest weight categories [BG],
• Zuckerman and Bernstein derived functors in highest weight categories [BFK],
• various functors in modular representation theory [Kl],
• Fourier-Mukai kernels between Calabi-Yau varieties [Or],
• functors of tensor products with matrix factorizations, see e.g. [CM],
• functors of convolution with Lagrangians between Fukaya–Floer categories,
• suitable convolution functors in geometric representation theory and in categories of sheaves

on manifolds and stratified spaces,
• generating functors for categorifications of Hecke algebras [EK], quantum groups [CR, KhL,

R, L2], and Heisenberg algebras [Kh4],
• functors of tensoring with objects of pivotal categories [S],
• 1-morphisms in Mazorchuk–Miemietz fiat 2-categories [MM1].

A biadjoint pair (F,G) between categories A,B gives rise to a planar diagrammatic calculus of
collections of arcs and circles in the plane, as reviewed below in Section 2.1. Such diagrams describe
natural transformations between compositions of F and G built from the four biadjointness natural
transformations. Regions of these diagrams are labelled by categories A and B in checkerboard
fashion. Closed diagrams in the plane, that is, collections of nested circles in the plane, give rise
to elements of the centers Z(A), Z(B), depending on whether the outside region is labelled A or
B. The centers Z(A), Z(B) are commutative monoids, and potentially, there is a lot of freedom in
associating elements of these commutative monoids to closed diagrams.

In this paper we investigate the case when the categories A,B are pre-additive or additive. To
further simplify matters, we assume that the categories and functors are k-linear, over a field k,
and, in particular, their centers Z(A), Z(B) are commutative k-algebras. One can further assume
that the centers come with suitably non-degenerate trace maps Z(A) −→ k, Z(B) −→ k to the
ground field. Applying these trace maps to central elements encoded by nested circle diagrams
produces a collection of elements of k, one for each nested diagram together with a label for an
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outer region. Given such data, one can turn around and build a “minimal” non-degenerate system
of such categories, biadjoint functors, and trace maps on centers in a straightforward way.

We explain these constructions in detail in the slightly different case of a self-adjoint endofunctor
F : A −→ A rather than a biadjoint pair (F,G). In the self-adjoint case there is only one category
A, each region is labelled by A, and that label can be omitted. The evaluation data is given by
assigning an element of k to each nested circle diagram.

In the self-adjoint case, the center Z(A) is a commutative algebra that comes with a k-linear
map ω : Z(A) −→ Z(A), corresponding to the operator of wrapping a circle around a diagram
representing an element of Z(A). This wrapping operator is the trace morphism for the self-adjoint
functor F , see [B] and (95).

In Sections 2.4 and 3 we discuss various monoidal categories one can assign to the data (k, Z, ω)
of a commutative k-algebra Z and a k-linear map ω, generalizing in some cases from a field k to
a commutative ring R. These categories come from a suitable pairing between the k-vector space
generated by diagrams of arcs, circles, and elements of Z embedded in a disk and a similar space
spanned by such diagrams in an annulus, see Section 3.1. When Z is finite-dimensional over k, the
morphism spaces in the resulting categories are finite-dimensional and the categories and functors
between them are recorded in diagram (36) in Section 3.2.

A related setup emerges when Z and ω are hidden and instead there is a trace map ε : Z −→ k
into the ground field. Then, to a nested diagram u of circles one can associate the element of k
given by evaluating u to an element of Z via ω and then applying the trace map ε. A collection of
these evaluations can be encoded into an analogue of power series α, called circular series, where
each nested circle diagram carries a coefficient. In Section 3.4 and the latter half of Section 3.3 we
discuss reconstructing the data of a category and a self-adjoint functor from such circular series and
single out recognizable series, which yield finite-dimensional morphism spaces between the objects
in the resulting categories. The situation discussed here is similar to that of universal construction
of topological theories, see [Kh2, KKO, Kh3], for instance. From that viewpoint, the current paper
deals with the case when the ambient manifold is R2 or S2 together with defect circles (submanifolds
or defects of codimension one).

To simplify computations of the pairing between vector spaces of diagrams it is sometimes natural
to assume that the coefficients of the formal power series α depend only on the isotopy type of
the nested circle diagrams in S2 rather than in R2. Such spherical power series are considered in
Section 3.3, with examples in Sections 5.2, 5.3.

In Section 4 we review the well-known correspondence between collections of nested circles in
the plane and trees and forests of a suitable type. Section 4.3 contains a brief discussion of the
set-theoretical version of our construction.

A general theory and understanding of the monoidal categories defined in Sections 3 and 4 seems
to be currently absent. Some examples are considered in Section 5.

In Section 6 several modifications of our constructions are discussed, offering, in particular, a
common generalization of tensor envelopes of noncommutative power series as introduced in [Kh3]
and some structures from the present paper.

Given a recognizable circular series α as above, that is, an assignment of an element α(u) of
the field k to each isotopy class u of planar diagrams of nested circles, one key construction is
the associated category Uα. The monoidal category Uα has non-negative integers n as objects and
morphisms from n to m are given by linear combinations of planar diagrams of arcs and circles
with n bottom and m top endpoints. The skein relations in the category Uα are defined via the
universal construction and may be difficult to write down for a given α.
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The finite-dimensional endomorphism rings TLα,n := EndUα(n) can be viewed as generalizations
of the Temperley–Lieb algebra [Jo1, Ka]. When α ignores the nesting and evaluates any diagram
of k circles to dk, where d ∈ k and char(k) = 0, then TLα,n is isomorphic to the Temperley–Lieb
algebra TLn(d) for generic d and to the Jones quotient of TLn(d) when d = q + q−1, where q is a
root of unity (the quotient by the ideal of negligible morphisms).

When α is spherical, the Jones quotient of the algebra TLα,n is, in addition, a Frobenius algebra.
These generalized Temperley–Lieb algebras may be an interesting topic for further investigation.

The present paper proposes a framework for generalized Temperley–Lieb algebras and associated
categories but does not try to work out the general theory. An incomplete treatment of some
examples can be found in Section 5.

Vaughan Jones discovered and developed many remarkable structures in mathematics and math-
ematical physics intricately related to the notion of the Temperley–Lieb algebra. These struc-
tures include the index for subfactors [Jo1, Jo3], the Jones polynomial of links [Jo2], Hecke alge-
bras [Jo3, Jo4], models of statistical mechanics [Jo5], and planar algebras [Jo7], among others. We
dedicate this paper to his memory.

Acknowledgments. M. K. was partially supported via NSF grant DMS-1807425. R. L. ac-
knowledges support by a Nottingham Research Fellowship. The Figures have been created using
Inkscape1.

2. Self-adjoint functors and circle diagrams

2.1. Diagrammatics for biadjoint pairs.

Given categories A,B and functors

(1) F : A → B, G : B → A,
the pair (F,G) is called biadjoint if there are isomorphisms

HomA(GN,M) ∼= HomB(N,FN)(2)

HomA(M,GM) ∼= HomB(FM,N)(3)

which are natural in M ∈ ObA and N ∈ ObB. We consider biadjoint pairs (F,G) together with a
choice of natural isomorphisms (2), (3). The natural isomorphism in (2) can be described by the
unit and counit natural transformations

δ1 : IdB =⇒ FG, µ1 : GF =⇒ IdA,

which satisfy the relations

(1F µ1) ◦ (δ1 1F ) = 1F , (µ1 1G) ◦ (1G δ1) = 1G,(4)

where 1F : F =⇒ F is the identity natural transformation from F to itself, and analogously for
1G. Likewise, the natural isomorphism in (3) can be described by the unit and counit natural
transformations

δ2 : IdA =⇒ GF, µ2 : FG =⇒ IdB,

which satisfy the relations

(1G µ2) ◦ (δ2 1G) = 1G, (µ2 1F ) ◦ (1F δ2) = 1F .(5)

A pair of functors (F,G) may have more than one collection of natural transformations (δ1, µ1, δ2, µ2)
satisfying these conditions. By a pair of biajoint functors (F,G) we mean a pair of functors as above

1https://inkscape.org/
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A

F

B

F

(a) 1F

B

G

A

G

(b) 1G

Figure 1. Diagrams of 1F and 1G. In this diagrammatics, the planar region be-
tween two parallel horizontal dashed lines describes a natural transformation from
the composition of functors read off the bottom dashed line to the composition given
by boundary points at the top dashed line. Regions of the diagram correspond to
categories.

A

F G

B

IdB

(a) δ1

A

B

IdA

G F

(b) µ1

B

G F

A

IdA

(c) δ2

B

A

IdB

F G

(d) µ2

Figure 2. Diagrams of biadjointness natural transformations. For instance, the
leftmost diagram is the transformation δ1 from the identity functor 1B to FG.
When no arcs end on a dashed line, then we assign the identity functor, on the
category which labels the region, to it.

together with a choice of such four natural transformations. We refer to [Kh1, Ba, L1] for more
details on biadjoint functors and their diagrammatics.

We use oriented planar diagrams, read from bottom to top, to denote these adjunctions. The
identity natural transformation 1F of the functor F is denoted by a line oriented up and the identity
transformation 1G by a line oriented down, see Figure 1. The unit and counit transformations are
denoted by oriented cup and cap morphisms, see Figure 2.

The biadjointness relations (4), (5) on these four natural transformations are shown in Figure 3.
Notice that they are just the four isotopy relations on up and down oriented strands.

Arbitrary compositions of the four diagrams depicted in Figure 3, modulo isotopy relations, lead
to diagrams of oriented arcs and circles in the strip R× [0, 1] of the plane with regions labelled in
a checkerboard manner by the categories A and B, see Figure 4. Edges are oriented so that the
region labelled A is always to the right as one travels along a line in the direction of its orientation.
Note that in the compositions of functors, at the top and bottom of the diagram, F and G always
alternate, so these compositions have the form FGF . . . or GFG . . . . The two empty sequences
of functors correspond to the identity functors IdA and IdB. If the rightmost (and semi-infinite)
region of the strip is labelled A, then the rightmost functor in the compositions at the top and
bottom is the functor F (or one or both of these compositions is just the identity functor IdA). If
the rightmost region is labelled B, the rightmost functor is G (or the identity functor IdB).

In the planar diagrams, the top and bottom compositions have the same parity of the number
of terms (functors) F,G appearing in the composition, with IdA and IdB having zero terms.
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A

F

B

F

F

F

B

A
(4)
=

F

F

B

A

(5)
=

(a) Biadjointness equations for 1F

B

G

A

G

G

G

A

B
(5)
=

G

G

A

B

(4)
=

(b) Biadjointness equations for 1G

Figure 3. Biadjointness relations are the isotopy relations on strands.

B

G F

A
B

A

A

A

GF

B

A

F G

F

F

A

Figure 4. A diagram built out of the biadjointness transformations.

A closed diagram of nested circles with the outer region labelled by A, respectively, B, defines
an element in the center Z(A) of A, respectively in Z(B), see Figure 5.

More generally, an element z ∈ Z(A) can be represented by a dot labelled by z floating in a
region labelled by A. Elements of Z(A) commute and can float past each other and anywhere in
the region labelled A, but generally can not cross the lines describing the identity maps of F and
G and the biadjointness morphisms.

Wrapping a clockwise circle around z ∈ Z(A) is the trace map Z(A) −→ Z(B) associated to
the biadjoint pair (F,G), see Figure 6, and the discussion in Section 6.4 around (95). Wrapping a
counterclockwise circle around z′ ∈ Z(B) is the trace map Z(B) −→ Z(A). One reference for trace
maps is [B].
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A

A
B

B
A

A
(a) An element of Z(A)

B
A
B A

B
(b) An element of Z(B)

Figure 5. Examples of nested circles giving elements in Z(A) and Z(B).

z′z′

B A
zz

A B

Figure 6. The trace maps Z(A) −→ Z(B) and Z(B) −→ Z(A).

F

F

(a) 1F

F F

IdA

(b) δ

IdA

F F

(c) µ

Figure 7. Identity transformation 1F and generating natural transformations δ
and µ for a self-adjoint functor. Every region of these diagram is labelled by the
category A.

Remark. If the categories A and B happen to coincide, so that F,G are endofunctors of A, then all
regions are colored by A, and this label can be removed. Instead, orientations of lines are then used
to differentiate between F and G and their corresponding transformations. This allows diagrams
for natural transformations between arbitrary, not just alternating, compositions of functors F and
G, such as FFGGGF , etc.

2.2. Diagrammatics for a self-adjoint functor and the category U.

Following Došen and Petrić [DP1, DP2], in this section we explain how a self-adjoint functor
gives rise to a monoidal category U described by collections of circles and arcs in the plane, up to
rel boundary isotopies. We call such collections U-diagrams or arc and circle diagrams.

Self-adjoint functor diagrammatics. Suppose that an endofunctor F : A −→ A on a category
A is self-adjoint. This means that natural isomorphisms

(6) HomA(FM,N) ∼= HomA(M,FN), M,N ∈ Ob(A)

have been fixed, over all pairs of objects in A. Equivalently, one fixes natural transformations

(7) δ : IdA =⇒ FF, µ : FF =⇒ IdA,

subject to the conditions

(8) (1F µ) ◦ (δ 1F ) = 1F , (µ 1F ) ◦ (1F δ) = 1F .
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F

F

F

F

(8)
=

F

F

(8)
=

Figure 8. Defining relations of self-adjointness are the isotopy relations.

F F

F

F

F

F

Figure 9. A natural transformation from F 2 to F 4 described by a diagram of
3 arcs and 7 embedded circles. Any such system can be further transformed via
isotopies into a form where each circle has a unique maximum and minimum for the
projection on the y-axis and each arc has at most one such extremum (none if it
connects a top F with a bottom F ).

Using the natural transformations 1F , δ, µ and their planar compositions one can build various
natural transformations Fn =⇒ Fm, n,m ≥ 0 between powers of F , including the case n = 0 or
m = 0, where the corresponding functor is F 0 = IdA. These natural transformations from Fn to
Fm are encoded by isotopy classes of collections of n+m

2 properly embedded arcs and finitely many
circles in the strip R× [0, 1] of the plane, see Figure 9 for an example of a natural transformation
from F 2 to F 4.

Specializing to n = m = 0, each diagram of nested circles in the plane defines an element of the
center of A. Wrapping a circle around such a diagram is the trace map, as in Figure 6, where now
we do not orient the circles.

The monoidal category U. Denote by Umn the set of isotopy classes of planar diagrams discussed
above, with n+m

2 arcs connecting in pairs n points on the bottom line and m points on the top line
and some number of circles (possibly none). There is an associative composition

(9) Ukm × Umn −→ Ukn

given by stacking and concatenating two digrams along their common m boundary points, see
Figure 10 for an example.
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FF

F F F

b

a

F F

= ba =

F F FF F

FF

Figure 10. The composition ba of diagrams b and a.

The composition in (9) is associative. We can form a category U having non-negative integers n
as objects and morphisms from n to m given by elements of Umn . The unit morphism 1n is given
by the diagram of n vertical arcs.

Denote by Umn (k) the set of diagrams in Umn with k circles. Then

(10) Umn =
⊔
k≥0

Umn (k).

The category U is strict monoidal, with the tensor product given on objects by n⊗m = n+m
and on morphisms by stacking them next to each other on the plane. This monoidal structure is
rigid, with self-dual objects n∗ ∼= n. In fact, the category U is free as a strict monoidal category
over the self-dual object 1 [Del, Proposition 9.4]. We note that the category U is not symmetric.

A self-adjointness datum (δ, µ) for the endofunctor F of A as above gives a monoidal functor

(11) F : U −→ End(A)

from the category U to the monoidal category of endofunctors of A that assigns Fn to the object n
of U and natural transformations δ and µ to the cup and cap diagrams as in Figure 7. Conversely,
a monoidal functor as in (11) determines a functor F = F(1) and biadjointness data (δ, µ) by
applying F to the cup and cap diagrams in U2

0 and U0
2, correspondingly.

The forgetful functor to the category B of crossingless matchings. Given a U-diagram as
studied above, forgetting the circles gives us a crossingless (planar) matching of n points on the
bottom and m points on top of the strip. Denote by Bmn the set of such matchings (as usual, we
choose one representative diagram from the corresponding isotopy class for each matching). We
refer to an element of Bmn as a B-diagram, or arc diagram.

We denote by B the category, with objects n ∈ Z+, morphisms from n to m in B given by the
set Bmn of crossingless matching diagrams in the strip, and composition of morphisms given by
concatenation of diagrams followed by removal of any circles that may appear. The category B is
rigid monoidal, similarly to U, with tensor product n⊗m = n+m.

Given a diagram u ∈ Umn denote by cir(u) the number of circles in u and by arc(u) ∈ Bmn the
diagram obtained by removing circles from u. For u ∈ Umn (k) we have cir(u) = k. The map arc
that forgets the circles,

(12) arc : Umn −→ Bmn ,
extends to a functor

(13) arc : U −→ B.

9



In other words, the functor arc turns an arc-circle diagram into an arc diagram by removing all
circles. The functor arc is monoidal, full, and a bijection on objects n ∈ Z+ of both categories. We
refer the reader to [Kh1, Section 2.2] for details on the category B and the functor arc.

Temperley–Lieb categories. Let R be a commutative ring. The monoidal category B can be
linearized by forming arbitrary linear combinations of morphisms from n to m with coefficients in
R. The resulting category RB is equivalent to the Temperley–Lieb category TL(d), where the value
d of the circle is one,

(14) RB ∼= TL(1).

More generally, the Temperley–Lieb category TL(d), for d ∈ R, is the pre-additive R-linear
monoidal category with objects n ∈ Z+ and morphisms from n to m being R-linear combina-
tions of crossingless matchings in Bmn . Upon composition (concatenation) of two matchings each
resulting circle is removed simultaneously with multiplying the remaining expression by d ∈ R for
each removed circle.

The endomorphism rings TLn(d) = EndTL(d)(n) are the Temperley–Lieb algebras [Jo1, Jo4,
Jo5]. These algebras have interesting connections to knot theory, quantum groups, and statistical
mechanics, see [Jo2, Jo5, Jo6, Ka] and references therein. One usually specializes R to a field k
(often C of Q(q)) and sets d = ±(q + q−1) or a similar expression, see [CFS, KaL].

