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A B S T R A C T   

A method for simulating fretting wear using the Modified Simplex Method for a contact solution has been 
developed. The initial separation between two contacting bodies was used as an input to solve the contact force 
distribution. An average cycle pressure distribution was calculated for the stationary surface over a displacement 
cycle. The wear depth was calculated for each body based on the modified Archard’s wear equation using the 
force distributions and the gross sliding distance. The initial separation was updated and the force distribution 
was solved for the next iteration. Methods for optimizing computational time are presented using a combination 
of linear jumping and adaptive cycle jumping for the wear depths, and an interpolation weighting method for 
reducing the grid size. It was found that computational time can be reduced by at least 98% compared with other 
simulation methods, making this method a viable tool for design. Fretting wear scars and depths were simulated 
for a cylinder on flat in contact and were found to agree with experimental results and Finite Element modeling 
results from previous literature. To show the capability of the fretting wear model, three practical applications 
were simulated: automotive seat sliding rails, steel wire ropes for industrial applications and steam generator 
tubes for nuclear power stations.   

1. Introduction 

Fretting wear occurs due to small oscillatory relative movement 
between contacting surfaces under a normal load. The main modes of 
fretting wear are split into tangential, radial, torsional and rotational 
modes [1] with the most commonly investigated being tangential fret
ting wear. There are two running statuses of fretting wear: gross-slip, 
where slip occurs across the whole region of contact; and partial slip, 
where there is no relative movement, or ‘stick’ in parts of the region of 
contact. Fretting wear generally dominates as the main damage mech
anism over fretting fatigue under gross-slip conditions. Fretting wear 
can cause significant damage, reducing the life and integrity of com
ponents; example applications where fretting wear is an issue include 
spline couplings [2,3], industrial steel ropes [4], steam turbine blades 
[5], steam generator tubing for nuclear power plants [6–10], electrical 
connectors [11,12] and sliding seat rails for automotive applications 
[13]. There are several factors that influence fretting wear behavior 
[14], which includes contact geometry, normal loading, sliding ampli
tude and frequency; many authors have investigated the influence of 
these by a series of fretting tests [15–17]. For life prediction and design 

optimization of components, fretting experiments are not always ideal. 
These are very involved, require many tests and a high number of cycles, 
and are therefore time consuming. Numerical modeling is vital to the 
understanding of fretting wear, as a collection of test cases can be pre
dicted and compared, and the evolution of fretting wear can be 
investigated. 

A popular method to model fretting wear involves calculating local 
contact pressures and slips using a contact solver and evaluating the 
incremental wear depth using a wear law. The contact geometry is 
readjusted based on the material removed due to wear and this is iter
atively calculated until the total number of cycles is reached. This takes 
into account the nonlinearity of wear due to the geometry changes. This 
approach was initially developed by McColl et al. [18], who used Finite 
Element Analysis (FEA) as the contact solver, which has commonly been 
used for fretting wear problem as it is versatile in modeling any geom
etry and additional loading [18–29]. This approach, however, is 
computationally expensive, especially for refined meshes, 3D geome
tries and high number of cycles typically required for the prediction of 
fretting wear, making its use impractical for iterative or generative 
design processes for applications involving this phenomenon. It is 
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especially impractical for industrial applications where the number of 
cycles are typically higher than 1 million cycles [2,5], which has not yet 
been modeled in previous literature. Therefore, alternative numerical 
methods used for modeling contact include the boundary element 
method (BEM) and mathematical programming methods (MPMs). The 
advantage of these methods are that they discretize the contact surfaces 
instead of the whole body, thereby reducing the total number of degrees 
of freedom required compared with FEA and, therefore, reducing 
simulation time and increasing calculation efficiency. BEM involves the 
matrix inversion technique and an iterative process to solve for the 
boundary integral equations required for contact, whereas MPMs solve 
the equations required for contact by treating the contact problem as a 
mathematical program and using an optimization or iterative algorithm. 
The BEM has successfully been used for 2D and 3D fretting wear simu
lations [30,31] and has proven to improve simulation time in compar
ison with FEA based simulations [30]. MPMs that are commonly used as 
contact solvers include quadratic programming [32], conjugate gradient 

method (CGM) [33–38] and the Modified Simplex Method (MSM) for 
linear programming [39–46]. Quadratic programming has been used for 
2D fretting wear simulations [32] and CGM has been used for 3D fretting 
wear simulations [33–37]. For BEM or MPMs, influence coefficients for 
elastic behavior can be solved either by FEA [38,45,46] or by using an 
analytical solution. Analytical solutions allow more refined meshes to be 
solved for a reduced amount of computational time with the help of 
acceleration techniques. Generally, the analytical solution uses a 
method by Boussinesq and Cerruti [47] to solve for the elastic dis
placements due to the contact forces by treating the contacting surfaces 
as elastic half-spaces [30,33–37]. This can be expanded to include other 
influence coefficients for more complex geometries and loadings, such 
as using the MSM for spline couplings which included the effects of 
torsion, shear, bending and foundation deflections [43,44]. 

Current fretting wear modeling methods are generally limited to 
simplified laboratory geometries and published works shows that 
models have not been applied beyond ~100,000 cycles [31,35,38]. 
Therefore, the aim of this study is to develop a fretting wear model that 
can be used for design optimization for a high number of cycles, and for 
practical geometries and loading. A fretting wear model has been 
developed using the MSM with the modified Archard’s wear equation, 
whereby fretting wear scars and fretting wear depths are benchmarked 
and validated against FEA and experimental results from previous 
literature for cylinder on flat geometry. A finite space model was used 
for the contact compliance for the elastic deformation to be more 
representative for the geometry used in experiments. To reduce simu
lation time of the contact solver, an interpolation method is presented to 
accelerate simulation time for a refined grid. A technique to reduce 
calculation time for the total wear depth has been introduced by 
combining the linear cycle jump technique with an adaptive cycling 
jump method using the 2nd order Taylor series expansion. The 
computational time from the developed methods are compared with 
FEA and BEM methods. Combining the developed methods has allowed 
1 million cycles to be modeled, and wear profiles have been validated 
with previous experimental results. The fretting wear model was also 
applied to three practical applications for alternative geometries, 
loading and materials to show the versatility of the model. 

2. Modeling methodology 

A fretting wear model was developed and implemented in MATLAB 
2018b as summarized in Fig. 1. This model consisted of a contact solver 
for calculating local contact pressures and a fretting wear model which 
determines the resulting wear depths. Linear and adaptive cycle jumping 
were also included to reduce the computational time. 

2.1. Contact solver 

The contact solver was based on a mathematical programming 
method, known as the Modified Simplex Method (MSM) [39,41], which 
was developed for general 3D elastic bodies in contact with an applied 
normal load. It is an optimization algorithm, which solves for linear 
constraints with a criterion for contact to obtain the load distribution 
across the contacting surfaces. The method assumed that the contact is 
frictionless, the deformations are small, both bodies are linear elastic and 
the surfaces are smooth. The proposed contact zone was a 2D contact 
surface, which was discretised into rectangular elements in a rectangular 
grid by Mx columns by My rows. The contact forces were solved at the 
center of each element, i. An example of a cylinder on flat set up with a 
proposed contact zone and discretization shown is shown in Fig. 2. 

