PROCEEDINGS A

rspa.royalsocietypublishing.org

Article submitted to journal

Subject Areas:

civil engineering

Keywords:

air-water flows, Froude scaling laws, Lie groups, scale effects, self-similarity

Author for correspondence:

Daniele Catucci 1 [e-mail:](mailto:daniele.catucci@nottingham.ac.uk) daniele.catucci@nottingham.ac.uk

Numerical validation of novel scaling laws for air entrainment in water

Daniele Catucci¹, Riccardo Briganti¹ and Valentin Heller¹

 1 Environmental Fluid Mechanics and Geoprocesses Research Group, Department of Civil Engineering, University of Nottingham, Nottingham NG7 2RD, UK

The Froude scaling laws have been common to model a wide range of water flows at reduced size for almost one century. In such Froude scale models, significant scale effects for air-water flows (e.g. hydraulic jumps or wave breaking) are typically observed. This study introduces novel scaling laws, excluding scale effects in the modelling of air-water flows. This is achieved by deriving the conditions under which the governing equations are self-similar. The one parameter Lie group of point scaling transformations is applied to the Reynolds-averaged Navier-Stokes equations, including surface tension effects. The scaling relationships between variables are derived for the flow variables, fluid properties and initial and boundary conditions. Numerical simulations are conducted to validate the novel scaling laws for (i) a dam break flow interacting with an obstacle and (ii) a vertical plunging water jet. Results for flow variables, void fraction and turbulent kinetic energy are shown to be self-similar at different scales, i.e. they collapse in dimensionless form. Moreover, these results are compared with those obtained using the traditional Froude scaling laws showing significant scale effects. The novel scaling laws are a more universal and flexible alternative with a genuine potential to improve laboratory modelling of airwater flows.

1. Introduction

Physical modelling at reduced size is one of the oldest and most important design tools in hydraulic engineering. For processes of engineering interest involving free surface flows, the Froude scaling laws have been used since they were introduced by Moritz Weber in 1930 [\[1\]](#page-18-0). They ensure that the ratio between the

 c The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited.

THE ROYAL SOCIETY PURLISHING

² inertial and gravity force, namely the Froude number Fr, is the same in the model and in nature, i.e. in the prototype. Other force ratios, such as the Reynolds number Re (inertial force to ⁴ viscous force) and the Weber number We (inertial force to surface tension force), are represented incorrectly if the fluid properties are the same in the prototype and its model [\[2](#page-18-1)[–4\]](#page-18-2). Froude scaling laws are particularly useful for laminar flows (Re \rightarrow 0) and also for fully turbulent flows (Re $\rightarrow \infty$) to investigate Reynolds number invariant fluid parameters [\[5,](#page-18-3)[6\]](#page-18-4).

However, the Froude scaling laws are also used for flows involving air-entrainment, e.g. air ⁹ bubbles entrapment into water flows, hereafter referred to as air-water flows. For these, density, ¹⁰ viscosity and surface tension between water and air play a central role such that Fr, Re and We are ¹¹ all important [\[7,](#page-18-5)[8\]](#page-18-6). Indeed, most studies suggest that the Froude scaling laws without scaled fluid ¹² properties underestimate air entrainment because the effects of viscosity and surface tension are 13 over-represented in the model $[9-11]$ $[9-11]$.

 Air-water flows are observed in many hydraulic phenomena such as spillway flows, hydraulic jumps, wave breaking and plunging jets, which are still modelled with Froude scaling laws, 16 despite of their limitations [\[12–](#page-18-9)[14\]](#page-18-10). Moreover, air-entrainment occurs at the free surface of oceans, rivers and streams as an important mechanism for the transport of oxygen and carbon dioxide, 18 critical for the survival of these ecosystems [\[15](#page-18-11)[,16\]](#page-18-12). Despite of many studies, turbulent air-water flows remain not well understood such that costly case-specific, large-scale investigations are commonly required to avoid scale effects [\[2\]](#page-18-1).

²¹ An analytical approach to derive novel scaling laws can be based upon self-similarity of the governing equations. A self-similar object is identical to a part of itself. As such, the scaling of an object that follows suitable laws results in a self-similar scaled copy of the object itself [\[17–](#page-18-13)[20\]](#page-18-14) ²⁴ and a self-similar process behaves the same way at different scales, such that scale effects are avoided [\[21\]](#page-18-15). For example, a scaled model and the prototype of a hydraulic jump are self-similar if dimensionless results are identical. This implies that the dimensionless velocity field and the void fraction are variables that are invariant when self-similarity is achieved.

²⁸ Self-similar conditions for phenomena with negligible surface tension effects have previously ²⁹ been derived by applying the one-parameter Lie group of point scaling transformations [\[22\]](#page-18-16) ³⁰ (hereafter referred to as Lie group transformations). Lie group transformations are originally 31 used to reduce the number of independent variables of an initial-boundary value problem by ³² transforming it in a new space where the solution of the problem is the same as the original 33 [\[20](#page-18-14)[,23](#page-18-17)[,24\]](#page-18-18). This approach has been applied by [\[25\]](#page-19-0) to derive the conditions under which various ³⁴ hydrological processes are self-similar through the change in size. Consequently, the Lie group ³⁵ transformations can be used to find the scaling laws of the variables that can guarantee self-³⁶ similarity of a phenomenon. The advantage of this approach is that it gives a complete picture of ³⁷ the requirements that must be satisfied for self-similarity, in contrast with a classical dimensional 38 analysis, based on Buckingham π theorem, which is only applied to the dynamics in the interior 39 of the domain and not to the boundary conditions [\[26](#page-19-1)[,27\]](#page-19-2).

⁴⁰ Self-similar conditions of a depth-averaged 2D hydrodynamic equations system and the 3D ⁴¹ Reynolds-Averaged Navier-Stokes (RANS) equations were derived in [\[28](#page-19-3)[,29\]](#page-19-4). These two showed ⁴² self-similar conditions of the variables in the RANS equations with k - ϵ closure for phenomena ⁴³ that are dominated by gravity and viscous effects. The scaling laws found by [\[29\]](#page-19-4) were applied ⁴⁴ numerically to a lid-driven cavity flow, showing self-similar behaviour. In both studies [\[28\]](#page-19-3) and ⁴⁵ [\[29\]](#page-19-4), Computational Fluid Dynamics (CFD) was used to demonstrate that the proposed scaling ⁴⁶ laws involve no scale effects. Indeed, CFD can be used to investigate scale effects numerically ⁴⁷ and the scale and properties of fluids are more easily controlled than in laboratory experiments ⁴⁸ [\[30–](#page-19-5)[33\]](#page-19-6).

⁴⁹ To the knowledge of the authors, there are no studies addressing the analytical conditions for ⁵⁰ which the governing equations involving viscous and surface tension effects are simultaneously 51 self-similar when scaled in size. In the present study, we derive novel scaling laws by applying the ⁵² Lie group transformations to the governing equations of air-water flows including surface tension ⁵³ effects. No other assumptions are made in the application of the Lie group transformations. This ⁵⁴ article shows, by simulating a range of scales, that the derived self-similar conditions for air-water ⁵⁵ flows and their boundary conditions can be used to achieve self-similarity.

 The derived scaling laws are applied numerically to two air-water flow processes, namely (i) a dam break flow interacting with an obstacle, generating large deformations of the free surface [\[34\]](#page-19-7), and (ii) a vertical circular plunging water jet impinging on quiescent water characterised by significant air entrainment, based on the experimental results of [\[13\]](#page-18-19). The 3D RANS equations govern both phenomena in which both viscosity and surface tension play a central role.

⁶¹ Air-water flows are here simulated by using *interFoam*, a numerical solver for 2-phase ⁶² incompressible fluids flows based on the Volume of Fluid (VOF) method implemented in ⁶³ the OpenFOAM v1706 CFD package [\[35\]](#page-19-8). In these simulations, all the boundary and initial ⁶⁴ conditions, including the properties of the fluid, are transformed using the novel scaling laws ⁶⁶ at different geometrical scales with scale factors $\lambda = \frac{l_p}{l_m}$, where l_p is a characteristic length in the ⁶⁶ prototype (subscript p) and l_m the corresponding one in the model (subscript m). The processes 67 are scaled using values of λ for which a correct representation of surface tension and viscous ⁶⁸ effects are essential to avoid significant scale effects. The two processes are also simulated with the ⁶⁹ commonly applied Froude scaling laws using ordinary water and air in the model, as common ⁷⁰ in laboratory experiments (herein called *traditional Froude scaling*), and the Froude scaling laws ⁷¹ in which the properties of the fluids are strictly scaled (herein called *precise Froude scaling*). It is 72 demonstrated that the novel scaling laws involve no scale effects, in contrast to traditional Froude 73 scaling, and they are also more universal and flexible than precise Froude scaling.

⁷⁴ This article is organised as follows: in Sec. [2](#page-2-0) the Lie group transformations are applied to the ⁷⁵ governing equations and the novel scaling laws are derived. The numerical model is presented in 76 Sec. [3.](#page-4-0) Subsequently, the two CFD case studies are illustrated in Sec. [4,](#page-5-0) including the set-up, the π application of the novel scaling laws and the results. The findings of this research are discussed 78 in Sec. [5](#page-13-0) and the conclusions and recommendations for future work are given in Sec. [6.](#page-14-0) Finally, ⁷⁹ Appendix A includes the details of the derivation of the novel scaling laws and the self-similar ⁸⁰ conditions due to the initial and boundary conditions.

