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Abstract—The feedforward control is becoming increas-
ingly important in ultra-precision stages. However, the
conventional model-based methods can not achieve ex-
pected performance in new-generation stages since it is
hard to obtain the accurate plant model due to the com-
plicated stage dynamical properties. To tackle this prob-
lem, this paper develops a model-free data-driven adap-
tive iterative learning approach that is designed in the
frequency-domain. Explicitly, the proposed method utilizes
the frequency-response data to learn and update the output
of the feedforward controller online, which benefits that
both the structure and parameters of the plant model are
not required. An unbiased estimation method for the fre-
quency response of the closed-loop system is proposed
and proved through the theoretical analysis. Comparative
experiments on a linear motor confirm the effectiveness
and superiority of the proposed method, and show that
it has the ability to avoid the performance deterioration
caused by the model mismatch with the increasing iterative
trials.

Index Terms—adaptive ILC, data-driven, frequency do-
main, feedforward control, linear motor.

I. INTRODUCTION

NOWADAYS, the ultra-precision motion stages have been
widely applied in many nanoscale manufacturing indus-

tries like IC manufacturing [1]. The precision motion stage has
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a direct influence on the product quality [2], [3], which leads
to higher performance requirements for the stages , such as
higher tracking accuracy, larger velocity and acceleration. In
the control system of the precision motion stages, the feedback
control is usually used to suppress the unstructured external
disturbance and the system uncertainty, while the feedforward
control is used to compensate for the orderly disturbance, such
as thrust ripple [4]. Usually, the control bandwidth is expected
to be as high as possible, but it is limited by the mechanical
resonance, the time delay of the drive system, the measurement
bandwidth and so on. As a result, the feedforward control
is necessary for high-performance motion stages as it can
lower the requirements for the feedback control loop [5]. In
a word, improvement in feedforward control is a significant
step toward meeting higher performance in the next generation
industrial precision motion stages [6]–[8].

As a popular feedforward method, iterative learning control
(ILC) approach is widely applied in various scenarios [9].
The ILC could improve the tracking performance of the servo
system by learning from the data gathered over the past trials
[10], which is particularly effective in practical cases with
the repetitive trajectory and the external disturbance. The ILC
methods can be summarized into model-free ILC and model-
based ILC according to whether the plant model is required.
Model-based ILC methods make use of model information
so that it could achieve good tracking performance and high
convergence speed. The most well-known model-based ILC
methods applied to precision motion control such as the wafer
stage control are mainly represented by the inversion-based
ILC methods [11]–[13], Q-ILC [14], projection-based ILC
[15], and so on. But the model used in the design process
needs to be chosen properly as it plays an important role
in the convergence properties. However, there exists flexible
dynamical behavior like the small damping or the low resonant
frequency in the next-generation precision motion stages [16],
so the model-based ILC could hardly achieve the expected
performance. In contrast to model-based ILC, model-free ILC
methods seem to be more applicable for the future flexible
precision motion stages since they do not require a plant
model. However, the system information is not fully utilized.
So the conventional model-free ILC [17]–[19] needs more
iterative trials to tune the parameters for good performance and
could hardly achieve the same performance as those model-
based methods.
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Therefore, a tradeoff has to be made between requiring
no plant model and fully utilizing the system information to
achieve higher performance of both tracking and convergence.
To tackle this problem, the frequency-domain based ILC (FD-
ILC) attracts more extensive research interest as it can make
full use of the frequency-response information of the system,
and no parameterized plant model is required. There are
several achievements in FD-ILC. In [20], an FD-ILC method
was proposed for the AFM piezoscanner and experimental
results showed that the proposed method can significantly
reduce the dynamic coupling errors. However, a small learning
gain was chosen in [20] to keep the stability in the presence of
the noise, which results in slower convergence speed. In [21],
an inversion-based FD-ILC updating the inverse model by
using the input-output data was presented for an AFM system
and experimental results confirmed its ability to improve the
tracking performance and convergence speed. Although there
existed an updating for the learning law in [21], this proposed
algorithm could not achieve an unbiased estimation of the
inverse model and its estimation would certainly be affected by
the noise. Additionally, there are some ILC methods designed
in the frequency domain [22]–[24], but their learning laws
were calculated based on the nominal plant model which
would probably result in a limitation on tracking performance
due to the model error.