At any element, i, the final separation, Yi, between both contacting 
bodies at this point was equal to the sum of the initial separation, εi, and 
the normal elastic deformations of both bodies, δ1

i and δ2
i (moving body 

and stationary body, respectively), minus the rigid body approach, α: 

Yi = εi + δ1
i + δ2

i − α (1) 

Fig. 1. Summarized flowchart of the modeling methodology (where N is the 
current cycle number, ΔNL is the linear cycle jump and ΔN is the adaptive 
cycle jump). 
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where Yi ≥ 0 due to elasticity. 
When the final separation of an arbitrary contact pair is equal to 

0 (and therefore, in contact), then there must be a contact force and if 
the final separation is greater than 0, then there is no contact force. 
Therefore, for all contact pairs, the criterion of contact was given by: 
{

Yi > 0, Fi = 0,
Yi = 0, Fi > 0, i ∈ [1, n]

}

(2)  

where Fi is the contact force and n is the total number of contact pairs. 
The condition of equilibrium was given by: 

∑n

i=1
Fi = P (3)  

where the sum of all the contact forces at each contact pair must equal 
the total applied load, P. 

The normal elastic deformations of both bodies are defined by the 
total compliance matrix, C, multiplied by the contact force vector, F, 
given by the following: 

δ1 + δ2 = CF (4)  

C = C1 +C2 =

⎡

⎢
⎢
⎣

c11 c12 … c1n
c21 c22 … c2n
⋮ ⋮ ⋱ ⋮

cn1 cn2 … cnn

⎤

⎥
⎥
⎦

1

+

⎡

⎢
⎢
⎣

c11 c12 … c1n
c21 c22 … c2n
⋮ ⋮ ⋱ ⋮

cn1 cn2 … cnn

⎤

⎥
⎥
⎦

2

(5)  

where superscripts 1 and 2 correspond to the moving body and sta
tionary body, respectively, and cik is the influence coefficient of contact 
pair i due to a unit force located at a contact pair k. As the contact is 
assumed to be frictionless, the only deformation needed is the one 
normal to the surface. It is assumed that both bodies are both elastic half 
spaces, where the contact width is small in comparison to the body di
mensions, unless there is a contact scenario, as shown in Fig. 2, where 
the flat body has a finite length, L, in the axial direction, which can be 
treated as an elastic finite space [48,49]. The half space model is based 
on Love’s [50,51] explicit solution of the Boussinesq and Cerruti [47] 
model for a normal deflection due to a uniform pressure applied to a 
rectangular area 2a × 2b at a general point (x,y) from where the pressure 
is applied, where the influence coefficient for the contact surface is 
defined by the following: 

cik =
δi

Fk
=

1 − ν2

4πEab
{(x+ a)ln

⎡

⎢
⎢
⎢
⎣

(y + b) +
{
(y + b)2

+ (x + a)2 }1
2

(y − b) +
{
(y − b)2

+ (x + a)2 }1
2

⎤

⎥
⎥
⎥
⎦

+(y+ b)ln

⎡

⎢
⎢
⎢
⎣

(x + a) +
{
(y + b)2

+ (x + a)2 }1
2

(x − a) +
{
(y + b)2

+ (x − a)2 }1
2

⎤

⎥
⎥
⎥
⎦

+(x − a)ln

⎡

⎢
⎢
⎢
⎣

(y − b) +
{
(y − b)2

+ (x − a)2 }1
2

(y + b) +
{
(y + b)2

+ (x − a)2 }1
2

⎤

⎥
⎥
⎥
⎦

+(y − b)ln

⎡

⎢
⎢
⎢
⎣

(x − a) +
{
(y − b)2

+ (x − a)2 }1
2

(x + a) +
{
(y − b)2

+ (x + a)2 }1
2

⎤

⎥
⎥
⎥
⎦

(6)  

where E is the Young’s modulus and ν is the Poisson’s ratio of the body 
and the compliance matrix can be populated in Eq. (5). For a body that 
has to be modeled as a finite space, the subsurface stresses are influenced 
by the free faces and therefore, these free faces at the edges of contact 
have to be treated as a quarter space. This can be modeled explicitly by 
the concept of overlapping orthogonal half spaces, where one is in the 
plane of the contact surface and the other is the plane of the free face, 
which are discretised into a rectangular grids [52,53]. The normal stress 
distribution on each of these surfaces (where shear stresses were found 
to be negligible and therefore, neglected [48]) are related to the pressure 
of the orthogonal half spaces which can be described by Love’s [50,51] 
explicit solution for the stresses due to a uniform pressure applied to a 
rectangular area. Equilibrium is then found based on boundary condi
tions for contact pressure on the contact zone and no load applied to the 
free faces. A compliance matrix can then be developed based on these 
conditions, where the details of the full solution is expressed in the 
works of Zhang et al. [48] and Stan et al. [49]. 

The problem was formulated for the MSM, where artificial variables, 
Zi, were added to the solution to satisfy the constraints. The objective of 
the problem was to minimizing the following: 

∑MxMy+1

i=1
Zi (7)  

where the problem can be defined by: 

Fig. 2. Schematic of geometry and loading for a cylinder on flat with the discretised contact zone.  
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− CF + αe + IY + IZ = ε
eTF + ZMxMy+1 = P
Fi ≥ 0, Yi ≥ 0, α ≥ 0 and, Zi ≥ 0.
Subject to the criterion of contact, where Fi = 0 or Yi = 0

(8) 

where α is the scalar rigid body approach, e is a unit vector, Y is a 
vector of all the final separations, I is the identity matrix, ε is a vector of 
all the initial separations and eT is the transpose of the unit vector. The 
initial separations and the applied load are the inputs, while the contact 
forces, rigid body approach and final separations are the outputs. The 
MSM was used to minimize the artificial variables in order to satisfy the 
constraints and equilibrium with the modification to include the crite
rion of contact. The details and steps for this algorithm for contact 
problems are outlined by Vijayakar et al. [41], where a solution is al
ways found. 

2.1.1. Grid convergence 
A grid convergence study of the rectangular elements was carried out 

for the contact solver, in order to optimize the use of the refinement 
methodology. This was performed for a cylinder on flat, shown in Fig. 2, 
and for a ball on flat. The initial separation of a contact pair was defined 
by: 

εi =
1

2R
x2

i (9)  

εi =
1

2R
(
x2

i + y2
i

)
(10)  

for the cylinder on flat and ball on flat, respectively, where R is the 
radius and xi and yi are the coordinates for the contact pair, as shown in 
Fig. 2. 