... 2. Analytical derivation of the novel scaling laws

⁸² (a) Governing equations

⁸³ Air-water flows are here described by the RANS equations for incompressible fluids:

$$
\frac{\partial U_{\mathbf{j}}}{\partial x_{\mathbf{j}}} = 0\tag{2.1}
$$

84 and

$$
\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\nu \frac{\partial U_i}{\partial x_j} - \overline{u_i u_j} \right) - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + g_i + \frac{1}{\rho} f_\sigma, \quad i, j = 1, 2, 3,
$$
\n(2.2)

where i is the free index, j the dummy index, following Einstein's notation, t is time, x_i and x_i 85 \mathcal{E}_so are the spatial coordinates, U_i and U_j the Reynolds-averaged flow velocity components, u_i and $_{\imath\imath}$ u_j the fluctuating velocity components, $\overline{u_i u_j}$ is the Reynolds stress term, p the Reynolds-averaged ⁸⁸ pressure, *ν* the kinematic viscosity, *ρ* the density of the fluid, $g_i = (g_1, g_2, g_3)$ the gravitational ⁸⁹ acceleration vector and f_{σ} the surface tension force per unit volume defined as

$$
f_{\sigma} = \sigma \kappa \frac{\partial \gamma}{\partial x_1}.
$$
 (2.3)

90 In Eq. [\(2.3\)](#page-2-1) σ is the surface tension constant, κ the curvature of the free surface and γ the phase

fraction. This is a dimensionless variable with values between 0 and 1 that is used to identify any

 θ air/water interface (see Sec. 3). The k- ϵ model is here applied for the Reynolds-stresses in Eq.

93 (2.2) , (see [\[36\]](#page-19-9) for more details), for which

$$
-\overline{u_i u_j} = \nu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) - 2/3k \delta_{ij},\tag{2.4}
$$

⁹⁴ where k is the turbulent kinetic energy, δ_{ij} the Kronecker delta and ν_t the eddy viscosity

$$
\nu_t = C_\mu k^2 / \epsilon. \tag{2.5}
$$

⁹⁵ k, and its rate of dissipation ϵ , are calculated from

$$
\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = P_k - \epsilon + \frac{\partial}{\partial x_j} \left[(\nu + \nu_t / C_{\sigma_k}) \frac{\partial k}{\partial x_j} \right]
$$
(2.6)

⁹⁶ and

$$
\frac{\partial \epsilon}{\partial t} + U_j \frac{\partial \epsilon}{\partial x_j} = C_{\epsilon 1} \frac{\epsilon}{k} P_k - C_{\epsilon 2} \frac{\epsilon^2}{k} + \frac{\partial}{\partial x_j} \left[(\nu + \nu_t / C_{\sigma_{\epsilon}}) \frac{\partial \epsilon}{\partial x_j} \right].
$$
\n(2.7)

 $P_k = u_t \frac{\partial U_i}{\partial x_j} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$ ⁹⁷ $P_k = u_t \frac{\partial U_i}{\partial x_i} \left(\frac{\partial U_i}{\partial x_i} + \frac{\partial U_j}{\partial x_i} \right)$ and $C_{\epsilon 1} = 1.44$, $C_{\epsilon 2} = 1.92$, $C_{\mu} = 0.09$, $C_{\sigma_k} = 1.0$ and $C_{\sigma_{\epsilon}} = 1.3$ are the 98 standard model coefficients used in the k - ϵ turbulence model [\[37\]](#page-19-10). The approach used her for θ turbulence modelling, combined with the VOF method has been recognised to overestimate k 100 [\[38\]](#page-19-11), although this does not affect the derivation of the scaling laws and the self-similarity of the ¹⁰¹ representation of the process.

102 (b) One parameter Lie group transformations

¹⁰³ The Lie group is defined as

$$
\phi = \beta^{\alpha_{\phi}} \phi^*.
$$
\n(2.8)

104 Eq. [\(2.8\)](#page-3-0) transforms the variable ϕ in the original space into the variable ϕ^* in the transformed (*) 105 space, β is the scaling parameter and α_{ϕ} the scaling exponent of the variable ϕ . The scaling ratio ¹⁰⁶ of the variable ϕ is $r_{\phi} = \phi/\phi^* = \beta^{\alpha_{\phi}}$ [\[29](#page-19-4)[,39\]](#page-19-12).

107 All the variables of Eqs. [\(2.1\)](#page-2-3) to [\(2.7\)](#page-3-1) in the original domain are written in the transformed ¹⁰⁸ domain as:

$$
x_1 = \beta^{\alpha_{x_1}} x_1^*, \quad x_2 = \beta^{\alpha_{x_2}} x_2^*, \quad x_3 = \beta^{\alpha_{x_3}} x_3^*, \quad t = \beta^{\alpha_t} t^*,
$$

\n
$$
U_1 = \beta^{\alpha_{U_1}} U_1^*, \quad U_2 = \beta^{\alpha_{U_2}} U_2^*, \quad U_3 = \beta^{\alpha_{U_3}} U_3^*, \quad p = \beta^{\alpha_p} p^*,
$$

\n
$$
g_i = \beta^{\alpha_g} g_i^*, \quad \rho = \beta^{\alpha_\rho} \rho^*, \quad \nu = \beta^{\alpha_\nu} \nu^*, \quad \sigma = \beta^{\alpha_\sigma} \sigma^*, \quad \kappa = \beta^{\alpha_\kappa} \kappa^*,
$$

\n
$$
u_1 = \beta^{\alpha_{u_1}} u_1^*, \quad u_2 = \beta^{\alpha_{u_2}} u_2^*, \quad u_3 = \beta^{\alpha_{u_3}} u_3^*,
$$

\n
$$
k = \beta^{\alpha_k} k^*, \quad \epsilon = \beta^{\alpha_\epsilon} \epsilon^*, \quad \nu_t = \beta^{\alpha_{\nu_t}} \nu_t^*, \quad P_k = \beta^{\alpha_{P_k}} P_k^*.
$$

¹⁰⁹ Self-similar conditions are obtained when the governing equations in the original domain,

¹¹⁰ subjected to the Lie group transformations, remain invariant. The Lie group transformations for

 111 Eq. [\(2.1\)](#page-2-3) yields the following equation in the transformed domain

$$
\frac{\partial \beta^{\alpha_{U_1}} U_1^*}{\partial \beta^{\alpha_{x_1}} x_1^*} + \frac{\partial \beta^{\alpha_{U_2}} U_2^*}{\partial \beta^{\alpha_{x_2}} x_2^*} + \frac{\partial \beta^{\alpha_{U_3}} U_3^*}{\partial \beta^{\alpha_{x_3}} x_3^*} = 0,
$$
\n(2.10)

112 which, with β being a constant parameter, is rearranged as

5

$$
\beta^{\alpha_{U_1}-\alpha_{x_1}}\frac{\partial U_1^*}{\partial x_1^*} + \beta^{\alpha_{U_2}-\alpha_{x_2}}\frac{\partial U_2^*}{\partial x_2^*} + \beta^{\alpha_{U_3}-\alpha_{x_3}}\frac{\partial U_3^*}{\partial x_3^*} = 0.
$$
\n(2.11)

- Self-similarity is achieved if Eq. (2.11) can be obtained from Eq. (2.1) by means of a simple scaling
- ¹¹⁴ process. Therefore, all terms of Eq. [\(2.11\)](#page-4-1) must be transformed by using the same scaling ratios:

$$
\beta^{\alpha_{U_1} - \alpha_{x_1}} = \beta^{\alpha_{U_2} - \alpha_{x_2}} = \beta^{\alpha_{U_3} - \alpha_{x_3}} \Rightarrow \alpha_{U_1} - \alpha_{x_1} = \alpha_{U_2} - \alpha_{x_2} = \alpha_{U_3} - \alpha_{x_3}.
$$
 (2.12)

Table 1. Novel and precise Froude scaling laws for the variables of the RANS equations and the k - ϵ turbulence model obtained by applying the Lie group transformations.

¹¹⁵ To attain self-similarity of air-water flows, the exponents for length, velocity and fluctuating 116 velocity components have to be identical for the ith axis. This is shown in Appendix A where the 117 detailed derivation of Eqs. [\(2.2\)](#page-2-2) to [\(2.7\)](#page-3-1) is presented. Hereafter, α_x , α_U and α_u are used to indicate ¹¹⁸ the scaling exponents of length, Reynolds-averaged velocity and fluctuating velocity components 119 on the ith axis. Similarly, α_p , α_ν and α_σ are derived by applying the Lie group transformations to 120 Eq. (2.3) . Further, based on Eqs. (2.5) to (2.7) , the scaling conditions for the turbulent parameters 121 are derived. In addition, the detailed derivation of the self-similar conditions for the initial and ¹²² boundary conditions are also shown in Appendix A. The scaling conditions derived above are 123 summarised in the second column of Table [1.](#page-4-2) They are consistent with those reported in Table 1 124 and 2 in [\[29\]](#page-19-4) with addition of the surface tension and the curvature of the free surface. All the 125 exponents are written in terms of three independent scaling exponents, namely α_x , α_t and α_ρ , ¹²⁶ meaning that they are user-defined (their choice is flexible). In fact, the solution of air-water flows equations can be mapped to solutions in other transformed domains with different $\lambda = \beta^{\alpha_x}$ by 128 selecting the scaling parameter β and changing the α of three independent variables.

