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Abstract—An unsupervised graph neural network (GNN) ap-
proach is proposed to solve the beamforming design problem
in device-to-device (D2D) wireless networks. Instead of directly
learning the beamforming, the GNN is utilized to learn primal
power and dual variables, and then a beamforming recovery
module is applied to convert them to the beamforming. In this
way, the overall problem dimension is decreased by a factor of the
number of antennas. Additionally, the proposed GNN approach
is potential to be generalized to different system settings without
retraining when the number of antennas remains unchanged.
Simulation results demonstrate that the proposed GNN based
beamforming approach achieves superior performance with 10
times fewer samples than the benchmarks, and the running time
is reduced down to millisecond-level for 50 pairs of D2D users
which is promising for practical applications in D2D wireless
networks.

Index Terms—Beamforming, Graph neural network (GNN),
Device-to-device (D2D), Resource allocation

I. INTRODUCTION

Spatial beamforming design is an important technique for
interference management in multi-antenna scenarios in wire-
less networks. Beamforming design problems are usually non-
convex and mainly rely on numerical algorithms, e.g., the
weighted minimum mean square error (WMMSE) algorithm
[1], which is proposed to solve the weighted sum rate maxi-
mization problem for a multiple-input multiple-output interfer-
ence channel via iterative minimization of mean square error.
The WMMSE algorithm is commonly used for beamforming
designs in wireless networks. However such algorithms are
computationally complex and time-consuming, hence they
cannot meet the real-time requirement in practical wireless
networks.

To mitigate these challenges, machine learning (ML) based
mechanisms have been proposed to accelerate the approxi-
mation of the beamforming optimization problems. A deep
neural network (DNN) method was developed in [2] to solve
the beamforming designs in multi-cell scenarios. Besides, a
deep learning based fast beamforming method was proposed
in [3], where the downlink beamforming problem was divided
into power allocation and virtual uplink beamforming design.
These works cannot embed the network topologies, and they
require a large dataset for training, which is usually difficult
or even impossible to acquire in real-world wireless networks.

To address these challenges, graph based learning ap-
proaches were proposed to approximate the beamforming
problems in unsupervised manners. A wireless channel graph
convolution network (WCGCN) was proposed in [4] for scal-
able radio resource management and it was tested on a device-
to-device (D2D) beamforming problem. As [4] directly learns
the beamforming, it results in high training complexity. In the
existing ML based beamforming designs, in order to improve
the learning efficiency, the expert knowledge specifically the
structure of the optimal downlink beamforming was utilized
to convert the beamforming problems to power allocation
problems in single-cell scenario [5] [6] and multi-cell scenario
[6].

Inspired by the previous works, an unsupervised graph
neural network (GNN) approach is employed to approximate
the beamforming solutions in D2D networks combining the
structure of the optimal beamforming. To be specific, the
beamforming is transformed to the primal power and dual
variables, then the GNN is applied to learn the mapping from
the channel information to these variables rather than the
direct beamforming. The main contributions are summarized
as follows:
• The domain knowledge is utilized to transform beam-

forming to primal power and dual variables which enables
the GNN to learn these variables instead of directly learn-
ing the beamforming. A recovery module is then applied
to transform these variables back to the beamforming.

• Compared with directly learning beamforming, the pro-
posed method reduces the number of parameters required
to be learned by a factor of the number of antennas.

• Simulation results show that the proposed approach
achieves superior performance with fewer training sam-
ples than the benchmarks, and it outperforms the state-of-
the-art WCGCN by a 20% margin in the studied cases.

The remainder of this paper is organized as follows. Section
II introduces the system model and problem formulation for
a D2D beamforming problem. The proposed GNN approach
for the D2D beamforming is presented in Section III, which
includes a graph modeling of D2D networks, an unsupervised
GNN approach and a beamforming recovery module. Sections
IV demonstrates the simulation results of the proposed ap-



proach. Conclusion for this work is drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A wireless network with L D2D pairs is considered, where
all D2D pairs share the same spectrum. All D2D pairs are
randomly located in a square area with an edge length of
darea and each D2D pair is located within a pairwise distance
between dmin and dmax. The set and the indexes of all D2D
pairs are denoted by D = {D1, . . . , DL} and L = {1, . . . , L},
respectively. The transmitter and receiver of Dl are represented
by Tl and Rl, respectively. Each transmitter Tl is equipped
with Nt antennas and each receiver Rl is equipped with a
single antenna. A simple network with three D2D pairs is
illustrated in Fig. 1.
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Fig. 1 A 3-pair D2D network.