We also linearize the category U to a category RU by keeping the same objects n ∈ Z+ and
allowing arbitrary finite R-linear combinations of morphisms. The category RU is a pre-additive
monoidal R-linear category. Picking d ∈ R gives a monoidal functor

(15) arcd : RU −→ TL(d)

that takes a diagram in U and evaluates each circle to d while keeping the collection of arcs the
same. A diagram u ∈ Umn (k) with k circles and underlying diagram arc(u) ∈ Bmn of arcs goes under
arcd to dk arc(u):

(16) arcd(u) = d cir(u) arc(u) = d k arc(u),

where we denote by cir(u) the number of circles in u.
The functor arcd forgets an enormous amount of information, since to evaluate it on a diagram

u ∈ Umn (k) one only needs to know the underlying arc diagram and the number of circles k in u. In
this paper we explore more subtle ways to linearize U and produce functors from it to categories
with finite-dimensional morphism spaces.

Circle diagrams. Endomorphisms EndU(0) = U0
0 of the unit object 0 of U constitute a com-

mutative monoid. Elements of U0
0 are isotopy classes of finite collections of circles in plane (it is

convenient to fix a representative for each isotopy class). Došen and Petrić [DP1, DP2] call elements
of U0

0 circular forms. We will also call them circle diagrams or closed U-diagrams. Reflection in
the plane takes any closed diagram to itself, see Proposition 1.

Notice that the monoid U0
0 is commutative since we can slide one group of circles past the other

next to it. The monoid U0
0 is isomorphic to the free commutative monoid on the following countable

set U◦.
We call a circle c in u ∈ U0

0 exterior (or outer) if it borders the infinite region of the diagram u.
Equivalently, a circle c is exterior if it can be connected to the boundary of the strip R× [0, 1] by
an arc disjoint from other circles. In the diagram in Figure 11 there are four exterior circles, each
marked by the letter e next to it.

Denote by U◦ the subset of U0
0 consisting of diagrams with only one exterior circle. Elements of

U◦ may be called ◦-diagrams or outer diagrams. Note that the empty diagram ∅ with no circles
(which is the unit element of the monoid EndU(0)) is not in U◦.

10



e
e

e
e

Figure 11. A diagram u ∈ U0
0 with four exterior circles each labelled by the letter e.

A diagram u ∈ U0
0 is in U◦ if and only if it has exactly one exterior circle. Let

(17) ω : U0
0 −→ U◦

be a bijection of sets that takes a closed diagram and wraps a circle around it, making it a diagram
in U◦ (a ◦-diagram). Starting with the empty diagram ∅ and iteratively applying ω and forming
unions of diagrams one can generate any diagram in U0

0, see Figure 12 for examples.

, ,

Figure 12. Diagrams ω2(∅)ω(∅), ω(ω(ω(∅)2)ω(∅)), and ω2(ω(∅)3) of U0
0. The

first diagram is not in U◦ while the second and third diagrams are.

Reflection involutions on U. The category U carries an involution ρv, referred to as vertical
reflection, that takes the object n to n and reflects a diagram about a vertical axis. The category
U also carries a contravariant involution ρh, called horizontal reflection, also denoted by the bar
symbol, taking a to a. The latter takes n to n and reflects a diagram about a horizontal line. These
relections give monoidal functors

(18) ρh : (U,⊗)→ (Uop,⊗), ρv : (U,⊗)→ (U,⊗op),

where f ⊗op g = g ⊗ f for morphisms.
Note that the involutions ρv and ρh commute (in the strict sense). Furthermore, on a closed

diagram (a diagram in U0
0), horizontal and vertical reflection have the same effect, since we consider

diagrams up to isotopies, so that ρv = ρh on endomorphisms of 0. In fact, a stronger statement
holds.

Proposition 1. Horizontal refection (and hence also vertical reflection) is the identity on the set
U0

0 of (isomorphism classes) of circle diagrams.

Proof. To prove this, we observe that any diagram in U0
0 can be represented by a collection of

circles in the plane such that each circle has exactly two (generic) intersection points with the
chosen horizontal axis, see an example in Figure 13. This is easy to show by induction on the
number of circles in the diagram. The property clearly holds for the empty diagram and a one-
circle diagrams. If it holds for diagrams u1, u2, it holds for their union, since one can place u1, u2

along the horizontal axis as required and away from each other. If the discussed symmetry property
holds for a diagram u, it holds for the diagram ω(u), the diagram given by placing the circle (which
is itself symmetric about the horizontal axis) around u. All diagrams in U0

0 can be constructed
inductively using disjoint union and the operation ω. Thus, the proposition follows. �
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Figure 13. A diagram invariant under the reflection about the (dotted) horizontal axis.

Diagrams in the disk and annulus. A diagram u ∈ Unm can alternatively be described as a
diagram in a disk D2 with n + m marked points on the outer circle. To remember that x comes
from a morphism from n to m, we can arrange n points to be on the lower half-circle of the disk
and m points on the upper half-circle — see Figure 14 for an example.

−→

Figure 14. An example of representing an element of Umn as a diagram in the disk
with marked circle points.

Take the semi-open annulus A = R2 \ int(D2), the complement in R2 of the interior of the disk
D2. We refer to ∂A ∼= S1 ∼= ∂D2 as the inner circle of A.

We introduce the set Uout
2n of outer circle diagrams in the annulus A for 2n points on the inner

circle of the annulus. Outer circle diagrams are isotopy classes of collections of n disjoint arcs in A
connecting these 2n points in pairs, together with circular forms (i.e., elements of U0

0) that float in
the regions of the annulus separated by the arcs. Figure 15 depicts an example of an outer circle
diagram. There, we have placed a mark × on the circle between the leftmost top and leftmost
bottom point. The mark corresponds to the position of the left edge of the box — it helps to easily
separate top and bottom boundary points, if needed. From this marking, the arc on the circle
corresponding to the position of the right edge of the box can be recovered if n is known.

Figure 15. An outer circle diagram in Uout
6 with marker ×.

2.3. Circular triples obtained from wrapping actions on centers of categories.

Recall that a self-adjoint endofunctor F (together with a choice of self-adjunction) on a category
A gives rise to a monoidal functor

(19) F : U −→ End(A),

12



see the discussion around formula (11). To a diagram a in Umn the functor F assigns a natural
transformation F(a) : Fn → Fm.

In the special case when a ∈ U0
0, that is, a is a circle diagram (a diagram of circles in the plane),

F(a) is a natural transformation of the identity functor IdA, that is, an element of the center Z(A)
of A.

The center Z(B) of any category B is a commutative monoid under composition, with the identity
natural transformation of IdB as the unit element. For A and F as above, the commutative monoid
Z(A) also carries a map ω that wraps a circle around an element z ∈ Z(A),

(20) ω(z) = µ ◦ (1F z1F ) ◦ δ,
as shown in Figure 16. This map ω is usually not a monoid homomorphism and does not take the
unit 1 to 1.

z 7−→ z1F 1F

µ

δ

= z

Figure 16. The “wrapping” action of ω on an element z ∈ Z(A).

The functor F restricts to a homorphism of commutative monoids

F : U0
0 −→ Z(A).

Explicitly, the restriction F is constructed as follows. To each circular form u ∈ U0
0 one assigns an

element F(u) of Z(A), constructed inductively on the number of circles in u.

(1) If u = u1u2 is a product of circular forms u1, u2 (that is, u is given by placing u1 and u2

next to each other), then

(21) F(u) = F(u1)F(u2).

(2) If u is given by a diagram v with a circle wrapped around it (which we write as u = ω(v)),
then

(22) F(u) = ω(F(v)).

We see that iterating multiplication in Z(A) with applying the map ω gives an endomorphism
of the identity functor for any circular diagram, see examples in Figure 17.

, ,

Figure 17. The elements ω2(1)ω(1), ω(ω(ω(1)2)ω(1)), and ω2(ω(1)3) of Z(A), cf.
Figure 12 where the same diagrams are interpreted in U0

0.

The above diagrammatics can be enhanced by choosing a subset S of Z(A) (perhaps a set of
generators or just all elements of Z(A)) and adding dots in the regions of the plane labelled by
elements of S. A dot can float in its region but cannot jump into another region. Wrapping a circle
around a dot s ∈ S results in the element ω(s), see examples in Figure 18. If S is multiplicative,

13



s

(a) ω(s)

s1 s2 s3

(b) ω2(ω(s1)s2)ω(1)s3

s1 s2 = s1s2

(c) Merging dots s1s2

Figure 18. Examples of enhanced circle diagrams with labels from S ⊆ Z(A). If
the set S is multiplicative, dots can be merged, as in (c).

we can add the product relation for two dots in the same region, merging dots labelled by s1, s2

into a single dot labelled s1s2, see Figure 18.
For a specific category A and a self-adjoint functor F these diagrammatics for elements of the

center Z(A) may have additional relations that will depend on the choice (A, F ). We will discuss
the formal construction of monoidal categories of such diagrams in the next subsection.

Assume now that the category A and the functor F are R-linear, for a commutative ring R.
This means that morphism spaces in A are R-modules, composition of maps is R-bilinear, and F
respects the R-linear structure of A.

Then the center Z(A) is a commutative R-algebra, and the endomorphism ω of the center is
an R-linear map. Usually, ω does not commute with the multiplication in Z = Z(A), that is,
ω(ab) 6= ω(a)ω(b), a, b ∈ Z.

Definition 2. We call a triple (R,Z, ω) of a commutative ring R, a unital commutative R-algebra
Z and an R-linear map ω : Z −→ Z a circular triple.

A circular triple is ω-generated if Z is the only R-subalgebra of Z that contains 1 and is closed
under ω.

With this terminology, an R-linear category A with a self-adjunction (F, δ, µ) gives a circular
triple (R,Z(A), ω).

Taking any commutative algebra Z and a linear map ω on it gives a large number of examples
of circular triples. The map ω may have special properties, such as be a derivation, ω(ab) =
ω(a)b+ aω(b), or, more generally, a differential operator, or just any linear map on a commutative
algebra (see Section 5.4). Another interesting example is the Frobenius endomorphism σ of a
commutative ring A over a characteristic p field, see the end of Section 5.

2.4. The skein category SUω of a circular triple.

Given a circular triple (R,Z, ω), we now construct a monoidal category SUZ,ω, also denoted SUω,
for short, and a category UZ which does not depend on ω.

The construction of SUZ,ω. Earlier, in (13), we considered the forgetful functor U −→ B that
removes circles from diagrams in Umn producing diagrams in Bmn . Given a circular triple (R,Z, ω),
instead of removing circles, we can evaluate them to elements in Z to construct the skein category
SUω = SUZ,ω.

The objects of the category SUZ,ω are non-negative integers n ∈ Z+ and the space of morphism
from n to m is given by all finite R-linear combinations of diagrams of crossingless matchings
b ∈ Bmn , now enhanced by allowing elements of Z to float in regions of Bmn . Examples of diagrams
in SUZ,ω are given in Figure 19. Recall that b has n+m

2 +1 regions into which it separates the strip.
We impose the following rules on these diagrams:

14



z4

z5

z6

(a) A morphism u from 1 to 5.

z1

z2

z3

(b) A morphism v from 5 to 3.

Figure 19. Examples of morphisms in SUω, written as crossingless matchings with
the regions labelled by elements zi ∈ Z. Linear combinations of diagrams are allowed
as well.

• Elements z1, z2 floating in the same region can merge into a single element z1z2.
• An element rz, with r ∈ R, floating in the region can be changed by removing r from the

region and multiplying the coefficient of the diagram by r.
• A diagram which has a sum z1+z2 in a region equals the sum of the corresponding diagrams

with z1 and z2 in that region.

In this way, the space of diagrams for a given crossingless matching b can be identified with the
tensor power Z⊗Rk, for k = n+m

2 + 1, one copy of Z for each region of b.
Now, the space of morphisms from n to m in SUZ,ω can be identified with the direct sum of cn+m

2

copies of that tensor power Z⊗Rk, one for each crossingless matching b ∈ Bmn . Here cr denotes the
r-th Catalan number.

To define composition in SUZ,ω we compose diagrams a and b representing morphisms from m to
k and from n to m, respectively. We then inductively simplify the composed diagram ab. If there
is a circle in ab that wraps around element z ∈ Z, we remove the circle and its interior and place
ω(z) in that place of the diagram instead. Starting with the innermost circles, we can eventually
remove all circles from ab. If the interior of the circle is empty, we replace it with ω(1) ∈ Z. This
composition rule is extended to R-linear combinations. An example of a composition of diagrams
in SUZ,ω can be found in Figure 20. For simplicity, we often write

SUω = SUZ,ω.(23)

z4

z5

z6

z1

z2

z3 = z1

z3z4

z2z5z6 = ω(z1)z3z4 z2z5z6

Figure 20. The composition vu of the diagrams from Figure 19 in SUω.

The monoidal structure on SUω. Morphism spaces SUmω,n := HomSUω(n,m) in SUω carry a nat-
ural structure of Z⊗Z-modules by placing an element z ∈ Z into the unique leftmost, respectively,
rightmost region. This structure is compatible with composition.

We thus obtain a tensor product

⊗ : SUmω,n × SUsω,r −→ SUm+s
ω,n+r, (u, v) 7−→ u⊗Z v.

which is defined using the horizontal multiplication (tensor product) of the underlying elements in
B, which joins the rightmost region of u and the leftmost region of v in u⊗v. In addition, all region
labels from Z are kept, and the ones in the middle region are multiplied. An example of a tensor
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z2

z1

z3

(a) A morphism u1 : 1→ 3.

z4

z5

(b) A morphism u2 : 3→ 3.

z4

z2

z1

z3z5

(c) The tensor product u1 ⊗ u2.

Figure 21. The tensor product of two morphisms in SUω.

product is given in Figure 21. This tensor product turns SUω into an R-linear monoidal category,
which is not, in general, symmetric or braided.

Now assume that Z is a free R-module and a basis B of Z is chosen. Recall that as an R-module,
HomSUω(n,m) is isomorphic to a direct sum of ck−1 copies of Z⊗k, for k = n+m

2 + 1. This way,
we obtain an R-basis for HomSUω(n,m) consisting of all diagrams u in Bmn with regions labelled by
elements of the basis B.

Example 3. (1) We may set Z = RU0
0, with multiplication given by taking disjoint union

of diagrams, and map ω be the operation of wrapping a circle around a diagram. This
results in the monoidal category RU, which is the R-linearization of the monoidal category
U defined in Section 2.2, as a special case of SUω.

(2) For the circular triple (R,R, ω = idR) we recover SUω = RB, the R-linearization of the
category B of crossingless matchings.

Example 4. The Temperley–Lieb category TL(d) is the skein category SUω for Z = R and
ω(1) = d ∈ R. Note that TL(1) = RB.

We observe that the category SUω is rigid and every object is isomorphic to its left and right
dual. The duality morphisms are the same as those in B, i.e. labelled with the 1 ∈ Z in all regions.
As a monoidal category, SUω is generated by the object 1. Morphisms are generated over R by the
following elementary morphisms:

• The cap and cup morphisms from 2 to 0, respectively, 0 to 2.
• Endomorphisms of 0 corresponding to R-algebra generators of Z.

These morphisms are subject to the following relations

• Identities of the cap and cup morphisms displaying 1 as a self-dual object.
• Compatiblity of composition of morphisms coming from elements of Z with multiplication

in Z.
• Topological relations on the underlying diagrams of crossingless matchings in B.
• Moving labels z ∈ Z within the regions.

The monoidal category UZ. Assume given a commutative R-algebra Z. Consider diagrams in
U0

0 with additional labels from elements of Z. This defines a ring U0
Z,0, similarly to SU0

ω,0 where
the difference is that circles are not evaluated using ω. Define the monoidal category

(24) UZ := SU(U0
Z,0, ω),

confer Example 3. Thus, UZ has the same objects as U and morphisms are given by morphisms in
U together with labels from Z in all regions.

Given a circular triple (R,Z, ω), any diagram in U0
Z,0 can be evaluated to an element in Z. Here,

the circle wrapping around a label z ∈ Z is mapped to ω(z). This definition extends inductively,
by sending disjoint unions of diagrams to products in Z, to a morphism of R-algebras

FZ : U0
Z,0 −→ Z.(25)
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More generally, we obtain a diagram of monoidal R-linear functors

(26) U ↪→ UZ
FZ
� SUω.

Here, the second functor FZ is obtained from applying the morphism FZ to the labels of regions,
which contain elements of U0

Z,0. See also the more general discussion in Section 2.6.

2.5. Universality of RU0
0 and ω-evaluation.

Universality of RU0
0. The R-algebra RU0

0 is universal among algebras with a distinguished R-
linear morphism ω. In fact, given any choice of a circular triple (R,Z, ω), consider the restriction
of the morphism FZ from Equation (25) to the submonoid U0

0. This gives a map

FZ : U0
0 −→ Z(27)

which takes the empty diagram to 1, intertwines the action of ω on Z and U0
0 and takes the disjoint

union of diagram to the product of corresponding elements, i.e.,

FZ(ab) = FZ(a)FZ(b), a, b ∈ U0
0,

FZ(∅) = 1,

FZ(ω(a)) = ω(FZ(a)).

The R-linear extension of FZ is a unital homomorphism of commutative R-algebras

(28) FZ : RU0
0 −→ Z

that intertwines the action of R-linear map ω on both algebras. We refer to this homomorphism as
ω-evaluation. We say that Z is ω-generated if the map (28) is surjective. Equivalently, the smallest
R-subalgebra of Z that contains the unit element 1 ∈ Z and is closed under ω equals Z.

To summarize, we have the following result.

Proposition 5. The commutative monoid (R-algebra) U0
0 (respectively, RU0

0) is initial among
commutative monoids with a distinguished map (respectively, a distingished R-linear map).

2.6. An adjunction of circular triples and monoidal categories with a self-adjoint end-
ofunctor.

Expanding on the previous subsection, we now explain how the constructions from Section 2.4
are functorial and how SUω can be regarded as a free monoidal category with a prescribed circular
triple datum recoverable from its endomorphism ring of the tensor unit.

We define CTripR to be the category of circular triples over R. That is, objects are circular
triples (R,Z, ω), often just displayed as the pair (Z, ω). A morphism φ : (Z1, ω1) → (Z2, ω2) in
CTripR is given by a homomorphism of R-algebras φ : Z1 → Z2 that intertwines the maps ω1, ω2,
i.e., such that the diagram

Z1

φ
��

ω1 // Z1

φ
��

Z2
ω2 // Z2

(29)

commutes.