Aforementioned analyses motivate the paper to propose
a model-free frequency-domain adaptive ILC method (FD-
AILC). The contribution of this paper is threefold. First, a
theoretical framework is developed for frequency-domain ILC
with adaptive updating method. During the iterative process,
the proposed FD-AILC method not only updates the ILC
output, but also updates the ILC learning law. Furthermore,
the criteria for accelerating convergence are proposed, which
enables the possibility of achieving higher performance and
increasing the convergence speed simultaneously. Second,
an unbiased estimation method to solve the influence of
measurement noise is proposed. Finally, an application to a
linear motor of the wafer stage is presented to compare the
proposed method with the model-based ILC methods, which
demonstrates the effectiveness and superiority of the proposed
method.

The rest of the paper is organized as follows. The problem
statement is formulated in Section II. The frequency-domain
data-driven adaptive ILC method and convergence analysis are
presented in Section III. Simulation and Experimental results
are presented with discussions in Section IV. The conclusions
are drawn in Section V.

II. PROBLEM STATEMENT

The schematic diagram of the ILC approach widely applied
to precision motion stage is shown in Fig. 1, where r denotes
the system reference trajectory, yr denotes the real system
trajectory, d denotes external disturbance, and n denotes the
measurement noise. CL is the iterative learning controller, Cfb

is the feedback controller, and P is the plant model. It is noted
that the system reference trajectory r is set to be repetitive
through the whole iterative process so there is no superscript

Fig. 1: Schematic diagram of the control system using the ILC
method.

for r. From the basic principle of ILC, it can be obtained as
follows.

ekff = ek−1
ff + CL · ek−1 (1)

where, ekff is the ILC controller’s output after the k-th
iteration, and ek is the system tracking error after the k-th
iteration.

Based on the former analysis, the conclusion can be drawn
that the inversion-based ILC has the ability to improve the
convergence speed. Therefore, this paper will focus on ana-
lyzing the ILC approach based on the inversion-model and
further improving it by mapping the designing method from
the time domain to the frequency domain. When CL =
((Cfb · P )/(1 + Cfb · P ))−1, the system can realize one-step
convergence theoretically. However, in practice, there exists
uncertainty in the controlled object and noise in the system.
Filters are inevitably involved in the system, which causes that
the system is unable to realize one-step convergence and the
tracking accuracy is limited.

Therefore, it is considered to map the inversion-based ILC
method to the frequency domain and design the iterative
learning controller based on frequency-response data, namely
as frequency-domain ILC (FD-ILC). It is defined as

Ck
L(ω) =ρ(ω) · T̂−1

k−1(ω)

T̂ (ω) =(
Cfb(ω) · P (ω)

1 + Cfb(ω) · P (ω)
)est

(2)

where, T̂ (ω) is the estimation of the closed-loop system
frequency response which is obtained from the frequency-
response test on the actual system, and ρ(ω) is the positive
real regulator at the frequency point ω, whose range is
ρ(ω) ∈ (0, 1]. Therefore,

ekff (ω) = ek−1
ff (ω) + Ck

L(ω) · ek−1(ω) (3)

where ω is selected according to the frequency points obtained
from FFT calculation to the reference trajectory r. ek−1(ω)
is FFT of the time-domain error ek−1(t). The convergence
condition of the FD-ILC method can be referred to [20] in
detail.

Compared with inversion-based ILC method based on trans-
fer function (TF-ILC), the FD-ILC method has the advantages
that no transfer function model is required, no additional
system time-delay compensation is needed, and the ideal filter
can be realized by using frequency truncation. The FD-ILC
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method can effectively avoid the problem that the accurate
plant model is difficult to obtain.

However, using the iterative learning law shown in (2) and
(3), the obtained FD-ILC output is not completely accurate,
which is due to the following reasons. Firstly, there exists
external disturbance and measurement noise when testing the
system frequency response. Secondly, it is hard to describe
the system’s high-order uncertainty. And thirdly, the frequency
points obtained in the frequency-response test and the fre-
quency points of the reference trajectory cannot be aligned
precisely. So it needs to estimate the compensation value
at the points of the required reference frequency through
interpolation. That leads to a mismatch between the real value
and the estimation value, which would introduce error into the
FD-ILC output.

Therefore, given the drawbacks of FD-ILC method, a
frequency-domain data-driven adaptive ILC method (FD-
AILC) is proposed, which can effectively make up for short-
comings of FD-ILC by updating the learning law using the
data-driven adaptive method.