129 It is possible to assign the value of one or two of the three α while still preserving self-similarity. [1](#page-4-2)30 For example, in Table 1 it is shown that choosing $\alpha_q = 0$ implies that $\alpha_q = \alpha_x - 2\alpha_t$. Therefore, ¹³¹ the unscaled g requires that $\alpha_t = 0.5\alpha_x$. In this configuration, the remaining scaling exponents 132 are written in terms of α_x , α_ρ and $\alpha_q = 0$ (fourth and fifth columns of Table [1\)](#page-4-2). Hence, keeping g ¹³³ invariant in a scaled model requires to scale time and flow velocities and to change the properties 134 of the fluids to obtain a self-similar behaviour. A further restriction can be imposed on the density 135 of the fluids, namely $\alpha_{\rho} = 0$. This restriction leads to the well-known precise Froude scaling laws 136 [\[3\]](#page-18-20), as a particular case of the novel scaling laws, where g is constant and ν and ρ are scaled by 137 keeping Re and We invariant.

138 3. Numerical model

¹³⁹ Air-water flows are simulated by using the 2-phases flow solver *interFoam*, based on the VOF ¹⁴⁰ method, implemented in the OpenFOAM v1706 CFD package [\[35\]](#page-19-8). A single system of RANS 141 equations is solved with the pressure and velocity fields shared among both phases. The interface 142 between water and air is identified by a value of the phase fraction γ between $\gamma = 1$ (water) and ¹⁴³ $\gamma = 0$ (air). The fluid properties used in the equations are mapped in all domains as a weighted 144 average using γ as weight, e.g. for ρ and ν :

$$
\rho = \gamma \rho_w + (1 - \gamma) \rho_a,\tag{3.1}
$$

$$
\nu = \gamma \nu_w + (1 - \gamma)\nu_a,\tag{3.2}
$$

145 where subscripts w and a refer to the water and air phase, respectively. σ appears in Eq. [\(2.3\)](#page-2-1) to model the surface tension force per unit volume, as stated in the Continuum Surface Force 147 method proposed by [\[40\]](#page-19-13). The curvature of the interface between two fluids κ is defined as

$$
\kappa = -\frac{\partial}{\partial x_i} \left(\frac{\partial \gamma / \partial x_i}{\partial \gamma / \partial x_i} \right). \tag{3.3}
$$

¹⁴⁸ γ is transported as a scalar by the flow field and the interface location (e.g. the free surface) is 149 updated by solving the volume fraction equation

$$
\frac{\partial \gamma}{\partial t} + \frac{\partial (\gamma U_j)}{\partial x_j} = 0.
$$
\n(3.4)

 The interface reconstruction technique used by *interFoam* is MULES [\[41\]](#page-19-14). The free surface can also be captured by using alternative techniques, such as the *isoAdvector* method [\[42\]](#page-19-15). However, the governing equations remain the same and the self-similarity of the representation of the process under the novel scaling laws is not affected by the interface reconstruction technique.

4. Numerical results

 The self-similar conditions of the novel scaling laws are validated with the simulation of two physical processes: (i) a dam break flow interacting with an obstacle and (ii) a vertical plunging water jet. The simulations for both processes involve the prototype and a number of scaled models 158 up to large geometrical scale factors of $\lambda = 16$.

159 (a) Dam break flow

160 Dam break flows have been widely investigated numerically and the specific case addressed ¹⁶¹ herein is chosen because it is a well-known test to validate the modelling of large deformations of 162 free surfaces [\[43](#page-19-16)[,44\]](#page-19-17). The solver used in the present study has been validated with this particular ¹⁶³ test case by [\[34\]](#page-19-7). In this study, $\gamma = 0.1$ is selected to identify the air/water interface in the VOF 164 method. $\gamma = 0.1$ is obtained by considering the value between 0 and 1 providing the best fit with the experimental void fraction distribution in Sec. $4(b)$ $4(b)$.

166 (i) Numerical set-up

¹⁶⁷ The initial condition at $t = 0$ consists of a quiescent water column of volume $1.228 \times 0.550 \times 1.000$ ¹⁶⁸ m³, located at the left side of a 3.220 \times 1.000 \times 1.000 m³ tank (Fig. [1\)](#page-6-0). A prismatic fixed obstacle ¹⁶⁹ with a volume of $0.160 \times 0.160 \times 0.403$ m³ is located at $x_1 = 2.395$ m. The water column is 170 released instantaneously at $t = 0$. Subsequently, the flow impacts the obstacle and creates a ¹⁷¹ complex two-phase flow. The top wall of the domain is modelled as an open, fully transmissive 172 boundary at atmospheric pressure and all the remaining walls as no-slip boundary conditions. ¹⁷³ The water density is $\rho_w = 1000 \text{ kg/m}^3$, its kinematic viscosity $\nu_w = 1 \times 10^{-6} \text{ m}^2/\text{s}$ and the 174 surface tension constant $\sigma = 0.07$ N/m.

 175 A 180 (length) \times 60 (width) \times 80 (height) Cartesian computational grid was used, apart from 176 the obstacle. Note that, due to the orientation of the reference frame, for this case $g_i = (0, 0, -q)$ in 177 Eq. [\(2.2\)](#page-2-2). The time step ∆t was set equal to 0.001 s at the start of the simulation and it was varied 178 subsequently by respecting the CFL condition

$$
\frac{U_{\mathbf{j}}\Delta t}{\Delta x_{\mathbf{j}}} < C_{max},\tag{4.1}
$$

 where Δx_i is the mesh size in the Cartesian coordinate system and $C_{max} = 0.8$ the maximum Courant number following [\[45\]](#page-19-18). The simulations were run on the University of Nottingham ¹⁸¹ High Performance Computing (HPC) cluster Augusta. The number of cells in the computational domain was 861075 and the used cores and memory were 4 and 36 GB, respectively. It required 2 h to simulate the real time of 6 s (also for the corresponding times at reduced scales). In this test case, as well as for the jet, all the dimensional parameters, including the mesh sizes and time 185 steps, were scaled to the smaller domains according to the selected scaling laws.

Figure 1. Initial set-up of the dam break flow prototype and a scaled numerical domain to schematically illustrate the novel scaling laws. The flow parameters at a specified time and space can be transformed to the corresponding time and space in the self-similar domain.

186 (ii) Application of the novel scaling laws

¹⁸⁷ Two self-similar domains, namely D8 and D16, are created with geometrical scale factors of λ ¹⁸⁸ $\beta^{\alpha_x} = 8$ and 16, respectively. To achieve this, it is assumed that $\alpha_x = 1$ such that $\beta = 8$ (D8) and 16 ¹⁸⁹ (D16), respectively. All variables and parameters are transformed by the scaling exponents in the 190 fourth and fifth columns of Table [2](#page-7-0) (with scaling conditions in terms of α_x , α_t and $\alpha_g = 0$). Their ¹⁹¹ specific values for the prototype and the scaled models, obtained by applying the conditions in 192 Table [2,](#page-7-0) are presented in Table [3.](#page-7-1) The prototype is also scaled by using precise Froude scaling ¹⁹³ (D8_{PFr} and D16_{PFr}) and traditional Froude scaling (D8_{TFr} and D16_{TFr}) using the same λ as in the ¹⁹⁴ self-similar domains.

Table 2. Scaling parameters and exponents used to scale the dam break flow prototype values to the corresponding values in the domains D8 and D16 using the novel scaling laws.

Table 3. Parameters for the dam break flow in the prototype and the scaled domains.

195 (iii) Results

Figure 2. Snapshots of the dam break flow at the cross-section $x'_2 = 0$ and dimensionless time $t' = 2.7$ of the (a) prototype and scaled with (b,c) the novel scaling laws, (d,e) precise Froude scaling and (f,g) traditional Froude scaling.

¹⁹⁶ For the purpose of this work it is interesting to analyse the time when gravity, inertial, viscous ¹⁹⁷ and surface tension effects are all relevant. This happens when the dam break flow impacts ¹⁹⁸ the obstacle and creates an elongated water tongue. Fig. [2](#page-7-2) shows this process with snapshots 199 of the prototype and the scaled domains at $x_2' = x_2/h_w = 0$ (Fig. [1\)](#page-6-0) and dimensionless time ^{[2](#page-7-2)00} $t' = t\sqrt{\frac{g}{h_w}} = 2.7$. The contours in Fig. 2 represent the dimensionless velocity magnitude $U' =$ ²⁰¹ $U/\sqrt{gh_w}$, where $U = \sqrt{U_1^2 + U_2^2 + U_3^2}$. The prototype shows a large free surface deformation ²⁰² after impacting the obstacle (Fig. [2a](#page-7-2)). The self-similar domains and the domains scaled with

²⁰³ precise Froude scaling all simulate the water tongue of the prototype correctly. Moreover, the ²⁰⁴ dimensionless velocity magnitude in the prototype and in the self-similar domains are the same, ²⁰⁵ despite of the increasing λ (Fig. [2b](#page-7-2),c,d,e). On the other hand, traditional Froude scaling does not

²⁰⁶ model the free surface correctly due to Re and We scale effects, i.e. the water tongue becomes less ²⁰⁷ prolonged with increasing λ (Fig. [2f](#page-7-2),g).

²⁰⁸ The differences between the prototype and the scaled domains are quantified using the Root 209 Mean Square Error along the plane $x_2' = 0$ for U' (RMSE $_{U'}$)

RMSE_{U'} =
$$
\sqrt{\frac{\sum_{b=1}^{n} (U'_{b,p} - U'_{b,m})^2}{n}}
$$
, (4.2)

²¹⁰ where $U'_{\mathbf{b},p}$ are the cell values of U' in the prototype, $U'_{\mathbf{b},m}$ in the scaled domains and n = 14283

²¹¹ is the number of cells in the cross-section $x'_2 = 0$. As shown in Table [4,](#page-8-0) the RMSE_{U'} values for D8

212 and D16 confirm a nearly perfect self-similarity with respect to the prototype.

