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The Froude scaling laws have been common to model
a wide range of water flows at reduced size for almost
one century. In such Froude scale models, significant
scale effects for air-water flows (e.g. hydraulic jumps
or wave breaking) are typically observed. This
study introduces novel scaling laws, excluding scale
effects in the modelling of air-water flows. This is
achieved by deriving the conditions under which
the governing equations are self-similar. The one
parameter Lie group of point scaling transformations
is applied to the Reynolds-averaged Navier-Stokes
equations, including surface tension effects. The
scaling relationships between variables are derived
for the flow variables, fluid properties and initial
and boundary conditions. Numerical simulations are
conducted to validate the novel scaling laws for (i)
a dam break flow interacting with an obstacle and
(ii) a vertical plunging water jet. Results for flow
variables, void fraction and turbulent kinetic energy
are shown to be self-similar at different scales, i.e.
they collapse in dimensionless form. Moreover, these
results are compared with those obtained using the
traditional Froude scaling laws showing significant
scale effects. The novel scaling laws are a more
universal and flexible alternative with a genuine
potential to improve laboratory modelling of air-
water flows.

1. Introduction
Physical modelling at reduced size is one of the
oldest and most important design tools in hydraulic
engineering. For processes of engineering interest
involving free surface flows, the Froude scaling laws
have been used since they were introduced by Moritz
Weber in 1930 [1]. They ensure that the ratio between the

1

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:daniele.catucci@nottingham.ac.uk
mailto:daniele.catucci@nottingham.ac.uk


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................
inertial and gravity force, namely the Froude number Fr, is the same in the model and in2

nature, i.e. in the prototype. Other force ratios, such as the Reynolds number Re (inertial force to3

viscous force) and the Weber number We (inertial force to surface tension force), are represented4

incorrectly if the fluid properties are the same in the prototype and its model [2–4]. Froude scaling5

laws are particularly useful for laminar flows (Re→ 0) and also for fully turbulent flows (Re→∞)6

to investigate Reynolds number invariant fluid parameters [5,6].7

However, the Froude scaling laws are also used for flows involving air-entrainment, e.g. air8

bubbles entrapment into water flows, hereafter referred to as air-water flows. For these, density,9

viscosity and surface tension between water and air play a central role such that Fr, Re and We are10

all important [7,8]. Indeed, most studies suggest that the Froude scaling laws without scaled fluid11

properties underestimate air entrainment because the effects of viscosity and surface tension are12

over-represented in the model [9–11].13

Air-water flows are observed in many hydraulic phenomena such as spillway flows, hydraulic14

jumps, wave breaking and plunging jets, which are still modelled with Froude scaling laws,15

despite of their limitations [12–14]. Moreover, air-entrainment occurs at the free surface of oceans,16

rivers and streams as an important mechanism for the transport of oxygen and carbon dioxide,17

critical for the survival of these ecosystems [15,16]. Despite of many studies, turbulent air-water18

flows remain not well understood such that costly case-specific, large-scale investigations are19

commonly required to avoid scale effects [2].20

An analytical approach to derive novel scaling laws can be based upon self-similarity of the21

governing equations. A self-similar object is identical to a part of itself. As such, the scaling of22

an object that follows suitable laws results in a self-similar scaled copy of the object itself [17–20]23

and a self-similar process behaves the same way at different scales, such that scale effects are24

avoided [21]. For example, a scaled model and the prototype of a hydraulic jump are self-similar25

if dimensionless results are identical. This implies that the dimensionless velocity field and the26

void fraction are variables that are invariant when self-similarity is achieved.27

Self-similar conditions for phenomena with negligible surface tension effects have previously28

been derived by applying the one-parameter Lie group of point scaling transformations [22]29

(hereafter referred to as Lie group transformations). Lie group transformations are originally30

used to reduce the number of independent variables of an initial-boundary value problem by31

transforming it in a new space where the solution of the problem is the same as the original32

[20,23,24]. This approach has been applied by [25] to derive the conditions under which various33

hydrological processes are self-similar through the change in size. Consequently, the Lie group34

transformations can be used to find the scaling laws of the variables that can guarantee self-35

similarity of a phenomenon. The advantage of this approach is that it gives a complete picture of36

the requirements that must be satisfied for self-similarity, in contrast with a classical dimensional37

analysis, based on Buckingham π theorem, which is only applied to the dynamics in the interior38

of the domain and not to the boundary conditions [26,27].39

Self-similar conditions of a depth-averaged 2D hydrodynamic equations system and the 3D40

Reynolds-Averaged Navier-Stokes (RANS) equations were derived in [28,29]. These two showed41

self-similar conditions of the variables in the RANS equations with k-ε closure for phenomena42

that are dominated by gravity and viscous effects. The scaling laws found by [29] were applied43

numerically to a lid-driven cavity flow, showing self-similar behaviour. In both studies [28] and44

[29], Computational Fluid Dynamics (CFD) was used to demonstrate that the proposed scaling45

laws involve no scale effects. Indeed, CFD can be used to investigate scale effects numerically46

and the scale and properties of fluids are more easily controlled than in laboratory experiments47

[30–33].48

To the knowledge of the authors, there are no studies addressing the analytical conditions for49

which the governing equations involving viscous and surface tension effects are simultaneously50

self-similar when scaled in size. In the present study, we derive novel scaling laws by applying the51

Lie group transformations to the governing equations of air-water flows including surface tension52

effects. No other assumptions are made in the application of the Lie group transformations. This53
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article shows, by simulating a range of scales, that the derived self-similar conditions for air-water54

flows and their boundary conditions can be used to achieve self-similarity.55

The derived scaling laws are applied numerically to two air-water flow processes, namely (i)56

a dam break flow interacting with an obstacle, generating large deformations of the free surface57

[34], and (ii) a vertical circular plunging water jet impinging on quiescent water characterised by58

significant air entrainment, based on the experimental results of [13]. The 3D RANS equations59

govern both phenomena in which both viscosity and surface tension play a central role.60

Air-water flows are here simulated by using interFoam, a numerical solver for 2-phase61

incompressible fluids flows based on the Volume of Fluid (VOF) method implemented in62

the OpenFOAM v1706 CFD package [35]. In these simulations, all the boundary and initial63

conditions, including the properties of the fluid, are transformed using the novel scaling laws64

at different geometrical scales with scale factors λ=
lp
lm

, where lp is a characteristic length in the65

prototype (subscript p) and lm the corresponding one in the model (subscript m). The processes66

are scaled using values of λ for which a correct representation of surface tension and viscous67

effects are essential to avoid significant scale effects. The two processes are also simulated with the68

commonly applied Froude scaling laws using ordinary water and air in the model, as common69

in laboratory experiments (herein called traditional Froude scaling), and the Froude scaling laws70

in which the properties of the fluids are strictly scaled (herein called precise Froude scaling). It is71

demonstrated that the novel scaling laws involve no scale effects, in contrast to traditional Froude72

scaling, and they are also more universal and flexible than precise Froude scaling.73