We have already seen examples of morphisms of circular triples. For example, the map FZ : RU0
0 →

Z from (28) is a map of circular triples. It extends to a map of circular triples

U0
Z,0 −→ Z
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that sends a dot labelled with an element z ∈ Z to the corresponding element of Z.

We observe that a morphism φ : Z1 → Z2 in CTripR induces a monoidal functor

SUφ : SUω1 −→ SUω2(30)

defined by applying φ to all labels. For example, the morphism RU0
0 → R that sends any closed

circle diagram to 1 ∈ R induces the forgetful functor U→ B from earlier.
The assignment

(Z, ω) 7−→ SUω, φ 7−→ SUφ
obtained this way defines a functor from the category of circular triples (with underlying ring R)
to R-linear monoidal categories (i.e., monoidal categories enriched in R-modules). We denote this
functor by SU(−).

We also consider the assignment Z ′(−) which associates to an R-linear monoidal category with
a self-adjoint functor the endomorphism ring Z ′(A) := EndA(1) of the tensor unit 1. Note that
Z ′(A) embeds into Z(A) by sending z to zIdA. Hence, to the category A we associate the circular
triple (R,Z ′(A), ωF ), where ωF is the restriction of the wrapping operation defined in (20).

Since the category SUω has self-dual objects, we observe that the endo-functor F1 of tensoring
by the generating object 1, i.e.

F1 : SUω −→ SUω, n 7→ n⊗ 1

is a self-adjoint functor. The functor SU(−) can now be enhanced to a functor to the category whose
objects are pairs of R-linear monoidal categories together with a self-adjoint endofunctor. Mor-
phisms in this category are R-linear monoidal functors G : A → B that intertwine the corresponding
self-adjoint functors in the sense that

G ◦ FA = FB ◦G, GµFA = µFB , GδFA = δFB ,

where (FA, µ
FA , δFA) (or, (FB, µ

FB , δFB)) is the self-adjoint endofunctor on A (respectively, B).
Note that the self-adjoint functors FA, FB are not required to be monoidal functors.

The assignment Z ′(A) extends to a functor from R-linear monoidal categories with a self-adjoint
functor to CTripR. The functors required in this category are compatible with the self-adjunctions
as G above and come with a choice of isomorphism G(1) → 1 but do not need to be monoidal
functors. Such functors commute with the wrapping action. We show that this functor Z ′ is right
adjoint to the functor SU(−).

Proposition 6. The functor SU(−) is left adjoint to the functor Z ′(−) that associates to an R-
linear monoidal category with a self-adjoint functor the circular triple (R,Z ′(A), ω). The unit
natural transformation consists of isomorphisms (Z, ω)→ (Z ′(SUω), ωF1) in CTripR.

Proof. Let A be an R-linear monoidal category with a self-adjoint endofunctor F , and (Z, ω) =
(R,Z, ω) a circular triple. Consider the natural transformation

η(Z,ω) : (Z, ω) −→ (Z ′(SUω), ωF )

given by sending z to the empty crossingless matching with only region labelled by z. This clearly
defines an element of Z ′(SUω) = Z and commutes with the wrapping maps ω, ωF . By construction
of SUω, it follows that η(Z,ω) defines a natural isomorphism.

We further construct a natural transformation ε : SUZ′(−) → (−). That is, for each pair (A, F ),
where A is an R-linear monoidal category with a self-adjoint R-linear functor F , we construct an
R-linear functor

εA,F : SUZ′(A),ωF → A.
This functor sends the object n of SUωF to Fn(1). The cap morphism 2 → 0 is sent to the
morphism µ1 : F 2(1) → 1 obtained from self-adjointness of F , and the cup morphism 0 → 2 is
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(a) The two elements of Bout
2 . (b) An element of Bout

8 .

Figure 22. Examples of outer matchings.

sent to δ1 : 1→ F 2(1). An endomorphism of 0 labelled by z ∈ Z ′(A) is sent to the corresponding
element of z ∈ EndA(1). Since SUωF is generated by these morphisms as an R-linear monoidal
category we can inductively extend this assignment to the entire category SUωF following the rules

• εA,F (idn) = idFn(1);
• εA,F (u ◦ v) = εA,F (u) ◦ εA,F (v), for compatible u, v ∈ SUωF ;
• εA,F (1n⊗x⊗1m) = Fm(xFn(1)), for x = z ∈ Z ′(A), or x equal to the cap or cup morphism.

and taking R-linear combinations. For example, the disjoint union of two cup diagrams 0 → 2 is
sent to the morphism F 2(δ1) ◦ δ1 : 1 → F 4(1), the disjoint union of two cap diagrams 2 → 0 is
sent to the morphism µ1 ◦ µF 2(1) : F 4(1) → 1. This assignment respects all the relations on the
generators in the category SUωF and thus gives an R-linear functor as required.

The endofunctor F1 on SUωF sends an object n to n⊗ 1. Thus,

εA,F ◦ F1(n) = Fn+1(1) = F (Fn(1)) = F (εA,F ).

This equality extends to morphisms of SUωF . E.g., for the generating cap morphism c and z ∈ Z ′(A)
we have

εA,F ◦ F1(c) = εA,F (c⊗ 1) = F (µ1) = F ◦ εA,F (c),

εA,F ◦ F1(z) = εA,F (z ⊗ 1) = F (z) = F ◦ εA,F (z).

Thus, εA,F is a morphism of R-linear categories equipped with a self-adjoint functor. One now
verifies the adjunction identities from Equation 4 for η and ε. For this, we note that Z ′(εA,F ) and
η(Z′(A),ωF ) are both the identity on Z ′(A). Further, εSUω ,F1 sends n to the object n and is the
identity on morphisms under identification of Z ′(SUω) and Z. Similarly, SUη(Z,ω) is the functor
induced from this identification so the two functors are mutually inverse. �

In the case of the category U, a similar universal property was given in [DP1, Section 11]. Namely,
U is the free category with a self-adjoint endofunctor. Mapping the generating object 1 of U to any
object in a category A equipped with a self-adjunction determines a unique functor between these
categories respecting the self-adjunctions.

3. Pairings and monoidal envelopes

3.1. Pairings, negligible morphisms, and the gligible quotient category Uω of SUω.

In this section, we describe the quotient of SUω by the ideal of negligible morphisms. To describe
the latter ideal, we introduce the set Bout

2n of outer matchings in an annulus of 2n points on the
inner circle of the annulus. Take an annulus A and place 2n points on the inner circle of A. Outer
matchings are isotopy classes of collections of n disjoint arcs in A connecting these 2n points in
pairs. It is easy to check that |Bout

2n | =
(

2n
n

)
. Some examples of outer matchings are shown in

Figure 22. The set Bout
0 consists of the empty matching and Bout

2 consists of two matchings, see
Figure 22a.

We may take a diagram x describing a morphism in HomSUω(n,m) and represent it as a box with
n bottom and m top endpoints. Alternatively, we can visualize x as a diagram in a disk with n+m
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z2

z1

z3
−→

z1

z2 z3

Figure 23. An example of representing an element of SUω in the disk with marked
circle points.

x =
z1

z2 z3

(a) An element x of SUω.

y =

(b) An outer matching y in Bout
4 .

yx =
z1

z2 z3

= z1 z2 z3 = ω(z1)z2ω(z3)

(c) The closure yx of x by y.

Figure 24. Examples of the closure of a diagram in SUω by a compatible outer
matching.

boundary points. To remember that x comes from a morphism from n to m, we can arrange n
points to be on the lower half-circle of the disk and m points on the upper half-circle — see Figure
23 for an example. As in Section 2.2 for morphisms in Uout

2n , we may place a mark × corresponding
to the position of the left edge of the box. The position of the right edge of the box can then be
recovered if n is known.

Consider all possible closures of x via diagrams y with n + m boundary points in an annulus.
Such a diagram y consists of an outer matching in Bout

n+m together with elements of Z sprinkled
over the n+m

2 + 1 regions of y into which n+m
2 arcs of y split the annulus. We call such a diagram

y a Z-decorated outer matching. The closure yx is a planar diagram of circles and elements of Z
written in the regions, and it evaluates to an element of Z that we also denote yx. The evaluation
is the same one that simplifies diagrams in SU0

Z,0 to elements of Z.
We say that a finite R-linear combination x =

∑
i λixi of diagrams xi as above with coefficients

in R is negligible if and only if

(31)
∑
i

λi yxi = 0 ∈ Z

for any outer diagram y. In other words, a morphism x from n to m in SUω is negligible if yx = 0
for any way to close x on the outside via a Z-decorated outer matching y. Note that x is a linear
combination of diagrams, and yx is the corresponding linear combination of closed diagrams.

Proposition 7. The set of negligible morphisms constitutes a two-sided monoidal ideal in SUω.

Proof. The proof is straightforward. �

Denote by Uω the quotient of SUω by the two-sided ideal of negligible morphisms. We refer to
Uω as the state category of (Z, ω) or the gligible quotient of SUω.

The category Uω is an R-linear rigid monoidal category. Its objects are non-negative integers
n. The morphism spaces HomUω(n,m) are naturally Z-bimodules, just like the morphism spaces
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HomSUω(n,m). If Z is a finitely-generated R-module, the morphism spaces HomUω(n,m) are
finitely-generated R-modules as well.

3.2. A commutative square of categories.

In this subsection, we consider the Karoubi closures of SUω and its gligible quotient Uω. We give
an overview diagram of the monoidal categories considered in this section in Equation (36).

The Karoubi closure of SUω. Given an R-linear category A, one considers Kar(A⊕) which is
the Karoubi closure (or, idempotent completion) of the category A. This category is constructed
in two steps. First, we formally adjoin finite direct sums of objects in A. That is, we construct a
category A⊕ where objects are direct sums

⊕n
i=1Ai, together with morphisms

ιi : Ai →
n⊕
i=1

Ai, πi :

n⊕
i=1

Ai → Ai(32)

satisfying the relations

πjιi = δi,j idAi .(33)

The category Kar(A⊕) consists of pairs Ae := (A, e), where A is an object in A⊕ and e : A→ A an
idempotent endomorphism, i.e. e ◦ e = e. Morphisms are given by

HomKar(A⊕)

(
Ae, Bf

)
= f ◦HomA⊕(A,B) ◦ e.

Generalized Deligne–Karoubi categories. Define the Deligne (or Deligne–Karoubi) category
DSUω associated to SUω as the additive Karoubi closure of the latter, i.e.

(34) DSUω := Kar(SU⊕ω ).

This is an idempotent-complete R-linear monoidal category with duals.

Example 8. Let us specialize to Z = R and d = ω(1) an invertible element of R, so that
SUd = TL(d), the Temperley–Lieb category. Then the additive Karoubi closure DSUω contains the
idempotent e = 1

d : 2 → 2, an endomorphism of object 2. The splitting object (2, e) is a proper
subobject of 2, for instance since rankR End((2, e)) = 1 6= 2 = rankR End(2). The object (2, e) is
also not isomorphic to 1 since there are no non-zero morphisms 1→ 2 in TL(d).

The Karoubi closure of the gligible quotient. We define the Karoubi closure of the gligible
quotient category by

(35) DUω := Kar(U⊕ω )

If the ground ring R is a field k and dimk Z <∞, then the morphism spaces in categories DUω
and Uω are finite-dimensional. Consequently, taking the gligible quotient commutes with passing
to the additive Karoubi closure in this case, and there is a commutative diagram of monoidal
categories and monoidal functors

U �
� // RU �

� // UZ // //

'' ''

SUω �
� //

����

DSUω

����
Uω �
� // DUω.

(36)

We note that the gligible quotient of UZ is equivalent (even isomorphic) to Uω.
Under weaker conditions (if R is not a field or Z has infinite rank over R), there are potentially

two distinct categories in place of DUω: the gligible quotient of DSUω and the Karoubi envelope of
Uω. There is a functor from the first category to the second, but it is not clear when this functor is
an equivalence. With these weak conditions, it is natural to define DUω as the Karoubi envelope of
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the gligible quotient Uω, while keeping in mind the above caveat: the square is still commutative,
but the gligible quotient of DSUω may not be equivalent to DUω.

We can think of the four categories in the right square of diagram (36) as various monoidal
envelopes of the circular triple (R,Z, ω). Objects of all of these categories have two-sided duals.

Summary of these categories

• U has non-negative integers as objects. Morphisms from n to m in U are isotopy classes of
planar diagrams of arcs and circles in the strip R× [0, 1] with n bottom and m top boundary
points.
• RU, for a commutative ring R, is a linearization or pre-linearization of U. It has non-

negative integers as objects. Morphism from n to m in U are finite R-linear combinations
of morphisms in U.
• UZ is associated to a commutative R-algebra Z. It has the same objects as U, that is, non-

negative integers. Compared to RU, morphisms in UZ are enriched by allowing elements of
Z to float in the regions of a diagram.
• SUω is associated to a circular triple (R,Z, ω), with ω an R-linear endomorphism of Z. It

is a quotient of UZ by the relation that a circle wrapping around z ∈ Z evaluates to ω(z).
• Uω is the quotient of SUω by the ideal of negligible morphisms (the gligible quotient of SUω).

Since our categories are only monoidal and not symmetric, the definition of a negligible
morphism requires converting its diagram in R×[0, 1] to a diagram inD2 and then evaluating
closings of this diagram via all possible annular diagrams.
• DSUω is the additive Karoubi closure of SUω. It is the counterpart of the Deligne category

of the symmetric group. (Although note that DSUω is not symmetric monoidal.)
• DUω is the gligible quotient of DSUω. When R = k is a field and Z is finite-dimensional

over k, the category DUω is also equivalent to the additive Karoubi closure of Uω, making
the square in (36) commutative.

Consider the functor from RU to SUω and the composite functor to Uω. In the special case when
Z is ω-generated over R (see Section 2.5), then the functor from RU to SUω, and hence also the
composition to Uω, are full. In this case, we can use circular forms and have them float in regions
of crossingless matching diagrams in place of elements of Z in order to display morphisms in SUω.

Let Z be a commutative R-algebra with a set of elements {si}i∈I , si ∈ Z that ω-generates Z over
R. In other words, any element of Z is a R-linear combination of iterated products of applications
of ω to the elements si. In this case any morphism in SUω is a linear combination of crossingless
matchings with diagrams of circles and dots labelled by the si floating in regions.

3.3. Spherical triples, evaluations, state spaces and categories.

For the gligible quotient category Uω from Section 3.1 to be monoidal we needed to adopt an
asymmetric set-up which pairs diagrams in a disk with diagrams in an annulus to define the correct
quotient space Umω,n for the spaces of diagrams SUmω,n in a disk. This pairing is different from similar
pairings in [Kh2, KS, KQR] where one works with manifolds (sometimes with defects) rather than
planar diagrams, and the ambient category is symmetric rather than just monoidal, which is the
case with the planar diagrams considered here.

Spherical triples. One can limit the consideration to the symmetric case and consider pairings of
diagrams in a disk when the underlying triple (R,Z, ω) is spherical. This means that the evaluation
of a diagram in the plane R2 depends only on the isotopy class of the corresponding diagram in S2.

Definition 9. A triple (R,Z, ω) is called Z-spherical if ω(z1)z2 = z1ω(z2) for any z1, z2 ∈ Z.
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This property is equivalent to the condition that any planar diagram, when evaluated to an
element of Z, depends only on the isotopy class of the diagram in S2. Such an isotopy of S2

is a composition of isotopies in R2 and moving an arc from a circle in the diagram through the
infinite point of S2. For a move of a latter type, that circle splits the diagram in S2 into two
disks, and the diagrams there may be evaluated to elements z1, z2 ∈ Z, respectively. The relation
ω(z1)z2 = z1ω(z2) in the above definition says that moving a circle bounding z1, z2 on the two sides
through the infinite point of S2 does not change the evaluation, see Figure 25.

z1
z2 z1

z2= z1
z2=

Figure 25. The Z-sphericality condition for ω. The dashed equatorial circle is
shown to emphasize that the ω-circle and z1, z2-dots are placed on a 2-sphere.

The Z-spherical condition is equivalent to the condition that ω(z) = zω(1) for all z ∈ Z. In
particular, ω is determined by ω(1) ∈ Z, and, vice versa, any element z0 ∈ Z gives rise to a spherical
triple with ω(z) = zz0. Hence, for Z-spherical ω, to evaluate a diagram, count the number k of its
circles, remove the circles, and then multiply the evaluation of what remains by zk0 .

In the Z-spherical case, labels z ∈ Z in the regions of an arc-circle diagram in Uω may freely
move between the regions.

Lemma 10. Let (R,Z, ω) be a Z-spherical circular triple. For any z ∈ Z, the relation

(37) z · id1 = id1 · z
holds in Uω. More generally, for any morphism f in Uω, we have z ·f = f ·z. In particular, the set
{z · u}, where u ∈ Bmn and z runs over a basis of Z constitutes a generating set of HomUω(n,m).

Proof. Closing the morphism z · id1 − id1 · z gives the relation of Z-sphericality from Definition 9.
Thus, this relation holds in the gligible quotient Uω. This implies that we can move all Z-labels
in regions of an arc-circle diagram u ∈ Bmn to the leftmost region (or the rightmost region). The
remaining statements follow. �

1

z

1

z

1

1

= z z=

Figure 26. Relation (37) holds in Uω in the Z-spherical case.

The Z-spherical condition is very restrictive, since the combinatorics of nested circles in the plane
or on the 2-sphere is lost. One can instead refine it by adding a trace map from Z to a smaller
commutative ground ring to evaluate spherical diagrams. Without aiming for full generality, let us
define R-spherical or simply spherical triples.

Definition 11. A circular triple (R,Z, ω) is called R-spherical (or spherical for short) if it comes
equipped with a non-degenerate R-linear trace map ε : Z −→ R such that

(38) ε(z1ω(z2)) = ε(ω(z1)z2), z1, z2 ∈ Z.

23



(a) a

(b) b (c) b

Figure 27. Diagrams a, b ∈ U4
0 and the reflection b ∈ U0

4.