Fig. 3 shows the grid convergence for both cases of the non- 
dimensionalised contact pressure (contact pressure divided by the 
maximum contact pressure, p/pmax) with respect to the non- 
dimensionalised x-direction (x coordinate divided by the Hertzian half 
contact width, x/a) for a non-dimensionalised contact domain of 7 in the 
x-direction for both cases. It can be seen that the maximum pressure is 
not located at. 

y = 0 mm for the cylinder on flat and it is located here for the ball on 
flat. For both geometry set ups, it can be seen that these both converge 
between 40 and 80 elements. Using 40 elements as an appropriate value 
for convergence, the element size in the x-direction for convergence can 
be found for various cases using 7a, which are shown in Table 1, due to 
the Hertzian contact width being based on the geometry and loading. 
Similarly, convergence in the y-direction for the cylinder on flat cases 
were 370 µm due to the same value of L and for the ball on flat was 
equivalent to the element size in the x-direction. 

A three dimensional FEA was performed as a benchmark for the 
contact solver using the geometry shown in Fig. 2 based on parameters 
of case number 1 in Table 1, where the axial length of the cylinder was 
30 mm and the depth of the flat was 10 mm. The load was applied by 
using a half cylinder and applying a load to the top surface using a multi- 
point constraint (MPC) with a reference point and using fixed boundary 
conditions other than the y-direction illustrated in Fig. 4. The flat also 
had fixed boundary conditions on the left, right and bottom faces, as 
shown in the schematic. The element size around the contact was 
6.28 µm × 370 µm for both the flat and the cylinder and linear brick 
elements were used (C3D8R). Contact was defined using a surface to 
surface contact interaction, where the cylinder was chosen as the slave 
and was set to frictionless. The resulting contact pressure distribution 
from the FEA and the model is shown in Fig. 5(a) and (b), respectively. It 
shows that the model has a good agreement with the FEA results with 
the peak pressure at the center of the x-direction and at the edges of 
contact in the y-direction. The FEA show a slightly wider contact width 
by an extra element, i.e. 6.28 µm, either side of the contact width. 

Fig. 3. Mesh convergence of p/pmax against x/a for a defined non-dimensionalised contact domain of 7 in the x-direction for (a) a cylinder on flat contact and (b) ball 
on flat contact. 

Table 1 
Resulting converged element size in the x-direction for four different examples 
based on using 7a/40 (L = 10 mm, E = 200GPa and ν = 0.3).  

Case no. 1 2 3 4 

Geometry set up Cylinder on 
flat 

Cylinder on 
flat 

Cylinder on 
flat 

Ball on 
flat 

R (mm)   6  6  80  6 
P (N)   185  500  185  185 
a (mm)   0.036  0.059  0.131  0.196 
Element size in 

x (µm)   
6.28  10.30  22.92  34.37  

Fig. 4. Load and boundary conditions for the FEA of a cylinder on flat.  
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2.1.2. Reducing computational time 
As the grid is refined, the number of elements increase and, as a 

result, the computational time increases exponentially. Therefore, a 
technique has been developed to reduce computational time with grid 
refinement. The steps of the refinement are as follows:  

1. The contact forces were solved for a relatively coarse grid compared 
to the grid found from the grid convergence using the contact solver. 
The coarse grid was defined as an element size where the contact 

pressures, which were solved by this methodology, had a mean ab
solute percentage error (MAPE) of less than 10% and a coefficient of 
determination (R2) close to 1 in comparison with the contact pres
sures from the element size determined from the grid convergence 
study.  

2. The contact forces were transformed from a vector to a matrix, where 
the number of columns, Mx, is the number of contact forces in the 
x-direction and the number of rows, My, is the number of contact 
forces in the y-direction.  

3. The contact forces were weighted by dividing by the sum of the 
contact forces, Fwj, in each Mx column in the x-direction of the grid 
and multiplying by the number of columns. The weightings were as 
follows: 

Wwj =
FwjMx

∑My

1
Fwj

(11)  

where Wwj is the weighting, where subscript w, j is the node location 
of interest in the x and y direction, respectively, and My is the number 
of rows in the y-direction. The columns are refined, Mr

x, based on a 
chosen grid refinement and the weightings are refined, Wr

wj, by 
Akima interpolation and extrapolation. The contact forces were 
found by: 

Fwj =
Wr

wj

Mr
x

∑My

1
Fwj (12) 

Fig. 5. Contour plots of contact pressure using (a) FEA and (b) the contact solver (R = 6mm, L = 10mm,P = 185N,E = 200GPa, and ν = 0.3).  

Fig. 6. Applied tangential displacement over one cycle.  

Fig. 7. Contour plots of (a) contact pressure on the cylinder surface and (b) average contact pressure on the flat surface (R = 6mm,L = 10mm,P = 185N,ds = 25μm,

E = 200GPa, and ν = 0.3). 
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4. My rows for the contact forces in the y-direction are refined following 
the same method in step 2  

5. The grid is refined for all the contact forces and the sum of the 
contact forces should approximately equal the applied load 

The same procedure can also be used to coarsen the grid. This 
method shall be called the refinement methodology throughout this 
study and the optimization of this method is discussed in Section 3.1. 

2.2. Fretting wear modeling 

2.2.1. Average cycle pressure 
Due to the relative displacement, during a fretting cycle a single 

point on the flat contact surface experiences a variation in contact 
pressure over a displacement cycle, as shown in Fig. 6, resulting in a 
wider wear scar than just the initial Hertzian contact region alone. In 
order to obtain the wear scars of the two bodies sufficiently, Andersson 
et al. [54] introduced the time-averaged pressure on the flat for the 
numerical simulation of a ball on flat configuration. This was carried out 
in order to capture the whole contact surface area on the flat. Therefore, 
following this concept, the average cycle pressure was included for the 

stationary component in this study, while the cylinder contact pressure 
profile remains the same. The average pressure that the stationary sur
face experienced was calculated based on the sliding distance over a 
cycle. The pressure is calculated over a cycle and at each nodal position 
the pressure is averaged. Fig. 7 shows an example of a cylinder on flat 
configuration using case 1 parameters in Table 1 for the model contour 
contact pressure of a cylinder and the average cycle pressure which the 
flat experiences over a cycle. For the average cycle pressure for the flat, 
the pressure is widened due to the pressure experienced over a cycle by 
the sliding distance and the magnitude of pressure drops due to the 
average experienced in a cycle, while the cylinder experiences the same 
contact pressure distribution over a cycle. 

2.2.2. Fretting wear 
To model fretting wear, Archard’s law for sliding wear: 

V
S
= K

P
H

(13)  

where V is the wear volume, S is the total sliding distance, K is the 
dimensionless wear coefficient, P is the applied normal load and H is the 
hardness of the material, was modified by relating the local incremental 
wear depth, dh, to the local pressure and local slip amplitudes given by 
Eq. (14). 