This article is organised as follows: in Sec. 2 the Lie group transformations are applied to the74

governing equations and the novel scaling laws are derived. The numerical model is presented in75

Sec. 3. Subsequently, the two CFD case studies are illustrated in Sec. 4, including the set-up, the76

application of the novel scaling laws and the results. The findings of this research are discussed77

in Sec. 5 and the conclusions and recommendations for future work are given in Sec. 6. Finally,78

Appendix A includes the details of the derivation of the novel scaling laws and the self-similar79

conditions due to the initial and boundary conditions.80

2. Analytical derivation of the novel scaling laws81

(a) Governing equations82

Air-water flows are here described by the RANS equations for incompressible fluids:83

∂Uj

∂xj
= 0 (2.1)

and84

∂Ui
∂t

+ Uj
∂Ui
∂xj

=
∂

∂xj

(
ν
∂Ui
∂xj
− uiuj

)
− 1

ρ

∂p

∂xi
+ gi +

1

ρ
fσ, i, j = 1, 2, 3, (2.2)

where i is the free index, j the dummy index, following Einstein’s notation, t is time, xi and xj85

are the spatial coordinates, Ui and Uj the Reynolds-averaged flow velocity components, ui and86

uj the fluctuating velocity components, uiuj is the Reynolds stress term, p the Reynolds-averaged87

pressure, ν the kinematic viscosity, ρ the density of the fluid, gi = (g1, g2, g3) the gravitational88

acceleration vector and fσ the surface tension force per unit volume defined as89

fσ = σκ
∂γ

∂xi
. (2.3)

In Eq. (2.3) σ is the surface tension constant, κ the curvature of the free surface and γ the phase90

fraction. This is a dimensionless variable with values between 0 and 1 that is used to identify any91
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air/water interface (see Sec. 3). The k-ε model is here applied for the Reynolds-stresses in Eq.92

(2.2), (see [36] for more details), for which93

−uiuj = νt

(
∂Ui
∂xj

+
∂Uj

∂xi

)
− 2/3kδij, (2.4)

where k is the turbulent kinetic energy, δij the Kronecker delta and νt the eddy viscosity94

νt =Cµk
2/ε. (2.5)

k, and its rate of dissipation ε, are calculated from95

∂k

∂t
+ Uj

∂k

∂xj
= Pk − ε+

∂

∂xj

[
(ν + νt/Cσk )

∂k

∂xj

]
(2.6)

and96

∂ε

∂t
+ Uj

∂ε

∂xj
=Cε1

ε

k
Pk − Cε2

ε2

k
+

∂

∂xj

[
(ν + νt/Cσε)

∂ε

∂xj

]
. (2.7)

Pk = ut
∂Ui
∂xj

(∂Ui
∂xj

+
∂Uj
∂xi

)
and Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, Cσk = 1.0 and Cσε = 1.3 are the97

standard model coefficients used in the k-ε turbulence model [37]. The approach used her for98

turbulence modelling, combined with the VOF method has been recognised to overestimate k99

[38], although this does not affect the derivation of the scaling laws and the self-similarity of the100

representation of the process.101

(b) One parameter Lie group transformations102

The Lie group is defined as103

φ= βαφφ∗. (2.8)

Eq. (2.8) transforms the variable φ in the original space into the variable φ∗ in the transformed (*)104

space, β is the scaling parameter and αφ the scaling exponent of the variable φ. The scaling ratio105

of the variable φ is rφ = φ/φ∗ = βαφ [29,39].106

All the variables of Eqs. (2.1) to (2.7) in the original domain are written in the transformed107

domain as:108

x1 = βαx1x∗1, x2 = βαx2x∗2, x3 = βαx3x∗3, t= βαtt∗,

U1 = βαU1U∗1 , U2 = βαU2U∗2 , U3 = βαU3U∗3 , p= βαpp∗,

gi = βαgg∗i , ρ= βαρρ∗, ν = βανν∗, σ= βασσ∗, κ= βακκ∗, (2.9)

u1 = βαu1u∗1, u2 = βαu2u∗2, u3 = βαu3u∗3,

k= βαkk∗, ε= βαεε∗, νt = βανt ν∗t , Pk = βαPkP ∗k .

Self-similar conditions are obtained when the governing equations in the original domain,109

subjected to the Lie group transformations, remain invariant. The Lie group transformations for110

Eq. (2.1) yields the following equation in the transformed domain111

∂βαU1U∗1
∂βαx1x∗1

+
∂βαU2U∗2
∂βαx2x∗2

+
∂βαU3U∗3
∂βαx3x∗3

= 0, (2.10)

which, with β being a constant parameter, is rearranged as112
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βαU1
−αx1 ∂U

∗
1

∂x∗1
+ βαU2

−αx2 ∂U
∗
2

∂x∗2
+ βαU3

−αx3 ∂U
∗
3

∂x∗3
= 0. (2.11)

Self-similarity is achieved if Eq. (2.11) can be obtained from Eq. (2.1) by means of a simple scaling113

process. Therefore, all terms of Eq. (2.11) must be transformed by using the same scaling ratios:114

βαU1
−αx1 = βαU2

−αx2 = βαU3
−αx3 ⇒ αU1

− αx1 = αU2
− αx2 = αU3

− αx3 . (2.12)

Table 1. Novel and precise Froude scaling laws for the variables of the RANS equations and the k-ε turbulence model

obtained by applying the Lie group transformations.