III. FREQUENCY-DOMAIN DATA-DRIVEN ADAPTIVE ILC

The error of the closed-loop system frequency response is
assumed to be multiplicative, and it is defined as

∆Tk(ω) =
T (ω)

T̂k(ω)
(4)

where, T = CfbP/(1 + CfbP ).
According to the Fig. 1, there is

ek = r − (ykr + nk)

= r − [(ek + ekff )CfbP + P · dk + nk]
(5)

Then ek can be deduced as

ek = S · r − T · ekff −GP · dk − S · nk (6)

where, S = 1/(1 + CfbP ) is the system sensitivity function
and GP is defined as GP = P/(1 + CfbP ).

(2) and (3) are substituted into (6) and the result below can
be obtained.

ek =S · r − T · ek−1
ff − ρ ·∆Tk−1 · ek−1

−GP · dk − S · nk
(7)

Meanwhile according to (6), ek−1 can be written into

ek−1 = S · r − T · ek−1
ff −GP · dk−1 − S · nk−1 (8)

The external disturbance dk can be rewritten into dk =
dr + dkn, where dr denotes the repetitive disturbance and dkn
denotes the nonrepetitive disturbance of the k-th iterative trial.
Combining (7) with (8), there is

ek(ω) =[1− ρ(ω) ·∆Tk−1(ω)] · ek−1(ω)

− S(ω) · [ñk(ω)− ñk−1(ω)]
(9)

where the expression of ñk(ω) is

ñk(ω) = nk(ω) + P (ω) · dkn(ω) (10)

When ρ(ω) = 1 and there is no system model error, that
is ∆T (ω) = 1, the system can realize one-step convergence.
But there must be errors of the frequency response and ∆T (ω)
cannot be equal to 1. If |∆T (ω)| approaches 1, then ρ(ω) can
be selected to be as large as possible, and the convergence
rate of the algorithm will be faster. Therefore, |∆T (ω)| need
to be improved as much as possible to approach 1 so that it
can improve the convergence rate.

Based on the above analysis, the FD-ILC method is im-
proved to update T̂ (ω) in addition to the output of the ILC
controllers during each iteration. In this way, more accurate
frequency-response data can be obtained in the iterative pro-
cess, which can improve the control performance effectively.
And the iterative learning law is modified as


ek+1
ff (ω) = ekff (ω) + ρ(ω) · T̂−1

k (ω) · ek(ω)

T̂k(ω) = T̂k−1(ω) ·∆T̂k−1(ω)

∆T̂k−1(ω) = ρ−1(ω)(1− ek(ω)
ek−1(ω)

)

(11)

If there is no measurement noise n in the system, it can be
deduced from (9) that

∆Tk−1(ω) = ρ−1(ω)(1− ek(ω)

ek−1(ω)
) (12)

Therefore the estimate value (∆T̂k−1(ω)) of ∆Tk−1(ω) is
accurate, and it can be deduced that the tracking error of
system after (k+1)-th iteration is ek+1(ω) = 0.

Whereas, in practice, there is the measurement noise n in
the system, so there is

∆Tk−1(ω) =ρ−1(ω)(1− ek(ω)

ek−1(ω)
)

− ρ−1(ω)S(ω) · (nk(ω)− nk−1(ω))

ek−1(ω)

6=∆T̂k−1(ω)

(13)

It can be seen from (13) that, the estimated value of
∆Tk−1(ω) is affected by the measurement noise and is not
unbiased. In order to make the estimation of ∆Tk−1(ω)
unbiased, the paper proposes a frequency-domain data-driven
adaptive ILC (FD-AILC) and its improved iterative learning
law is

T̂k(ω) = T̂k−1(ω) ·∆T̂k−1(ω)

∆T̂k−1(ω) = ρ−1(ω)[ek−1,2(ω)− ek(ω)]/ek−1(ω)

ekff (ω) = ek−1
ff (ω) + ρ(ω)T̂−1

k−1(ω) · ek−1(ω)

(14)

where, ek−1(ω) is the tracking error obtained from the first
run of system under the ILC output ek−1

ff (ω), and ek−1,2(ω)
is the tracking error obtained from the second run of system
under the ILC output ek−1

ff (ω). In another word, when there is
ek−1
ff (ω), the system runs twice during the same iteration, then
ek−1(ω) and ek−1,2(ω) are obtained respectively. In addition,
only ek−1(ω) is used to calculate the next iteration’s ILC
output ekff (ω).