Fig. 8. Detailed flowchart of the overall simulation methodology for predicting fretting wear including cycle jumping and the refinement methodology, where N is 
the current cycle number. 
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dhi = k∙pi∙dS (14)  

where k is the wear coefficient, which includes the hardness, pi is the 
contact pressure of a node and dS is the total sliding distance during an 
increment. This was applied to the fretting wear of a cylinder on flat 
with a linear cycle jump to speed up simulation time, initially imple
mented by McColl et al. [18]. The incremental wear depths for the 
cylinder and flat were, therefore, given by the following: 

dhc
i = kc∙ΔNL∙pi∙4ds (15)  

dhf
i = kf ∙ΔNL∙pav,i∙4ds (16)  

where dhc is the wear depth for the cylinder, dhf is the wear depth for the 
flat, kc is the wear coefficient for the cylinder, kf is the wear coefficient 
for the flat, ΔNL is the linear cycle jump, 4ds is the total sliding distance 
in a cycle and pav,i the average cycle pressure on the flat surface. The 
total wear depth at each node, hi, is the sum of the incremental wear 
depths of both the cylinder and flat for the current number of cycles, N, 
given by Eq. (17). 

hi =
∑N

0

(
dhc

i + dhf
i
)

(17) 

The incremental wear depth was calculated for all contact pairs and 
was added to the initial separation, as shown in Eq. (18). Hence, the 
contact forces were evaluated with a changing contact geometry and the 
constraint from equation (8) became the following: 

− CF+ αe+ IY = ε+ h (18)  

where h is a vector of the total wear depths for all contact pairs. 

2.2.3. Adaptive cycle jumping 
In order to further reduce the computational time of the wear simulation, 

an adaptive cycle jumping technique was implemented in the model, this 
allowed the wear depth, h, of both bodies to be calculated at a reduced 
number of cycles throughout the simulation, improving the computational 
efficiency. The adaptive cycle jumping technique used was based on that 
previously implemented for low cycle fatigue [55,56]. To determine the 
cycle jump needed, the wear depths after a cycle jump (N + ΔN) were 
formed based on the 2nd order Taylor series expansion as follows: 

hN+ΔN = hN + ḣNΔN +
ḧΔN2

2
+ … (19)  

where ΔN is the cycle jump; ḣ and ḧ are the first and second derivatives, 
respectively, of the wear depths. These derivatives were calculated by 
the backward finite difference scheme, which is given by the following: 

ḣN =
hN − hN− ΔNL

ΔNL
and ḧN =

hN− 2ΔNL − 2hN− ΔNL + hN

ΔN2
L

(20) 

This uses linear cycle jumping which ran for q = 5 successive itera
tions, where the first 3 iterations were used for stabilization [56] and the 
last two iterations were used to determine the derivatives for extrapo
lation. The cycle jump size was determined by minimizing the first order 
of the Taylor series, as the second order is negligible compared to the 
first, given by Eq. (21). 
⃒
⃒
⃒ḣN

⃒
⃒
⃒ΔN ≤ η|hN | → ΔN = η |hN |⃒

⃒
⃒ḣN

⃒
⃒
⃒

(21)  

where η is the accuracy parameter for neglecting the higher order terms. 
This cycle jump was calculated for the wear depths at all elements for 
both bodies and the minimum cycle jump size was chosen. This cycle 
jump was also bounded by a maximum cycle jump size, ΔNmax. The wear 
depths were then extrapolated using Eq. (19) for N+ΔN cycles. A Design 
of Experiment (DOE) was performed to determine the optimal values of 
η,ΔNmax and the linear cycle jump, ΔNL considering the effects on so
lution time and accuracy. 

The refinement methodology was used for the coarsening of the grid 
for wear depths, where conservation of the wear volume was ensured, 
which was input into the contact solver. The detail of the implementa
tion of the cycle jumping and refinement methodology is shown in 
Fig. 8. 

3. Results and discussion 

Studies were carried out to optimize computational time using the 
refinement and cycle jumping methodologies. Validation of fretting 
wear depths and wear scars were also compared with previous FEA and 
experimental results from previous literature, as well as a comparison of 
computational times when compared with FEA and BEM. 

3.1. Computational time optimization 

From the grid convergence study, the converged number of elements 
in the x-direction for a proposed contact region 7a was 40 for a cylinder 
on flat and ball on flat configuration. To determine the coarse mesh for 
the refinement methodology, the number of elements was varied from 4 
elements up to 40 elements and compared with the solution without the 
refinement methodology. This was performed for the cases outlined in 
Table 1, where Fig. 9 shows the coefficient of determination (R2) and the 
mean absolute percentage error (MAPE) for the contact pressure as the 
coarse grid is refined in the x-direction for the refinement solver for the 4 
cases. The closer R2 is to 1 shows a good correlation between the contact 
solver and the interpolation solver, whereas a lower value of MAPE 

Fig. 9. (a) R2 and (b) MAPE of the contact pressure distribution against the element size in the x-direction for a coarse grid size using the refinement methodology in 
comparison with the original contact solver. 
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shows a lower percentage error between the refinement solver contact 
pressure values and the actual values from the contact solver. As the 
number of elements increase to the actual mesh refinement size, the R2 

value tend towards 1 and the MAPE value tend towards 0%. This was 
performed for the coarse mesh element size for the y-direction as 
1000 µm for the cylinder on flat cases and equivalent mesh size with the 
x-direction was used for the ball on flat, which maintained a high R2 

value and a low MAPE of 1.61% with respect to the original mesh. It can 
be seen in Fig. 9 for the cylinder on flat cases (1-3), the R2 values follow 
the same trend due to the set up being the same and the proposed contact 
zones being proportional based on the loading and radius change, while 
the ball on flat case (4) differs slightly due to this being a different 
distribution of load, but overall follows the same trend. For the MAPE, 
the trend is the same for all cases, but the values differ slightly due to the 
refinement methodology leading to the contact width varying and 
therefore, the pressure varies more at the edges of contact affecting the 
overall MAPE. From these plots, it can be seen for all cases that the 
minimum number of elements that can be used for the coarse grid was 
16, which gave a high correlation and a MAPE that fell below 10%. This 
is 2.5 times the actual mesh size and gave an average of 98% reduction 
in time using the refinement methodology. 

A comparison using case 1 of the contact pressure distribution using 
FEA, the actual mesh using the contact solver and the use of the 

refinement methodology are shown in Fig. 10. It can be seen that by 
using the refinement methodology, the pressure does not vary in the 
y-direction in comparison to without the refinement methodology due to 
the finite length; however in the x-direction, the contact width widens 
due to being based on a coarser mesh, which becomes similar to the FEA. 
Overall, the refinement methodology contact pressure still provides a 
good agreement with the FEA and the contact solver. The FEA took 3 h 
15 min to run due to the refined mesh and being in three dimensions, 
while the contact solver and refinement methodology took 14.7 s and 
0.35 s, respectively, giving a significant reduction in time. 

The effect of the refinement methodology on the fretting wear results 
was investigated using case 1 for 10,000 cycles with a tangential 
displacement of 25 µm. The results for the wear depths for the cylinder 
and flat at y = 0 mm are shown in Fig. 11. It can be seen that the results 
correlate well with results without the use of the refinement methodology 
with minor differences (with respect to the overall wear scar) in the wear 
scar widths, which were 10 µm and 20 µm for the flat and cylinder, 
respectively, due to the refinement methodology being based on a coarser 
mesh. As the computational efficiency of the fretting wear model is highly 
dependent on the contact solver, it was found there was a 98.9% reduction 
in simulation time through using the refinement methodology. 