Table 4. RMSE_{LU}, for the dam break flow for the domains D1 and D8, D16, D8_{PFr}, D16_{PFr}, D8_{TFr} and D16_{TFr}, for the snapshots in Fig. [2.](#page-7-2)

Figure 3. k' time histories in the dam break flow at point RW for (a) domains D1, D8, D16, D8_{PFr} and D16_{PFr} and (b) D1, $D8$ _{TFr} and $D16$ _{TFr}.

Figure 4. γ time histories in the dam break flow at point RW for (a) domains D1, D8, D16, D8_{PFr} and D16_{PFr} and (b) D1, $D8$ _{TFr} and $D16$ _{TFr}.

 k is used to assess turbulence because it shows significant scale effects if ν is not scaled. Air

²¹⁴ entrainment is assessed by using γ, which is expected to deviate from the prototype if the surface

²¹⁵ tension is over-represented in the scaled domain. Fig. [3](#page-8-1) shows the dimensionless turbulent kinetic

²¹⁶ energy $k' = k/(gh_w)$ at point RW (Fig. [1\)](#page-6-0) versus t' and the variation of γ is shown in Fig. [4.](#page-8-2) After $t'=2.7$, the water tongue collapses and creates a complex flow characterised by strong turbulence ²¹⁸ and air entrainment. The flow reaches the downstream wall where it is reflected at $t' = 3.25$. At a 219 later stage, the dam-break wave is re-reflected at the upstream wall and it reaches point RW again 220 at $t' = 23.6$.

The perfect collapse of the data for D1, D8 and D16 affirms the self-similar behaviour of k' 221 $_{222}$ for the novel scaling laws. The self-similar behaviour is also confirmed for $D8_{\text{PF}_T}$ and $D16_{\text{PF}_T}$. On ²²³ the other hand, k' shows scale effects using traditional Froude scaling; the first k' peak is either ²²⁴ under- or over-estimated (D8_{TFr} and D16_{TFr}, respectively), while the magnitude of the second 225 peak decreases with increasing λ .

226 As demonstrated in Fig. [4,](#page-8-2) where γ is shown as a proxy for surface tension, air entrainment ₂₂₇ is correctly scaled in the self-similar domains as it controls the air-water interface and the free ²²⁸ surface curvature. While the results in the domains D1, D8, D16, D8 $_{\rm PFr}$ and D16 $_{\rm PFr}$ essentially ²²⁹ collapse, the domains scaled with traditional Froude scaling show significant differences in the ²³⁰ region where air entrainment is most important. γ starts to increase close to $t' = 4$, meaning ²³¹ that the wave reaches RW consistently at the same time in all domains except for DS_{TFr} and 232 D16_{TFr} (Fig. [4\)](#page-8-2). Subsequently, γ increases to reach 1 less rapidly than in the prototype when using ²³³ traditional Froude scaling. These differences become more visible at a later stage of the simulation ²³⁴ when the dam break wave is re-reflected at $t' = 23.6$, showing significant scale effects.

²³⁵ (b) Plunging water jet

₂₃₆ In this section, the same scaling laws as in the previous test case are applied to the plunging water $_{237}$ jet presented in [\[13\]](#page-18-19). This involves free-surface instabilities, air entrainment and turbulence.

²³⁸ (i) Numerical setup

 239 The setup is based on the experiments of [\[13\]](#page-18-19), consisting of a jet from a circular orifice impinging ²⁴⁰ on a prismatic column of water. However, in this study, the symmetry of the problem with respect ²⁴¹ to two orthogonal vertical planes is used to simulate only a quarter of the domain, in order to 242 reduce the computational cost. Fig. [5](#page-10-0) shows the numerical domain and the variables used in the 243 prototype. A plunging water jet is ejected from a nozzle having a radius $r_{in} = 0.0125$ m. Here, the 244 subscript in indicates the quantities at the nozzle, i.e. at the inlet of the numerical domain, while ²⁴⁵ the subscript im indicates values of variables at the still water level, i.e. $x_1 = 0$. The receiving ²⁴⁶ pool is 0.15 m wide and 1.80 m deep and at the start of the simulation the distance between the ²⁴⁷ water surface and the nozzle is $l_1 = 0.10$ m. The velocity of the jet at $x_1 = 0$ is $U_{im} = 4.10$ m/s. 248 Here, a Cartesian coordinate system with x_1 pointing downwards is used, therefore, $g_i = (g, 0, 0)$.

²⁴⁹ The inlet boundary condition, namely the nozzle, is at the top boundary. The velocity at the ²⁵⁰ inlet U_{in} and both k_{in} and ϵ_{in} are prescribed, while the outlet is located at the bottom boundary, 251 having the same flow rate magnitude as the inlet.

252 $\sqrt{U_{im}^2 - 2gl_1} = 3.85$ m/s. At the outlet (subscript *out*) $U_{out} = U_{in}$ and $r_{out} = r_{in}$. k_{in} and ϵ_{in} U_{in} is calculated starting from the jet impact velocity using Bernoulli's theorem U_{in} = ²⁵⁴ are calculated as

$$
k_{in} = \frac{3}{2}(U_{in}I)^2 = 0.000471 \text{ m}^2/\text{s}^2,
$$
\n(4.3)

$$
\epsilon_{in} = C_{\mu} \frac{k_{in}^{3/2}}{l_t} = 0.00105 \text{ m}^2/\text{s}^3,
$$
\n(4.4)

²⁵⁵ where $I = 0.46\%$ is the turbulent intensity following [\[13\]](#page-18-19), and l_t the turbulent mixing length ²⁵⁶ approximated with $l_t = 0.07r_{in}$. The part of the top boundary of the domain not occupied by ²⁵⁷ the inlet was modelled as a fully transmissive open boundary at atmospheric pressure. Since only ²⁵⁸ a quarter of the domain is simulated, a symmetry boundary condition is used at the symmetry

²⁵⁹ boundary walls and no-slip conditions are applied at the remaining walls, including the bottom 260 wall outside the outlet cells (Fig. [5\)](#page-10-0).

₂₆₁ A structured orthogonal mesh is used with a finer resolution for the area in which the water ²⁶² jet impacts the free surface down to a depth of 0.6 m. The smallest observed bubble size was 1 mm and the minimum cell size 0.625 mm to increase the interface sharpness around the bubbles [\[13](#page-18-19)[,46\]](#page-19-19). This mesh resolution is not fine enough to resolve the smallest bubbles present in the flow. However, the main focus of this work is to show the relative differences in the results of the application of different scaling laws for air-water flows, rather than to perfectly resolve the

²⁶⁷ dynamics of individual bubbles.

Figure 5. Schematic illustration of the computational domain and mesh of the plunging water jet.

²⁶⁸ The simulation time was 300 s, the same duration used by $[13]$ to compute the distribution ²⁶⁹ of the void fraction from the laboratory measurements, and the time step varied with respect to $_{270}$ the CFL condition. C_{max} was set equal to 0.3. The simulations were run on the University of 271 Nottingham HPC cluster Augusta. The number of cells in the computational domain was $1.89 \times$ 272×10^6 and the corresponding cores and memory were 10 and 36 GB, respectively. It required 168 h

²⁷³ to simulate 300 s real time (also for the corresponding times at reduced scales).

274 (ii) Application of the novel scaling laws

²⁷⁵ The two self-similar domains P8 and P16 were simulated with geometrical scale factors of $\lambda = 8$ 276 and 16, respectively. Similarly to the dam break case, the scaling exponent for length is $\alpha_x =$ 277 1 so that $β = 8$ (P8) and 16 (P16). The scaling ratios and parameters obtained by applying the 278 conditions in the second column of Table [1](#page-4-2) are shown in Table [5.](#page-11-0) The domains $P8P_{FF}$ and $P16P_{FF}$ r_{279} refer to precise Froude scaling and P 8_{TFr} and P 16_{TFr} to traditional Froude scaling (Table [5\)](#page-11-0).

Table 5. Scaling parameters and used exponents to scale the plunging jet prototype values to the corresponding values in the domains P8 and P16.

Variables	Prototype	Domain	Domain	Domain	Domain	Domain	Domain
		P8	P ₁₆	$P8_{PFr}$	$P16_{PFr}$	$P8$ TFr	$P16_{TFr}$
Inlet radius (m)	0.0125	0.0015625	7.81×10^{-4}	0.0015625	7.81×10^{-4}	0.0015625	7.81×10^{-4}
Computational time (s)	300	106	75	106	75	106	75
Impact velocity (m/s)	4.10	1.45	1.025	1.45	1.025	1.45	1.025
Gravitational acceleration (m/s^2)	9.81	9.81		9.81		9.81	
Water density (kg/m^3)	1000	125	62.5	1000 1000			
Water viscosity (m^2/s)	10^{-6}	4.42×10^{-8}	1.56×10^{-8}	4.42×10^{-8}	1.56×10^{-8}	10^{-6}	
Air density (kg/m^3)		0.125	0.0625				
Air viscosity (m^2/s)	1.48×10^{-5}	6.54×10^{-7}	2.31×10^{-7}	6.54×10^{-7}	2.31×10^{-7}	1.48×10^{-5}	
Surface tension (N/m)	0.07	1.37×10^{-4}	1.70×10^{-5}	1.09×10^{-3}	2.73×10^{-4}	0.07	
Inlet turbulent kinetic energy (m^2/s^2)	4.71×10^{-4}	5.89×10^{-5}	2.94×10^{-5}	5.89×10^{-5}	2.94×10^{-5}	5.89×10^{-5}	2.94×10^{-5}
Inlet energy dissipation rate ϵ_{in} (m ² /s ³)	1.05×10^{-3}	3.71×10^{-4}	2.63×10^{-4}	3.71×10^{-4}	2.63×10^{-4}	3.71×10^{-4}	2.63×10^{-4}

²⁸⁰ (iii) Results

 $_{281}$ Fig. [6](#page-11-1) shows the time-averaged γ along the section A-A' for domains P1, P8, P8_{PFr} and P8_{TFr}.