Furthermore, under the conditions in theorem 1, using the
iterative learning control updating formula (14), the FD-AILC
method can make the estimation of T (ω) unbiased.
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Theorem 1: Assuming that T (ω) and T̂i(ω) are both stable,
ρ−1(ω)([ek−1,2(ω)−ek(ω)]/ek−1(ω)) is the unbiased estima-
tion of ∆Tk−1(ω), if
1) n(ω) and dn(ω) are both zero mean;
2) The samples of both n(ω) and dn(ω) are independent of

each other;
3) n(ω) is independent of r and d, and dn(ω) is independent

of r, n and dr.
Proof : Firstly, it is defined that

ekñ(ω) = −S(ω)(nk(ω) + P (ω) · dkn(ω)) = −S(ω)ñk(ω)
(15)

ek(ω) of second formula in (14) is substituted by (9) and

∆T̂k−1 =
ρ−1

ek−1
· [ek−1,2 − ek−1 + ρ∆Tk−1e

k−1

+ S(ñk − ñk−1)]

=∆Tk−1 +
ρ−1

ek−1
· [ek−1,2 − ek−1

+ S(ñk − ñk−1)]

(16)

According to (6), there is

ek−1,2 − ek−1 = S(−ñk−1,2 + ñk−1) (17)

Substituting (17) into (16), there is

∆T̂k−1(ω) =∆Tk−1(ω) +
ρ−1(ω)

ek−1(ω)
· (−S(ω)ñk−1,2(ω)

+ S(ω)ñk(ω))

=∆Tk−1(ω) +
ρ−1(ω)

ek−1(ω)
· (ek−1,2

ñ (ω)− ekñ(ω))

(18)

From condition 2) and 3) of theorem 1, it can be concluded
that

E[ek−1,2
ñ (ω)/ek−1(ω)] =E[ek−1,2

ñ (ω)] · E[ek−1(ω)
−1

]

E[ekñ(ω)/ek−1(ω)] =E[ekñ(ω)] · E[ek−1(ω)
−1

]
(19)

According to the condition 1) of theorem 1, it can be
concluded that

E[ek−1,2
ñ (ω)] =E[−S(ω)(nk−1,2(ω) + P (ω)dk−1,2

n (ω))] = 0

E[ekñ(ω)] =E[−S(ω)(nk(ω) + P (ω)dkn(ω))] = 0
(20)

Therefore, it can be deduced that

E(∆T̂k−1(ω)) = ∆Tk−1(ω) (21)

The theorem 1 is proved. Similar to all other ILC method,
according to (9) it is easy to get an expression showing its
convergence, as

|1− ρ ·∆Tk−1(ω)| < 1 i = 1, 2, . . . , k (22)

Obviously, this convergence criterion is easy to be met
in practice. And the updating of the closed-loop frequency-
response data cannot be conducted ceaselessly. Therefore, it
is necessary to propose a cut-off condition for accelerating
convergence. Thus, Theorem 2 is proposed to explain sufficient
condition for the algorithm to speed up convergence.

Theorem 2: Under the condition that the updating formula
(14) is adopted and theorem 1 is satisfied, and assuming
the noise n satisfies the condition of |ñ(ω)| ≤ W (ω), then
the sufficient condition for the algorithm to ensure that the
convergence rate of k-th iteration is faster than that of (k-1)-
th iteration is

B(ω)

A(ω)
> W (ω) (23)

where, A(ω) and B(ω) are

A(ω) =2 · |S(ω)| · (|ρ(ω)ek−1(ω)|+ |ek−1,2(ω)− ek(ω)|)
B(ω) =|ek(ω)| · |ek−1,2(ω)− ek(ω)|

− |ek−1(ω)| · [|ek−1,2(ω)− ρ(ω)ek−1(ω)|
+ |(ρ(ω)− 1)ek(ω)|]

(24)

Proof : The accelerated convergence can be depicted as

|ek+1(ω)|
|ek(ω)|

<
|ek(ω)|
|ek−1(ω)|

(25)

According to equation (9), above expression can be rewrit-
ten into

|1− ρ(ω)∆Tk(ω)|
|1− ρ(ω)∆Tk−1(ω)|

< 1 (26)

According to (9), there is

1− ρ(ω) ·∆Tk−1 =
ek(ω)− (ekñ(ω)− ek−1

ñ (ω))

ek−1(ω)
(27)

Combining the definition of ∆Tk(ω) in (4) and the first
formula in the updating law (14), the detailed derivation is
omitted due to the space restrictions so the derived result is
as follows.