Following from this, the cycle jumping methodology was optimized 
to reduce the simulation time further. Firstly, the linear cycle jump has 

Fig. 10. Contour plots for case number 1 of (a) the cylinder contact pressure using the contact solver for a 6.3 µm × 370 µm element size and (b) the refinement 
solver for a 15.75 µm × 1000 µm element size refined to a 5 µm × 370 µm element size (R = 6mm, L = 10 mm, P = 185 N,E = 200 GPa, and ν = 0.3). 

Fig. 11. Wear scars for the cylinder and flat after 10,000 cycles using the contact solver for a 6.3 µm × 370 µm element size and with the refinement methodology for 
a 15.75 µm × 1000 µm element size with no cycle jumping (R = 6mm, L = 10 mm,P = 185 N, ds = 25μm,E = 200GPa, ν = 0.3, kc = 2 × 10− 8 MPa− 1 and kf 

= 3 × 10− 8 MPa− 1). 
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to be optimized, as stability issues arise if the cycle jump is too high [57]. 
This was achieved by comparing the final contact pressure distribution 
after 10,000 cycles with various linear cycle jumps with the results from 
no cycle jumping by calculating a MAPE. Examples have been performed 
for all 4 cases from Table 1 for a tangential displacement of 25 µm and 
the MAPE results with respect to the inverse of the cycle jump are shown 
in Fig. 12. It can be seen that as the size of the cycle jump increases, there 
is a maximum value cycle jump before instability occurs and the MAPE 
increases for all cases. It was found that the stability issues arose for 
linear cycle jumps higher than 100 for case numbers 1 and 2, and 200 for 
case numbers 3 and 4. These were chosen as the maximum linear cycle 
jump to be used for the DOE of the adaptive cycle jumping parameters. 

Three factors were chosen for the DOE, which were the accuracy 
factor, the maximum cycle jump and the linear cycle jump and three 
levels were chosen for each of these (− 1, 0 and 1), which are shown in 
Table 2. Fig. 13 shows the results from the DOE which presents the mean 

values of the time and the MAPE between the total wear depths with no 
cycle jumping and with cycle jumping varying with the differnt factor
levels. It can be seen that the time decreases as all the factors get larger. 
It can also be seen that the MAPE gets larger for increasing factors of η 
and ΔNmax, whereas the minimum MAPE for ΔNL was found to be the 
intermediate case of 55 cycles. It was also found that the coefficient of 
determination was always greater than 0.99 for the total wear depths, 
when compared with no cycle jumping. To ensure stability and to ach
ieve the lowest MAPE, an accuracy factor of 0.55, a maximum cycle 
jump of 600 and a linear cycle jump of 55 were chosen to optimize the 
computational time. Using these parameters, the maximum total wear 
depth plotted against the number of cycles is shown in Fig. 14, which 
presents the cycle jumping technique. A comparison of the wear depths 
for the cylinder, hc, and flat, hf , across the center of its length for no cycle 
jumping and with adaptive cycle jumping are shown in Fig. 15. The wear 
depths showed an excellent agreement with results found without cycle 
jumping techniques, while reducing the simulation time. 

3.2. Validation of wear modeling 

Initially, simulations were performed with the current 3D simulation 
method using the parameters from McColl et al. [18] for a 2D cylinder 
on flat fretting wear simulation. The parameters were the same as case 1 
with a tangential displacement of 25 µm for a Super CMV cylinder and a 

Fig. 12. Variation in the percentage error between the total wear depth at the 
center of the contact region after 10,000 cycles with ds = 25 µm for different 
ΔNL in comparison with ΔNL = 1 for 4 example cases. 

Table 2 
Levels chosen for each factor required for the DOE.  

Factors/levels -1 0 1 

η   0.1  0.55  1 
ΔNmax (Cycles)   100  345  600 
ΔNL (Cycles)   10  55  100  

Fig. 13. Plots of the mean times and MAPE of the total wear depths from the DOE for 3 levels.  

Fig. 14. The maximum total wear depth in comparison with the number 
of cycles. 
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nitrided Super CMV flat, where the wear coefficients for the cylinder and 
flat were 2 × 10− 8 MPa− 1 and 3 × 10− 8 MPa− 1, respectively. 

Pressure distributions and wear profiles across the center of the 
length (y = 0 mm) at 1000, 5000, 10,000 and 18,000 cycles are pre
sented in Fig. 16 and Fig. 17, respectively, compared with the FEA 
simulation results of McColl et al. [18]. In Fig. 16, it can be seen that the 
central peak pressure reduces as the contact area becomes wider due to 
the removal of material as the number of cycles increase. Also, the plot 
shows that the center of the pressure distributions from the FEA and the 
current simulation follow similar values and trend with an increasing 
number of cycles; however, the current simulation gives pressure peaks 
at the edge of contact due to the addition of the average cycle pressure 
for the flat stationary component. This changes how the edges of contact 
interact with each other, an example of which can be seen for a loaded 
contact after 1000 cycles without average cycle pressure and with 
average cycle pressure in Fig. 18. The wear depth of the flat causes a 
gradual profile transition of the wear with average cycle pressure 
compared to those without. This causes the cylinder worn profile edges 
to embed into the worn flat surface giving pressure peaks at the edges, 
whereas without averaging the cycle pressure, the cylinder worn profile 
slots into the worn profile edge to edge. Furthermore, the wear depth at 
y = 0 mm, shows a similar trend for all three solutions, but the current 
method with and without the average cycle pressure show very similar 
results in terms of the magnitude of tbe wear depths. It can be seen that 
the solution with the average cycle pressure has a wider wear scar width 

than without, as expected, due to the latter not taking into account the 
contact pressure over the sliding distance. The wear depths from the FEA 
show a lower wear depth for the cylinder and more for the flat in 
comparison with the current method, which can be explained due to the 
FEA taking into account the coefficient of friction, which was 0.9, 
whereas the current model does not take this into account. The FEA slip 
distribution is calculated based on this and this evolves with slightly 
with wear [57], whereas the current method assumes uniform slip across 
the contact throughout the simulation. As the modified Archard’s wear 
law equation is dependent on the local slip, then this will cause a dif
ference in the overall solution. Despite this, the current method shows a 
reasonable agreement with the FEA for the bulk fretting wear simula
tions under gross slip. 

Computational time for this simulation are compared with the FEA 
modeling of McColl et al. [18] and the BEM modeling of Wan Kim et al. 
[30] in Table 3. The current method uses a combination of grid refine
ment techniques, linear cycle jumping in conjunction with an adaptive 
cycle jumping technique. The current method gives a 99.9% and 98% 
reduction in time for the cylinder on flat contact compared with the FEA 
with a linear cycle jump and the BEM without any cycle jumping for 18, 
000 cycles, respectively, despite it being a 3D simulation and having a 
reduction in element size. For the ball on flat, the current model had a 
99.9% reduction in simulation time with respect to the BEM, while being 
longer in comparison with the cylinder on flat due to the equivalent 
mesh size in both directions. A larger linear cycle jump was able to be 

Fig. 15. Wear depths of the cylinder and the flat without a cycle jump and with adaptive cycle jumping technique (N = 10, 000, η = 0.55, ΔNmax = 600 
and ΔNL = 55). 