²⁸² The prototype shows a distribution of the time-averaged void fraction that is consistent with

²⁸³ the description of high Re plunging jets provided by [\[47\]](#page-19-20). In particular, the flow shows the

²⁸⁴ characteristic conical shape of the air-entrainment layer and the dispersion of bubbles due to ²⁸⁵ the buoyancy effects outside the cone. The consequence of air entrainment in the flow is a rise of

- ²⁸⁶ the free surface with respect to the initial conditions (Fig. [6a](#page-11-1),b,c). Domains P8 and P8_{PFr} have the
- ²⁸⁷ identical shape of the air-entrainment layer showing also that the free surface reaches the same
- 288 level, while $P8$ _{TFr} shows clear differences.

Figure 6. Time-averaged γ along the section A-A' for domains (a) P1, (b) P8, (c) P8_{PFr} and (d) P8_{TFr}.

The following results are all shown along section A-A' at $\frac{x_1 - l_1}{r_{im}} = 1.60$. The distribution of ²⁹⁰ the void fraction is compared with the experimental results of [\[13\]](#page-18-19) in Fig. [7.](#page-12-0) The computed ²⁹¹ distribution and that measured in [\[13\]](#page-18-19) are shown to have a close agreement. The novel scaling ²⁹² laws and precise Froude scaling reproduce the distribution of the void fraction of the prototype ²⁹³ correctly, both in terms of the shape and magnitude. On the other hand, the traditional Froude ²⁹⁴ scaling fails to describe the void fraction distribution.

²⁹⁵ Fig. [8](#page-12-1) shows the time-averaged dimensionless velocity magnitude $\overline{U'}$ where for this case ²⁹⁶ $U'=U/U_{im}$. In the prototype, the maximum value of $\overline{U'}$ is at the jet centreline and $\overline{U'}$ follows ²⁹⁷ qualitatively the same velocity distribution as found in $[49]$. While the results of the domains P1,

²⁹⁸ P8, P16, P8_{PFr} and P16_{PFr} are identical, $\overline{U'}$ for the domains P8_{TFr} and P16_{TFr} are lower than in the ²⁹⁹ prototype.

Figure 7. Distributions of the void fraction for the plunging jet for domains (a) P1, P8, P16, P8_{PFr} and P16_{PFr} and (b) P1, P8_{TFr} and P16_{TFr} along section A-A' at $\frac{x_1-l_1}{r_{im}}=1.60$.

Figure 8. Time-averaged U' for the plunging jet for domains (a) P1, P8, P16, P8_{PFr} and P16_{PFr} and (b) P1, P8_{TFr} and P16_{TFr} along section A-A' at $\frac{x_1 - l_1}{r_{im}} = 1.60$.

Figure 9. Time-averaged k' for the plunging jet for domains (a) P1, P8, P16, P8_{PFr} and P16_{PFr} and (b) P1, P8_{TFr} and P16_{TFr} along section A-A' at $\frac{x_1-l_1}{r_{im}}=1.60$.

³⁰⁰ Fig. [9](#page-12-2) shows the time-averaged dimensionless turbulent kinetic energy \overline{k} , where k' = ³⁰¹ k/(gr_{im}). In the prototype and self-similar domains the maximum value is $\overline{k'} = 10$ at $s/r_{im} = 1.0$ beyond which $\overline{k'}$ decreases to less than 4.0 at $s/r_{im} = 2.0$. On the other hand, the behaviour in the

 $_{{\rm 303}}$ domains based on traditional Froude scaling is different. Indeed, $\overline{k'}$ in P $8_{\rm TFr}$ does not show a clear ³⁰⁴ peak and remains almost constant as far as $s/r_{im} = 1.0$ beyond which it decreases. Moreover, the $_{\rm 305}$ value of $\overline{k'}$ around the jet is higher in P $8_{\rm TFr}$ than in the prototype. However, P16 $_{\rm TFr}$ shows a lower

 $\overline{k'}$ than the prototype with a maximum value of $\overline{k'}$ \approx 4.5.

₃₀₇ 5. Discussion

³⁰⁸ Self-similarity has been achieved for the governing equations of air-water flows including surface ₃₀₉ tension expanding the scaling conditions reported in [\[28](#page-19-3)[,29\]](#page-19-4). An advantage of this approach 310 is that the scaling conditions are directly derived from the governing equations. This leads to 311 more universal scaling laws than the Froude scaling laws [\[50\]](#page-19-22). Further, the choice of the scaling 3[1](#page-4-2)2 exponents α_x , α_t and α_ρ in the second column of Table 1 are user-defined (flexible). This implies 313 that novel scaling laws can also be written in terms of a set of other variables to find different 314 configurations. For example, it is shown that precise Froude scaling is obtained as a special case 315 of the novel scaling laws. The CFD simulations conducted herein demonstrated that both the 316 novel scaling laws and precise Froude scaling result in self-similar air-water flows, which would 317 also be the case for another set of variables.

318 In the dam break flow, a significant deformation of the free surface is shown in the prototype 319 after the flow impacts the obstacle, with a characteristic water tongue projected downstream of ³²⁰ the obstacle. This behaviour is captured in all the domains scaled with the novel scaling laws; Figs. 3 show that k' is the same by using the novel scaling laws and k is thus self-similar. The phase ³²² fraction is also self-similar. This is a strong indication that surface tension effects are self-similar as as well (Fig. [4\)](#page-8-2) and it is also true for the domains DS_{PFr} and $D16_{PFr}$, since precise Froude scaling 324 is a special case of the novel scaling laws. On the other hand, the commonly applied traditional ³²⁵ Froude scaling, relying on the same fluids as in the prototype, fails to reproduce the behaviour of ³²⁶ the prototype. Indeed, Fig. [2f](#page-7-2),g shows that the water tongue is not well predicted. After $t' = 2.7$, ³²⁷ it collapses and the flow is reflected at the downstream wall. Scale effects are observed in k' and 328 γ at point RW. Further, the flow reaches point RW later than in the prototype with increasing λ . s29 Scale effects are also observed after the flow is re-reflected, particularly at the second peak of k' .

³³⁰ For the plunging jet, air entrainment plays a central role. Figs. [8a](#page-12-1) and [9a](#page-12-2) demonstrate that 331 the novel scaling laws result in self-similarity for $\overline{U'}$ and $\overline{k'}$, i.e. these results collapse for P1, ³³² P8, P16, P8_{PFr} and P16_{PFr}, while this is not the case for P8_{TFr} and P16_{TFr}. The self-similarity 333 of the distribution of the void fraction depends on density, viscous and surface tension effects. ³³⁴ The prototype simulation captures the mechanism of air entrainment by a plunging jet (Fig. [5\)](#page-10-0) 335 including the formation of an air cavity between the impinging jet and the surrounding fluid, ³³⁶ which collapses and reforms intermittently, entraining air bubbles that are transported by the 337 flow. At this stage, air bubbles are advected in a turbulent shear flow and they are broken into 338 smaller bubbles creating a conical air-entrainment layer. Subsequently, buoyancy determines the 339 re-surfacing of bubbles in the portion of the flow outside the air layer [\[7,](#page-18-5)[8](#page-18-6)[,12\]](#page-18-9). This complex 340 mechanism causes the air-entrainment layer in Fig. [6,](#page-11-1) where the novel scaling laws guarantee self-341 similarity. This is also true for the void fraction in Fig. [7](#page-12-0) that is a consequence of the mechanism ³⁴² described above. On the other hand, Fig. [7b](#page-12-0) demonstrates that traditional Froude scaling fails 343 to reproduce the void fraction distribution. By using ordinary water, the surface tension and ³⁴⁴ viscosity are over-represented, therefore, the distribution of the void fraction gradually decreases 345 with increasing λ . As expected, for increasing λ the flow regime changes, transitioning from high ³⁴⁶ Re = 50840 in the prototype to Re = 800 in P16_{TFr}, calculated by using U_{im} , r_{im} and ν_w . The 347 modelling of this laminar flow with the k - ϵ turbulence model introduces also model, in addition 348 to scale effects $[2,3,47]$ $[2,3,47]$ $[2,3,47]$, which explain the results in Figs. [8b](#page-12-1) and [9b](#page-12-2).

³⁴⁹ The need of the novel scaling laws for scaling fluid properties requires the modification or 350 replacement of ordinary water in laboratory experiments, e.g., for values of λ comparable with 351 the highest used here, i.e. $\lambda=16$, where $\rho_w=62.5$ kg/m³, $\nu_w=1.56\times10^{-8}$ m²/s and $\sigma=1.70\times10^{-8}$ $352 \cdot 10^{-5}$ $352 \cdot 10^{-5}$ N/m (Tables 3 and [5\)](#page-11-0). There are options to alter the relevant fluid properties; the surface

³⁵³ tension can be modified by adding ethanol to water [\[11\]](#page-18-8) and the viscosity can also be reduced, e.g. 354 [\[51\]](#page-19-23) modelled a hydraulic jump with air. A more recent approach to change the water properties 355 is based on nanofluids, i.e. nanoparticles are added to water [\[52](#page-19-24)[,53\]](#page-19-25). A key advantage of the novel ³⁵⁶ scaling laws is that fluids of different density than water, e.g. ethanol, now also qualify as potential 357 candidates for laboratory experiments.