∆Tk(ω) =
∆Tk−1(ω)

∆T̂k−1(ω)
(28)

∆Tk−1(ω) can be obtained through (27). Substituting
∆Tk−1(ω), ∆T̂k−1(ω) of (14), (27) and (28) into (26), it can
be obtained that

|ek−1,2 − ρek−1 + (ρ− 1)ek + ρ(ekñ − e
k−1
ñ )|

|ek−1,2 − ek|

<
|ek − (ekñ − e

k−1
ñ )|

|ek−1|

(29)

For the left and right sides of above expression, there is

fleft ≤
|ek−1,2 − ρek−1 + (ρ− 1)ek|+ 2ρW · |S|

|ek−1,2 − ek|
= M

fright ≥
|ek| − 2W · |S|
|ek−1|

= N

(30)

It is noted that in (29) and (30), (ω) of all the variables
are omitted due to the space restrictions. From (30), it can be
seen that M < N is the sufficient condition for (29) to be
true. As a result, (23) and (24) can be deduced from M <
N . The unbiased estimation and conditions for accelerating
convergence of the FD-AILC method have been discussed in
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the above contents. It is noted that Theorem 2 can be used for
deciding whether update T̂k(ω), that is stopping updating of
T̂k(ω) when the sufficient condition is not satisfied.

Remark 1: If the external disturbance only consists of
repetitive disturbance, W (ω) in (23) will be the supremum
of |n(ω)|.

The detailed algorithm flow of FD-AILC is given below.
Step 1: The system is run independently twice with the same

ILC output eiff (t), and the two data of tracking error ei,1(t)
and ei,2(t) are obtained repectively;

Step 2: The FFT calculations are done for the data of
ei,1(t) and ei,2(t), and their corresponding frequency spectrum
ei,1(ω) and ei,2(ω) are obtained;

Step 3: Decide whether update T̂i(ω) or not according to
the theorem 2, if yes enter Step 4 , otherwise T̂i(ω) = T̂i−1(ω)
is set and enter Step 5 ;

Step 4: According to the updating method (14), the closed-
loop system frequency response is updated to obtain T̂i(ω);

Step 5: The ILC output ei+1
ff (ω) is updated by using the

equation ei+1
ff (ω) = eiff (ω) + T̂−1

i (ω) · ei(ω);
Step 6: The IFFT calculations are done for the data of

ei+1
ff (ω) to obtain ei+1

ff (t);
Step 7: i = i+ 1 is set and return to Step 1 .

IV. RESULTS

To illustrate the proposed FD-AILC method and evaluate
its validity, numerical simulation and experimental test on a
wafer stage are implemented in this section.

A. Simulation Results
1) Simulation Setup
The plant model in simulation is designed as follow, which

is one of the most common dynamical models of the mechan-
ical systems,

P (s) =
1

ms2
+

K

s2 + 2ξωn + ω2
n

(31)

where P (s) is the transfer function of the controlled object.
To more visibly observe the effectiveness and superiority of
the proposed method, the controlled object is designed with
lower flexible modal frequency and smaller mass which can
depict the low-weight flexible property of the next-generation
precision stage. So the parameters of the plant model in
simulation are set as m = 5.0Kg, K = 0.09, ξ = 0.01
and ωn = 2π · 500.5 respectively. The sampling period of
the system is Ts = 200µs. In addition, the time delay of the
system is set as τ = 200µs, which equals 1Ts.

The control system is designed according to Fig. 1, where
the feedback controller is a PI controller with a lead correction
shown in (32). The system closed-loop bandwidth is defined as
the frequency point at −3dB of the complementary sensitivity
function. So the bandwidth of the control system is 91Hz.

Cfb(s) = 1.3866× 107 × 0.0159s+ 1

s
× 0.0071s+ 1

0.0014s+ 1
(32)

where s denotes the Laplace operator.
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Fig. 2: The reference trajectory and external disturbance in the
simulation.

Fig. 2 shows the curves of the reference trajectory and
external disturbance used in simulation. The reference tra-
jectory in simulation is selected as a fourth-order multiseg-
ment polynomial trajectory, with constraints on first to fourth
derivatives. The parameters are the displacement s = 0.28m,
the maximum velocity v = 1m/s, the maximum acceleration
a = 40m/s2, the maximum jerk J = 3000m/s3, and the
maximum snap D = 5 × 107m/s4 respectively. Because in
most applications that this paper concerns, the system external
disturbance exhibit repetitive property during the iterative
process, the disturbance used in simulation is designed as
a repetitive disturbance force. The data of the disturbance
consists of the cogging force and the cable force, which is
collected on a practical stage driven by the linear motor.