Fig. 16. A comparison between the current model and McColl et al.’s [18] FEA simulation for the contact pressure distributions across the center of the length.  
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used and a smaller number of iterations are required giving the 
increased reduction in time. With this improvement in computational 
time, this gives the potential for this method to be used as part of a 
design tool that allows to design against wear of industrial components. 

Furthermore, simulations were run to compare with experimental 
values and FEA values of wear scars and wear depths from previous 
literature for cylinder on flat fretting wear tests. All cylinders had a radii 
of 6 mm and a length of 10 mm. Wear coefficients are either reported in 
previous literature or found using reported wear volumes using: 

k =
V

4ds∙P∙
Ntot (22) 

All findings for wear scars and maximum wear depths are presented 
in Table 4. Experimental results show the maximum wear depth from a 
reduced section within the contact region to take out the end affects and 
FEA results show results from 2D simulations. It was found that the 
MAPE for the wear scar widths and depths shown in Table 4 for the FEA, 
compared with the experimental values, were 15.4% and 23.1%, 

Fig. 17. A comparison between the current model and McColl et al.’s [18] FEA simulation for the wear depths across center of the length for (a) the cylinder and for 
(b) the flat. 

Fig. 18. Changes in the edges of loaded contact for (a) without average cycle pressure and (b) with average cycle pressure.  

Table 3 
Simulation time comparisons.  

Set-up 2D Cylinder 
on flat 

3D Cylinder on flat 3D Ball on flat 

Method FEA [18] BEM  
[30] 

Current 
method 

BEM  
[30] 

Current 
method 

Element size in 
x (µm) 

10 10 6.3 10 6.3 

Linear Cycle 
Jump 

30 1 55 1 55 

Total Number 
of Cycles 

18,000 18,000 18,000 1000 1000 

Number of 
Iterations 

600 18,000 198 1000 20 

Simulation 
Time 

1 day 30 min 36 s 10 hr 44 s  
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respectively, while for the current method, it was 20.1% and 13.4%, 
respectively. These predictions may differ due to the FEA results being 
from a 2D simulation and the current method being a 3D simulation with 
additional techniques to reduce computational time. With the current 
simulation being in 3D, it will take into account the end affects experi
enced in the y-direction, where a 2D simulation does not. Additionally, 
the scar width will vary with the current method due to the refinement 
methodology predicting the contact width based on a coarsened grid. 

Table 4 
Wear scars and wear depth of flat in comparison with experimental and FEA results.  

Reference  [18] [18] [18] [23] [58] [15] [15] [15] 

Load (N)  185 500 1670 500 250 450 450 450 
Tangential 

Displacement (µm)  
25 25 25 10 100 50 50 50 

Number of Cycles  18,000 18,000 18,000 18,000 100,000 1,000,000 1,000,000 1,000,000 
Frequency (Hz)  20 20 20 20 20 20 100 200 
Material of Cylinder  Super CMV Super CMV Super CMV Super CMV High Strength 

Steel S132 
High Strength 
Steel S132 

High Strength 
Steel S132 

High Strength 
Steel S132 

Material of Flat  Nitrided 
Super CMV 

Nitrided 
Super CMV 

Nitrided 
Super CMV 

Nitrided 
Super CMV 

High Strength 
Steel S132 

High Strength 
Steel S132 

High Strength 
Steel S132 

High Strength 
Steel S132 

Wear Coefficient of 
Cylinder (MPa¡1)  

2.00× 10− 8  3.00× 10− 8  1.50× 10− 8  2.50× 10− 8  2.50× 10− 8  9.93× 10− 9  6.57× 10− 9  4.60× 10− 9  

Wear Coefficient of 
Flat (MPa¡1)  

3.00× 10− 8  5.50× 10− 8  3.00× 10− 8  4.90× 10− 8  2.50× 10− 8  9.93× 10− 9  6.57× 10− 9  4.60× 10− 9  

Scar Width (mm) Experimental 0.54 0.59 0.75 0.50 – 2.84 2.39 2.10  
FEA 0.52 0.79 0.87 0.54 – – – –  
Current 
method 

0.55 0.87 1.08 0.62 – 2.47 2.21 1.97 

Wear Depth (µm) Experimental 2.9 15.0 15.6 5.0 25.0 54.4 38.0 28.9  
FEA 3.0 8.4 11.7 4.0 – – – –  
Current 
method 

3.0 9.0 13.4 4.5 24.4 57.1 43.4 34.2  

Fig. 19. Average worn depth profiles comparison with the current model and updated experimental results (Exp) [15].  

Fig. 20. Schematic of two crossed cylinders and loading.  

Table 5 
Simulation parameters for fretting wear modeling of wire ropes.  

Diameter of cylinders, D (mm)  0.45 

Tangential Displacement, ±δ (µm)  65 
Young’s Modulus, E (GPa)  210 
Poisson’s Ratio, ν  0.3 
Normal Load, P (N)  1 
Number of Cycles, Nt (x103)  20 
Wear Coefficient (MPa− 1)[28] 3.545 × 10− 8  
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Further errors also may be explained by experimental errors made 
during the tests. It should be noted that the MAPE for the FEA are not 
fully comparable as the FEA has been simulated for fewer tests. Overall, 
the current method was able to make a reasonable prediction of the scar 
width and scar depth for various numbers of cycles, normal loads and 
tangential displacements. 

Fig. 19 shows experimental results of the average wear depth profiles 
of the flat [15] for a million cycles for different frequencies for a normal 
load of 450 N and a tangential displacement of 50 µm, compared with 

the modelling results. In general, the wear profiles show a good agree
ment with the experimental results as the plot shows the wear scar 
widths and the maximum wear depths reduce as the frequency increases; 
however, as the frequency increases, the model is unable to capture the 
variation in the wear depths about the center. Kirk [15] found that at 
20 Hz an oxide layer covered the whole fretting area and as the fre
quency was increased this oxide layer reduced and debris entrapment 
and plastic deformation becomes present. This explains why the model is 
not able to capture the central wear profile for higher frequencies as it 
does not take into account these phenomena. Thus, increasing the per
centage error (and therefore the MAPE) for the maximum wear depth at 
200 Hz. 

4. Practical applications 

4.1. Steel wire ropes for industrial applications 

Steel wire ropes consist of many twisted strands of wires and have 
many industrial applications such as lifts, cranes and funicular railways 
[28,29,59]. When the rope runs over wire rope sheaves, this causes 
small oscillatory movement between the wires inducing fretting wear. 
This can lead to premature failure of the wires leading to a reduction in 
the structural integrity of the rope and its life. 

Fretting wear of the wires can be modeled as two perpendicular 
cylinders with a normal load and tangential displacement of the top 
cylinder, as shown in Fig. 20, where the initial separation is mathe
matically equivalent for a ball on flat given by Eq. (10) and R is the 
radius of both cylinders. Cruzado et al. [28] performed experiments and 
used a FEA based simulation to predict fretting wear scars. A comparison 
has been made with the simulation parameters presented in Table 5. 
Cruzado et al. [28] used a different wear coefficient for each cylinder 

Fig. 21. (a) SEM image of experimental worn scar [28], (b) contour plot of model wear scar and (c) a comparison of the wear profile between the experiment (Exp.) 
and FEA model by Cruzado et al. [28] and the model for the top cylinder at y = 0mm. 