When pairing a diagram in a disk to a diagram in an annulus, for a Z-spherical triple (R,Z, ω) or
an R-spherical triple (R,Z, ω, ε), the annular diagram may be reduced to one in a disk by moving
some of its arcs through the infinite point of S2. The two R-modules on the two sides of the pairing
can be made isomorphic, and the pairing is then symmetric. We will look at some examples in
Section 5 and now discuss a related setup when only the evaluations of spherical diagrams in R
(taken to be a field k, for simplicity) are given.

Pairings on circle diagrams. Recall from Section 2.2 that the category U has non-negative
integers n as objects and morphisms from n to m are isotopy classes of planar diagram with
circles and arcs, the latter connecting n + m points on the boundary of the diagram in pairs via
a crossingless matching. Thus, the set of morphisms Umn from n to m in U is the set of isotopy
classes of diagrams of circles and arcs in the strip R× [0, 1] with m top and n bottom endpoints.

Elements of Umn are in a bijective correspondence with the following data, see also Section 2.2.
Each u ∈ Umn defines a crossingless matching arc(u) ∈ Bmn given by erasing the circles of u. The
diagram arc(u) partitions the strip into n+m

2 +1 contractible regions. The intersection of u with the

interior of each region is a diagram of circles, thus an element of U0
0. Hence, we see that elements

of Umn are in a bijection with crossingless matching in Bmn together with a choice of a diagram in
U0

0 (a closed diagram) for each of the n+m
2 + 1 regions.

Given a diagram u ∈ Umn denote by u ∈ Unm the reflection of u about the horizontal line through
the middle of the strip. As we have seen in (18), this operation extends to a contravariant involution
on the category U.

The set Umn is empty unless n+m is even, and Un0 is empty unless n is even. For two elements

a, b ∈ Un0 the composition ba is a closed diagram in U0
0, see Figure 28 for an example.

ba = =

Figure 28. The composition ba ∈ U0
0 of the diagrams a, b from Figure 27.

The map of sets

(39) Un0 × Un0 −→ U0
0
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taking a× b to ba is symmetric, ba = ab since for c ∈ U0
0 we have c = c by Proposition 1.

Spherical evaluations. Let us first discuss a minimalist approach to the construction of state
spaces and state categories in the spherical framework (Section 3.4 will expand on this approach
in the non-spherical case as well). We specialize R to a field k and assume given a map

(40) α : U0
0 −→ k, α(ω(u1)u2) = α(ω(u2)u1), u1, u2 ∈ U0

0.

The condition says that evaluation α of circle diagrams is spherical, that is, depends only on the
isotopy class of the diagram in S2. Alternatively, one can define the quotient set Us,00 of U0

0 by
identifying two diagrams if they are isotopic as diagrams in S2 and define α as the composition
U0

0 −→ Us,00 −→ k for some evaluation map Us,00 −→ k.

Consider the bilinear form ( , )α on kU2n
0 defined on the basis of circle diagrams by

(41) (a, b)α := α(ba), a, b ∈ U2n
0

and extended to the entire vector space kU2n
0 bilinearly. Define the state space

(42) U2n
α := kU2n

0 /ker(( , )α)

as the quotient of the vector space kU2n
0 of diagrams by the kernel of the bilinear form ( , )α. The

bilinear form is symmetric by Proposition 1.
This definition makes sense for any function α : U0

0 −→ k but gives a better behaved collection

of spaces U2n
α when α is spherical, so that α factors through the quotient set Us,00 .

Definition 12. A spherical evaluation α as in (40) is called recognizable if the state spaces U2n
α are

finite-dimensional for all n.

Proposition 13. A spherical evaluation α is recognizable if and only if U0
α is finite-dimensional.

Proof. The proof is straightforward: if U0
α is finite-dimensional then a closed diagram, when part

of any larger diagram to be evaluated, can be reduced to a linear combination of diagrams from a
fixed finite subset S ⊂ U0

0. Consequently, any diagram u in U2n
0 can be reduced, in U0

α, to a linear
combination of diagrams with the n arcs as in u and a diagrams from S in each of n + 1 regions
cut out by the arcs in the lower half-plane. �

More generally, when R is a commutative ring rather than a field k, the evaluation α : U0
0 −→ R

is called recognizable if U0
α is a finitely generated R-module. This is equivalent to all state spaces

U2n
α being finitely generated R-modules.

From here on we restrict to spherical α for the rest of this section. The state space U0
α is naturally

a commutative algebra with the non-degenerate trace form α. This algebra is finite-dimensional
exactly when α is recognizable. Wrapping a circle around a diagram induces an k-linear map
ω : U0

α −→ U0
α.

Converting from the lower half-plane to a disk or a plane strip with n bottom and top m boundary
points, we can define the state space Umα,n of the evaluation α for such diagrams. This can be done,

for instance, by bending the bottom n points via n arcs to get diagrams in Un+m
0 and using the

bilinear form on that space, or by directly gluing together two such diagrams into a spherical
diagram and applying α. There is an isomorphism of vector spaces Umα,n ∼= Un+m

α as long as we fix
an arc diagram to move the bottom points to the top, see Figure 29.

The benefit of using spherical evaluations with the bilinear form (41) is that the spaces Umα,n can
be arranged into a monoidal category Uα. The objects of that category are non-negative integers
n ≥ 0, and the vector space Umα,n describes the space of morphisms from n to m. Composition is
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=

m︷ ︸︸ ︷

︸ ︷︷ ︸
n

n+m︷ ︸︸ ︷ n+m︷ ︸︸ ︷

Figure 29. An isomorphism of Un+m
α and Umα,n given by bending the n bottom

points to the top.

given by concatenation of diagrams, and compatibility with the quotient construction is clear. That
α is spherical implies that the category Uα is (strict) monoidal. On objects, the tensor product
is given by n ⊗ m = n + m. On morphisms, the tensor product is given by placing diagrams in
parallel.

To get a monoidal category in this way from a non-spherical evaluation α : U0
0 −→ k one needs

to use the asymmetric setup and couple diagrams in a disk to diagrams in an annulus, similar to
that in Section 3.1. In the later Section 3.4 we discuss this construction in more detail.

Given a spherical evaluation α and the associated monoidal category Uα, the most natural case
to consider is that of recognizable α. The following observation is immediate.

Proposition 14. A spherical evaluation α is recognizable if and only if the morphism spaces in
the category Uα are finite-dimensional.

Given a recognizable α the commutative k-algebra Z := U0
α is finite-dimensional and the the

trace form α turns it into a commutative Frobenius algebra. It satisfies the sphericality condition
with respect to the k-linear map ω : Z −→ Z given by wrapping a circle around an element of U0

α,
i.e.

(43) α(ω(u1)u2) = α(u1ω(u2)), u1, u2 ∈ Z.
Furthermore, Z is ω-generated (cf. Definition 2), which is a stability condition on that data.

Proposition 15. There is a natural bijection between recognizable spherical evaluations α and
isomorphism classes of commutative Frobenius algebras Z with a trace form ε : Z −→ k and a
linear map ω : Z −→ Z such that Z is the only ω-stable subalgebra of Z and the spherical condition
(40) holds for ε.

Proof. The proof is immediate. �

One can repeat the construction of categories and functors as in [KS, KQR, Kh3] and (36) and
consider the following categories and functors.

(44)

U �
� // kU // // SUα

����

� � // DSUα

����
Uα �
� // DUα

We start with the category U. First, allow any finite k-linear combinations of morphisms in U
to form the category kU with the same objects n ≥ 0 as U. Next, we pick a spherical evaluation
α and consider the commutative algebra U0

α as described above. Introduce the skein category SUα
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as the quotient of kU by adding the relations that an endomorphism x of the 0 object in SUα is
zero in HomSUα(0, 0) if its image in U0

α is zero. Such an endomorphism is a k-linear combination
of closed diagrams (diagrams in U0

0). Choose a set S of diagrams in U0
0 that project to a basis of

the algebra U0
α.

Thus, when passing from kU to SU we only add relations on closed diagrams, not on diagrams
with arcs. Relations on closed diagrams allow to simplify any diagram in Umn , when viewed as a
morphism from n to m in SUα, into a linear combination of diagrams with a circular form from S
in each region. The vector space of morphisms from n to m in SUα has a basis given by a choice
of a crossingless matching of n + m points on the boundary of a strip together with a choice of
an element of S in each of the n+m

2 regions cut out by the arcs of the matching. In particular,
morphism spaces in SUα are finite-dimensional if and only if α is rational (recognizable). Note that
the category SUα is equivalent to the category SUU0

α, ω
discussed in Section 2.4.

We think of SUα as a type of skein category, similar to those in [KS, KQR, Kh3], where one has
control over the size of morphism spaces and can write down a basis in each.

Assume now that α is a recognizable spherical evaluation. Then morphism spaces in SUα are
finite-dimensional. This allows us to build a commutative square of categories and functors. We
can pass from SUα to the gligible quotient category Uα. The morphism spaces in Uα are quotients
of those in kU or SUα by the bilinear pairings on Umn , gluing two diagrams with identical boundaries
into a diagram of circles on the 2-sphere, as already discussed.

In the category Uα the morphism space Hom(0, 2n) is naturally isomorphic to the state space
U2n
α . Thus, the gligible quotient category is equivalent to the category obtained from the state

spaces Uα.
The square of four categories and functors on the right side of the diagram in (44) is commutative

in the strong sense: Taking the additive Karoubi envelope DSUα of SUα and then the gligible
quotient results in the category DUα equivalent to that of first taking the gligible quotient and then
forming the additive Karoubi envelope.

Proposition 16. All the categories and functors in the above diagram (44) are monoidal. In each
of these categories the functor of tensoring with the object 1 is self-adjoint, via the canonical natural
transformations given by the cup and the cap diagrams.

Recall the skein categories SUZ,ω = SUω defined for a circular triple (R,Z, ω) in Section 2.4.
Assume given a R-spherical datum (R,Z, ω, ε) of a circular triple with R-linear map ε : Z → R.
We may consider the composition of R-linear maps

α : RU0
0
FZ−−→ Z

ε−→ R.

The pairing ( , )α : RU0
0×RU0

0 → R factors through εm : Z ×Z → R, using the R-algebra map FZ
defined in (28).

If Z is ω-generated, Z ∼= RU0
0/ kerFZ and, using that FZ is an algebra map on RU0

0, we see that
U0
α is isomorphic to a quotient of the commutative R-algebra Z. Hence, Z serves as a preliminary

reduction of the space RU0
0 and can detect whether α is recognizable. Thus, the following lemma

is a consequence of Proposition 13.

Lemma 17. Let k be a field and (k, Z, ω) a spherical triple with a k-linear spherical trace ε : Z → k.
If Z is finite-dimensional over k, then α is recognizable.

Note that in the ω-generated case, the quotient map p : Z � U0
α gives a morphism of circular

triples. Thus, it induces a full monoidal functor

SUp : SUω −→ SUα,
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using (30). The maps HomSUω(0, 2n)→ HomSUα(0, 2n) fit into the commutative diagram

kU2n
0 × kU2n

0

( , ) //

��

kU0
0

FZ

��

α

))
k.

kSU2n
ω,0 × kSU2n

ω,0

( , ) // Z

ε
55

This implies surjective maps HomUω(n,m) → HomUα(n,m) for all n,m using duality as in Fig-
ure 29. Thus, in the presence of a trace map ε : Z → k, Uα is a quotient of Uω = UZ,ω.

The sphericality condition is analogous to the spherical trace property of Barrett–Westbury [BW].

3.4. Circular series and recognizable series. In this section, we generalize the construction of
state spaces to non-spherical circular series.

Circular series. We work over a ground field k, for simplicity, but the constructions below
generalize to a ground commutative ring R and, more generally, to a ground commutative semiring.

A circular series α is defined to be a map α : U0
0 → k that assigns an element α(u) of k to each

circular form u. We alternatively write

(45) α = {α(u)}u∈U0
0

=
∑
u∈U0

0

α(u)u,

and can also view α as a linear map kU0
0 −→ k. To build state spaces and a category from circular

series α we use an approach similar to the one in Section 3.1.
Throughout the paper we use U2n

0 to denote the set of circular diagrams with 2n endpoints in
both a disk and in the lower half-plane, via the standard identification of these sets (see an example
in Figure 14 and the discussion in that section). U2n

0 can be viewed as the set of matchings of 2n
points on the unit circle by n arcs in the unit disk, with possibly nested circles floating in the
regions of the diagram.

Recall from Section 2.2 that Uout
2n is the set on pairings of 2n points on the unit circle by n arcs

in the outside annulus, possibly with additional nested collections of circles, also see Figure 15 for
an example of such an annular diagram.

The pairing of diagrams

(46) U2n
0 × Uout

2n −→ U0
0, a, b 7−→ ab, a ∈ U2n

0 , b ∈ Uout
2n ,

is given by gluing diagrams a and b from the corresponding sets into a circular diagram ab in the
plane.

The series (or evaluation) α allows us to define a bilinear form

(47) ( , )α : kU2n
0 × kUout

2n −→ k, (a, b) 7−→ α(ab),

on the vector spaces with these sets as bases, by evaluating closed planar diagram ab via α. If
needed, one can write (, )n,α instead of (, )α to emphasize dependence on n. Note that both of these
spaces are infinite-dimensional, including when n = 0, since circles can be nested in infinitely many
ways.

Define the left kernel of (, )α as

ker`(α) := {x ∈ kU2n
0 |(x, y)α = 0 ∀y ∈ kUout

2n }
We define the state space Aα(n), or just A(n), as the quotient of kU2n

0 by ker`(α),

(48) Aα(n) := kU2n
0 / ker`(α),

and call it the state space of 2n points (on the boundary of a disk) for the evaluation α.
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Recognizable series.

Definition 18. A circular series α is called recognizable iff the state spaces A(n) are finite-
dimensional for all n ≥ 0.

Alternatively, we can say that α is of finite rank.

Proposition 19. A circular series α is recognizable if and only if A(0) = Aα(0) is a finite-
dimensional k-vector space.

Proof. Clearly, A(0) needs to be finite-dimensional for α to be recognizable. If A(0) is finite-
dimensional, there are finitely many circular forms v1, . . . , vk (where k = dimkA(0)) such that any
circular form is obtained by their linear combination modulo an element of ker((, )0,α).

A diagram w ∈ U2n
0 is determined by the crossingless matching on its 2n endpoints together

with choices of circular forms to place in n + 1 regions of the disk separated by the arcs of the
matching. Modulo ker((, )n,α), one can reduce to placing one of v1, . . . , vk in each region of the
disk. In particular,

dimkA(n) ≤ cnkn+1 =
1

n+ 1

(
2n

n

)
kn+1,

where cn is the number of crossingless matchings of 2n points on the boundary of a disk. The
proposition follows. �

The state space A(0) is naturally a unital commutative algebra. The multiplication comes from
that on U0

0 given by placing diagrams (circular forms) next to each other. The unit element 1 is
the empty circular form ∅. The operator ω of wrapping a circle around a diagram preserves the
left kernel of the bilinear form (, )0,α and descends to a linear map, also denoted ω, on A(0). The
trace form ε : A(0) −→ k comes from the evaluation α of closed diagrams, ε(a) := α(a), for a ∈ U0

0.
We see that A(0) is a unital commutative algebra equipped with a k-linear map ω : A(0) −→ A(0)

and a trace form ε.
The triple (A(0), ω, ε) is non-degenerate in the following weak sense. For any x ∈ A(0), x 6= 0

there exists k ≥ 0 and a sequence x1, . . . , xk ∈ A(0) such that

(49) ε(xkω(xk−1 . . . ω(x2ω(x1x))) . . . ) 6= 0.

We call such a data (A,ω, ε) a commutative weakly Frobenius triple. In the pictorial language, we
start with the diagram x and iterate between placing xi, i = 1, . . . , k, next to the previous diagram
and enveloping the diagram by a circle (application of ω). At the end the trace form ε is applied.

Proposition 20. There is a bijection between recognizable circular series α and isomorphism
classes of commutative finite-dimensional algebras A with the trace form ε and a linear endo-
morphism ω subject to weakly Frobenius property above and to the stability condition that A is the
only subalgebra of A that contains 1 and is closed under ω.

Proof. The proof is straightforward. �

This proposition is very similar in spirit to Proposition 15, except that the spherical condition
(40) is dropped here and the bilinear pairing needed to define A(n) is asymmetric, with a bigger
space on the other side of the pairing (47).

The dihedral group D2n of symmetries of a regular 2n-gon acts on A(n), via rotations and
reflections. Note that reflection of diagrams respects the left kernel of the form, since any diagram
in U0

0 is invariant under the plane’s reflection, so that reflection descends to an invertible linear
map r : A(n) −→ A(n).
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Placing diagrams with 2n and 2m endpoints, respectively, next to each other induces multipli-
cation maps

(50) A(n)⊗A(m) −→ A(n+m),

that respect the reflection maps r as above, in the sense that r(xy) = r(y)r(x), for x ∈ A(n) and
y ∈ A(m).

Circular triples and quadruples. For a field k, a circular triple (k, Z, ω) allows us to associate
an element FZ(u) of a commutative k-algebra Z to each circular form u ∈ U0

0. Assume that Z
comes with a k-linear trace map ε : Z −→ k. Then composing with ε allows us to assign to a
circular form u the element ε(FZ(u)) of k.

Assume that Z is finite-dimensional. Then evaluating a circular form u to ε(FZ(u)) gives a
recognizable circular series α. To understand the space A(0), first pass to the smallest subalgebra
Z ′ of Z that contains 1 and is closed under ω. The trace map ε may be degenerate on Z ′ (as well
as on Z), in the interated compositions sense as discussed right before Proposition 20. Consider
the subspace K ⊂ Z ′ that consists of x such that the evaluations on the left hand side of (49)
are zero for any sequence x1, . . . , xk ∈ Z ′. The space A(0) is naturally isomorphic to the quotient,
A(0) ∼= Z ′/K.

In particular, we see that a series α is recognizable if and only if there exists a circular triple
(k, Z, ω) together with a k-linear map ε : Z −→ k such that

• dimk Z <∞, that is, Z is finite-dimensional,
• α(u) = ε(FZ(u)) for all circular forms u.

A data (k, Z, ω, ε) with the above properties may be called a circular quadruple. Furthermore,
given recognizable α, such circular quadruple can be chosen so that Z is ω-generated and (Z, ω, ε)
is a commutative weakly Frobenius triple. Given α, such a minimal circular quadruple is unique
up to isomorphism, see Proposition 20.