The measurement noise is set as Gaussian white noise
whose amplitude is 1nm. Additionally, it is necessary to
design an initial frequency-response data T̂0(ω) used for the
first iterative trial. In the simulation test, the real value of T (ω)
is known. So T̂0(ω) is designed as T̂0(ω) = crand(ω) · T (ω),
where crand(ω) is a random number distributed uniformly in
(0.75, 1.25). Apart from above setup, the positive real regulator
ρ(ω) in the updating formula (14) is selected as 0.7.

To further illustrate its superiority compared with other ILC
method, the FD-ILC mentioned in Section II and the ILC
method based on the transfer function (TF-ILC) proposed in
[11] are also tested in simulation. To provide a fair comparison,
the same T̂0(ω) is used for T̂ (ω) of (2) for FD-ILC. As for
TF-ILC method, the learning law CL TF is shown as follow,

CL TF (s) = KTF ·QTF (s) · T−1(s) (33)

where s denotes the Laplace operator, KTF is the learning
gain set as 0.7, QTF (s) is a second order low-pass filter with
cut-off frequency of 2000Hz and damping ratio of 1, and T (s)
is set as the transfer function of the real closed-loop system.

2) Simulation Results
Firstly, an evaluating criterion Error-J is defined to present

the 2-norm of the tracking error, that is

Jk = ‖ek‖2 (34)

Under the same simulating conditions, FD-ILC, TF-ILC
and the proposed FD-AILC are performed for 10 iterations
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Fig. 3: The tracking errors comparison among the FD-AILC,
FD-ILC and TF-ILC. In each subfigure, the left scale shows
the range of the error and the right scale shows the range of
the velocity.
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respectively. Fig. 3 shows the comparative result of the time-
domain tracking error and Fig. 4 shows the comparative result
of Error-J.

It can be observed from Fig. 3 that after performing the
same iterations, the tracking errors of the proposed method are
smaller than those of the FD-ILC and TF-ILC, which proofs
the effectiveness of FD-AILC and verifies that the proposed
method is better than another two methods in improving
the system tracking performance. Fig. 4 shows that after 3-
iterations through the FD-AILC the system tracking error can
achieve convergence to the minimum value, while both FD-
ILC and TF-ILC need about 6-iterations to achieve conver-
gence. Therefore, result in Fig. 4 further demonstrates that
introducing an adaptive algorithm for updating the iterative
learning law facilitates improving the convergence speed.

In the simulation test, the estimating result of the closed-
loop frequency response can be observed, because the real
value of T (ω) is known. To further evaluating the proposed
method, the estimation result of T (ω) is shown in Fig. 5, and
the updated ∆T (ω) is shown in Fig. 6 and Fig. 7. ∆T (ω) is
defined in (4).

From Fig. 5, it can be observed that the curve of T̂ (ω)
becomes smooth as the increasing of the iteration, which
illustrates that FD-AILC method can effectively update T̂ (ω)
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Fig. 5: The simulation result of T̂ (ω) for FD-AILC method.
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480 ∼ 520Hz (b).

and then help improve convergence speed. Seen from Fig. 6
and Fig. 7, instead of updating the data of the whole frequency
band, the algorithm updates parts of ∆T (ω). The updated data
are mainly distributed in the frequency band of 0 ∼ 200Hz
and 480 ∼ 520Hz. Above result needs to be analyzed
combining with the feedback system closed-loop frequency
response showing in Fig. 8.

From Fig. 7 and Fig. 8, it can be concluded that using the
proposed method can update the data of ∆T (ω) corresponding
to the frequency bands in the red rectangular of Fig. 8. The
amplitudes of the system tracking errors corresponding to the
frequency bands outside the red rectangular are too small
which is close to the measurement noise. As a result, according
to the updating cut-off condition in (23) the proposed data-
driven adaptive algorithm does not update the frequency
response at the frequency that its corresponding tracking
error is small enough. Therefore, the above analysis further
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Fig. 9: Block diagram of the experimental setup.

illustrates the effectiveness of the proposed adaptive algorithm
in improving the frequency-response data used in feedforward
compensation.