Fig. 22. (a) SEM image of experimental worn scar [28], (b) contour plot of model wear scar and (c) a comparison of the wear profile between the experiment (Exp.) 
and FEA model by Cruzado et al. [28] and the model for the bottom cylinder at y = 0mm. 

Fig. 23. Schematic of a ball-on-flat, fretting wear loading and mate
rial parameters. 

Table 6 
Geometry and loading for ball-on-flat.  

Radius of ball, R, (mm)  2.5 

Tangential Displacement, ±δ, (µm)  90 
Normal Load, P, (N)  50 
Number of Cycles, Nt, (×103)  4 
Wear Coefficient of SPFC 440 (MPa− 1) [13] 8.56 × 10− 8 

Wear Coefficient of SUS304 (MPa− 1) [60] 3.81 × 10− 8  
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found from the experiment and, therefore, this was averaged for this 
model simulation. 

Results for the top wear scar and the bottom wear scar are presented 
in Fig. 21 and Fig. 22 respectively. 

When observing the wear scar size and shape, the model contour 

plots for both the top and bottom cylinder show a good agreement with 
the SEM images. In Fig. 21(c), it was found that the wear profiles of the 
top cylinder from the model agree well with the FEA results and 
experimental results. Although, there are slight differences with the 
experimental wear profile where there is material transfer at the right 
hand side of the wear scar, this can be explained due to the modified 
Archard’s wear equation not taking into account the debris entrapment 
and material transfer. For the wear scar on the bottom cylinder, the wear 
scar size from the experiment in Fig. 22(a) matches well with the wear 
depth contour in Fig. 22(b). The corresponding wear profiles at y = 0 
mm shown in Fig. 22(c) show that the model correlates well with the 
experiment in magnitude and shape, while the FEA model shape differs 
with a flattening at the center of the wear scar. The width of the wear 
scar differs due to an average of the wear coefficient used instead of 
using different wear coefficients for both cylinders unlike Cruzado et al. 
[28], who used a larger wear coefficient for the bottom cylinder than the 
top cylinder. Furthermore, the differences with the FEA can be explained 
by the subroutine, UMESHMOTION, used for the motion of nodes due to 
local incremental wear. It only gives contact pressure and slip distri
bution results for the slave surface nodes (defined as the top cylinder) 
and therefore, an interpolation method was used to interpolate these 
distributions to the master surface nodes, i.e. the bottom cylinder. Re
sults did vary depending on the interpolation method used and this 
could be the difference in the overall results. Additionally, the FEA took 
into account the coefficient of friction of 0.7, which would alter the slip 
distribution with wear, whereas the current model assumes a uniform 
slip distribution. 

Overall, the modeling methods presented were able to capture the 
wear scar shape for perpendicular cylinders under fretting wear using a 
wear coefficient based on the average of the total wear volume from 

Fig. 24. (a) Image of experimental worn scar of flat [13], (b) contour plot of the model worn scar of flat and (c) a comparison of the worn profiles of flat at x = 0 mm 
between the experiment (Exp.) [13] and model. 

Fig. 25. (a) Contour plot of the model worn scar of ball and (b) the profile and worn profile of the ball at x = 0 mm.  

Fig. 26. Tube on flat geometry and loading.  

Table 7 
Simulation parameters for fretting wear modeling of steam generator tubes.  

Outside Radius, Ro (mm)  8.75 
Inside Radius, Ri (mm)  7.75 
Length of Flat, L (mm)  12 
Tangential Displacement, ±δ (µm)  100 
Normal Load, F (N)  40 
Number of Cycles, Nt  105 

Wear Coefficient for Inconel Alloy 690 at RT[7] (MPa− 1) 2.27 × 10− 8 

Wear Coefficient for 405 Stainless Steel at RT[7] (MPa− 1) 3.13 × 10− 9 

Wear Coefficient for Inconel Alloy 690 at 90 ◦C[7] (MPa− 1) 6.09 × 10− 8 

Wear Coefficient for 405 Stainless Steel at 90 ◦C[7] (MPa− 1) 3.13 × 10− 8  
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both cylinders. 

4.2. Automotive seat sliding rails 

Automotive seat sliding rails consist of a stationary bottom rail, 
where the top rail can be moved relative to the bottom rail by means of 
spherical balls or cylindrical rollers. Due to engine vibration, this causes 
fretting wear between the balls/rollers and the rail [13] reducing the life 
of the components. Kim and Baek [13] performed ball on flat fretting 
wear tests to characterize different ball materials against a cold rolled 
high strength steel (SPFC 440) flat under the gross slip regime. 

A simulation of one of the tests using a stainless steel (SUS304) ball 

was performed, where a schematic of the geometry, loading and mate
rial parameters is presented in Fig. 23 and other simulation parameters 
are summarized in Table 6. The wear coefficient for the flat was based on 
wear volumes found by Kim and Baek [13] and the wear coefficient for 
the ball was based on wear volumes found from ball on flat fretting wear 
tests, where the volumes were averaged for the gross slip cases for 
SUS304 [60]. 

The results of the corresponding wear scar of the flat found from Kim 
and Baek’s [13] experiment and from the model are presented in Fig. 24. 
The model wear depth contour in Fig. 24 (b) shows a wear scar that 
agrees well in size and shape with the experimental image in Fig. 24 (a). 
The wear profiles perpendicular to the sliding direction, i.e. the y-di
rection, are compared in Fig. 24 (c), which show a good agreement in 
wear scar width and distribution in wear depths, even when using a 
wear coefficient for the ball from previous testing. The sharp transition 
at the edges of the model wear scar can be explained by the criterion of 
contact, where a contact pair will not experience any contact pressure, if 
it is not in contact. Therefore, if there is no contact pressure for a given 
contact pair, e.g. just outside the edge of the contact zone, the model will 
not predict any wear, as this governs the modified Archard’s equation. 
Any other discrepancies between the model and the experiment can be 
concluded to be the model assuming all debris is ejected during fretting 
i.e. assuming that only abrasive wear occurs and the model does not 
consider plastic deformation and adhesive wear causing material 
transfer due to debris entrapment, showing the limitations of Archard’s 
wear equation. Despite this, the model is able to capture the bulk wear 
behavior of the flat and capture the negative wear profile. A worn depth 
contour and worn profile of the ball from the model is also displayed in 
Fig. 25, where an experimental wear depth was not available in the 
literature. It can be seen that the maximum wear is located at the center 
of the scar, as expected, and the magnitude is less than the flat due to the 
ball having a smaller wear coefficient than the flat. Furthermore, the 

Fig. 27. Worn depth contours of the tube at (a) RT and at (b) 90 ◦C and worn profile comparisons of the tube (at y = 0 mm) with the experiment (Exp.) [7] at (c) RT 
and at (d) 90 ◦C. 