Let xl and sl denote the beamforming and the signal of Tl,
respectively. The received signal at Rl is written as

yl = hH
ll xlsl +

L∑
k=1,k 6=l

hH
klxksk + nl, (1)

where hkl ∈ CNt denotes the channel state from Tk to
Rl. nl ∼ N (0, σ2

l ) represents the additive white Gaussian
noise. The signal-to-interference-plus-noise ratio (SINR) of Dl

denoted by ξl is written as

ξl =
|hH

ll xl|2∑L
k=1,k 6=l |hH

klxk|2 + σ2
l

, ∀l ∈ L . (2)

Let X = [x1,x2, . . . ,xL]
T ∈ CL×Nt denote the beam-

forming matrix. In this paper, a beamforming optimization
problem for maximizing the overall sum rate is studied, which
is formulated as

max
X

L∑
l=1

log2(1 + ξl)

subject to ||xl||22 ≤ Pmax, ∀l ∈ L .

(3)

where the constraint denotes that each D2D pair has a max-
imum transmit power of Pmax. Note that the sum rate is
normalized by the channel bandwidth.

III. GRAPH NEURAL NETWORKS FOR BEAMFORMING IN
D2D WIRELESS NETWORKS

In this section, the proposed approach is introduced, which
mainly consists of a graph representation of the D2D network,
an unsupervised GNN, and a beamforming recovery module.

A. Graph Modeling of D2D Networks

A D2D wireless network can be modeled as a fully con-
nected graph where the communication links can be treated
as nodes and interference links can be treated as edges, as
shown in Fig. 2. Let G = (V, E) represent a graph where V
denotes a set of nodes and E denotes a set of edges. The edge
connecting from node v to node u, v, u ∈ V can be denoted
as e(v, u) ∈ E . Note that edges are directional in wireless
networks.
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Fig. 2 Graph modeling of the 3-pair D2D network illustrated
in Fig. 1.

B. Graph Neural Network

A GNN is utilized to approximate the beamforming opti-
mization problem by learning the mapping from the channel
information to the primal power and the dual variables, and
then a beamforming recovery module is applied to the learned
variables.

The GNN was firstly invented to extend the existing neural
networks for handling the data in graph domains [7]. A GNN
has layerwise structures and all layers share the same structure,
which mainly consists of an aggregation operation and a
combination operation. Each node aggregates the features from
its adjacent nodes, and it then combines its own node features
with the aggregated neighborhood features in each layer. In
this work, the channels are modeled as the node and edge
features. Let Vv and Euv denote the node feature of node
v and the edge feature from node u to node v, respectively.
The representation of node v at the m-th layer of the GNN is
updated as formulated below [8]:

α(m)
v = ϕu∈N (v)(φ(Vu, Euv, Evu, β

(m−1)
u )) ,

β(m)
v = ψ(Vv, β

(m−1)
v , α(m)

v ) ,
(4)



where α(m)
v denotes the aggregated neighborhood feature of

node v at the m-th layer. φ represents an aggregation opera-
tion, e.g., a convolutional neural network (CNN). ϕ denotes
a permutation invariant function, e.g., sum, mean or max,
and N (v) denotes the neighbors of node v. β(m)

v refers to
the embedding feature of node v at the m-th layer. ψ is a
combination operation, e.g., a deep neural network (DNN).
The aggregation and combination operations of one node (D1)
at the m-th layer of the GNN is illustrated in Fig. 3 as an
example.

D2
Aggregation

Combination

( 11, 1

1
, α1 )

(
2
2
,
2
1
,
1
2
,
2

1 )

(
3
3 ,

3
1 ,

1
3 ,

3

1
)

D1

D3

Fig. 3 An illustration of the aggregation and combination of
one node at the m-th layer of GNN.

As the dimensions of the GNN is only related to the number
of antennas Nt and independent with the number of D2D pairs
L, the trained model with small L is potential to be generalized
to larger system scales without further training when Nt is
invariant.