One can think of circular quadruples as describing “inner-to-outer” evaluations of circular dia-
grams.

A diagram of categories and functors associated to α. To a spherical recognizable series α
we have associated a diagram of categories of functors, see (44). This construction extends imme-
diately to arbitrary circular recognizable series α, so essentially the same diagram is reproduced
below.

(51)

U �
� // kU // // SUα

����

� � // DSUα

����
Uα �
� // DUα

The skein category SUα is given by including all relations on closed planar diagrams (relations in
A(0)). In this category the dimension of the morphism space from n to m is ck ·dimA(0)k+1, where
k = (n+m)/2 and ck is the k-the Catalan number. The category Uα is the gligible quotient of SUα,
with the same objects n ≥ 0. The categories on the far right are Karoubi additive closures of the
categories SUα and Uα, respectively. The square commutes in the strong sense, see the discussion
preceeding Proposition 16.

Each recognizable circular series α gives rise to a collection of finite-dimensional k-algebras

TLα,n := EndUα(n),
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the endomorphism rings of objects n ∈ N of the category Uα. These algebras generalize the Jones
quotients of Temperley–Lieb algebras [Jo1, Ka].

4. Trees, forests, their series and relation to circular forms.

In this section we explain the standard correspondence between trees (forests) and circular forms,
allowing one to flip between these two types of combinatorial objects when forming the correspond-
ing series.

4.1. Trees, forests, and circular forms. By a tree we mean a finite connected unoriented graph
Γ without multiple edges, cycles and with a preferred vertex (called root). The empty graph is
excluded. Denote by T the set of trees, up to isomorphisms; we pick one representative from each
isomorphism class. Trees are often depicted by planar diagrams with the root at the top and
vertices at distance k from the root placed k steps below the root. Examples of trees are shown in
Figure 30.

=

Figure 30. Examples of trees; note that a planar presentation of a tree is rarely
unique. For the sixth tree from the left two different presentations are depicted.
A presentation of a tree can be made unique by picking a total order on trees and
placing subtrees below each node from left to right in the decreasing order direction.

A forest w is a graph which is a disjoint union of finitely many trees. The empty graph is allowed.
Each component of w carries a preferred vertex (root of the corresponding tree). The order of trees
when listing a forest does not matter. When choosing a set of graphs to represent forests, we pick
one representative for each isomorphism class of forests.

Denote by T∗ the set of forests and by T∗k the set of forests with k components (trees), so that

(52) T∗ =
⊔
k≥0

T∗k.

The set T∗1 is in a bijection with T, the set T∗0 consists of the empty forest. The set T∗k can be
identified with the k-th symmetric power of T∗1,

(53) T∗k ∼= Sk(T∗1).

We now describe well-known mutually-inverse bijections, denoted by for and cir, between the set
U0

0 of closed planar diagrams and the set T∗ of forests, which restrict to mutually-inverse bijections
between the set U◦ of ◦-diagrams (diagrams with a single outer circle) and the set T of trees. That
is, the bijections fit into the commutative diagrams

U◦
for
∼

//
� _

��

T� _

��
U0

0
for
∼

// T∗,

T cir
∼

//� _

��

U◦� _

��
T∗ cir

∼
// U0

0.

(54)

First, to a tree t we assign an element in U◦ denoted cir(t), a collection of circles with one exterior
circle. Define this map

(55) cir : T −→ U◦
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by induction on the number of nodes in t. To the unique tree with a single node assign the diagram
with a single circle, see Figure 31 left. Given a tree t, denote by t1, . . . , tk the trees obtained by
removing the root r(t) of t together with all adjacent edges and making the vertices adjacent to
r(t) in t the roots r(t1), . . . , r(tk) of the trees t1, . . . , tk. Now place diagrams cir(t1), . . . , cir(tk),
already defined by induction, to float inside a circle, see Figure 31 right.

cir7−→
t1

cir7−→ cir(t1) . . .
. . .t2 tk

cir(t2) cir(tk),

Figure 31. Inductive construction of the map cir.

This map cir in (55) is clearly a bijection. Consider the inverse bijection

(56) for : U◦
∼=−→ T, for ◦ cir = idT, cir ◦ for = idU◦ .

The inverse bijection takes a ◦-diagram u and builds a tree for(u) with nodes in bijection with circles
of u. The unique exterior circle c of u gives the root node for(u). A circle c2 nested immediately
inside a circle c1 gives a child node for(c2) to that of for(c1). Examples of circle configurations in
U◦ and associated trees are shown in Figure 32.

=

= = . . .

Figure 32. Examples of the correspondence between trees and ◦-diagrams.

Figure 33 shows a more complicated configuration in U◦ and the associated tree.

Figure 33. A more complicated example of a tree (on the right) associated to a
◦-diagram (on the left).

Extending these bijections to disjoint unions of trees (i.e., forests) on one side and unions of
◦-diagrams floating in the plane (elements of U0

0) gives the mutually-inverse bijections in (54). The
empty forest corresponds to the diagram with no circles. Under these bijections the number of
nodes in a forest equals the number of circles in the corresponding planar diagram. The exterior
circles of a diagram correspond to the roots of the trees of the associated forest as in Figure 34.
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e
e

e
e

(a) u ∈ U0
0

e e e e

(b) for(u)

Figure 34. (a): a diagram u ∈ U0
0 with four exterior circles; the latter are labelled

by the letter e next to them. (b): the forest for(u) associated to u.

Recall that Umn denotes the set of isotopy classes of diagrams of circles and arcs in the strip
R × [0, 1] with m top and n bottom endpoints. Elements of Umn are in a bijective correspondence
with the following data. Each u ∈ Umn defines a crossingless matching arc(u) ∈ Bmn given by
erasing the circles of u. Diagram arc(u) partitions the strip into n+m

2 + 1 contractible regions. The

intersection of u with the interior of each region is a diagram of circles, thus an element of U0
0.

Thus, elements of Umn are in a bijection with crossingless matchings in Bmn together with a choice
of a diagram in U0

0 for each of n+m
2 + 1 regions. Equivalently, elements of Umn are in a bijection

with elements a ∈ Bmn together with a choice of a forest for each region of a.

Figure 35. A diagram in U4
2 corresponds to an element of B4

2 together with circle
diagrams in each region.

For example, in Figure 35, n = 2,m = 4, and there are four regions, which carry configurations
of 0, 2, 3, 3 circles, respectively. Two of these configrations correspond to trees, one is the empty
forest, and one is a 2-component forest.

4.2. Tree and forest series and tree automata. Suppose given a function

(57) α : U0
0 −→ k,

that is, a map from the set of circular forms to k. Then α can be thought of as formal series
(circular form series)

(58) Zα =
∑
u∈U0

0

α(u)u,

that is, a formal sum, usually with infinitely many non-zero terms, over circular forms.
Composing α with the bijection cir from (55) gives us a map

(59) α ◦ cir : T∗ −→ k,

which we may also refer to as α, when it is unambiguous. Such a function α can be called a tree
(or forest) series, since it can formally be encoded by the generating function over forests

(60) Z for
α =

∑
f∈T∗

α(cir(f)) f
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as the corresponding formal sum over forests.

This bijection between forests and circular forms descends to a bijection between a suitable
quotient set of T∗ and the set of spherical circular forms. We leave the details to an interested
reader.

Converting from circular forms to forests gives a simple combinatorial encoding of isotopy classes
of collections of disjoint curves on the plane. It would also be a starting point to investigate
connections between universal theories and categories built from α, see equation (51) for instance,
and weighted tree automata. Tree and weighted tree automata generalize finite state automata
(FSA) and weighted FSA and are studied in depth in computer science, see [DV, FV, NP] and
references therein. Noncommutative power series generalize to series for weighted tree automata,
and our series associated to an evaluation α of circular forms constitute examples of tree series.
Trees and forests associated to circular forms are less general that those that appear in arbitrary
tree automata. Some of this gap can be bridged by adding labels to the circles in circular forms
and adding other defects to planar configurations. After reducing the gap, similarities between
tree automata and weighted tree automata on one side and universal theories for planar diagrams
of labelled circles with various decorations and planar graphs on the other side appear worthy of
further investigation.

A commutative weakly Frobeninus algebra A(0) with the trace map ε and the linear endomor-
phism ω can be viewed as a k-linear bottom-to-top tree automaton that evaluates a closed diagram
starting with the innermost circles (that evaluate to ω(1)), computing unions of closed diagrams
via multiplication in A(0), circle wrapping given by ω, combined with the trace map to k to end
the computation.

In this paper we mostly work over a field k. Extending definitions to an arbitrary commutative
ring R is straightforward. It is also direct to extend our constructions to a ground commutative
semiring R. Then, for instance, state spaces A(0) and morphism spaces in the gligible categories
Uα become semimodules over R.

A cursory examination of semimodules, over the boolean semiring B = {0, 1} with 1 + 1 = 1, for
instance, show that they are harder to deal with than modules over rings. In some cases general
semimodules may be hidden, and one can instead work with free semimodules or with just a set of
their generators, reducing the structures to set-theoretical ones and substantially simplifying the
theory — this approach seems implicit in some standard textbook material on weighted FSA and
tree automata.

The approach of this paper and related papers [Kh2, KS, Kh3, KQR, KKO], if rewritten over
a semiring, would combine the theory of semimodules over commutative semirings with monoidal
or symmetric monoidal categories, making it harder to stay within set-theoretical structures. This
may be an interesting extension of weighted tree automata and related constructions in the general
automata theory to explore.

4.3. The set-theoretical version. In a set-theoretical version of the story, the underlying cate-
gories are neither additive nor pre-additive. In particular, the center Z of a category A is only a
commutative monoid. One can think of its elements as floating in a region of the plane labelled by
A. Multiplication in Z corresponds to placing the elements next to each other. Wrapping a circle
around z ∈ Z is a map of sets ω : Z −→ Z.

One can now start with this data (Z, ω): a commutative monoid and a map of sets ω. Given a
collection u of nested circles in the plane, one can recursively evaluate (Z, ω) on u to get an element
α(u) ∈ Z.
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To (Z, ω) one can assign several monoidal categories similarly to (36). The skein category SUω
has objects n ≥ 0 and morphisms given by planar diagrams of arcs up to isotopy, with elements of
Z floating in the regions of the diagram.

From SUω we can pass to the gligible quotient category Uω by identifying morphisms u1, u2 if
closing them by any annular diagram v gives equal elements of Z, with α(vu1) = α(vu2). One can
then form Karoubi closures as well.

Endomorphisms of the object n in SUω constitute a monoid which is analogous to or generalizes
the Temperley–Lieb monoid. The latter has (n, n)-crossingless matchings as its elements, with the
product given by concatenation with consequent removal of closed components (circles).

A spherical case of this construction would consist of data (Z, ω, ε) with Z and ω as before, and
a map of sets ε : Z −→W , from Z to a set W , subject to the sphericality condition

(61) ε(ω(z1)z2) = ε(ω(z2)z1), z1, z2 ∈ Z.
The pairing now becomes a symmetric pairing on the product of a set with itself, with both diagrams
in the disk (rather than one a disk diagram the other an annular diagram). We leave the details to
the reader.

Likewise, the analogue of a series will be a formal sum

(62) α =
∑
u∈U0

0

α(u)u, α(u) ∈ Z,

We define the notion of recognizable tree (or forest) series by requiring A(0) to be finitely-generated
over Z. In the spherical case, one can replace Z in (62) by a set W . These structures are related
to special cases of bottom-to-top tree automata, see the references in the previous section, and to
suitable monoidal envelopes of such automata, analogous to monoidal envelopes of FSA sketched
in [Kh3].

Assume given (Z, ω) as above, with a finite commutative monoid Z. Given elements a, b ∈ B2n
0

(two crosssingless matchings of 2n points) their pairing ba is a collection of circles in the plane. This
collection has a (generally non-unique) minimal presentation, ba = cc for some c ∈ B2m

0 with m ≤ n
and m minimal with this property. Figure 36 shows an example of such a minimal presentation.

b
c

c

a

Figure 36. A minimal presentation for the diagram on the left involving crossing-
less matchings of 2n points, with n = 7 and m = 4.

The data (Z, ω) can then be used to evaluate ba to an element α(ba) ∈ Z. In this sense, ba = cc
can be viewed as a toy instance of computation data, with just two operations: commutative
multiplication in Z and the endomorphism ω. Although an efficient way to record this data is via
a crossingless matching c, storing the same data in two separate locations as matchings a and b
allows to hide the original program or intended computation, until a and b are brought together
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into ba. Starting with c ∈ B2m
0 , one can randomly represent cc as ba for a, b ∈ B2n

0 with n = bλmc
for some λ > 1. It is clear that c and the evaluation α(ba) will be hard to guess given access to
only a or b.

It may be interesting to find and study similar factorizations of programs or computations beyond
this toy case, including for arbitrary boolean networks.

5. Examples and derivation diagrammatics

In this section, we consider examples of categories SUω and Uω in more detail:

• Section 5.1 treats the case of a one-dimensional k-algebra Z, when the categories we consider
are the Temperley–Lieb categories and their quotients by negligible ideals.
• Section 5.2 and 5.3 consider the class of examples where the evaluation is spherical and Z

is a semisimple algebra (product of base fields).

Then, in Section 5.4, we briefly discuss toy examples of diagrammatics for rings of operators on
commutative rings.

5.1. The one-dimensional case: Temperley–Lieb algebras, meander determinants, and
quantum sl(2). Let k be an algebraically closed field of characteristic zero and consider the
case of the Temperley–Lieb category TL(d) from Example 4, with endomorphism rings of objects
isomorphic the Temperley–Lieb algebras [Jo1, Jo5]. TL(d) is the skein category SUd and associated
to the circular triple (k,k, ω), where ω is the multiplication by d ∈ k. We want to study the gligible
quotient category Ud of SUd and the state spaces for this class of examples. Note that the circular
triple (k,k, d) is k-spherical, see Section 3.3.

The evaluation αd associated to this circular triple is given by αd(u) = dκ(u), where κ(u) is the
number of circles in u. For brevity, we shorten the associated category Uαd to Ud.

Consider the pairing on U2n
0 × U2n

0 given by

(a, b) = Fk(ab) = αd(ab) = dκ(ab),(63)

where κ(ba) is the number of circles in the object ba ∈ U0
0. This pairing extends linearly to

kU2n
0 × kU2n

0 .
A spanning set for U2n

d is given by the elements of B2n
0 , the arc diagrams of 2n points. There are

cn such diagrams. We can restrict the pairing ( , ) to this spanning set B2n
0 . The associated matrix

of the pairing ( , ) on B2n
0 is given by the Meander matrix G2n(d), where(

G2n(d)
)
a,b

= dκ(ba), for a, b ∈ B2n
0 .

We refer to [DiF, DGG] for introductions to meander matrices and their determinants. The follow-
ing result appears in [DiF, DGG].

Theorem 21. The set B2n
0 is a basis for U2n

d if and only if d 6= q + q−1 for q a root of unity of
order less or equal to n+ 1. In this case, Ud = SUd.

Proof. An element v ∈ kB2n
0 is in the kernel of the pairing if and only if it is in the kernel of the

matrix G2n(q). It was shown in [Ma], [DiF, Theorem 1] that the determinant of this matrix is a
product of the Chebychev polynomials Um(q), for m ≤ n, with certain powers detailed in [DGG,
Section 5.2]. Thus, the pairing is non-degenerate if and only if q is not a root of one of these
polynomials. Using [DGG, Equation (5.2)], the roots of Um(x) are given by

2 cos
( k

m+ 1
π
)
, m = 1, . . . , n, k = 1, . . . ,m,

as claimed.
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The morphism spaces Umd,n of the gligble quotient category are isomorphic to Un+m
d , see Section

3.3, and thus zero if n+m is odd and given by the state spaces if n+m is even. If q is not a root
of unity of order at most n + 1 then the pairing ( , ) on these state is non-degenerate and hence
Umd,n = SUmd,n. �

In degenerate case, with d = q+ q−1, for qn = 1, the algebra TLn(d) is isomorphic to the algebra
of endomorphisms of V ⊗n1 for the fundamental representation V1 of the small quantum group
uq(sl2), see [FK, Section 1.3] for details. The category TL(d) = SUd is a non-semisimple category
and Ud is its semisimplification. This semisimplification is used in the Witten–Reshetikhin–Turaev
topological field theory [Wi, RT] and related to the Jones polynomial of knots [Jo2, Jo6].

5.2. The semisimple two-dimensional k-spherical case. Assume given matrices

(64) a =

(
a11 a12

a21 a22

)
, b =

(
b1 0
0 b2

)
,

with entries in k. Consider a 2-dimensional semisimple commutative Frobenius algebra Z = ke1 ×
ke2, where e1, e2 are mutually-orthogonal idempotents and the trace map ε(ei) = bi, i = 1, 2. The
Frobenius condition is equivalent to bi 6= 0, i = 1, 2. Assume that the endomorphism ω of the
vector space Z is given by the matrix a in the basis (e1, e2), so that

ω(e1, e2) = (e1, e2)a = (a11e1 + a21e2, a12e1 + a22e2).

The condition that this data is k-spherical is equivalent to symmetricity of the matrix

ba =

(
b1 0
0 b2

)(
a11 a12

a21 a22

)
=

(
b1a11 b1a12

b2a21 b2a22

)
.

In turn, this is equivalent to the single equation

(65) b1a12 = b2a21.

A crossingless matching u ∈ B2n
0 together with an assignment u′ of numbers 1 or 2 to each of

the n+ 1 regions of c in the disk gives an element of the morphism space Hom(0, 2n) of the skein
category SUα. Assigning the number i means placing the idempotent ei in the corresponding region
of the diagram.

The above elements constitute a basis of the space of morphisms from 0 to 2n in the skein
category for α. In particular,

(66) dim(HomSUα(0, 2n)) =
2n+1

n+ 1

(
2n

n

)
Using duality, the same formula gives dimension of morphism spaces in the skein category from m
to 2n−m, for 0 ≤ m ≤ 2n. Furthermore, the elements (u, u′) as above constitute a spanning set of
the morphism space from 0 to 2n in the gligible quotient category Uα or, equivalently, a spanning
set of the state space A(n).

The inner product (a, b) of two such diagrams is zero unless the idempotents in the regions of
a and b match on each interval of the common boundary circle. There are 2n intervals there, and
each one carries an induced coloring by an element of {1, 2} coming from the labels of the regions.
Both a and b induce such a coloring of the 2n intervals, and (a, b) = 0 unless the induced colorings
coincide.