B. Experimental Results

1) Experimental Setup
To better illustrate the effectiveness of the proposed method,

experiments were performed on a linear motor of the wafer
stage. It is noted that the controlled object of the experiment is
different from the simulation, because the practical experimen-
tal platform is without the property of low-weight and lower
flexible modal frequency. But the comparative experimental
results can still illustrate the strength of the proposed method.
The experimental setup is shown in Fig. 9. The real-time
operating system is selected as VxWorks. The mainboard and
the motion control (MC) card are integrated into a VME64x
card cage from the Germany company ELMA. The flow of the
control signal and data signal between the PC and the control
card cage are realized through the network cable and serial
port respectively. The MC card sends the control command to
the motor driver via the fiber. Similarly, the data of the linear
encoder is transmitted through the fiber. The motor driver can
make the bandwidth of the current-loop achieve 2000Hz and
its peak current is 60A. The wafer stage is mounted on an
air bearing with 400 kPa air pressure. The position sensor
is a Heidenhain linear incremental encoder with the effective
resolution of 0.05µm and the maximum velocity of 0.3m/s.
And the control methods are implemented by C language
on a digital signal processor (DSP). The sampling period is
Ts = 200µs. The feedback controller Cfb is a PI controller
with a lead correction that is similar to (32).
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Fig. 10: The measured frequency response of the plant model
in experiment.

The closed-loop system is excited by a preset time series,
which structure is the same as the reference trajectory in
the simulation test as shown in Fig. 2. Its parameters are
s = 0.1m, v = 0.25m/s, a = 10m/s2, J = 800m/s3,
D = 1×105m/s4 and H = 1×108m/s5 respectively. Notably,
to keep the same starting point of the linear motor in every
iteration, the motor does the reciprocating motion, where the
reciprocating trajectory is the same.

Similar to the simulation test, the proposed FD-AILC,
FD-ILC and TF-ILC are compared. For TF-ILC method, an
approximate model of the plant is required so a dual integral
model is adopted to fit the measured plant model shown in
Fig. 10. The fitted result is expressed as Gest = 1

34.3775s2 .
The learning law of TF-ILC in the experiment is the same as
that in simulation and its parameters are set as: 1)the learning
gain KTF = 0.7; 2)the second-order low-pass filter with a cut-
off frequency of 100Hz and with a damping ratio of 1. Also,
it is worth noting that the initial frequency response T̂0(ω) is
required both in FD-AILC and FD-ILC. In FD-ILC, it will
be used for all iterations, whereas for FD-AILC, it will only
be used for the first iteration and the data will be updated in
other iterations. The inversion of the initial frequency response
T̂−1
0 (ω) is obtained through a frequency-response test on the

practical stage and its result is shown in the Bode diagram
in Fig. 11, where the blue line is the practically measured
data of T̂−1

0 (ω). Because the measured high-frequency data are
greatly affected by the measurement noise, only the frequency
range data showed as the red line in Fig. 11 are used in the
iterative methods.

2) Experimental Results
The FD-AILC is performed for 5 iterations on the experi-

mental stage and the result is shown in Fig. 12.
From Fig. 12, a conclusion can be drawn that the tracking

error of the system drops significantly with the increasing of
the iteration times, which confirms that the proposed method
is effective in improving the tracking performance. Since there
is no feedforward compensation when running the system for
the first time, the tracking error is relatively large which is
over 50µm. After the first iteration, the tracking error reduced
to about 10µm. However, the effectiveness of updating the
learning law is unable to be verified through the result in
Fig. 12. Therefore, comparative experiments are required to
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0 (ω) in experiment.
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Fig. 13: The tracking errors comparison among the FD-AILC,
FD-ILC and TF-ILC. In each subfigure, the left scale shows
the range of the error and the right scale shows the range of
the velocity.

further prove the effectiveness and superiority of the proposed
method. Then the FD-ILC method and TF-ILC method are run
for 5 iterations as well under the same experimental conditions
and results are shown in Fig. 13, Fig.14 and Fig.15. It is noted
that Error-J is defined in (34).