358 6. Conclusions

³⁵⁹ The Froude scaling laws are applied to model water flows at reduced size for almost one ³⁶⁰ century. A significant disadvantage of Froude scaling is the potential for scale effects. This article 361 shows how such scale effects in air-water flows are avoided with novel scaling laws based upon ³⁶² self-similarity of the governing equations. Lie group transformations are applied to the Reynolds-363 averaged Navier-Stokes equations where surface tension effects are included as a source term. ³⁶⁴ This allows the modelling of hydrodynamic phenomena at small scale without viscous and ³⁶⁵ surface tension scale effects. These novel scaling laws are more universal and flexible than the ³⁶⁶ precise Froude scaling laws because different scaling configurations can be obtained, e.g. by 367 scaling also the density of the fluid. In this study, the gravitational acceleration is kept constant ³⁶⁸ and the scaling exponents of the variables are expressed as a function of the scaling exponents of 369 the length α_x , time α_t and gravitational acceleration $\alpha_g = 0$.

³⁷⁰ The derived novel scaling laws were validated with the simulations of two air-water flow 371 phenomena: (i) a dam break flow interacting with an obstacle and (ii) a plunging water jet. The 372 numerical simulations demonstrated that the processes are correctly scaled, and showed perfect 373 agreement at different scales for air entrainment and kinematic properties. The results of the 374 precise Froude scaling, where the properties of the fluids are strictly scaled, demonstrate that a ³⁷⁵ particular configuration of the novel scaling laws is also able to result in self-similarity. In contrast, ³⁷⁶ the simulations based on traditional Froude scaling using ordinary water and air, as common in 377 laboratory studies, show significant scale effects as expected.

³⁷⁸ Whilst this study provides a thorough numerical validation of the proposed scaling laws, ³⁷⁹ future work aims to identify suitable fluids satisfying the novel scaling laws, which would enable 380 the scaling of air-water flows without scale effects for the first time in an laboratory environment.

³⁸¹ Acknowledgements. The authors would like to thank Dr David Hargreaves for helpful suggestions. The ³⁸² work was carried out as part of Daniele Catucci's PhD study, funded by the University of Nottingham ³⁸³ Pro-Vice Chancellor Research Excellence Scholarship. The simulations were conducted on the University of

³⁸⁴ Nottingham HPC clusters Augusta.

Appendix A - Derivation of the novel scaling laws

³⁸⁶ The remaining scaling conditions in Table [1,](#page-4-2) in addition to the ones presented in Sec. [2b](#page-2-0), are derived here. The Lie group transformations for Eq. [\(2.2\)](#page-2-2) yield the following equations in the transformed domain:

$$
\beta^{\alpha_{U_i}-\alpha_t} \frac{\partial U_i^*}{\partial t^*} + \beta^{\alpha_{U_i}+\alpha_{U_i}-\alpha_{x_i}} U_j^* \frac{\partial U_i^*}{\partial x_j^*} = \beta^{\alpha_{U_i}+\alpha_{\nu}-2\alpha_{x_i}} \frac{\partial}{\partial x_j^*} \left(\nu^* \frac{\partial U_i^*}{\partial x_j^*}\right) - \beta^{\alpha_{\overline{u_i}u_j}-\alpha_{x_i}} \frac{\partial \overline{u_i^*u_j^*}}{\partial x_j^*} \tag{6.1}
$$

$$
-\beta^{\alpha_p-\alpha_\rho-\alpha_{x_i}} \frac{1}{\rho^*} \frac{\partial p^*}{\partial x_i^*} + \beta^{\alpha_g} g_i^* + \beta^{\alpha_{f\sigma}-\alpha_\rho} \frac{f_\sigma^*}{\rho}.
$$

 389 Self-similarity is guaranteed if the scaling ratios of all terms in Eq. [\(6.1\)](#page-14-1) are the same, implying that the exponents of all terms must be the same:

$$
\alpha_{U_1} - \alpha_t = \alpha_{U_1} + \alpha_{U_1} - \alpha_{x_1} = \alpha_{U_2} + \alpha_{U_1} - \alpha_{x_2} = \alpha_{U_3} + \alpha_{U_1} - \alpha_{x_3} \n= \alpha_{U_1} + \alpha_{\nu} - 2\alpha_{x_1} = \alpha_{U_1} + \alpha_{\nu} - 2\alpha_{x_2} = \alpha_{U_1} + \alpha_{\nu} - 2\alpha_{x_3} \n= \alpha_{\overline{u_1 u_1}} - \alpha_{x_1} = \alpha_{\overline{u_1 u_2}} - \alpha_{x_2} = \alpha_{\overline{u_1 u_3}} - \alpha_{x_3} \n= \alpha_p - \alpha_\rho - \alpha_{x_1} \n= \alpha_g \n= \alpha_{f_\sigma} - \alpha_\rho.
$$
\n(6.2)

$$
\alpha_{U_2} - \alpha_t = \alpha_{U_1} + \alpha_{U_2} - \alpha_{x_1} = \alpha_{U_2} + \alpha_{U_2} - \alpha_{x_2} = \alpha_{U_3} + \alpha_{U_2} - \alpha_{x_3} \n= \alpha_{U_2} + \alpha_{\nu} - 2\alpha_{x_1} = \alpha_{U_2} + \alpha_{\nu} - 2\alpha_{x_2} = \alpha_{U_2} + \alpha_{\nu} - 2\alpha_{x_3} \n= \alpha_{\overline{u_2}u_1} - \alpha_{x_1} = \alpha_{\overline{u_2}u_2} - \alpha_{x_2} = \alpha_{\overline{u_2}u_3} - \alpha_{x_3} \n= \alpha_p - \alpha_{\rho} - \alpha_{x_2} \n= \alpha_g \n= \alpha_{f_\sigma} - \alpha_{\rho}.
$$
\n(6.3)

$$
\alpha_{U_3} - \alpha_t = \alpha_{U_1} + \alpha_{U_3} - \alpha_{x_1} = \alpha_{U_2} + \alpha_{U_3} - \alpha_{x_2} = \alpha_{U_3} + \alpha_{U_3} - \alpha_{x_3} \n= \alpha_{U_3} + \alpha_{\nu} - 2\alpha_{x_1} = \alpha_{U_3} + \alpha_{\nu} - 2\alpha_{x_2} = \alpha_{U_3} + \alpha_{\nu} - 2\alpha_{x_3} \n= \alpha_{\overline{u_3}u_1} - \alpha_{x_1} = \alpha_{\overline{u_3}u_2} - \alpha_{x_2} = \alpha_{\overline{u_3}u_3} - \alpha_{x_3} \n= \alpha_p - \alpha_\rho - \alpha_{x_3} \n= \alpha_g \n= \alpha_{f_\sigma} - \alpha_\rho.
$$
\n(6.4)

³⁹¹ The Lie group transformations for Eq. [\(2.3\)](#page-2-1) result in

$$
\beta^{\alpha_{f_{\sigma}}} f_{\sigma}^* = \beta^{\alpha_{\sigma} + \alpha_{\kappa} + \alpha_{\gamma} - \alpha_{x_i}} \sigma^* \kappa^* \frac{\partial \gamma^*}{\partial x_i^*}.
$$
\n(6.5)

392 The dimension κ is the inverse of a length such that $\alpha_\kappa=-\alpha_{x_i}.$ Further, $\alpha_\gamma=0$ because γ is ³⁹³ dimensionless. Hence, Eq. [\(6.5\)](#page-15-0) reduces to

$$
\alpha_{f_{\sigma}} = \alpha_{\sigma} - 2\alpha_{x_i}.\tag{6.6}
$$

 $_{394}$ From Eqs. [\(6.2\)](#page-15-1) to [\(6.4\)](#page-15-2) the scaling exponents of the length dimensions along the ith axis are ³⁹⁵ obtained as

$$
\alpha_{U_1} - \alpha_t = \alpha_{U_1} + \alpha_{\nu} - 2\alpha_{x_1} \quad \Rightarrow \quad \alpha_{x_1} = \frac{\alpha_t + \alpha_{\nu}}{2},\tag{6.7}
$$

$$
\alpha_{U_2} - \alpha_t = \alpha_{U_2} + \alpha_{V} - 2\alpha_{x_2} \quad \Rightarrow \quad \alpha_{x_2} = \frac{\alpha_t + \alpha_V}{2},\tag{6.8}
$$

$$
\alpha_{U_3} - \alpha_t = \alpha_{U_3} + \alpha_{\nu} - 2\alpha_{x_3} \quad \Rightarrow \quad \alpha_{x_3} = \frac{\alpha_t + \alpha_{\nu}}{2}.
$$
 (6.9)

396 In other words, the scaling exponents of the length scale must be identical for $i = 1, 2, 3$ because

³⁹⁷ the fluids are considered isotropic, therefore

16

. rspa.royalsocietypublishing.org Proc R Soc A 0000000

rspa.royalsocietypublishing.org Proc R Soc A 0000000
rspa.royalsocietypublishing.org Proc R

$$
\alpha_{x_1} = \alpha_{x_2} = \alpha_{x_3} = \alpha_x. \tag{6.10}
$$

 $_{\rm ^{398}}$ Similarly, α_{U_1} , α_{U_2} and α_{U_3} are obtained from Eqs. [\(6.2\)](#page-15-1) to [\(6.4\)](#page-15-2) as follows:

$$
\alpha_{U_1} - \alpha_t = \alpha_{U_1} + \alpha_{U_1} - \alpha_x \quad \Rightarrow \quad \alpha_{U_1} = \alpha_x - \alpha_t,\tag{6.11}
$$

$$
\alpha_{U_2} - \alpha_t = \alpha_{U_2} + \alpha_{U_2} - \alpha_x \quad \Rightarrow \quad \alpha_{U_2} = \alpha_x - \alpha_t,\tag{6.12}
$$

$$
\alpha_{U_3} - \alpha_t = \alpha_{U_3} + \alpha_{U_3} - \alpha_x \quad \Rightarrow \quad \alpha_{U_3} = \alpha_x - \alpha_t. \tag{6.13}
$$