Variables
Scaling conditions in terms of

αx, αt and αρ (novel scaling laws)
Scaling conditions in terms of

αx, αρ and αg = 0

Scaling conditions in terms of
αx, αρ = αg = 0

(precise Froude scaling laws)
Exponents Scaling ratios Exponents Scaling ratios Exponents Scaling ratios

Length (m) αx βαx αx βαx αx βαx = λ

Time (s) αt βαt αt = 0.5αx β0.5αx αt = 0.5αx β0.5αx = λ0.5

Density (kg/m3) αρ βαρ αρ βαρ αρ = 0 β0 = 1

Velocity (m/s) αU = αx − αt βαx−αt αU = 0.5αx β0.5αx αU = 0.5αx β0.5αx = λ0.5

Pressure (Pa) αp = 2αx − 2αt + αρ β2αx−2αt+αρ αp = αx + αρ βαx+αρ αp = αx βαx = λ

Gravitational acceleration (m/s2) αg = αx − 2αt βαx−2αt αg = 0 β0 = 1 αg = 0 β0 = 1

Viscosity (m2/s) αν = 2αx − αt β2αx−αt αν = 1.5αx β1.5αx αν = 1.5αx β1.5αx = λ1.5

Surface tension (N/m) ασ = 3αx − 2αt + αρ β3αx−2αt+αρ ασ = 2αx + αρ β2αx+αρ ασ = 2αx β2αx = λ2

Curvature of the free surface (1/m) ακ = α−1x βα
−1
x ακ = α−1x βα

−1
x ακ = α−1x βα

−1

= λ−1

Eddy viscosity (m2/s) ανt = 2αx − αt β2αx−αt ανt = 1.5αx β1.5αx ανt = 1.5αx β1.5αx = λ1.5

Reynolds stresses (m2/s2) α〈ui,uj〉 = 2αx − 2αt β2αx−2αt α〈ui,uj〉 = αx βαx α〈ui,uj〉 = αx βαx = λ

Turbulent kinetic energy (m2/s2) αk = 2αx − 2αt β2αx−2αt αk = αx βαx αk = αx βαx = λ

Dissipation (m2/s3) αε = 2αx − 3αt β2αx−3αt αε = 0.5αx β0.5αx αε = 0.5αx β0.5αx = λ0.5

Production of turbulence due to
horizontal velocity gradients (m2/s3)

αPk = 2αx − 3αt β2αx−3αt αPk = 0.5αx β0.5αx αPk = 0.5αx β0.5αx = λ0.5

To attain self-similarity of air-water flows, the exponents for length, velocity and fluctuating115

velocity components have to be identical for the ith axis. This is shown in Appendix A where the116

detailed derivation of Eqs. (2.2) to (2.7) is presented. Hereafter, αx, αU and αu are used to indicate117

the scaling exponents of length, Reynolds-averaged velocity and fluctuating velocity components118

on the ith axis. Similarly, αρ, αν and ασ are derived by applying the Lie group transformations to119

Eq. (2.3). Further, based on Eqs. (2.5) to (2.7), the scaling conditions for the turbulent parameters120

are derived. In addition, the detailed derivation of the self-similar conditions for the initial and121

boundary conditions are also shown in Appendix A. The scaling conditions derived above are122

summarised in the second column of Table 1. They are consistent with those reported in Table 1123

and 2 in [29] with addition of the surface tension and the curvature of the free surface. All the124

exponents are written in terms of three independent scaling exponents, namely αx, αt and αρ,125

meaning that they are user-defined (their choice is flexible). In fact, the solution of air-water flows126

equations can be mapped to solutions in other transformed domains with different λ= βαx by127

selecting the scaling parameter β and changing the α of three independent variables.128

It is possible to assign the value of one or two of the threeαwhile still preserving self-similarity.129

For example, in Table 1 it is shown that choosing αg = 0 implies that αg = αx − 2αt. Therefore,130

the unscaled g requires that αt = 0.5αx. In this configuration, the remaining scaling exponents131

are written in terms of αx, αρ and αg = 0 (fourth and fifth columns of Table 1). Hence, keeping g132

invariant in a scaled model requires to scale time and flow velocities and to change the properties133

of the fluids to obtain a self-similar behaviour. A further restriction can be imposed on the density134

of the fluids, namely αρ = 0. This restriction leads to the well-known precise Froude scaling laws135

[3], as a particular case of the novel scaling laws, where g is constant and ν and ρ are scaled by136

keeping Re and We invariant.137
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3. Numerical model138

Air-water flows are simulated by using the 2-phases flow solver interFoam, based on the VOF139

method, implemented in the OpenFOAM v1706 CFD package [35]. A single system of RANS140

equations is solved with the pressure and velocity fields shared among both phases. The interface141

between water and air is identified by a value of the phase fraction γ between γ = 1 (water) and142

γ = 0 (air). The fluid properties used in the equations are mapped in all domains as a weighted143

average using γ as weight, e.g. for ρ and ν:144

ρ= γρw + (1− γ)ρa, (3.1)

ν = γνw + (1− γ)νa, (3.2)

where subscripts w and a refer to the water and air phase, respectively. σ appears in Eq. (2.3)145

to model the surface tension force per unit volume, as stated in the Continuum Surface Force146

method proposed by [40]. The curvature of the interface between two fluids κ is defined as147

κ=− ∂

∂xi

(
∂γ/∂xi
| ∂γ/∂xi |

)
. (3.3)

γ is transported as a scalar by the flow field and the interface location (e.g. the free surface) is148

updated by solving the volume fraction equation149

∂γ

∂t
+
∂(γUj)

∂xj
= 0. (3.4)

The interface reconstruction technique used by interFoam is MULES [41]. The free surface can also150

be captured by using alternative techniques, such as the isoAdvector method [42]. However, the151

governing equations remain the same and the self-similarity of the representation of the process152

under the novel scaling laws is not affected by the interface reconstruction technique.153

4. Numerical results154

The self-similar conditions of the novel scaling laws are validated with the simulation of two155

physical processes: (i) a dam break flow interacting with an obstacle and (ii) a vertical plunging156

water jet. The simulations for both processes involve the prototype and a number of scaled models157

up to large geometrical scale factors of λ= 16.158

(a) Dam break flow159

Dam break flows have been widely investigated numerically and the specific case addressed160

herein is chosen because it is a well-known test to validate the modelling of large deformations of161

free surfaces [43,44]. The solver used in the present study has been validated with this particular162

test case by [34]. In this study, γ = 0.1 is selected to identify the air/water interface in the VOF163

method. γ = 0.1 is obtained by considering the value between 0 and 1 providing the best fit with164

the experimental void fraction distribution in Sec. 4(b).165

(i) Numerical set-up166

The initial condition at t= 0 consists of a quiescent water column of volume 1.228× 0.550× 1.000167

m3, located at the left side of a 3.220× 1.000× 1.000 m3 tank (Fig. 1). A prismatic fixed obstacle168

with a volume of 0.160× 0.160× 0.403 m3 is located at x1 = 2.395 m. The water column is169

released instantaneously at t= 0. Subsequently, the flow impacts the obstacle and creates a170

complex two-phase flow. The top wall of the domain is modelled as an open, fully transmissive171
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boundary at atmospheric pressure and all the remaining walls as no-slip boundary conditions.172