Consequently the Gram matrix for the pairing in this spanning set is block-diagonal, with 22n

blocks. Each block is a square matrix of the size at most the n-th Catalan number. This block
decomposition simplifies the computation of the determinant and of the state spaces A(n). In
particular, A(n) decomposes into a direct sum of 22n subspaces (some may be trivial), one for each
{1, 2} colorings of the 2n segments on the circle. Note that, for some sequences or colors, such
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as 1122 (which we may also write as 1222), no matching respects the sequence in the sense that
the corresponding element in SU2n

0 is zero. One can either not consider these cases or list them as
giving 0× 0 blocks each with determinant 1.

For example, the state space A(1) has a spanning set v11, v12, v21, v22 that consists of elements
shown in Figure 37. Each one is a single arc, constituting the unique matching of two points,
together with an assignment of 1 or 2 to each of the two regions of the disk or lower half-plane.

1

1

2

1

1

2

2

2

Figure 37. The vectors v11, v12, v21, v22 that span A(1). The labels 1, 2 denote
idempotents e1, e2 placed in the corresponding regions.

The Gram matrix is diagonal in this basis and given by
b1a11 0 0 0

0 b1a12 0 0
0 0 b2a21 0
0 0 0 b2a22

 .

Notice that the two middle diagonal entries are equal, due to (65). We see that the vectors
v11, v12, v21, v22 constitute a basis of A(1), unless one of aij is zero.

If one of a12, a21 is zero, the other one is zero as well, ω stabilizes each of kei, i = 1, 2, and the
system fully decouples and becomes the direct sum of two one-dimensional systems, each described
by the Templerley–Lieb category with parameters a00 and a11.

1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2

1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2

1 1 1 2 1 2 1 2

Figure 38. The five crossingless matchings compatible with the sequence 1321212.

Labels # (non-zero diagrams) Gram determinant
14 2 b21a

2
11(a11 − 1)(a11 + 1)

132 1 b1a11a12

1222 0 1
1212 2 b1a

2
12(a12a21 − 1)

Table 1. Determinants of the blocks of the Gram matrix for n = 2.

We have computed the determinants of Gram matrices for n = 2, 3, 4, 5 (corresponding to di-
agrams with 4, 6, 8, 10 endpoints, respectively) and all possible length 2n sequences of 1, 2, up to
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Labels # (non-zero diagrams) Gram determinant
16 5 b51a

5
11(a11 − 1)4(a11 + 1)4(a2

11 − 2)
152 2 b21a

2
11a

2
12(a11 − 1)(a11 + 1)

1422 0 1
13212 2 b21a

2
11a

2
12(a11 − 1)(a11 + 1)

122122 1 b1a11a
2
12

1323 1 b1a11a12a22

122122 0 1
121212 5 b51a

5
12(a12a21 − 1)4(a12a21 − 2)

Table 2. Determinants of the blocks of the Gram matrix for n = 3.

cyclic order and reflection (since these transformations do not change the determinants, nor the
state spaces). As an example, the four non-zero diagrams for the sequence 1321212 are shown in
Figure 38. Furthermore, the symmetry interchanging 1, 2 in a sequence corresponds to transposing
indices 1, 2 in all aij and bi that appear in the Gram determinant for the sequence — this symmetry
is also taken into account to reduce the number of cases in the tables. The determinants of the
blocks of the Gram matrices for n = 2, 3, 4 are summarized in Tables 1, 2, 3, and a partial list
of Gram determinants for n = 5 in Table 4. Relation (65) allows one to rewrite the terms in the
product formulas for some determinants in several different ways.

Labels # (non-zero diagrams) Gram determinant

18 14
b14
1 a

14
11

(
a2

11 + a11 − 1
) (
a2

11 − a11 − 1
)

· (a11 − 1)13 (a11 + 1)13 (a2
11 − 2

)6
172 5 b51a

5
11a

5
12 (a11 − 1)4 (a11 + 1)4 (a2

11 − 2
)

1622 0 1

15212 4 b41a
4
11a

4
12 (a11 − 1)2 (a11 + 1)2 (a12a21 − 1)2

142122 2 b21a
2
11a

4
12

(
a2

11 − 1
)

132132 3 b31a
4
11a

4
12 (a11 − 1) (a11 + 1) (a12a21 − 1)

1523 2 b21a
2
11a

2
12a

2
22 (a11 − 1) (a11 + 1)

142212 0 1
1321222 0 1

1321212 5 b51a
5
11a

5
12 (a12a21 − 1)4 (a12a21 − 2)

12212212 2 b21a
2
11a

4
12 (a12a21 − 1)

1424 0 1
132123 2 b21a

2
11a

2
12a

2
22 (a12a21 − 1)

1221223 1 b1a11a
2
12a22

1322122 1 b1a11a12a22a21

12221222 0 1
12221212 0 1
12212212 0 1

12121212 14 b14
1 a

14
12 (a12a21 − 1)13 (a12a21 − 2)6 (a2

12a
2
21 − 3 a12a21 + 1

)
Table 3. Determinants of the blocks of the Gram matrix for n = 4.

5.3. The semisimple spherical case. Let Z = ⊕ki=1kei be a semisimple k-algebra of dimension
k over an algebraically closed field k of characteristic zero, with minimal idemptotents e1, . . . , ek.
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Labels # (non-zero diagrams) Gram determinant

110 42
b42
1 a

42
1,1 (a1,1 − 1)41 (a1,1 + 1)41 (a2

1,1 − 2
)26 (

a2
1,1 − 3

)
·
(
a2

1,1 + a1,1 − 1
)8 (

a2
1,1 − a1,1 − 1

)8
192 14

b14
1 a

14
1,1a

14
1,2

(
a2

1,1 + a1,1 − 1
) (
a2

1,1 − a1,1 − 1
)

·
(
a2

1,1 − 2
)6

(a1,1 − 1)13 (a1,1 + 1)13

1521212 10 b10
1 a

10
1,1a

10
1,2 (a1,1 − 1)5 (a1,1 + 1)5 (a1,2a2,1 − 2)2 (a1,2a2,1 − 1)8

13213212 7 b71a
10
1,1a

9
1,2 (a1,2a2,1 − 2) · (a1,2a2,1 − 1)5 (a1,1 − 1)2 (a1,1 + 1)2

132121212 14
b14
1 a

14
1,1a

14
1,2

(
a2

1,2a
2
2,1 − 3 a1,2a2,1 + 1

)
(a1,2a2,1 − 2)6

· (a1,2a2,1 − 1)13

1212121212 42
b42
1 a

42
1,2 (a1,2a2,1 − 3)

(
a2

1,2a
2
2,1 − 3 a1,2a2,1 + 1

)8
· (a1,2a2,1 − 2)26 (a1,2a2,1 − 1)41

Table 4. Determinants of some of the blocks of the Gram matrix for n = 5.

Assume given a k-spherical circular triple (k, Z, ω) with ω described by the k× k matrix a = (aij),

so that ω(ej) =
∑

i aijei, and the trace form ε given by b = (bi) in the basis (ei)
k
i=1.

Denote by α the map kU0
0
FZ−−→ Z

ε−→ k. The k-sphericality condition from Definition 11 is
equivalent to

biaij = bjaji, for all i, j.(67)

Consider the ring R′ = k[aij , b
±1
i ]/J of polynomials in aij and Laurent polynomials in bi modulo

the ideal J generated by biaij − bjaji for 1 ≤ i < j ≤ k. The ring R′ is naturally isomorphic

to the ring k[a′ij , b
±1
i ] for variables a′ij with 1 ≤ i ≤ j ≤ k and bi for 1 ≤ i ≤ k, by denoting

a′ij = biaij = bjaji. In particular, R′ is an integral domain. The Gram determinants of the

associated pairings in Proposition 22 can be viewed as an element of R′. The ring R′ is bigraded,
with deg(a′ij) = (1, 0) and deg(bi) = (0, 1). Consequently, deg(aij) = (1,−1).

Proposition 22. If aij ∈ k, bi ∈ k \ {0} are generic elements of an algebraically closed field k, the
skein category SUα is isomorphic to the gligible quotient category Uα. Equivalently, for each k the
Gram determinant is a non-zero element of the integral domain R′ defined above.

Proof. The coefficients aij , bi being generic implies that Z is ω-generated. This is equivalent to
being able to write each ei as a linear combination of closed circular diagrams. (In the non-generic
case, we can pass to the subalgebra of Z generated by 1 and closed under ω to achieve this.)

A diagram u in B2n
0 (a crossingless matching of 2n points) gives rise to an element of U2n

α , also
denoted by u. Given u and a region r of u, denote by (u, r(i)) the diagram u with the idempotent

ei placed in this region r. We view (u, r(i)) as a vector in U2n
α , so that u =

∑k
i=1(u, r(i)), where

k = dim(Z).
Minimal idempotents ei may be placed in more than one region of u. In particular, minimal

idempotents may be assigned to all regions of u, resulting in a corresponding vector in U2n
α . Since

a crossingless matching of 2n points has n+ 1 regions, the element u can then be written as a sum
of kn+1 terms, each one carrying an assignment of minimal idempotents to all n+ 1 regions of u.

The space U2n
α,0 has a spanning set given by diagrams of crossingless matchings u ∈ B2n

0 together

with a choice of idempotent ei for each region of u. We denote such a vector by (u, c), where c is
the idempotent assignment, and can write u =

∑
c(u, c), the sum over all kn+1 assignments.
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Each region of a matching u contains one or more segments on the boundary of u. Labelling
these regions by idempotents ei induces a labelling of the corresponding segments by the same
index i (or by the idempotent ei).

An assignment c of minimal idempotents to all regions of u induces a sequence of indices
(i1, . . . , i2n), the labels of the 2n segments on the boundary of u, going from left to right. Here we
view the boundary as the real line and crossingless matching u as lying in the bottom half-plane,
see Figure 39 for an example.

i1 i2 i3 i4 i5 i6 i7 i8

Figure 39. Labelling of a crossingless matching of 8 points by a sequence
(i1, . . . , i8) corresponding to idempotents placed in the boundary regions.

Given two such vectors (u, c) and (v, c′), with u, v ∈ B2n
0 , their inner product is 0 unless the

idempotent assignments c, c′ give rise to the same sequence (i1, . . . , i2n) of indices on the boundaries
of u and v. Consider the Gram matrix of the bilinear form in the spanning set {(u, c)} of U2n

0 for
all possible matchings u and labelings c. This matrix is block-diagonal, where we sort the rows and
columns into blocks according to the induced sequences (i1, . . . , i2n) of labels of boundary segments.
Here 1 ≤ i1, . . . , i2n ≤ k.

There may not be any vectors (u, c) inducing a particular sequence ((1, 2, 2, 1) is an example of
such a sequence, for n = 2). These sequences can be ignored, with the corresponding blocks of size
0× 0 of determinant 1 by convention.

Suppose that the pairing ((u, c), (v, c′)) is non-zero, so that, in particular, c and c′ induce the
same sequence on the boundary. The circular form vu has at most n circles, and has n circles if
and only if u = v. The labeling c induces a labelling of regions of vu, also denoted c. The element
α((vu, c)) can be evaluated inductively on the number of circles in vu, starting with the innermost
circles, using the matrix a = (aij) to compute the action of ω and multiplication in the semisimple
algebra Z to reduce the result, at each step, to a linear combination of circular forms with one less
circle each and a full idempotent assignment to the regions. When no circles are left, we use the
vector b = (bi) to evaluate each of the resulting diagrams of the empty plane with an idempotent
ei in it.

We see that the evaluation α((vu, c)) is a polynomial with each term of degree one in the bi’s
and degree m in the aij ’s, where m is the number of circles of vu. Notice that m ≤ n, with equality
occurring if and only if v = u. Consequently, each of the diagonal terms of the Gram matrix has
degree n in the a′ijs, while all off-diagonal terms have strictly lower degrees.

Switching to the bidegrees, as earlier defined, each diagonal term is a homogeneous element of
the ring R′ of bidegree (n, 1 − n). Each off-diagonal term is homogeneous of bidegree (m, 1 −m)
for m < n.

To show that the determinant of the Gram matrix is non-zero for generic values of the parameters,
it suffices to check that each diagonal entry of the matrix is non-zero for some aij ’s and bi’s. This
would imply that each diagonal entry is a non-zero polynomial, necessarily of bidegree (n, 1 − n).
Collapsing bidegree (n1, n2) into a single degree n1 − n2 would tell us that the determinant is a
polynomial of degree 2n− 1, with a nontrivial top homogeneous term, implying the proposition.

For a given diagonal entry α(uu, c) set aij = 1 for all i, j and bi = 1 for all i. Then α(uu, c) =
1 6= 0. The proposition follows. �
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We formulate the following conjecture, generalizing the statement for Temperley–Lieb categories
and Meander determinants from Theorem 21, regarding degeneracies in the Gram determinants of
the paring associated to a k-spherical triple for a semisimple k-algebra. This conjecture have been
verified computationally using MapleTM for morphism spaces Hom(n,m) with n + m ≤ 10 for a
two-dimensional algebra (see Tables 1–4).

Conjecture 23. In the setup of Proposition 22, if all bi 6= 0, then the factors of the Gram determi-
nants are Chebychev polynomials of the second kind in the variables cij :=

√
bi/bjaij . In particular,

the only degeneracies occur when cij = q + q−1 for q a root of unity.

The case of a non-semisimple algebra appears very interesting and we hope to look into it in the
future.

5.4. Example: derivation diagrammatics.

Additional properties of ω may lead to rules for manipulation and simplification of such diagrams.
For instance, assume that set S ⊂ A generates A, that is, the algebra homomorphism R[S] −→ A
is surjective. Furthermore, assume that ω = ∂ is a derivation, that is, ∂(ab) = ∂(a)b + a∂(b), see
Figure 40. Then any diagram reduces to a linear combination of products of diagrams representing
∂n(s), for various s ∈ S and n ∈ Z+, see Figure 41 for examples.

a b = a b + a b

Figure 40. The Leibniz rule for derivations, where a and b represent arbitrary diagrams.

The first Weyl algebra and an sl2-action on polynomials. Consider a basic example when
the center Z(A) = k[x] is the polynomial ring in one variable x over a field k. For this diagrammatics
we do not need a pair (A, F ) of a category and a self-adjoint functor and can just work with a
commutative algebra Z and a linear operator on it. For this example, Z = k[x] and the operator
ω is the differentiation

(68) ∂ : Z −→ Z, ∂(x) = 1, ∂(ab) = ∂(a)b+ a∂(b), a, b ∈ Z.

Then any diagram of nested circles and dots reduces to a polynomial in Z upon repeated simplifi-
cation.

Let

(69) A1 = Z〈∂〉 = k〈x, ∂〉/(∂x− x∂ − 1)

be the first Weyl algebra, that is, the algebra of polynomial differential operators on one variable
x. This algebra acts on Z = k[x], with x acting by adding a dot outside of a diagram and ∂ acting
by wrapping a circle around a diagram, with the relation in Figure 42.

s

(a) The diagram ∂3(s)

s1 s1 s2 s2
3

(b) The diagram ∂2(s1)∂(s1)∂(s2)s23

Figure 41. Examples of derivation diagrams.

42



f = +f f

(a) The relation ∂(xf) = f + x∂(f)

n = n n− 1

(b) The formula ∂(xn) = nxn−1

Figure 42. Derivation diagrammatics, multiplication by • = x

Note that to any commutative algebra and a linear operator on it we can associate a monoidal
category as in Section 3. We do not know the defining relations in that category for the pair
(k[x], ∂).

The Lie algebra sl2 acts via polynomial derivations

(70) E 7→ x2∂, H 7→ 2x∂, F 7→ −∂
on P1, for ∂ = ∂

∂x , and this action extends to a homomorphism from U(sl2) to A1. The diagrammatic
counterpart of the action is shown in Figure 43.

f
F E

H

f

f2

f−

Figure 43. The action of E,H,F via annular diagrams.

A more sophisticated example of an sl2 action via annular diagrams can be found in [BHLZ],
which comes from the annular closure of categorified quantum sl2. There the action extends to
an action of the current algebra. It may be interesting to compare it with the more elementary
example here.

M m,

(a) Holes in the plane labelled by M , m

m ∂m=m xm= ,

(b) The actions of x, ∂

Figure 44. Diagrammatics with labels from an A1-module M , an element m of
M , and the action of x and ∂ on m.

More general derivation diagrammatics. Instead of acting on polynomials, we can take any
module M over A1, make a hole in the plane to insert elements m of a module M and have
A1 act diagrammatically, via adding a dot (the action of x) and circle wrapping (the action of
∂), see Figure 44. The relation in Figure 42a holds with an element m of M in place of f .
This diagrammatics may be useful, for instance, for analyzing bilinear forms on M with suitable
compatibility conditions on the action of A1. For this application, one would glue two planar
diagrams describing the action of A1 on two copies of M into one diagram on the sphere.

More generally, generalized diagrammatics of this sort may be useful for studying rings of oper-
ators acting on commutative algebras. For the Weyl algebra

(71) An := A⊗n1 = k〈x1, . . . , xn, ∂1, . . . , ∂n〉/(xixj − xjxi, ∂i∂j − ∂j∂i, ∂ixj − xj∂i − δi,j)
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n
ii

i

(a) The elements xi, x
n
i , and ∂i( )

i
j = δi,j

i
= 0

(b) The relations ∂i(xj) = δi,j and ∂i(1) = 0

Figure 45. Diagrammatic interpretation of some relations in the Weyl algebra An.
The generators xi and ∂i are given by a dot and circle labelled i. The circle wraps
about the area to be differentiated. If one needs to keep track of powers of a dot, a
possible convention is to write the color to the lower left and the power to the upper
right of the dot.

the diagrammatics will consists of n types of dots colored by {1, . . . , n}, one for each generator
xi, and n types of wrapping circles, also labelled by numbers from 1 to n, one for each ∂i, with
some relations shown in Figure 45. For An diagrammatics, one can, in addition, allow generic
intersections of circles of different colors, with circles sliding freely through each other via relations
in Figures 46 and 47. Doing this allows for a local diagrammatic interpretation of the commutativity
of derivations, ∂i∂j = ∂j∂i, see Figure 46 on the right.