399 Hence, α_{U_1} , α_{U_2} and α_{U_3} are also equal;

$$
\alpha_{U_1} = \alpha_{U_2} = \alpha_{U_3} = \alpha_U = \alpha_x - \alpha_t. \tag{6.14}
$$

 400 Consequently, u_1 , u_2 and u_3 have the same exponents in all directions as well because they are 401 transformed by using the velocity ratio

$$
\alpha_{u_1} = \alpha_{u_2} = \alpha_{u_3} = \alpha_u. \tag{6.15}
$$

⁴⁰² The results in Eqs. [\(6.10\)](#page-16-0) to [\(6.15\)](#page-16-1) are important because the selections of unique scaling 403 exponents for length and velocity scales in the ith axis is necessary to achieve self-similarity of 404 air-water flows. α_g , α_p and α_ν are obtained from Eqs. [\(6.2\)](#page-15-1) to [\(6.4\)](#page-15-2) and they can be written in 405 terms of α_x , α_t and α_ρ as

$$
\alpha_U - \alpha_t = \alpha_g \quad \Rightarrow \quad \alpha_g = \alpha_x - 2\alpha_t,\tag{6.16}
$$

$$
\alpha_U - \alpha_t = \alpha_p - \alpha_\rho - \alpha_x \quad \Rightarrow \quad \alpha_p = 2\alpha_x - 2\alpha_t + \alpha_\rho,\tag{6.17}
$$

$$
\alpha_U - \alpha_t = \alpha_U + \alpha_V - 2\alpha_x \quad \Rightarrow \quad \alpha_V = 2\alpha_x - \alpha_t. \tag{6.18}
$$

⁴⁰⁶ By using Eqs. [\(6.2\)](#page-15-1) and [\(6.6\)](#page-15-3)

$$
\alpha_U - \alpha_t = \alpha_{f_\sigma} - \alpha_\rho \quad \Rightarrow \quad \alpha_x - 2\alpha_t = \alpha_\sigma - 2\alpha_x - \alpha_\rho,\tag{6.19}
$$

⁴⁰⁷ from which

$$
\alpha_{\sigma} = 3\alpha_x - 2\alpha_t + \alpha_{\rho}.\tag{6.20}
$$

408 Similarly, Eqs. [\(2.4\)](#page-3-3) to [\(2.7\)](#page-3-1) are transformed by keeping $C_{\epsilon 1}$, $C_{\epsilon 2}$, C_{μ} , C_{σ_k} and $C_{\sigma_{\epsilon}}$ as ⁴⁰⁹ dimensionless coefficients

$$
-\beta^{\alpha_{\overline{u}\overline{u}}}\overline{u_i^*u_j^*} = \beta^{\alpha_{\nu_t}+\alpha_U-\alpha_x}\nu_t^*\frac{\partial U_i^*}{\partial x_j^*} + \beta^{\alpha_{\nu_t}+\alpha_U-\alpha_x}\nu_t^*\frac{\partial U_j^*}{\partial x_i^*} - \frac{2}{3}\beta^{\alpha_k}k^*\delta_{ij},\tag{6.21}
$$

$$
\beta^{\alpha_{\nu_t}} \nu_t^* = \beta^{2\alpha_k - \alpha_\epsilon} C_\mu \frac{k^{*2}}{\epsilon^*},\tag{6.22}
$$

$$
\beta^{\alpha_k - \alpha_t} \frac{\partial k^*}{\partial t^*} + \beta^{\alpha_U + \alpha_k - \alpha_x} U_j^* \frac{\partial k^*}{\partial x_j^*} = \beta^{\alpha_{P_k}} P_k^* - \beta^{\alpha_{\epsilon}} \epsilon^* + \beta^{\alpha_{\nu} + \alpha_k - 2\alpha_x} \frac{\partial}{\partial x_j^*} \left(\nu^* \frac{\partial k^*}{\partial x_j^*} \right) \tag{6.23}
$$

$$
+ \beta^{\alpha_{\nu_t} + \alpha_k - 2\alpha_x} \frac{\partial}{\partial x_j^*} \left(\nu^*_{t} / C_{\sigma_k} \frac{\partial k^*}{\partial x_j^*} \right)
$$

⁴¹⁰ and

$$
\beta^{\alpha_{\epsilon}-\alpha_{t}}\frac{\partial \epsilon^{*}}{\partial t^{*}} + \beta^{\alpha_{U}+\alpha_{\epsilon}-\alpha_{x}}U_{j}^{*}\frac{\partial \epsilon^{*}}{\partial x_{j}^{*}} = \beta^{\alpha_{\epsilon}+\alpha_{P_{k}}-\alpha_{k}}C_{\epsilon 1}\frac{\epsilon^{*}}{k^{*}}P_{k}^{*} - \beta^{2\alpha_{\epsilon}-\alpha_{k}}C_{\epsilon 2}\frac{\epsilon^{*2}}{k^{*}}
$$
(6.24)

$$
+\beta^{\alpha_{\nu}+\alpha_{\epsilon}-2\alpha_{x}}\frac{\partial \nu^{*}}{\partial x_{j}^{*}}\left(\frac{\partial \epsilon^{*}}{\partial x_{j}^{*}}\right)+\beta^{\alpha_{\nu_{t}}+\alpha_{\epsilon}-2\alpha_{x}}\frac{\partial}{\partial x_{j}^{*}}\left[\left(\frac{\nu_{t}^{*}}{C_{\sigma_{\epsilon}}}\right)\frac{\partial \epsilon^{*}}{\partial x_{j}^{*}}\right].
$$

⁴¹¹ For Eqs. [\(6.21\)](#page-16-2) to [\(6.24\)](#page-17-0) to be self-similar, the following conditions must hold

$$
\alpha_{\overline{uu}} = \alpha_{\nu_t} + \alpha_U - \alpha_x
$$

= $\alpha_{\nu_t} + \alpha_U - \alpha_x$ (6.25)

$$
=\alpha_k,
$$

$$
\alpha_{\nu_t} = 2\alpha_k - \alpha_\epsilon,\tag{6.26}
$$

$$
\alpha_k - \alpha_t = \alpha_U + \alpha_k - \alpha_x
$$

= α_{P_k}
= α_{ϵ}
= $\alpha_{\nu} + \alpha_k - 2\alpha_x$
= $\alpha_{\nu_t} + \alpha_k - 2\alpha_x$ (6.27)

⁴¹² and

$$
\alpha_{\epsilon} - \alpha_{t} = \alpha_{U} + \alpha_{\epsilon} - \alpha_{x}
$$

\n
$$
= \alpha_{\epsilon} + \alpha_{P_{k}} - \alpha_{k}
$$

\n
$$
= 2\alpha_{\epsilon} - \alpha_{k}
$$

\n
$$
= \alpha_{\nu} + \alpha_{\epsilon} - 2\alpha_{x}
$$

\n
$$
= \alpha_{\nu_{t}} + \alpha_{\epsilon} - 2\alpha_{x}.
$$

\n(6.28)

⁴¹³ ν_t has the same dimension as ν , therefore, Eq. [\(6.18\)](#page-16-3) yields

$$
\alpha_{\nu_t} = 2\alpha_x - \alpha_t. \tag{6.29}
$$

 414 $\alpha_{\overline{uu}}$ is the same in all directions and it is calculated from Eqs. [\(6.25\)](#page-17-1) and [\(6.29\)](#page-17-2) as

$$
\alpha_{\overline{uu}} = \alpha_{\nu_t} + \alpha_U - \alpha_x \quad \Rightarrow \quad \alpha_{\overline{uu}} = 2\alpha_x - 2\alpha_t. \tag{6.30}
$$

⁴¹⁵ From Eq. [\(6.25\)](#page-17-1) α_k is obtained ($\alpha_k = 2\alpha_x - 2\alpha_t$). Finally, α_ϵ and α_{P_k} are obtained from Eqs. [\(6.26\)](#page-17-3) 416 and (6.27) as

$$
\alpha_{\epsilon} = 2\alpha_{k} - \alpha_{\nu_{t}} \quad \Rightarrow \quad \alpha_{\epsilon} = 2\alpha_{x} - 3\alpha_{t}, \tag{6.31}
$$

$$
\alpha_{P_k} = \alpha_k - \alpha_t \quad \Rightarrow \quad \alpha_{P_k} = 2\alpha_x - 3\alpha_t. \tag{6.32}
$$

⁴¹⁷ The Lie group transformations are also applied to the initial and boundary conditions. The 418 initial velocity $U(x_i,t=0) = U_{i_0}(x_i)$ and pressure fields $p(x_i,t=0) = p_0(x_i)$ are transformed as

rspa.royalsocietypublishing.org Proc R Soc A 0000000
rspa.royalsocietypublishing.org Proc R . rspa.royalsocietypublishing.org Proc R Soc A 0000000

18

$$
U_{i_0}^*(x_i^*) = \beta^{-\alpha_U} U_{i_0}(x_i) = \beta^{-\alpha_U} U_{i_0}(\beta^{\alpha_x} x_i^*),
$$
\n(6.33)

$$
p_0^*(x_1^*) = \beta^{-\alpha_p} p_0(x_1) = \beta^{-\alpha_p} p_0(\beta^{\alpha_x} x_1^*).
$$
 (6.34)

- Another boundary condition is the zero gradient $\frac{\partial}{\partial x_i}\phi = 0$ for a flow variable ϕ . This gradient
- ⁴²⁰ condition is transformed as $β^{αφ−α_x} ∂^θ⁄_{2π_i} φ[*] = 0$. Since $β ≠ 0$, this does not pose any limitation in
- ⁴²¹ the scaling conditions ($\frac{\partial}{\partial x_i} \phi^* = 0$).