The water density is ρw = 1000 kg/m3, its kinematic viscosity νw = 1× 10−6 m2/s and the173

surface tension constant σ= 0.07 N/m.174

A 180 (length) × 60 (width) × 80 (height) Cartesian computational grid was used, apart from175

the obstacle. Note that, due to the orientation of the reference frame, for this case gi = (0, 0,−g) in176

Eq. (2.2). The time step ∆t was set equal to 0.001 s at the start of the simulation and it was varied177

subsequently by respecting the CFL condition178

Uj∆t

∆xj
<Cmax, (4.1)

where ∆xi is the mesh size in the Cartesian coordinate system and Cmax = 0.8 the maximum179

Courant number following [45]. The simulations were run on the University of Nottingham180

High Performance Computing (HPC) cluster Augusta. The number of cells in the computational181

domain was 861075 and the used cores and memory were 4 and 36 GB, respectively. It required182

2 h to simulate the real time of 6 s (also for the corresponding times at reduced scales). In this183

test case, as well as for the jet, all the dimensional parameters, including the mesh sizes and time184

steps, were scaled to the smaller domains according to the selected scaling laws.185

Water

Prototype

Novel scaling laws

Self-similar domain

Cross-section x2 = 0

=
 0

.5
50

 m

1.228 m

0.403 m
0.160 m

RW

1.
00

0 
m

0.160 m

3.220 m
1.167 m

0.160 m

0.299 m

0.299 m

1.00
0 m

Figure 1. Initial set-up of the dam break flow prototype and a scaled numerical domain to schematically illustrate the

novel scaling laws. The flow parameters at a specified time and space can be transformed to the corresponding time and

space in the self-similar domain.

(ii) Application of the novel scaling laws186

Two self-similar domains, namely D8 and D16, are created with geometrical scale factors of λ=187

βαx = 8 and 16, respectively. To achieve this, it is assumed that αx = 1 such that β = 8 (D8) and 16188

(D16), respectively. All variables and parameters are transformed by the scaling exponents in the189

fourth and fifth columns of Table 2 (with scaling conditions in terms of αx, αt and αg = 0). Their190

specific values for the prototype and the scaled models, obtained by applying the conditions in191

Table 2, are presented in Table 3. The prototype is also scaled by using precise Froude scaling192

(D8PFr and D16PFr) and traditional Froude scaling (D8TFr and D16TFr) using the same λ as in the193

self-similar domains.194
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Table 2. Scaling parameters and exponents used to scale the dam break flow prototype values to the corresponding

values in the domains D8 and D16 using the novel scaling laws.

Domain
D8

Domain
D16

Scaling parameter β 8 16
Scaling exponents

Length (m) αx 1
Time (s) αt 0.5
Density (kg/m3) αρ 1
Velocity (m/s) αU 0.5
Pressure (Pa) αp 2
Viscosity (m2/s) αν 1.5
Surface tension (N/m) ασ 3

Scaling ratios
Length (m) βαx 8 16
Time (s) βαt 2.82 4
Density (kg/m3) βαρ 8 16
Velocity (m/s) βαU 2.82 4
Pressure (Pa) βαp 64 256
Viscosity (m2/s) βαν 22.62 64
Surface tension (N/m) βασ 512 4096

Table 3. Parameters for the dam break flow in the prototype and the scaled domains.

Variables
Prototype

D1
Domain

D8
Domain

D16
Domain

D8PFr

Domain
D16PFr

Domain
D8TFr

Domain
D16TFr

Tank length (m) 3.22 0.4025 0.20125 0.4025 0.20125 0.4025 0.20125

Water column height (m) 0.55 0.06875 0.034375 0.06875 0.034375 0.06875 0.034375

Computational time (s) 6 2.12 1.5 2.12 1.5 2.12 1.5

Gravitational acceleration (m/s2) 9.81 9.81 9.81 9.81

Water density (kg/m3) 1000 125 62.5 1000 1000

Water viscosity (m2/s) 10−6 4.42× 10−8 1.56× 10−8 4.42× 10−8 1.56× 10−8 10−6

Air density (kg/m3) 1 0.125 0.0625 1 1

Air viscosity (m2/s) 1.48× 10−5 6.54× 10−7 2.31× 10−7 6.54× 10−7 2.31× 10−7 1.48× 10−5

Surface tension (N/m) 0.07 1.37× 10−4 1.70× 10−5 1.09× 10−3 2.73× 10−4 0.07

(iii) Results195

(a) D1 (prototype)

(b) D8

(c) D16

(d) D8PFr (f) D8TFr

(g) D16TFr(e) D16PFr

0.0
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'
x'

3
=
 x
' 3/

h w
 

0.0 1.0 2.0 3.0 4.0 5.0
0.0
0.4
0.8
1.2
1.6

0.0 1.0 2.0 3.0 4.0 5.0
0.0
0.4
0.8
1.2
1.6
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Figure 2. Snapshots of the dam break flow at the cross-section x′2 = 0 and dimensionless time t′ = 2.7 of the (a)

prototype and scaled with (b,c) the novel scaling laws, (d,e) precise Froude scaling and (f,g) traditional Froude scaling.

For the purpose of this work it is interesting to analyse the time when gravity, inertial, viscous196

and surface tension effects are all relevant. This happens when the dam break flow impacts197

the obstacle and creates an elongated water tongue. Fig. 2 shows this process with snapshots198

of the prototype and the scaled domains at x′2 = x2/hw = 0 (Fig. 1) and dimensionless time199

t′ = t
√
g/hw = 2.7. The contours in Fig. 2 represent the dimensionless velocity magnitude U ′ =200

U/
√
ghw , where U =

√
U2
1 + U2

2 + U2
3 . The prototype shows a large free surface deformation201

after impacting the obstacle (Fig. 2a). The self-similar domains and the domains scaled with202
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precise Froude scaling all simulate the water tongue of the prototype correctly. Moreover, the203

dimensionless velocity magnitude in the prototype and in the self-similar domains are the same,204

despite of the increasing λ (Fig. 2b,c,d,e). On the other hand, traditional Froude scaling does not205

model the free surface correctly due to Re and We scale effects, i.e. the water tongue becomes less206

prolonged with increasing λ (Fig. 2f,g).207

The differences between the prototype and the scaled domains are quantified using the Root208

Mean Square Error along the plane x′2 = 0 for U ′ (RMSEU ′ )209

RMSEU ′ =

√∑n
b=1 (U

′
b,p − U

′
b,m)2

n
, (4.2)

where U ′b,p are the cell values of U ′ in the prototype, U ′b,m in the scaled domains and n = 14283210

is the number of cells in the cross-section x′2 = 0. As shown in Table 4, the RMSEU ′ values for D8211

and D16 confirm a nearly perfect self-similarity with respect to the prototype.212

Table 4. RMSEU′ for the dam break flow for the domains D1 and D8, D16, D8PFr, D16PFr, D8TFr and D16TFr, for the

snapshots in Fig. 2.