C. Beamforming Recovery Module

This module aims to recover the D2D beamforming from
the learned primal power and dual variables. The beamforming
problem in (3) is non-convex and usually difficult to obtain
the optimal solution. The optimal beamforming x∗l is highly
structured which is written as [9]

x∗l =
√
pl

(INt
+

∑L
k=1,k 6=l

qk
N0

hklh
H
kl)
−1hll

||(INt
+
∑L

k=1,k 6=l
qk
N0

hklhH
kl)
−1hll||

, ∀l ∈ L ,

(5)
where pl denotes the primal power of Dl and satisfies pl ≤
Pmax, which is achieved by the Sigmoid function in the
GNN, and qk denotes the dual variable of Dk and satisfies∑L

k=1 qk = Pmax, which is achieved by the Softmax function
in the GNN. INt

refers to a Nt×Nt identity matrix. Through
(5), learning beamforming can be transferred to learning the
primal power and the dual variables, thus the overall problem
dimension is reduced from 2NtL to 2L.

D. Loss Function

For the unsupervised learning, a negative sum rate is
adopted as the loss function which is written as

`(θ) = −
L∑

l=1

log2(1 +
|hH

ll xl(θ)|2∑L
k=1,k 6=l |hH

klxk(θ)|2 + σ2
l

), (6)

where θ denotes the parameters of the GNN and xl(θ) denotes
the beamforming vector obtained by substituting the learned
primal power pl(θ) and dual variable qk(θ) to (5).

IV. NUMERICAL RESULTS

A distance dependent path loss is adopted to model the large
scale fading, and the Rayleigh fading with zero mean and unit
variance is employed to model the small scale fading. The
main system parameters are given in Table I.

TABLE I System parameters.
Parameters Values

Edge length, darea 200 m
D2D pairwise distance, dmin − dmax 2 – 50 m

Maximum transmit power of Dl, Pmax 20 dBm
Path loss model 148 + 40 log10(d[km]) [10]

Number of antennas, Nt 3

For the GNN, the real part and imaginary part of the
channel are treated as two real numbers, and are fed into
the neural network. The adaptive moment estimation (ADAM)
[11] optimizer is applied to update parameters of the GNN.
The main parameters used for the GNN and training process
are listed in Table II.

TABLE II GNN and training parameters.
Parameters Values

Number of layers of GNN 3
Sizes of φ (CNN) in GNN {6Nt+2, 32, 32, 6}
Sizes of ψ (DNN) in GNN {2Nt+8, 32, 32, 2}

Learning rate 0.001
Batch size 10

The generation of training samples is implemented by Mat-
lab, and the neural networks are implemented by PyTorch. The
performance of the proposed approach is compared against the
following benchmarks:
• WMMSE [1]: The WMMSE algorithm with 100 itera-

tions is adopted. It also serves as an upper bound. The
performances of the ML based schemes are normalized
with respect to the WMMSE algorithm.

• Supervised GNN: This method employs the same GNN
structure and recovery module as the proposed method,
but a supervised manner is adopted.

• WCGCN [4]: This method directly learns the mapping
from the channel information to the beamforming in an
unsupervised manner.

A. The Number of Training Samples

The performance comparisons with different number of
training samples for L = 20 D2D pairs are summarized in
Fig. 4.



As indicated in Fig. 4, the proposed unsupervised GNN
approach achieves a sum rate of approximately 97% of the
WMMSE algorithm with only 1000 training samples, and it
maintains stable with increasing number of training samples.
The proposed method is sample efficient since the searching
space has been reduced by converting the beamforming to
the primal power and the dual variables. As observed from
Fig. 4, the proposed approach outperforms its corresponding
supervised method and the unsupervised WCGCN method
by margins of at least 10% and 20%, respectively, in all
considered settings. The unsupervised WCGCN with direct
beamforming learning requires a larger training dataset for
better performance.
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Fig. 4 Performance comparison with different numbers of
training samples when L = 20.

B. The Number of D2D Pairs

The performance of the proposed approach and benchmarks
is evaluated with the scenarios L ∈ {5, 10, 15, 20} as shown
in Fig. 5, where 10000 training samples are adopted for each
setting.

As observed from Fig. 5, the proposed unsupervised GNN
approach achieves a normalized sum rate of around 0.94 for
L = 5, and it still outperforms the supervised approach and
the WCGCN by margins of approximately 9% and 25%,
respectively. Besides, the proposed approach maintains good
performance with sum rate between 0.96 and 0.975 for L =
10, 15, 20.

C. Different Pairwise Distances

The performance of the proposed approach is evaluated on
varying pairwise distances with 10000 training samples when
L = 20.