In Fig. 12, Fig. 13 and Fig. 14, Iteration = 0 presents
the system is run without any iterative learning output. From
the first iteration, the FD-ILC and TF-ILC use the frequency-
response data T̂−1

0 (ω) shown in Fig. 11 and transfer func-
tion model fitted by the dual integral model respectively to
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Fig. 15: The experimental result of T̂ (ω) for FD-AILC
method.

calculate the ILC output. Whereas, the proposed FD-AILC
will use T̂−1

0 (ω) only for the first iterative trial and update
it through the adaptive learning law shown in (14) according
to conditions in (23) for other trials. From these experimental
results, the following conclusions and analysis can be drawn.

1) After the first iteration, the maximum tracking error of
both the FD-AILC and FD-ILC are very close and below
15µm, which is on account of the same frequency-response
data used in the first iteration. Whereas the maximum tracking
error of the TF-ILC method is about 50µm, which is over
three times bigger than those of the other two methods. This
observation is due to that the approximation model of the
controlled object used in TF-ILC is unable to describe the
real characteristics of the system accurately, which proves that
using the frequency-response information can effectively avoid
the above problem.

2) From Fig. 14, it can be confirmed that TF-ILC is helpful
to improve the tracking accuracy after several iterations.
However, the evaluation indicator Error-J does not decrease
for all the time and it seems to tend to enlarge. The problem
of the model mismatch for the TF-ILC method is mainly
responsible for the above phenomenon. The model mismatch
would probably lead to that the system does not satisfy the
convergence condition of the iterative learning algorithm at
some frequency points, which further results in that the system
tracking error would have an upward trend.

3) From Fig. 13, it can be concluded that both after the
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second iteration and third iteration, the tracking error of the
FD-AILC method is smaller than that of the FD-ILC method,
which can demonstrate that updating the iterative learning law
benefits to improve the tracking performance.

4) From Fig. 13 and Fig. 14, it can be observed that after 3
iterations, using the proposed method the maximum tracking
error of the system can converge to about 7µm, whereas using
the FD-ILC the maximum tracking error only converges to
about 15µm. Fig. 14 further illustrates that the proposed FD-
AILC is better in improving the convergence speed and verifies
the effectiveness of the proposed adaptive iterative law.

5) From Fig. 14, it can be noted that the Error-J of the FD-
ILC is slightly larger than that of the FD-AILC and it has an
upward trend after 3 iterations, whereas in simulation the curve
of Error-J for FD-ILC does not show this trend. Analyzing
this founding, there are two possible reasons responsible
for it. Firstly, similar to conclusion 2) it is caused by the
mismatch of the frequency-response data. For FD-ILC, using
an inaccurate frequency-response data could cause incorrect
feedforward compensation value of some frequency points.
This mismatch of the frequency-response data will result in
slight deterioration of the compensation. Another reason is that
in the experimental tests, there are frequency-response data
which are not satisfying the condition of convergence at some
frequency points, which would also lead to slight deterioration
of the compensation. As to the FD-AILC, it can avoid the
above possible problems through the adaptive iterative law,
which further verifies the ability of the proposed method for
keeping the system stability.

6) Fig. 15 shows the experimental result of T̂ (ω) using
FD-AILC method. The curve of the estimated result looks
smoother than the curve of the measured data, especially in the
low-frequency range. This observation can verify the validity
of FD-AILC on self-adaptive updating the frequency-response
model to some extent. However, the improvement of T̂ (ω) is
not so significant due to that the practical experimental plat-
form is not with the complicated low-frequency characteristics.

Consequently, the proposed FD-AILC can effectively im-
prove both the tracking accuracy and the convergence speed,
as well as avoiding performance deterioration caused by the
model mismatch. In addition, since there is no plant model re-
quired, the proposed method is helpful to reduce the workload
of designing the control system.

V. CONCLUSION

This paper addresses practical problems of the future
lightweight flexible stages, including the high requirement
of the motion performance, the fast convergence rate and
the complicated low-frequency characteristics. First, a model-
free frequency-domain data-driven adaptive ILC method has
been established, which enables the possibility of improving
the tracking performance by updating iterative learning law
during the iterative process adaptively. Theoretical analysis
indicates the updating algorithm could obtain an unbiased
estimation of the frequency response. Subsequently, the criteria
for accelerating convergence are derived. The numerical simu-
lation and experimental results with comparison fully illustrate

the benefits of the proposed model-free ILC approach, listed
as (1)its ability to achieve higher tracking accuracy; (2)its
superiority to increasing convergence speed; (3)its advantage
of reducing the workload of designing the control system.
Finally, the future work can be predicted towards solving
problems of tracking control with non-repeated trajectory,
which is more general in industrial applications.
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