A diagram of overlapping circles and dots on n colors can be evaluated by splitting it into n
diagrams each containing only dots and circles of one color, evaluating each diagram via iterated
derivations and taking the product of evaluations. From this evaluation rule one can obtain defining
relations for this toy example. An additional relation is that for i 6= j an i-dot can pass through
the boundary of a j-circle.

ji

=

ji

(a) Crossing relation of strands for i 6= j

j
i

=
j

i

=
i

j

=
i
j

(b) Commutativity of ∂i, ∂j

Figure 46. The relation (A) allows differently colored circles to cross. It can be
viewed as the simplest “virtual crossings” simplification relation. (B) is a local
derivation of commutativity of the operators ∂i, ∂j . Here, the middle equality is an
isotopy of diagrams.

i j k i j k

=

Figure 47. Another standard relation on virtual crossings, with i, j, k pairwise distinct.

In a more subtle example in [BHLZ] (also see [BHLW] for the multi-color generalization) one
allows intersections of circles of the same color (the sl2-case corresponds to one color) as well as
self-intersections of a circle. Circles, in addition, carry dots on them and the ring of operators given
by annular diagrams acts on a ring isomorphic to the ring of symmetric functions in infinitely many
variables.

Divided power differentials. Let us go back to our original example of one variable x represented
by a dot and derivation ∂ represented by a circle around the polynomial which is being differentiated,
see the discussion around (68). If we change the ground ring from k to Z, the corresponding ring
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of polynomials Z[x] admits divided powers differentiations

∂(n) :=
∂n

n!
, ∂(m)∂(n) =

(
n+m

n

)
∂(n+m).

To describe them, we can enhance the diagrammatics by letting a circle of thickness n denote ∂(n),
see Figure 48.

f

(n)

= ∂(n)f = “

(
∂nf

n!

)
”

(a) Diagrammatics for ∂(n)f

(m)

=

(
n+m

n

)
(n+m)(n)

(b) The composition ∂(m)∂(n)

Figure 48. A circle of thickness n is denoted by a double circle with label n on
the top right and symbolizes the n-th divided power differentiation ∂(n) applied to
the label (function) inside the circle.

The Leibniz rule

(72) ∂(n)(fg) =
n∑
k=0

∂(k)(f)∂(n−k)(g)

translates into the diagrammatics in Figure 49.

f

(k)

g

(n−k)

=
n∑
k=0

g

(n)

f

Figure 49. The Leibniz rule.

Two-dimensional diagrammatics for manipulation of these divided powers may appear contrived,
but it may potentially lead to new extensions of this or related algebraic constructions. We may
try, for instance, to allow the lines for different divided powers of ∂ to split and merge. Figure 50a
depicts an example where a double line representing ∂(2) splits into two single lines representing ∂,
which then merge back into the double line.

(a) Two circles partially merg-
ing into a double circle

g f g +f g f

(2)

(b) Diagrammatics for ∂(1,1)(f, g)

Figure 50. The operator ∂(1,1), given by formula (74), applied to a pair of functions f, g.

We can place polynomials f and g into two bounded regions separated by the lines of derivatives
in the plane. In the left diagram of Figure 50b, g is nested deeper than f , and we apply ∂(2) to it,
while only applying ∂ to f . We then modify the Leibniz rule for ∂(2) applied to the product

(73) ∂(2)(fg) = f ∂(2)(g) + ∂(f) ∂(g) + ∂(2)(f) g
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to the rule that the left diagram in Figure 50b evaluates to

(74) ∂(1,1)(f, g) := f∂(2)(g) + ∂(f)∂(g).

The expression is similar to that in (73) for ∂(2), but the last term is dropped. The new operator

∂(1,1) applied to a pair (f, g) differs from ∂(2) applied to fg in that the term ∂(2) is not applied
to f , for it is not nested inside both circles into which we can split the graph in Figure 50a. The
arrow in Figure 50b depicts this modification of the Leibniz rule.

Generalizing, consider a line of thickness n that splits into r lines of thickness n1, . . . , nr that run
in parallel, with n = n1 + · · ·+nr. The lines then merge back into the original line, see Figure 51 on
the left. Denote the sequence by n = (n1, . . . , nr). Diagrammatically, the corresponding operation
∂n(f1, . . . , fr) is given by the diagram that envelops r bounded regions with polynomials f1, . . . , fr
in them as in Figure 51 on the left.

fr

(nr)
. . .

... f1

(n1)
(n2)

fr f1

∑
k≤n

. . .

...

(kr) (k1)

Figure 51. The n-differentiation operator ∂n acting on (f1, . . . , fr).

We can then modify the Leibniz rule for the diagram in Figure 51 and define n-differentiation,
for n = (n1, . . . , nr), by

(75) ∂n(f1, . . . , fr) :=
∑
k

∂(k1)(f1) . . . ∂(kr)(fr),

where the sum is taken over all sequences k = (k1, . . . , kr) with ki ∈ Z+, such that

k1 + k2 + · · ·+ kr = n, k1 ≤ n1, k1 + k2 ≤ n1 + n2, . . . , k1 + · · ·+ kr−1 ≤ n1 + · · ·+ nr−1.

In this situation, we also write k ≤ n. By a region of depth m we mean a region separated by
lines of total thickness m from the outer region. When distributing divided powers of ∂ to act on
polynomials in various regions of the diagram, on a polynomial located in a region of depth m the
divided power of degree at most m may act.

It may be interesting to see whether this or related diagrammatics can be developed further to
justify such two-dimensional manipulation rules for various systems of operators acting on com-
mutative rings, beyond the examples coming from trace reductions of categorified quantum groups
and categorifications of the Heisenberg algebra, where commutative rings on which the operators
act are rings of symmetric functions in finitely many variables and their tensor products.

Frobenius endomorphism. Given a commutative ring A of characteristic p, the Frobenius en-
domorphism σ : A −→ A acts by σ(a) = ap, for a ∈ A. Elements of A may be depicted by labelled
dots floating in the plane, and the action of σ by a circle enveloping a region of a plane, with the
relations shown in Figure 52.

a = ap a b=a b

Figure 52. Graphical calculus for the Frobenius endomorphism of A.
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By itself, this diagrammatics is very simple; one can try combining it with deeper structures in
number theory and algebraic geometry in characteristic p or to convert Frobenius endomorphisms
into defect lines on suitable foams.

6. Generalizations and transfer maps

6.1. Generalizing to a biadjoint pair (F,G). In this paper we have discussed connections
between self-adjoint functors, circular series and forest series evaluations, and triples (R,Z, ω) and
quadruples (R,Z, ω, ε). These connections have a straightforward modification for biadjoint pairs
(F,G) between categories A0 and A1,

(76) F : A0 → A1, G : A1 → A0.

Planar diagrams are now checkerboard colored by 0 and 1, the labelling denoting categories A0 and
A1. Lines and circles of diagrams obtain induced orientations so that as one travels along an arc
in the orientation direction, the region labelled 0 appears on the right. The resulting systems of
arcs and circles are then compatibly oriented. Section 2.1 explains these diagrammatics, with the
categories denoted by A,B there rather than A0,A1.

1

0
1

0

0

0

1

Figure 53. An example of a closed diagram for the biadjoint pair (F,G) which
defines an element of the center of A0.

Closed diagrams of this form, see Figure 53 for an example, are determined by the underlying
circular form (without orientations of circles) and the label (0 or 1) of the outer region. That data
determines orientations of all circles and labels for all regions.

Consequently, an evaluation function α on such oriented circular foams can be described by a
pair of circular evaluation functions (α0, α1), one for each label of the outside region. We call such
series α = (α0, α1) an oriented circular series.

The construction of state spaces A(µ) goes through as earlier, with objects µ now being alter-
nating sequences of pluses and minuses, describing orientations at boundary points. For the empty
sequence, one should additionally specify 0 or 1, that is, the label of the region that contains the
boundary circle along which the diagrams are paired. One can denote these empty sequences by
∅0 and ∅1.

To define state spaces, one again needs an asymmetric setup, so that diagrams in a disk are
paired to similar diagrams in an annulus to produce a planar diagram and evaluate it.

The diagram of categories and functors (51) extends to this “checkerboard” case, with the caveat
that the various monoidal categories in the diagram become 2-categories with two objects, 0 and
1, corresponding to the possible labels of the regions.

An oriented circular series α (over a field k) as above is called recognizable if all state spaces
A(µ) are finite-dimensional.

Proposition 24. An oriented circular series α = (α0, α1) is recognizable if and only if the state
spaces A(∅0) and A(∅1) are finite-dimensional.
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Proof. Proof is straightforward and left to the reader. This proposition is analogous to Proposi-
tion 19. �

The state spaces A(∅0) and A(∅1) are commutative algebras, with trace maps ε0, ε1, respectively.
Taking a closed diagram with an outer region 0, respectively 1, and wrapping a circle around it
gives a diagram with the opposite label for the outside region. Consequently, these operations give
rise to linear maps

(77) ω0 : A0 −→ A1, ω1 : A1 −→ A0.

The commutative algebras A(∅0), A(∅1) are Frobenius in the weak sense, where in analogue with
equation (49) indices of ω must alternate and xi’s must alternate between taking values in the two
algebras. For instance, for x ∈ A(∅0) there must exist k ≥ 0 and length k sequences {xi}, {yi}
such that either

(78) ε0(xkω1(yk−1 . . . (ω0(x2ω1(y1ω0(x1x)))) . . . ) 6= 0.

or

(79) ε1(ykω0(xk . . . (ω0(x2ω1(y1ω0(x1x)))) . . . ) 6= 0.

Proposition 25. Recognizable oriented circular series α = (α0, α1) are in a bijection with isomor-
phism classes of pairs (A0, A1) of commutative algebras over k, with traces εi : Ai −→ k, i = 0, 1
and linear maps ω0 : A0 −→ A1, ω1 : A1 −→ A0 subject to the above nondegeneracy condition (weak
Frobenius property for (Ai, ωi, εi), i = 0, 1), and the stability condition that (A0, A1) is the only
pair of subalgebras in A0, A1 that contain unit elements and are closed under ω0, ω1.

Proof. We leave the details of the proof, which is analogous to that of Proposition 20, to the
reader. �

When extending to the oriented checkerboard case, with all categories in (51) becoming 2-
categories with objects 0, 1, the square of what are now 2-functors continues to be commutative in
the strong sense, as long as α is recognizable, see an earlier discussion.

The analogue of a circular triple (R,Z, ω) in this setup is the data of

• A pair of commutative R-algebras Z0, Z1.
• R-linear maps ω0 : Z0 −→ Z1 and ω1 : Z1 −→ Z0.
• (For the spherical case:) the condition

(80) ω0(z0)z1 = z0 ω1(z1), z0 ∈ Z0, z1 ∈ Z1.

It is not difficult to write down the corresponding condition on oriented circular series α to
make it spherical. For spherical series, the bilinear pairing can be made symmetric: arc and circle
diagrams on an annulus now reduce to such diagrams in a disk, and the pairing is applied to
two disk diagrams rather than coupling a disk diagram to an annulus diagram. As in the self-
adjoint case, discussed at length earlier, this should simplify computations and understanding of
the corresponding state spaces and categories.

The generating one-morphisms + and − in each of the corresponding 2-categories with two
objects are biadjoint, with the biadjointness 2-morphisms given by oriented cup and cap diagrams
(four diagrams in total). Vice versa, from a suitable biadjoint pair of functors (F,G) between
pre-additive categories A0,A1, see (76), versions of oriented circular series, state spaces, oriented
circular triples, etc. can be recovered. Trace maps εi : Z(Ai) −→ R, i = 0, 1 from centers of these
categories to the ground ring need to be fixed to write down oriented circular series associated to
a biadjoint pair. This way, the notion of a circular quadruple from Section 3.4 also extends to this
oriented (or checkerboard) case in a straighforward fashion.
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Further generalization, with α taking values in a commutative semiring R, is possible. That case
would, again, bring the theory closer to that of weighted tree automata.

6.2. Systems of biadjoint pairs and decorated tree series. The two setups, circular series
related to a self-adjoint functor and oriented circular series for a biadjoint pair, admit a further
generalization. Consider a graph Γ with a set of vertices V (Γ) and a set of edges E(Γ), with
multiple edges and loops allowed. Some loops may be oriented.

Such a graph can be associated to a data of categories and biadjoint pairs of functors or self-
adjoint functors between them. That data consists of categories Av, for v ∈ V (Γ) and a pair of
biadjoint functors (Fe, Ge) between categories Av1 , Av2 for an edge e with vertices v1, v2. For a
loop e at vertex v, one can consider two cases:

• An oriented loop e corresponds to a biadjoint pair (Fe, Ge) of endofunctors of Av.
• An unoriented loop e corresponds to a self-adjoint endofunctor Fe in Av.

To such a graph Γ one can associate the set of Γ-decorated diagrams of planar embedded circles.
We label regions of such a diagram D by vertices of Γ and circles by edges. If the two regions on the
sides of a circle are labelled v1, v2, the circle must be decorated by an edge with endpoints v1, v2.
If there is only one such edge, the decoration can be omitted or reconstructed from the labels of
the regions. If both regions around the circle are labelled by the same vertex v ∈ V (Γ), the circle
must be labelled by a loop e at v. If the loop e is oriented (and, thus, will correspond to a biadjoint
pair (Fe, Ge) of endofunctors), an orientation for the circle must be chosen, to distinguish between
Fe and Ge or, vice versa, to reconstruct the functors and categories from the evaluation data, cf.
Section 2.1. For a circle labelled by an unoriented loop no additional decoration at that circle is
needed, as in Section 2.2. Graphs Γ with infinitely many vertices or edges may be allowed.

v0 v1

e0 e1

e2

e3

(a) The graph Γ

0

0

1

1
0

0 1 1

1

e1

e2

e1

e2

(b) A Γ-decorated circular diagram

Figure 54. An example of graph Γ is shown in (a) and an example of a Γ-circular
form in (b). Since each vertex has a single loop, we omit labels of the corresponding
circles in the picture (these circles have the same region labels on both sides). Ori-
entations are chosen for each circle labelled by the oriented loop e3 (these are the
two circles with regions labelled 1 on both sides) corresponding to the endofunctor
of Av1 and its biadjoint. If the graph Γ comes with corresponding categories and
functors, then this diagram gives an element in Z(Av0).

Given a graph Γ as above, consider all planar Γ-decorated circular diagrams U(Γ)∅. An example
of a Γ-decorated circular diagram is given in Figure 54. There is the 2-category U(Γ) with the
set of objects V (Γ), one-morphisms given by paths in the graph Γ and 2-morphisms being isotopy
classes of Γ-decorated one-manifolds with boundary embedded in R × [0, 1]. Decorations of these
planar diagrams, when restricted to the boundaries R × {0},R × {1}, give paths in the graph Γ,
see Figure 55 for an example of a 2-morphism in U(Γ) for Γ as in Figure 54a.

A closed diagram with an outer region labelled by v ∈ V (Γ) gives an endomorphism of the
1-morphism (v), the latter denoting the length zero path that starts and ends at v. The set of
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0

e0

0

e0

1
1

1 1

e2 e3 e∗3

e1 e1 e2

Figure 55. A 2-morphism in U(Γ), with Γ as in Figure 54b, from one-morphism
e0e2e3e

∗
3 to e0e1e1e2. Both of these one-morphisms are paths in Γ. Notation e∗3

means that we go along e3 in the opposite orientation direction, as part of the
corresponding path.

endomorphisms of (v) may be denoted U(Γ)
(v)
(v) or, simply, U(Γ)v. More generally, the set of 2-

morphisms from the path p to the path p′ is denoted U(Γ)p
′
p or HomU(Γ)(p, p

′). With the earlier
notation, the set of Γ-decorated circular diagrams is the union

(81) U(Γ)∅ =
⊔

v∈V (Γ)

U(Γ)v

of diagrams with outer label v, over all vertices v of Γ.

A Γ-circular series α is a map

(82) α : U(Γ)∅ −→ k

that assigns an element of the ground field k to each Γ-circular diagram. Such a series α is called
spherical if it descends to a map from the set of isotopy classes of Γ-circular diagrams on the
two-sphere rather than the plane.

With a Γ-circular series α we can repeat the constructions in Section 3.4 and define the state space
A(p), for any closed path p in Γ, as the space with a basis of Γ-diagrams in a disk with boundary
p modulo the kernel of its pairing with the space of corresponding diagrams in the annulus. The
morphism space between two paths p, p′ with the same source vertices and same target vertices is
defined as A(p∗p′), where p∗ is the reverse path of p. This results in a 2-category U(Γ)α, analogous
to the monoidal category Uα in Section 3.4. The skein 2-category SU(Γ)α can be defined by analogy
with the corresponding monoidal category SUα in that section, by only imposing the relations on
linear combinations of closed diagrams in a disk (no boundary points).

The resulting 2-categories carry pairs of biadjoint 1-morphisms (or self-adjoint 1-morphisms),
one for each unoriented (respectively, oriented) edge in Γ.

A Γ-series α is called recognizable if the state spaces A(p) are finite-dimensional for any closed
path p in Γ.

Proposition 26. The Γ-series α is recognizable if and only if the state spaces A((v)) are finite-
dimensional, for any vertex v of Γ.

Proof. Recall that (v) is the length zero closed path at vertex v. The proof is immediate. �

We leave it to the reader to write down the analogues of Propositions 20 and 25 for this more
general setup.
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For recognizable α one can form a diagram of 2-categories and 2-functors

(83)

U(Γ) �
� // kU(Γ) // // SU(Γ)α

����

� � // DSU(Γ)α

����
U(Γ)α

� � // DU(Γ)α

analogous to the one in (51). The two 2-categories on the right are Karoubi completions of the
corresponding 2-categories on the side of the left vertical arrows. The square is commutative in the
strong sense, as discussed earlier.

6.3. Adding defects to lines. Another generalization of the circular form construction is to allow
lines to carry zero-dimensional defects. On the categorical side, this generalization corresponds to
adding functor endomorphisms F ⇒ F and denoting them by dots on lines. For a simple example,
given a self-adjoint functor F , choose a natural transformation a : F ⇒ F subject to the (strong)
ambidexterity condition shown in Figure 56.

= ==

(a) The (strong) ambidexterity property

=

==

(b) Duality relations.

Figure 56. The duality relations in (b) are implied by the property in (a) .