Table III indicates that the proposed GNN approach can
handle different pairwise distances, where it achieves a nor-
malized sum rate of at least 0.95 when the pairwise distances
are (2, 50), (10, 50) and (10, 40), while it performs the worst
on the scenario with a fixed pairwise distance among all
tested settings, which achieves a sum rate of around 0.91. The
reason is that the channels are modeled as the node features
which are mainly determined by the distances, thus the similar
node features will decrease the performance of the proposed
method.
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Fig. 5 Performance comparison with different numbers of
D2D pairs.

TABLE III Performance of the proposed approach with
different pairwise distances.

Pairwise Distances (m) 2 – 50 10 – 50 10 – 40 fixed 30
Normalized Sum Rate 0.9737 0.9503 0.9556 0.9108

D. Scaled-up Systems

The GNN approach is expected to handle large sys-
tem scales. It is tested on scaled-up networks with L ∈
{50, 75, 100}, and the results are presented in Table IV, where
the GNN model is trained with 1000 samples for each system
scale. The performance of the proposed unsupervised GNN
method remains stable with increasing number of D2D pairs,
and it achieves a normalized sum rate of approximately 0.98
for L = 50 and around 0.97 for L = 75 and L = 100. The
overall performance loss is around 2% - 3% compared to the
WMMSE algorithm.

TABLE IV Performance of the proposed approach with
scaled-up systems L ∈ {50, 75, 100}.

System Scales 50 75 100
Normalized Sum Rate 0.9796 0.9678 0.9689

E. Generalization

The trained model with 10000 samples for L = 20 and
pairwise distance 2 – 50 m is generalized to larger network
scales with the same pairwise distance and the same network
scale with different pairwise distances, respectively, without
retraining.

Firstly, the trained model is generalized to larger system
scales with L ∈ {30, 40, 50} and the performance is given
in Table V, which indicates that the proposed method can
generalize to larger networks, e.g., the generalization results
in 1% and 4% performance loss compared to the training for
L = 30 and L = 40, respectively. It may requires retraining
for better performance for larger system sizes.

Secondly, the generalization performance is tested on dif-
ferent pairwise distances as shown in Table VI, where the
generalization can achieve almost the same performance with
the training of 10000 samples for all considered pairwise
distances.



TABLE V Generalizability of the trained model with L = 20
to larger network scales L ∈ {30, 40, 50}.

System Settings L=30, 2–50m L=40, 2–50m L=50, 2–50m
Training 0.9767 0.9749 0.9796

Generalization 0.9655 0.9350 0.9085

TABLE VI Generalizability of the trained model with L =
20 and pairwise distance 2 – 50 m to different pairwise
distances.

System Settings L=20, 10–50m L=20, 10–40m L=20, fixed 30m
Training 0.9503 0.9556 0.9108

Generalization 0.9491 0.9553 0.9061

F. Running Time

The inference time performance is evaluated on processor
Intel Core i5-9600KF CPU. The time performance of the pro-
posed unsupervised GNN approach with 3 layers is compared
to the conventional WMMSE algorithm as shown in Table
VII, where the proposed GNN approach is around 1.2× 104,
2.1 × 104 and 2.2 × 104 times faster than the conventional
WMMSE algorithm for L = 10, L = 30 and L = 50,
respectively. The proposed method significantly reduces the
running time of the WMMSE algorithm from second-level
to millisecond-level. Therefore, it is applicable to real-time
implementations in wireless networks.

TABLE VII Comparison of average running time.
Number of D2D Pairs 10 30 50

WMMSE (s) 1.5075 12.1037 32.7157
Unsupervised GNN (ms) 0.1290 0.5862 1.4586

V. CONCLUSION

This work develops an unsupervised GNN approach to ap-
proximate the D2D beamforming optimization problem, where
the expert knowledge is utilized to convert the beamforming
to primal power and dual variables so that the GNN can be
adopted to learn the variables rather than the beamforming.
Thus, the learning complexity is reduced which leads to higher
sample efficiency comparing to learning direct beamforming.
Simulation results prove that the proposed method with fewer
samples outperforms the considered benchmarks including
the corresponding supervised method and the unsupervised
WCGCN. Besides, the proposed design shows the promising
capability to handle larger network scales. It also demonstrates
the potential of generalizability to different system settings
without further training required.
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