References

- 1. Hager WH, Castro-Orgaz O. 2017 William Froude and the Froude number. *Journal of Hydraulic Engineering* **143**, 02516005.
- 2. Heller V. 2011 Scale effects in physical hydraulic engineering models. *Journal of Hydraulic Research* **49(3)**, 293–306.
- 3. Hughes SA. 1993 *Physical models and laboratory techniques in coastal engineering* vol. 7. Singapore: World Scientific.
- 4. Ali SZ, Dey S. 2017 Origin of the scaling laws of sediment transport. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* **473**, 20160785.
- 5. Frisch U. 1995 *Turbulence: the legacy of AN Kolmogorov*. Cambridge: Cambridge University Press.
- 6. Heller V. 2017 Self-similarity and Reynolds number invariance in Froude modelling. *Journal of Hydraulic Research* **55(3)**, 293–309.
- 7. Bi ´n AK. 1993 Gas entrainment by plunging liquid jets. *Chemical Engineering Science* **48(21)**, 3585–3630.
- 8. Kiger KT, Duncan JH. 2012 Air-entrainment mechanisms in plunging jets and breaking waves. *Annual Review of Fluid Mechanics* **44**, 563–596.
- 9. Felder S, Chanson H. 2017 Scale effects in microscopic air-water flow properties in high-velocity free-surface flows. *Experimental Thermal and Fluid Science* **83**, 19–36.
- 10. Heller V, Hager WH, Minor H-E. 2008 Scale effects in subaerial landslide generated impulse waves. *Experiments in Fluids* **44(5)**, 691–703.
- 11. Stagonas D, Warbrick D, Muller G, Magagna D. 2011 Surface tension effects on energy dissipation by small scale, experimental breaking waves. *Coastal Engineering* **58(9)**, 826–836.
- 12. Blenkinsopp C, Chaplin J. 2007 Void fraction measurements in breaking waves. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* **463**, 3151–3170.
- 13. Chanson H, Aoki S, Hoque A. 2004 Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets. *Chemical Engineering Science* **59(4)**, 747–758.
- 14. Wang H, Chanson H. 2015 Air entrainment and turbulent fluctuations in hydraulic jumps. *Urban Water Journal* **12(6)**, 502–518.
- 15. Leighton TG, Coles DG, Srokosz M, White PR, Woolf DK. 2018 Asymmetric transfer of CO2 across a broken sea surface. *Scientific Reports* **8**, 1–9.
- 16. Mustaffa NIH, Ribas-Ribas M, Banko-Kubis HM, Wurl O. 2020 Global reduction of in situ CO2 transfer velocity by natural surfactants in the sea-surface microlayer. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* **476**, 20190763.
- 17. Barenblatt GI. 1996 *Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics*. Cambridge: Cambridge University Press.
- 18. Barenblatt GI. 2003 *Scaling (Vol. 34)*. Cambridge: Cambridge University Press.
- 19. Henriksen RN. 2015 *Scale invariance: self-similarity of the physical world*. Weinheim, Germany: John Wiley & Sons.
- 20. Zohuri B. 2015 *Dimensional analysis and self-similarity methods for engineers and scientists*. Cham: Springer.
- 21. Polyanin AD, Manzhirov AV. 2008 *Handbook of integral equations*. London: Chapman and Hall.
- 22. Lie S. 1880 Theorie der Transformationsgruppen I. *Mathematische Annalen* **16(4)**, 441–528. 23. Bluman GW, Cole JD. 1974 *Similarity methods for differential equations* vol. 13. New York:
- Springer. 24. Bluman G, Anco S. 2002 *Symmetry and integration methods for differential equations* vol. 154. New York: Springer.

- 25. Haltas I, Kavvas M. 2011 Scale invariance and self-similarity in hydrologic processes in space and time. *Journal of Hydrologic Engineering* **16(1)**, 51–63.
- 26. Polsinelli J, Kavvas ML. 2016 A comparison of the modern Lie scaling method to classical scaling techniques. *Hydrology and Earth System Sciences* **20**, 2669–2678.
- 27. Ercan A, Kavvas ML, Haltas I. 2014 Scaling and self-similarity in one-dimensional unsteady open channel flow. *Hydrological Processes* **28**, 2721–2737.
- 28. Ercan A, Kavvas ML. 2015 Scaling and self-similarity in two-dimensional hydrodynamics. *Chaos: An Interdisciplinary Journal of Nonlinear Science* **25(7)**, 075404.
- 477 29. Ercan A, Kavvas ML. 2017 Scaling relations and self-similarity of 3-dimensional Reynolds-averaged Navier-Stokes equations. *Scientific Reports* **7(1)**, 6416.
- 30. Huang W, Yang Q, Xiao H. 2009 CFD modeling of scale effects on turbulence flow and scour around bridge piers. *Computers & Fluids* **38**, 1050–1058.
- 31. Oliveira FS, Contente J. 2013 Scale effects in numerical modelling of beach profile erosion. *Journal of Coastal Research* **65**, 1815–1820.
- 32. Torres C, Borman D, Sleigh A, Neeve D. 2018 Investigating scale effects of a hydraulic physical model with 3D CFD. In *Smart Dams and Reservoirs-Proceedings of the 20th Biennial Conference of the British Dam Society* pp. 89–101. ICE.
- 33. Carr K, Ercan A, Kavvas M. 2015 Scaling and self-similarity of one-dimensional unsteady suspended sediment transport with emphasis on unscaled sediment material properties. *Journal of Hydraulic Engineering* **141**, 04015003.
- 34. Zhainakov AZ, Kurbanaliev A. 2013 Verification of the open package OpenFOAM on dam break problems. *Thermophysics and Aeromechanics* **20(4)**, 451–461.
- 35. Greenshields CJ. 2019 *The Open Source CFD Toolbox, User Guide*. OpenFOAM Foundation Ltd.
- 36. Pope SB. 2000 *Turbulent Flows*. Cambridge: Cambridge University Press.
- 37. Launder B, Spalding D. 1974 The numerical computation of turbulent flows. *Computer Methods in Applied Mechanics and Engineering* **3**, 269–289.
- 38. Fan W, Anglart H. 2020 varRhoTurbVOF: A new set of volume of fluid solvers for turbulent isothermal multiphase flows in OpenFOAM. *Computer Physics Communications* **247**, 106876.
- 39. Ercan A, Kavvas ML. 2015 Self-similarity in incompressible Navier-Stokes equations. *Chaos: An Interdisciplinary Journal of Nonlinear Science* **25(12)**, 123126.
- 40. Brackbill JU, Kothe DB, Zemach C. 1992 A continuum method for modeling surface tension. *Journal of Computational Physics* **100(2)**, 335–354.
- 41. Deshpande SS, Anumolu L, Trujillo MF. 2012 Evaluating the performance of the two-phase flow solver interFoam. *Computational Science & Discovery* **5(1)**, 014016.
- 42. Roenby J, Bredmose H, Jasak H. 2016 A computational method for sharp interface advection. *Royal Society Open Science* **3**, 160405.
- 43. Issakhov A, Zhandaulet Y, Nogaeva A. 2018 Numerical simulation of dam break flow for various forms of the obstacle by VOF method. *International Journal of Multiphase Flow* **109**, 191–206.
- 44. Kleefsman K, Fekken G, Veldman A, Iwanowski B, Buchner B. 2005 A volume-of-fluid based simulation method for wave impact problems. *Journal of Computational Physics* **206(1)**, 363–393.
- 45. Courant R, Friedrichs K, Lewy H. 1967 On the partial difference equations of mathematical physics. *IBM Journal of Research and Development* **11**, 215–234.
- 46. Boualouache A, Zidouni F, Mataoui A. 2018 Numerical visualization of plunging water jet using volume of fluid model. *Journal of Applied Fluid Mechanics* **11(1)**, 95–105.
- 47. Hassan SH, Guo T, Vlachos PP. 2019 Flow field evolution and entrainment in a free surface plunging jet. *Physical Review Fluids* **4**, 104603.
- 48. Massey Jr FJ. 1951 The Kolmogorov-Smirnov test for goodness of fit. *Journal of the American Statistical Association* **46**, 68–78.
- 49. McKeogh E, Ervine D. 1981 Air entrainment rate and diffusion pattern of plunging liquid jets. *Chemical Engineering Science* **36**, 1161–1172.
- 50. Kline SJ. 1965 *Similitude and approximation theory*. London: McGraw-Hill.
- 51. Rouse H, Siao TT, Nagaratnam S. 1958 Turbulence characteristics of the hydraulic jump. *Journal of the Hydraulics Division* **84**, 1–30.
- 52. Lu G, Duan YY, Wang XD. 2014 Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level. *Journal of Nanoparticle Research* **16(9)**, 2564.
- 526 53. Xu M, Liu H, Zhao H, Li W. 2013 How to decrease the viscosity of suspension with the second fluid and nanoparticles? *Scientific Reports* **3**, 3137.