RMSEU ′
D1-D8 D1-D16 D1-D8PFr D1-D16PFr D1-D8TFr D1-D16TFr

2.98× 10−4 2.10× 10−4 3.00× 10−4 2.21× 10−4 0.067 0.119

(a)

0.00
0

( b)
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0.10

0.15

0.20

Figure 3. k′ time histories in the dam break flow at point RW for (a) domains D1, D8, D16, D8PFr and D16PFr and (b) D1,

D8TFr and D16TFr.
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(a)

Figure 4. γ time histories in the dam break flow at point RW for (a) domains D1, D8, D16, D8PFr and D16PFr and (b) D1,

D8TFr and D16TFr.

k is used to assess turbulence because it shows significant scale effects if ν is not scaled. Air213

entrainment is assessed by using γ, which is expected to deviate from the prototype if the surface214

tension is over-represented in the scaled domain. Fig. 3 shows the dimensionless turbulent kinetic215
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energy k′ = k/(ghw) at point RW (Fig. 1) versus t′ and the variation of γ is shown in Fig. 4. After216

t′ = 2.7, the water tongue collapses and creates a complex flow characterised by strong turbulence217

and air entrainment. The flow reaches the downstream wall where it is reflected at t′ = 3.25. At a218

later stage, the dam-break wave is re-reflected at the upstream wall and it reaches point RW again219

at t′ = 23.6.220

The perfect collapse of the data for D1, D8 and D16 affirms the self-similar behaviour of k′221

for the novel scaling laws. The self-similar behaviour is also confirmed for D8PFr and D16PFr. On222

the other hand, k′ shows scale effects using traditional Froude scaling; the first k′ peak is either223

under- or over-estimated (D8TFr and D16TFr, respectively), while the magnitude of the second224

peak decreases with increasing λ.225

As demonstrated in Fig. 4, where γ is shown as a proxy for surface tension, air entrainment226

is correctly scaled in the self-similar domains as it controls the air-water interface and the free227

surface curvature. While the results in the domains D1, D8, D16, D8PFr and D16PFr essentially228

collapse, the domains scaled with traditional Froude scaling show significant differences in the229

region where air entrainment is most important. γ starts to increase close to t′ = 4, meaning230

that the wave reaches RW consistently at the same time in all domains except for D8TFr and231

D16TFr (Fig. 4). Subsequently, γ increases to reach 1 less rapidly than in the prototype when using232

traditional Froude scaling. These differences become more visible at a later stage of the simulation233

when the dam break wave is re-reflected at t′ = 23.6, showing significant scale effects.234

(b) Plunging water jet235

In this section, the same scaling laws as in the previous test case are applied to the plunging water236

jet presented in [13]. This involves free-surface instabilities, air entrainment and turbulence.237

(i) Numerical setup238

The setup is based on the experiments of [13], consisting of a jet from a circular orifice impinging239

on a prismatic column of water. However, in this study, the symmetry of the problem with respect240

to two orthogonal vertical planes is used to simulate only a quarter of the domain, in order to241

reduce the computational cost. Fig. 5 shows the numerical domain and the variables used in the242

prototype. A plunging water jet is ejected from a nozzle having a radius rin = 0.0125 m. Here, the243

subscript in indicates the quantities at the nozzle, i.e. at the inlet of the numerical domain, while244

the subscript im indicates values of variables at the still water level, i.e. x1 = 0 . The receiving245

pool is 0.15 m wide and 1.80 m deep and at the start of the simulation the distance between the246

water surface and the nozzle is l1 = 0.10 m. The velocity of the jet at x1 = 0 is Uim = 4.10 m/s.247

Here, a Cartesian coordinate system with x1 pointing downwards is used, therefore, gi = (g, 0, 0).248

The inlet boundary condition, namely the nozzle, is at the top boundary. The velocity at the249

inlet Uin and both kin and εin are prescribed, while the outlet is located at the bottom boundary,250

having the same flow rate magnitude as the inlet.251

Uin is calculated starting from the jet impact velocity using Bernoulli’s theorem Uin =252 √
U2
im − 2gl1 = 3.85 m/s. At the outlet (subscript out) Uout =Uin and rout = rin. kin and εin253

are calculated as254

kin =
3

2
(UinI)

2 = 0.000471 m2/s2, (4.3)

εin =Cµ
k
3/2
in

lt
= 0.00105 m2/s3, (4.4)

where I = 0.46% is the turbulent intensity following [13], and lt the turbulent mixing length255

approximated with lt = 0.07rin. The part of the top boundary of the domain not occupied by256

the inlet was modelled as a fully transmissive open boundary at atmospheric pressure. Since only257

a quarter of the domain is simulated, a symmetry boundary condition is used at the symmetry258
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boundary walls and no-slip conditions are applied at the remaining walls, including the bottom259

wall outside the outlet cells (Fig. 5).260

A structured orthogonal mesh is used with a finer resolution for the area in which the water261

jet impacts the free surface down to a depth of 0.6 m. The smallest observed bubble size was 1262

mm and the minimum cell size 0.625 mm to increase the interface sharpness around the bubbles263

[13,46]. This mesh resolution is not fine enough to resolve the smallest bubbles present in the264

flow. However, the main focus of this work is to show the relative differences in the results of265

the application of different scaling laws for air-water flows, rather than to perfectly resolve the266

dynamics of individual bubbles.267
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Figure 5. Schematic illustration of the computational domain and mesh of the plunging water jet.

The simulation time was 300 s, the same duration used by [13] to compute the distribution268

of the void fraction from the laboratory measurements, and the time step varied with respect to269

the CFL condition. Cmax was set equal to 0.3. The simulations were run on the University of270

Nottingham HPC cluster Augusta. The number of cells in the computational domain was 1.89×271

106 and the corresponding cores and memory were 10 and 36 GB, respectively. It required 168 h272

to simulate 300 s real time (also for the corresponding times at reduced scales).273

(ii) Application of the novel scaling laws274

The two self-similar domains P8 and P16 were simulated with geometrical scale factors of λ= 8275

and 16, respectively. Similarly to the dam break case, the scaling exponent for length is αx =276

1 so that β = 8 (P8) and 16 (P16). The scaling ratios and parameters obtained by applying the277

conditions in the second column of Table 1 are shown in Table 5. The domains P8PFr and P16PFr278

refer to precise Froude scaling and P8TFr and P16TFr to traditional Froude scaling (Table 5).279
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Table 5. Scaling parameters and used exponents to scale the plunging jet prototype values to the corresponding values

in the domains P8 and P16.