Fig. 28. Maximum wear depth of the tube specimen against the number of 
cycles for RT and 90 ◦C. 
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shape of the wear scar of the ball is circular, while the flat is an ellipse 
due to the flat being the stationary body. 

4.3. Steam generator tubes for nuclear power stations 

Steam generators are heat exchangers that are used in the pressur
ized water reactor of nuclear power stations, which convert heat pro
duced at the reactor core into steam that drives a turbine to generate 
electricity. These consist of many tubes, which have a flow of contam
inated radioactive water and coolant inside, circulated from the reactor 
core and these act as a barrier for the non-radioactive flow of water. The 
flow induces vibration, which can cause fretting wear between the 
contact of the tubes and their supports/anti-vibration bars [7,8]. This 
leads to failure and therefore, radioactive material can leak into the 
system, affecting the environment. To understand how to minimize 
fretting wear for this application, a series of tube on flat tests have been 
conducted in different environments, temperatures, loading and support 
materials [7–10]. A simulation of two of these tests performed by Mi 
et al. [7] were carried out using the fretting wear model, where a 
schematic of the geometry and loading are shown in Fig. 26. One test 
was performed at room temperature (RT) and the other at 90 ◦C, both 
performed in air under gross slip with all other parameters as presented 
in Table 7. 

To model the contact of the tube, this involved an additional bending 
compliance, Cb, where the total compliance is given by: 

C = Cc +Cb (23)  

where C is the total compliance, Cc is the compliance due to contact 
described in the contact solver methodology. This was determined using 
Castigliano’s theorem for a curved cantilever beam (by splitting the tube 
profile into a quarter due to its symmetry) with a point load at the tip, 
zero rotation at the tip and a reaction contact force along the beam, 
where the deflections are calculated along different points along the 
beam, as shown in the Appendix. 

Results from the simulations are shown in Fig. 27, which show the 
worn depth contours of the tube and wear profiles from the two test 
cases. For both of the worn depth contours in Fig. 27(a) and (b), these 
show little variation along y-axis with more wear located at the center of 
the tube profile (x = 0 mm), giving a “U” shape worn depth. The 
maximum wear depth increases by 76% and the wear width increases by 
59% from RT to 90 ◦C, while the corresponding wear coefficients in
crease by 168%. In Fig. 28, it shows the maximum wear depth of the 
tube with respect to the number of cycles, which shows a non-linear 
relationship due to the changing geometry as the material from both 
bodies wears away. A comparison of the experimental worn profile of 
the tube with the model is shown in Fig. 27(c) and (d). The experimental 
worn profile shows an upside down “W”, while the model shows a more 
uniform worn profile. When compared to the experiment, the model 
shows more of an average, or smooth worn profile. In the experimental 
studies, the worn depths were reported prior to cleaning the specimen 
and therefore, the accumulated wear debris could have been present in 
the worn profiles, which may contribute to some of the variation in the 
worn profile. In addition, generally there are two types of wear scars for 
these geometries: “U” shaped and “W” shaped wear scars, where “U” 
shaped scars are governed by abrasive wear and “W” shaped scars also 
experiences adhesive wear [61,62]. The modified Archard’s wear 
equation is used for abrasive wear and does not take into account third 
body behavior. Effective modeling and data of adhesive wear is limited 
and therefore, further research is needed to incorporate this. Despite 
this, the model provides a framework for efficient modeling of capturing 
the bulk wear behavior for aiding the design process, where incorpo
ration of adhesive wear could be added in future work. 

5. Conclusions 

A numerical modeling methodology has been developed for pre
dicting fretting wear and cylinder on flat geometry cases from previous 
literature has been used for validation. This study has shown:  

• A contact model using the Modified Simplex Method was used in 
conjunction with the modified Archard wear equation to predict 3D 
fretting wear scars, wear depths and wear volumes. An interpolation 
method was also developed for grid refinement to reduce the 
computational time. 

• A combination of linear cycle jumping and an adaptive cycle jump
ing, based on Taylor series expansion, was applied to the wear cal
culations and with the grid refinement methodology was able to 
reduce computational time by 99.9%.  

• Simulation times were reduced by 99.9% and 98% when compared 
with 2D FEA [18] and BEM [30], respectively, despite being a 3D 
simulation.  

• The prediction of fretting wear profiles and pressure distributions 
followed similar trends and values to previous FEA results [18] and 
any differences were explained by the inclusion of average cycle 
pressure in this methodology.  

• The maximum wear depth and wear scars of the flat followed an 
agreement with previous experimental results. Also, wear profiles for 
a million cycles were compared with previous experimental results, 
which showed a better agreement for a frequency of 20 Hz compared 
with higher frequencies due to the model not including debris 
entrapment and plasticity. 

• Three case studies for practical applications were considered: Auto
motive seat sliding rails, steel wire ropes for industrial applications, 
and steam generator tubes for nuclear power stations. It was found 
that the modeled wear scars showed a good agreement in shape, size 
and depth with the experiment for seat sliding rails and steel wire 
ropes. However, with the steam generator tubes, there was more 
variation in the experimental worn profile for the tube in comparison 
with the model due to the limitation of the modified Archard wear 
equation not capturing adhesive wear.  

• Overall, an efficient fretting wear model was produced that was able 
to capture the bulk wear behavior of various geometries and loading, 
which can be used for a design tool to minimize fretting wear dam
age. Other methods, such as FEA and BEM, showed that simulation 
times are too long, which become impractical for design. 
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Appendix A 

The steam generator tube can be modeled as a curved cantilever beam with a point load at the tip, P, a dummy moment (due to no rotation at the tip 
due to it being bolted), M0, and a reaction force, Fj, where j is the nodal number for any position along the beam, as shown in Fig. A1a. 

Eqs. A1 and A2 show the strain energy for bending and Castigliano’s theorem, respectively, which was used to determine the vertical and hori
zontal deflections (δv and δh, respectively) at position i using dummy loads in the vertical and horizontal direction (Ai and Bi, respectively). 

U =

∫
M2

2EI
Rdθ (A1)  

ϕ =
∂U
∂M0

= 0, δv =
∂U
∂Ai

and δh =
∂U
∂Bi

(A2) 

The dummy moment can be found by using Castigliano’s theorem and equating the rotation at the tip to be 0 (ϕ = 0), which gave the following: 

M0 =
2
π

[
− PR

(π
2
− 1

)
+ FjR

((π
2
− θj

)
cosθj − 1 + sinθj

) ]
(A3) 

Once the dummy moment has been found, the deflections at any node i can be found for any load, Fj, at any position j. The solution for θi < θj is 
given by Eq. A4 (represented in Fig. A1(b)) and for θi > θj is given by Eq. A5 (represented in Fig. A1(c)). 
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The resultant of these deflections is used to determine the influence coefficients. It was found for the region of interest around the contact that the 
influence coefficients vary linearly with Fj, so a unit force can be used to solve these numerically. 

Fig. A1. (a) Schematic of curved cantilever beam and loading, (b) schematics of sections with dummy loads to solve for vertical and horizontal deflections at point i 
for θi < θj and (c) for θi > θj. 
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