The analogue of a circular form in this case is a circular form together with dots placed on its
components. Dots can freely move along the component. The number of dots on each component
is then an invariant of a diagram, and isotopy classes of diagrams are in a bijection with forests as
in Section 4 with vertices labelled by non-negative integers. We call these diagrams dotted circular
forms and draw some examples in Figure 57.

, ,

Figure 57. Examples of dotted circular forms.

In the “dotted” version of the category U, which we denote by •U, circles and arcs of a diagram
may carry freely floating dots. A dotted circular series is a map

α : •U0
0 −→ k

from the set of dotted circular forms (up to isotopy) to the ground field k.
Given α, one can define state spaces A(n) for each n ≥ 0 as before, by pairing dotted diagrams of

n arcs and any number of circles in a disk with such diagrams in an annulus, followed by taking the
quotient of the disk space by the (left) kernel of the bilinear form, in full analogy with Section 3.4.
See Figure 58 for an example of the pairing of dotted diagrams.
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( )

Figure 58. Pairing of a disk diagram and an outer annular diagram, both equipped
with dots on lines.

Recognizable dotted circular series are defined by the requirement that state spaces A(n) are
finite-dimensional for all n, see also Definition 18. The following generalizes Proposition 19.

Proposition 27. A dotted circular series α is recognizable if and only if A(0) and A(1) are finite-
dimensional.

Proof. The proof uses that a diagram in •U2n
0 is given by nesting a cup diagram in •U2

0 into an

inner region of a diagram in •U2(n−1)
0 . Using induction on n and assuming that both A(0), A(1) are

finite-dimensional, one obtains a finite spanning set for A(n), implying that it is finite-dimensional.
The other implication is clear. �

Wrapping a circle with n dots around a closed diagram induces a k-linear map ωn : A(0) −→ A(0),
see Figure 59 for an example of such a wrapping map.

Figure 59. The map ω4 applied to the dotted diagram on the left.

A sequence of linear maps ω∗ := (ω0, ω1, . . . ) is called recurrent or linearly recurrent if there
exist a non-negative integer N and bi ∈ k, 1 ≤ i ≤ N , such that for any n ≥ 0

(84) ωn+N = b1ωn+N−1 + b2ωn+N−2 + · · ·+ bNωn.

Notice that the last few bi’s may be zero, so that the recursion does not necessarily start in the
lowest possible degree.

Proposition 28. Suppose that A(0) and A(1) are finite-dimensional, for a dotted circular series
α. Then the sequence ω∗ = (ω0, ω1, ω2, . . . ) of endomorphisms of A(0) is linearly recurrent.

Proof. Elements of A(1) can be represented as planar boxes with two strands emanating out,
denoting a linear combination of dotted circular forms in •U2

0. Placing a dot on the left strand
is then an endomorphism of A(1), see Figure 60, that we can denote by d. Since A(1) is finite-
dimensional, the minimal polynomial for operator d gives us a recurrence relation on powers of d,
which converts to a recurrence relation for the ωn’s. �

Remark. As a partial converse to Proposition 28, if ω∗ is recurrent and A(0) finite-dimensional
then A(1) is also finite-dimensional.
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a ad(a) =

Figure 60. The k-linear map d : A(1)→ A(1) of adding a dot on the left strand.

Remark. The map d placing a dot on the left strand of a diagram is an endomorphism of A(1)
viewed as an A(0)-bimodule, with the bimodule action given by placing closed dotted diagrams
(which are diagrams defining a spanning set of A(0)) in the two regions on the two sides of the
unique arc in a diagram in A(1). The minimal degree integral relation on powers of the dot with
coefficients in A(0)⊗2 may have lower degree than that on powers of the dot with coefficients in k.
The former can be thought of as a skein relation to reduce a power of a dot to a linear combination
of lower powers times closed diagrams placed in the two regions on the sides of the arc that carries
powers of the dot.

The data (A(0), ω∗, ε) is non-degenerate in the following weak sense. For any x ∈ A(0), x 6= 0
there exists k ≥ 0 and sequences x1, . . . , xk ∈ A(0), i1, . . . , ik−1 ∈ Z+ = {0, 1, . . . } such that

(85) ε(xk ωik−1
(xk−1 . . . ωi2(x2 ωi1(x1x))) . . . ) 6= 0.

We call a datum (A,ω∗, ε) as above with a A finite-dimensional a commutative weakly Frobenius
∗-triple.

Proposition 29. There is a bijection between recognizable dotted circular series α and isomorphism
classes of the following data:

• A finite-dimensional commutative k-algebra A with the trace form ε and a recurrent sequence
of linear maps ωn : A −→ A, n ≥ 0 subject to (85), that is, a commutative weakly Frobenius
∗-triple.
• Stability condition: A is the only subalgebra of A that contains 1 and is closed under ωn,
n ≥ 0.

Proof. The proof is straightforward. �

Spherical dotted circular series can be defined analogously, cf. (43). In the spherical case, the
setup is more symmetric, with the bilinear pairing coming from gluing a pair of dotted diagrams
in a disk, rather than dotted diagrams in a disk and an annulus, leading to possible simplifications
in the computation of skein relations.

Remark 30. Instead of a dot of a single type, one can fix a set S of labels for dots and consider
dotted circular diagrams with dots labelled by elements of S. If the structure of embeddings of
circles into the plane or 2-sphere is ignored, one recovers the familiar notion of noncommutative
recognizable power series, see [BR] and its tensor envelope [Kh3]. Keeping track of the embedding
in R2 would add additional complexity to the theory. We do not attempt to develop it here.

Our strong ambidexterity property for an endomorphism of a self-adjoint functor, allows to work
with a single type of dot on strands, so that the number of dots on each circle is the only additional
information for closed diagrams. It is also well-suited for dealing with the spherical case of such
diagrams, considered then as diagrams on a 2-sphere.

By the weak ambidexterity of an endomorphism a of a self-adjoint functor F we mean the
relations shown in Figure 61 on the right. The diagram in Figure 61 on the left defines the
endomorphism a∗ of F .

In general, the endomorphisms a and a∗ of F do not seem to come, with any monomial relations
on them. This means that the order of a’s and a∗’s in the product of endomorphisms of F is
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Figure 61. The definition of a∗, denoted by a hollow dot, and the weak ambidex-
terity condition.

important, and, in a closed diagram, any circle will come with a word in a and a∗, up to overall
cyclic order. This gives a lot of freedom in creating possible diagrams and relates this setup to
that of noncommutative power series and associated monoidal categories, see the remark above
and [Kh3]. Unlike [Kh3], one-manifolds with defects (dots) now lie in the plane and the nesting of
these manifolds is part of the structure of such diagrams. One can think of this setup as the (2, 1, 0)-
manifold case, with the ambient manifold being R2 or S2, embedded one-manifolds (circles) being
codimension one defects and dots on one-manifolds are defects on defects. This can be further
extended by coloring one-manifolds as in Section 6.2 as well as allowing dots (codimension two
defects) to float in the regions of the plane or the 2-sphere separated by the circles. The later
variation is similar to that in [KKO, Section 8]. A further extension is to generalize from diagrams
in R2 and S2 to those in more general surfaces. An even further development is to extend from
collections of (decorated) circles in the plane or a surface to embedded decorated graphs in R2 and
in more general surfaces. Vaughan Jones’ planar algebras [Jo7] give rise to such planar graph and
network evaluations with additional strong unitarity and positivity properties.

Given a k-linear endofunctor F : A → A, we may consider the monoidal subcategory AF of the
k-linear monoidal category Funk(A,A) that F generates. If F is self-adjoint, then F is self-dual as
an object of AF . This self-duality induces a pivotal structure on AF provided that left and right
dualities coincide [TV, Section 1.7]. Equivalently, F satisfies the weak ambidexterity property that

(86) a∗ = (1Fµ)(1Fa1F )(δ1F ) = (µ1F )(1Fa1F )(1F δ) = ∗a,

for any endomorphism a of F , see Figure 61. Examples of endofunctors satisfying weak ambidex-
terity can be given by tensoring with objects from a pivotal category. These are, in general, not
self-dual. We refer to [S] for graphical calculus associated to pivotal categories.

Remark 31 (Reflection involution). Recall the reflection involution in the plane, reversing the
plane’s orientation. This involution fixes the isotopy class of any planar diagram of circles, see
Proposition 1. Once dots of several types are allowed on circles, as additional defects, see Remark 30,
this involution no longer has to be trivial. Alternatively, if one adds labelled dots floating in the
regions of the diagram, the reflection involution may permute nontrivially labels of the dots. With
this reflection acting nontrivially, the bilinear form on suitable state spaces may not be symmetric
and one needs slight changes in our construction. The ground field k may come with an involution
ρ to match the reflection involution, with the bilinear pairing hermitian with respect to (k, ρ).

6.4. The transfer map and its diagrammatics. In this section, we discuss diagrammatics of
transfer maps in the case of a biadjoint pair of functors.

Adding a boundary and placing morphisms on it. Suppose given a biadjoint pair of functors
(F,G) between categories A,B as in Section 2.1. The planar string diagrammatics for (F,G), and
for collections of biadjoint pairs, can be enhanced by considering the half-plane to the left of a
vertical line L that carries objects and morphisms of the categories A and B as follows. Intervals
in L are labelled by categories A and B. A dot on an interval of L labelled by A denotes a
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morphism f : a1 → a2 in A, with a collection of consecutive dots representing the composition

a1
f1−→ a2 −→ . . . −→ an−1

fn−1−−−→ an of morphisms, see Figure 62.

A

a1

a2

f

(a)

A

a1

a3

f1

f2
a2

(b)

A

a1

an

f1

f2
a2

...

fn−1
an−1

(c)

A

a1

a2

f

F

B

F

(d)

B

b1

b2

g

(e)

B

b1

b3

g1

g2
b2

(f)

Figure 62. (a) A morphism f : a1 −→ a2 in A; (b) a composition f2f1 : a1 −→ a3

of morphisms in A; (c) a composition fn−1 . . . f1 : a1 −→ an in A; (d) the functor
F applied to a morphism f resulting in the morphism Ff : Fa1 −→ Fa2 in B; (e)
a morphism g : b1 −→ b2 in B, (f) a composition of morphisms g2g1 in B.

For a morphism g : Fa→ b in B, where a is an object in A, and b an object in B, we use specific
diagrammatics of the two lines denoting F and ida merging into a single line denoting idb at a dot.
Similar diagrammatics are used for morphisms f : a → Gb in A, see Figure 63a–b. Similarly, we
denote morphism h : Gb → a in A, and k : b → Fa in B, with arrows of opposite orientation, see
Figure 63c–d.

Using that F is left adjoint to G, we can display the mutually inverse natural isomorphisms

HomB(Fa, b)
∼←→ HomA(a,Gb),

g 7→ g∗ = Gg(δ2)a, f 7→ ∗f = (µ2)bFf,
(87)

using these diagrammatics, see Figure 64. Here, δ2, µ2 are the unit and counit of the adjunction
(F,G), see Section 2.1. We may use similar diagrammatics to express the natural isomorphisms

HomA(Gb, a)
∼←→ HomB(b, Fa),(88)

from G being left adjoint to F , using the natural transformations δ1, µ1 from Section 2.1.

B

a

b

g

F

A

(a)

A

a

b

f

G

B

(b)

A

b

a

h

G

B

(c)

B

b

a

k

F

A

(d)

Figure 63. (a) A morphism g : Fa −→ b in B, for objects a ∈ A, b ∈ B and the
functor F ; (b) a morphism f : a −→ Gb in A; (c) a morphism h : Gb→ a in B; (d)
a morphism k : b→ Fa in A.
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B

a

b

g

A

G

=
A

a

b

g∗

G

B

(a)

A

a

b

f

F

B
= B

a

b

∗f

F

A

(b)

Figure 64. (a) the dual g∗ of a morphism g, given by composing with the natu-
ral transformation δ2 : IdA −→ GF , see Figure 2 and Section 2.1; (b) the inverse
operation f 7→ ∗f .

A natural transformation α : F1 =⇒ F2 between functors F1, F2 : A −→ B is natural with respect
to any morphisms f : a1 → a2 in A, via the commutative diagram

F1(a1)
F1(f) //

αa1
��

F1(a2)

αa2
��

F2(a1)
F2(f) // F2(a2).

(89)

Figure 65 expresses this property diagrammatically, as an isotopy condition between dots.

A

a1

a2

f

F2

B

F1

α
=

A

a1

a2

f

F2

B

F1

α

Figure 65. The property of a natural transformation α : F1 =⇒ F2 is the isotopy
(commutativity) condition that the dots denoting α and f on parallel vertical lines
can slide past each other.

Transfer maps. The transfer (or trace) map [G, MMa1, MMa2] is the map

TfF : HomB(Fa1, Fa2) −→ HomA(a1, a2),(
f : Fa1 → Fa2

)
7−→

(
(µ1)a2G(f)(δ2)a1 : a1 → a2

)
,

(90)

built using the natural transformations δ2, µ1 from the biadjointness data, cf. Section 2.1. Inter-
changing the roles of F and G, we may similarly define

TfG : HomA(Gb1, Gb2) −→ HomB(b1, b2),(91)

using δ1, µ2 instead. We will focus on the case of TfF here. Transfer maps appeared already in [M,
Equations (57)–(58)]. There is a characterization of Frobenius pairs of functors in terms of transfer
maps [CMZ, Proposition 45].

A morphism f in HomB(Fa1, Fa2) can be denoted by the diagram in Figure 66a as a vertex on
the boundary line bounding intervals for objects a1, a2 along the boundary and with the lines, from
the functor F on the bottom and top edge of the region, going in and out of the vertex.
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B

a1

a2

f

F

A

A
F

(a) The diagrammatic representation of f

B

a1

a2

f

A

A

= B

a1

a2

f

A

(b) The transfer Tf(f) of f

Figure 66. Transfer map diagrammatics for a morphism f : Fa1 −→ Fa2.

In this diagrammatic language, the transfer map TfF is given by closing up the two ends of F
into a loop, see Figure 66b. The result of evaluating the transfer map is a balloon attached to a
point on the boundary line, see Figure 66b on the right.

The notion of the transfer map can be generalized by placing an element z ∈ Z(B) of the center
of the category B inside the region enveloped by the line for F , see Figure 67, giving us a map

(92) TfF : Z(B)×HomB(Fa1, Fa2) −→ HomA(a1, a2),

which, alternatively, may be hidden inside the original map, via the action

(93) Z(B)×HomB(Fa1, Fa2) −→ HomB(Fa1, Fa2),

of Z(B) on morphisms HomB(Fa1, Fa2) given by placing an element of Z(B) in the region labelled
B in Figure 66a.

a1

a2

f

A

z

Figure 67. Wrapping F around a central element z of Z(B), the element z is placed
in the region symbolized by a square.

For morphisms g1 : a1 −→ a2, g2 : a3 −→ a4 in A and f : Fa2 −→ Fa3 in B the relations

(94) TfF (f ◦ F (g1)) = TfF (f) ◦ g1, TfF (F (g2) ◦ f) = g2 ◦ TfF (f),

hold, see [MMa1, Proposition 1.8a]. Diagrammatically, they say that the isotopies that change
relative height of the cap and cup points of the balloon, relative to the boundary points representing
g1, g2, do not change the morphism, see Figure 68.

The trace morphisms. An endomorphism α : F −→ F can be denoted by a dot on a line labelled
by F , see Figure 69a. Closing the line into a circle, using biadjointness, see Figure 69b, is the
diagrammatic description of the trace map of [B]:

(95) trA : End(F ) −→ End(IdA) ∼= Z(A),
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a1

a3

f

A g1

a2
B

a1

a3

f

A
g1

=
B

a2

a4

f

A g2
a3

B

a2

a4

f

A
g2

Figure 68. Equations (94) are isotopies that change relative heights.

The trace map can be written as the following composition

trA : IdA
δ2−→ GF

(idG)α−−−−→ GF
µ1−→ IdA.

The other trace,

trB : IdB
δ1−→ FG

α(idG)−−−−→ FG
µ2−→ IdB,

is given by closing the interval with α on the other side, into a clockwise circle in the plane, with
the category B on the outside of the diagram, see Figure 69c.

A

F

B

F

α

(a) An endomorphism α of F

αBA

(b) trA(α)

α A B

(c) trB(α)

Figure 69. Diagrammatics of traces of endomorphisms of F . Closing a dotted
interval into a dotted circle gives the trace morphism trA in (b), while the other
closure is the trace trB in (c).

Wrapping a central element z ∈ Z(B) by an F -labelled counterclockwise oriented circle gives a
map Z(B) −→ Z(A), see (70). More generally, we obtain the composite morphism

Z(B)× End(F )
(93)−−→ End(F )

trA−−→ Z(A),(96)

using the action from (93). It wraps a circle with dots labelled by endomorphisms of F around an
element z of Z(B).

Interpreting the general transfer map in (90) diagrammatically requires introducing a peculiar
4-valent vertex on the vertical boundary of the strip to denote a morphism Fa1 −→ Fa2, see
Figure 66 earlier. The input natural transformation α : F =⇒ F in the trace morphism (95)
induces morphisms αa : Fa −→ Fa for all objects a in A. For this morphism αa, the 4-valent
vertex can be reduced to placing a vertical line with a dot labelled α in parallel with the boundary
labelled by the identity map of a, see Figure 71a.

The trace map bubbles in the presence of boundary describe suitable morphisms in categories
A and B. For instance, the diagram in Figure 71b is the endomorphism trB(z)b : b −→ b for an
object b of B and z ∈ Z(A).
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B
A

zA
B

F

F

z
trA7−−→

(a)

A
B

z′

A

B

F

F

z′
trB7−−→

(b)

Figure 70. In (a), an element z ∈ Z(B) gives the endomorphism z idF of F and
the trace trA(z idF ) is a counterclockwise F -bubble wrapped around z. In (b), an
element z′ ∈ Z(A) gives the endomorphism idF z

′ of F and its other trace, the
B-trace, is a clockwise F -bubble wrapped around z′.

a

a

A
B

F

α

F

(a)

B

z

b

b

(b)

Figure 71. In (a), the four-valent vertex is simplified to parallel lines when the
morphism Fa1 −→ Fa2 is αa : Fa −→ Fa. In (b), diagrammatics for the morphism
trB(z)b : b −→ b.
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