Variables Prototype
Domain

P8
Domain

P16
Domain

P8PFr

Domain
P16PFr

Domain
P8TFr

Domain
P16TFr

Inlet radius (m) 0.0125 0.0015625 7.81× 10−4 0.0015625 7.81× 10−4 0.0015625 7.81× 10−4

Computational time (s) 300 106 75 106 75 106 75

Impact velocity (m/s) 4.10 1.45 1.025 1.45 1.025 1.45 1.025

Gravitational acceleration (m/s2) 9.81 9.81 9.81 9.81

Water density (kg/m3) 1000 125 62.5 1000 1000

Water viscosity (m2/s) 10−6 4.42× 10−8 1.56× 10−8 4.42× 10−8 1.56× 10−8 10−6

Air density (kg/m3) 1 0.125 0.0625 1 1

Air viscosity (m2/s) 1.48× 10−5 6.54× 10−7 2.31× 10−7 6.54× 10−7 2.31× 10−7 1.48× 10−5

Surface tension (N/m) 0.07 1.37× 10−4 1.70× 10−5 1.09× 10−3 2.73× 10−4 0.07

Inlet turbulent kinetic energy (m2/s2) 4.71× 10−4 5.89× 10−5 2.94× 10−5 5.89× 10−5 2.94× 10−5 5.89× 10−5 2.94× 10−5

Inlet energy dissipation rate εin (m2/s3) 1.05× 10−3 3.71× 10−4 2.63× 10−4 3.71× 10−4 2.63× 10−4 3.71× 10−4 2.63× 10−4

(iii) Results280

Fig. 6 shows the time-averaged γ along the section A-A’ for domains P1, P8, P8PFr and P8TFr.281

The prototype shows a distribution of the time-averaged void fraction that is consistent with282

the description of high Re plunging jets provided by [47]. In particular, the flow shows the283

characteristic conical shape of the air-entrainment layer and the dispersion of bubbles due to284

the buoyancy effects outside the cone. The consequence of air entrainment in the flow is a rise of285

the free surface with respect to the initial conditions (Fig. 6a,b,c). Domains P8 and P8PFr have the286

identical shape of the air-entrainment layer showing also that the free surface reaches the same287

level, while P8TFr shows clear differences.288
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Figure 6. Time-averaged γ along the section A-A’ for domains (a) P1, (b) P8, (c) P8PFr and (d) P8TFr.

The following results are all shown along section A-A’ at x1−l1
rim

= 1.60. The distribution of289

the void fraction is compared with the experimental results of [13] in Fig. 7. The computed290

distribution and that measured in [13] are shown to have a close agreement. The novel scaling291

laws and precise Froude scaling reproduce the distribution of the void fraction of the prototype292

correctly, both in terms of the shape and magnitude. On the other hand, the traditional Froude293

scaling fails to describe the void fraction distribution.294

Fig. 8 shows the time-averaged dimensionless velocity magnitude U ′ where for this case295

U ′ =U/Uim. In the prototype, the maximum value of U ′ is at the jet centreline and U ′ follows296

qualitatively the same velocity distribution as found in [49]. While the results of the domains P1,297
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P8, P16, P8PFr and P16PFr are identical, U ′ for the domains P8TFr and P16TFr are lower than in the298

prototype.299
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Figure 7. Distributions of the void fraction for the plunging jet for domains (a) P1, P8, P16, P8PFr and P16PFr and (b) P1,

P8TFr and P16TFr along section A-A’ at x1−l1
rim

= 1.60.
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Figure 8. Time-averaged U ′ for the plunging jet for domains (a) P1, P8, P16, P8PFr and P16PFr and (b) P1, P8TFr and

P16TFr along section A-A’ at x1−l1
rim

= 1.60.
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Fig. 9 shows the time-averaged dimensionless turbulent kinetic energy k′, where k′ =300

k/(grim). In the prototype and self-similar domains the maximum value is k′ = 10 at s/rim = 1.0301

beyond which k′ decreases to less than 4.0 at s/rim = 2.0. On the other hand, the behaviour in the302
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domains based on traditional Froude scaling is different. Indeed, k′ in P8TFr does not show a clear303

peak and remains almost constant as far as s/rim = 1.0 beyond which it decreases. Moreover, the304

value of k′ around the jet is higher in P8TFr than in the prototype. However, P16TFr shows a lower305

k′ than the prototype with a maximum value of k′ ≈ 4.5.306

5. Discussion307

Self-similarity has been achieved for the governing equations of air-water flows including surface308

tension expanding the scaling conditions reported in [28,29]. An advantage of this approach309

is that the scaling conditions are directly derived from the governing equations. This leads to310

more universal scaling laws than the Froude scaling laws [50]. Further, the choice of the scaling311

exponents αx, αt and αρ in the second column of Table 1 are user-defined (flexible). This implies312

that novel scaling laws can also be written in terms of a set of other variables to find different313

configurations. For example, it is shown that precise Froude scaling is obtained as a special case314

of the novel scaling laws. The CFD simulations conducted herein demonstrated that both the315

novel scaling laws and precise Froude scaling result in self-similar air-water flows, which would316

also be the case for another set of variables.317

In the dam break flow, a significant deformation of the free surface is shown in the prototype318

after the flow impacts the obstacle, with a characteristic water tongue projected downstream of319

the obstacle. This behaviour is captured in all the domains scaled with the novel scaling laws; Figs.320

3 show that k′ is the same by using the novel scaling laws and k is thus self-similar. The phase321

fraction is also self-similar. This is a strong indication that surface tension effects are self-similar322

as well (Fig. 4) and it is also true for the domains D8PFr and D16PFr, since precise Froude scaling323

is a special case of the novel scaling laws. On the other hand, the commonly applied traditional324

Froude scaling, relying on the same fluids as in the prototype, fails to reproduce the behaviour of325

the prototype. Indeed, Fig. 2f,g shows that the water tongue is not well predicted. After t′ = 2.7,326

it collapses and the flow is reflected at the downstream wall. Scale effects are observed in k′ and327

γ at point RW. Further, the flow reaches point RW later than in the prototype with increasing λ.328

Scale effects are also observed after the flow is re-reflected, particularly at the second peak of k′.329

For the plunging jet, air entrainment plays a central role. Figs. 8a and 9a demonstrate that330

the novel scaling laws result in self-similarity for U ′ and k′, i.e. these results collapse for P1,331

P8, P16, P8PFr and P16PFr, while this is not the case for P8TFr and P16TFr. The self-similarity332

of the distribution of the void fraction depends on density, viscous and surface tension effects.333

The prototype simulation captures the mechanism of air entrainment by a plunging jet (Fig. 5)334

including the formation of an air cavity between the impinging jet and the surrounding fluid,335

which collapses and reforms intermittently, entraining air bubbles that are transported by the336

flow. At this stage, air bubbles are advected in a turbulent shear flow and they are broken into337

smaller bubbles creating a conical air-entrainment layer. Subsequently, buoyancy determines the338

re-surfacing of bubbles in the portion of the flow outside the air layer [7,8,12]. This complex339

mechanism causes the air-entrainment layer in Fig. 6, where the novel scaling laws guarantee self-340

similarity. This is also true for the void fraction in Fig. 7 that is a consequence of the mechanism341

described above. On the other hand, Fig. 7b demonstrates that traditional Froude scaling fails342

to reproduce the void fraction distribution. By using ordinary water, the surface tension and343

viscosity are over-represented, therefore, the distribution of the void fraction gradually decreases344

with increasing λ. As expected, for increasing λ the flow regime changes, transitioning from high345

Re = 50840 in the prototype to Re = 800 in P16TFr, calculated by using Uim, rim and νw . The346

modelling of this laminar flow with the k-ε turbulence model introduces also model, in addition347

to scale effects [2,3,47], which explain the results in Figs. 8b and 9b.348

The need of the novel scaling laws for scaling fluid properties requires the modification or349

replacement of ordinary water in laboratory experiments, e.g., for values of λ comparable with350

the highest used here, i.e. λ= 16, where ρw = 62.5 kg/m3, νw = 1.56× 10−8 m2/s and σ= 1.70×351

10−5 N/m (Tables 3 and 5). There are options to alter the relevant fluid properties; the surface352
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tension can be modified by adding ethanol to water [11] and the viscosity can also be reduced, e.g.353

[51] modelled a hydraulic jump with air. A more recent approach to change the water properties354

is based on nanofluids, i.e. nanoparticles are added to water [52,53]. A key advantage of the novel355

scaling laws is that fluids of different density than water, e.g. ethanol, now also qualify as potential356

candidates for laboratory experiments.357

6. Conclusions358

The Froude scaling laws are applied to model water flows at reduced size for almost one359

century. A significant disadvantage of Froude scaling is the potential for scale effects. This article360

shows how such scale effects in air-water flows are avoided with novel scaling laws based upon361

self-similarity of the governing equations. Lie group transformations are applied to the Reynolds-362

averaged Navier-Stokes equations where surface tension effects are included as a source term.363

This allows the modelling of hydrodynamic phenomena at small scale without viscous and364

surface tension scale effects. These novel scaling laws are more universal and flexible than the365

precise Froude scaling laws because different scaling configurations can be obtained, e.g. by366

scaling also the density of the fluid. In this study, the gravitational acceleration is kept constant367

and the scaling exponents of the variables are expressed as a function of the scaling exponents of368

the length αx, time αt and gravitational acceleration αg = 0.369

The derived novel scaling laws were validated with the simulations of two air-water flow370

phenomena: (i) a dam break flow interacting with an obstacle and (ii) a plunging water jet. The371

numerical simulations demonstrated that the processes are correctly scaled, and showed perfect372

agreement at different scales for air entrainment and kinematic properties. The results of the373

precise Froude scaling, where the properties of the fluids are strictly scaled, demonstrate that a374

particular configuration of the novel scaling laws is also able to result in self-similarity. In contrast,375

the simulations based on traditional Froude scaling using ordinary water and air, as common in376

laboratory studies, show significant scale effects as expected.377

Whilst this study provides a thorough numerical validation of the proposed scaling laws,378

future work aims to identify suitable fluids satisfying the novel scaling laws, which would enable379

the scaling of air-water flows without scale effects for the first time in an laboratory environment.380
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Appendix A - Derivation of the novel scaling laws385

The remaining scaling conditions in Table 1, in addition to the ones presented in Sec. 2b, are386

derived here. The Lie group transformations for Eq. (2.2) yield the following equations in the387

transformed domain:388

βαUi−αt ∂U
∗
i

∂t∗
+ β

αUj+αUi−αxjU∗j
∂U∗i
∂x∗j

= β
αUi+αν−2αxj

∂

∂x∗j

(
ν∗
∂U∗i
∂x∗j

)
− βαuiuj−αxj

∂u∗i u
∗
j

∂x∗j
(6.1)

−βαp−αρ−αxi
1

ρ∗
∂p∗

∂x∗i
+ βαgg∗i + βαfσ−αρ

f∗σ
ρ
.

Self-similarity is guaranteed if the scaling ratios of all terms in Eq. (6.1) are the same, implying389

that the exponents of all terms must be the same:390
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αU1 − αt = αU1 + αU1 − αx1 = αU2 + αU1 − αx2 = αU3 + αU1 − αx3

= αU1 + αν − 2αx1 = αU1 + αν − 2αx2 = αU1 + αν − 2αx3

= αu1u1 − αx1 = αu1u2 − αx2 = αu1u3 − αx3 (6.2)

= αp − αρ − αx1

= αg

= αfσ − αρ.

αU2 − αt = αU1 + αU2 − αx1 = αU2 + αU2 − αx2 = αU3 + αU2 − αx3

= αU2 + αν − 2αx1 = αU2 + αν − 2αx2 = αU2 + αν − 2αx3

= αu2u1 − αx1 = αu2u2 − αx2 = αu2u3 − αx3 (6.3)

= αp − αρ − αx2

= αg

= αfσ − αρ.

αU3 − αt = αU1 + αU3 − αx1 = αU2 + αU3 − αx2 = αU3 + αU3 − αx3

= αU3 + αν − 2αx1 = αU3 + αν − 2αx2 = αU3 + αν − 2αx3

= αu3u1 − αx1 = αu3u2 − αx2 = αu3u3 − αx3 (6.4)

= αp − αρ − αx3

= αg

= αfσ − αρ.

The Lie group transformations for Eq. (2.3) result in391

βαfσ f∗σ = βασ+ακ+αγ−αxiσ∗κ∗
∂γ∗

∂x∗i
. (6.5)

The dimension κ is the inverse of a length such that ακ =−αxi . Further, αγ = 0 because γ is392

dimensionless. Hence, Eq. (6.5) reduces to393

αfσ = ασ − 2αxi . (6.6)

From Eqs. (6.2) to (6.4) the scaling exponents of the length dimensions along the ith axis are394

obtained as395

αU1
− αt = αU1

+ αν − 2αx1 ⇒ αx1 =
αt + αν

2
, (6.7)

αU2
− αt = αU2

+ αν − 2αx2 ⇒ αx2 =
αt + αν

2
, (6.8)

αU3
− αt = αU3

+ αν − 2αx3 ⇒ αx3 =
αt + αν

2
. (6.9)

In other words, the scaling exponents of the length scale must be identical for i = 1, 2, 3 because396

the fluids are considered isotropic, therefore397
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αx1 = αx2 = αx3 = αx. (6.10)

Similarly, αU1
, αU2

and αU3
are obtained from Eqs. (6.2) to (6.4) as follows:398

αU1
− αt = αU1

+ αU1
− αx ⇒ αU1

= αx − αt, (6.11)

αU2
− αt = αU2

+ αU2
− αx ⇒ αU2

= αx − αt, (6.12)

αU3
− αt = αU3

+ αU3
− αx ⇒ αU3

= αx − αt. (6.13)

Hence, αU1
, αU2

and αU3
are also equal;399

αU1
= αU2

= αU3
= αU = αx − αt. (6.14)

Consequently, u1, u2 and u3 have the same exponents in all directions as well because they are400

transformed by using the velocity ratio401

αu1 = αu2 = αu3 = αu. (6.15)

The results in Eqs. (6.10) to (6.15) are important because the selections of unique scaling402

exponents for length and velocity scales in the ith axis is necessary to achieve self-similarity of403

air-water flows. αg , αp and αν are obtained from Eqs. (6.2) to (6.4) and they can be written in404

terms of αx, αt and αρ as405

αU − αt = αg ⇒ αg = αx − 2αt, (6.16)

αU − αt = αp − αρ − αx ⇒ αp = 2αx − 2αt + αρ, (6.17)

αU − αt = αU + αν − 2αx ⇒ αν = 2αx − αt. (6.18)

By using Eqs. (6.2) and (6.6)406

αU − αt = αfσ − αρ ⇒ αx − 2αt = ασ − 2αx − αρ, (6.19)

from which407

ασ = 3αx − 2αt + αρ. (6.20)

Similarly, Eqs. (2.4) to (2.7) are transformed by keeping Cε1, Cε2, Cµ, Cσk and Cσε as408

dimensionless coefficients409

−βαuuu∗i u
∗
j = βανt+αU−αxν∗t

∂U∗i
∂x∗j

+ βανt+αU−αxν∗t
∂U∗j
∂x∗i

− 2

3
βαkk∗δij, (6.21)

βανt ν∗t = β2αk−αεCµ
k∗2

ε∗
, (6.22)

βαk−αt
∂k∗

∂t∗
+ βαU+αk−αxU∗j

∂k∗

∂x∗j
= βαPkP ∗k − β

αεε∗ + βαν+αk−2αx
∂

∂x∗j

(
ν∗
∂k∗

∂x∗j

)
(6.23)

+βανt+αk−2αx
∂

∂x∗j

(
ν∗t /Cσk

∂k∗

∂x∗j

)
and410
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βαε−αt
∂ε∗

∂t∗
+ βαU+αε−αxU∗j

∂ε∗

∂x∗j
= βαε+αPk−αkCε1

ε∗

k∗
P ∗k − β

2αε−αkCε2
ε∗2

k∗
(6.24)

+βαν+αε−2αx
∂ν∗

∂x∗j

(
∂ε∗

∂x∗j

)
+ βανt+αε−2αx

∂

∂x∗j

[(
ν∗t
Cσε

)
∂ε∗

∂x∗j

]
.

For Eqs. (6.21) to (6.24) to be self-similar, the following conditions must hold411

αuu = ανt + αU − αx

= ανt + αU − αx (6.25)

= αk,

ανt = 2αk − αε, (6.26)

αk − αt = αU + αk − αx

= αPk

= αε (6.27)

= αν + αk − 2αx

= ανt + αk − 2αx

and412

αε − αt = αU + αε − αx

= αε + αPk − αk
= 2αε − αk (6.28)

= αν + αε − 2αx

= ανt + αε − 2αx.

νt has the same dimension as ν, therefore, Eq. (6.18) yields413

ανt = 2αx − αt. (6.29)

αuu is the same in all directions and it is calculated from Eqs. (6.25) and (6.29) as414

αuu = ανt + αU − αx ⇒ αuu = 2αx − 2αt. (6.30)

From Eq. (6.25) αk is obtained (αk = 2αx − 2αt). Finally, αε and αPk are obtained from Eqs. (6.26)415

and (6.27) as416

αε = 2αk − ανt ⇒ αε = 2αx − 3αt, (6.31)

αPk = αk − αt ⇒ αPk = 2αx − 3αt. (6.32)

The Lie group transformations are also applied to the initial and boundary conditions. The417

initial velocity U(xi, t= 0) =Ui0(xi) and pressure fields p(xi, t= 0) = p0(xi) are transformed as418
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U∗i0(x
∗
i ) = β−αUUi0(xi) = β−αUUi0(β

αxx∗i ), (6.33)

p∗0(x
∗
i ) = β−αpp0(xi) = β−αpp0(β

αxx∗i ). (6.34)

Another boundary condition is the zero gradient ∂
∂xi

φ= 0 for a flow variable φ. This gradient419

condition is transformed as βαφ−αx ∂
∂xi

φ∗ = 0. Since β 6= 0, this does not pose any limitation in420

the scaling conditions ( ∂
∂xi

φ∗ = 0).421

References422

1. Hager WH, Castro-Orgaz O. 2017 William Froude and the Froude number. Journal of Hydraulic423

Engineering 143, 02516005.424

2. Heller V. 2011 Scale effects in physical hydraulic engineering models. Journal of Hydraulic425

Research 49(3), 293–306.426

3. Hughes SA. 1993 Physical models and laboratory techniques in coastal engineering vol. 7.427

Singapore: World Scientific.428

4. Ali SZ, Dey S. 2017 Origin of the scaling laws of sediment transport. Proceedings of the Royal429

Society A: Mathematical, Physical and Engineering Sciences 473, 20160785.430

5. Frisch U. 1995 Turbulence: the legacy of AN Kolmogorov. Cambridge: Cambridge University431

Press.432

6. Heller V. 2017 Self-similarity and Reynolds number invariance in Froude modelling. Journal433

of Hydraulic Research 55(3), 293–309.434
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