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Abstract
We consider a one-dimensional stochastic differential equation that is observed on a

fine grid of equally-spaced time points. A novel approach for approximating the tran-
sition density of the stochastic differential equation is presented, which is based on an
Itô-Taylor expansion of the sample path, combined with an application of the so-called ε-
expansion; the resulting approximation is highly economical with respect to the number of
terms needed to achieve a given level of accuracy in a high-frequency sampling framework.
This method of density approximation leads to a closed-form approximate likelihood func-
tion from which an approximate maximum likelihood estimator may be calculated numer-
ically. A detailed theoretical analysis of the proposed estimator is provided and it is shown
that it compares favourably to the Gaussian likelihood-based estimator and does an excel-
lent job of approximating the exact, but usually intractable, maximum likelihood estima-
tor. Further, numerical simulations indicate that the exact and our approximate maximum
likelihood estimator tend to be close, and the latter performs very well relative to other
approximate methods in the literature in terms of speed, accuracy and ease of implemen-
tation.

Keywords: ε-expansion; Itô-Taylor expansion; mixing; stochastic differential equation;
transition density approximation.

1 Introduction

1.1 Preliminary remarks

In diverse fields, including finance (e.g. Shreve (2004)), biology (e.g. Wilkinson (2006)) and
physics and chemistry (e.g. van Kampen (1992) and Gardiner (2003)), one can model certain
phenomena using a continuous-time time-homogeneous diffusion process. Mathematically,
this takes the form of a stochastic differential equation given by

dXt = µ(Xt, α)dt + σ(Xt, β)dBt, (1.1)

where Xt ≡ X(t) is the state variable, µ is the drift function, σ the diffusion function, θ =
(α>, β>)> is an unknown vector of parameters, and Bt ≡ B(t) is a standard Brownian motion.
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The question that motivates this work is how to perform statistical inference for the unknown
parameter vector θ. It is assumed throughout the paper that the observed data consists of ob-
servations x(t0), x(t1), . . . , x(tn) of the state variable Xt at equally-spaced discrete time points
t0 < · · · < tn, where ti − ti−1 = ∆, and ∆ is small. For simplicity, we shall always condition
on the initial observation, x(t0). The asymptotic regime under consideration is the following:
n→ ∞, ∆→ 0 and n∆→ ∞. This corresponds to high-frequency sampling, a type of sampling
of central importance in finance in particular.

This paper makes the following contributions. An approximation to the transition density
is derived using the so-called ε-expansion (Cox and Reid (1987); Barndorff-Nielsen and Cox
(1989)), applied to the terms in an Itô-Taylor approximation (Kloeden and Platen (1992)). See
§3 and, in particular, Theorem 3.1. The ε-expansion is, in a certain sense, a generalisation of
the classical Edgeworth expansion; see Remark 3.1 below.

We provide theoretical results which describe the asymptotic properties of the approximate
maximum likelihood estimator, written θ̂(ε), of the parameter vector θ = (α>, β>)> in (1.1),
based on the approximate transition density mentioned above. In Theorem 4.2, it is shown
that, in a theoretical sense, the discrepancy between θ̂(ε) and the exact maximum likelihood
estimator, θ̂MLE, is never of larger order than the discrepancy between θ̂MLE and the estimator
based on a Gaussian likelihood considered by Kessler (1997); and in certain well-defined cir-
cumstances, essentially when ∆ does not go to zero too quickly as n→ ∞, the former discrep-
ancy will be of strictly smaller order than the latter discrepancy. From a computational point
of view the estimator θ̂(ε) proposed here performs extremely well in terms of speed, accuracy
and ease of implementation, and is competitive with the best of the alternative methods; see
the numerical results in §5.

In Supplementary Material we have provided additional numerical results, proofs of all
theoretical results in the paper and Matlab programs for performing all the calculations in the
paper.

1.2 Review of related work

Slightly abusing notation, define f (x1, . . . , xn|x0; θ) to be the joint density of x1 ≡ xt1 , . . . , xn ≡
xtn conditional on x0 ≡ xt0 , and let p(xi|xi−1; θ) denote the transition density of Xt between
times ti−1 and ti. Due to the Markov structure of (1.1), the log-likelihood for θ based on the
observation vector x = (x0, . . . , xn)>, conditional on X0 = x0, simplifies to

`(θ; x) = log f (x1, . . . , xn|x0; θ) =
n

∑
i=1

log p(xi|xi−1; θ). (1.2)

However, the practical challenge posed by the log-likelihood (1.2) as a basis for inference for θ
is that the transition density p(xi|xi−1; θ) is only known in closed form for very few models of
the form (1.1).

1.2.1 The closed-form likelihood approach.

We now mention the work of other authors who have considered the same estimation prob-
lem, i.e. approximation and maximisation of the log-likelihood (1.2). Dacunha-Castelle and
Florens-Zmirou (1986) prove under certain conditions that θ̂MLE in model (1.1) is consistent
and asymptotically normal under certain conditions and they give an expression for the in-
formation matrix under conditions which ensure that an invariant distribution exists. These
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authors make use of an exact representation of the transition density obtained via Girsanov’s
theorem, as we do; see (2.5) below. This representation is not convenient for numerical calcu-
lation but it does play an important theoretical role. Some other important contributions on
essentially the same problem were give in by Prakasa Rao (1983, 1099), Yoshida (1992), Shoji
and Ozaki (1998) and Gobet (2002); and Kessler (1997), who presented an approach based on
a Gaussian approximation to the transition density, in which higher-order approximations are
used for the incremental means and variances. The recent paper by Li (2013) makes use of a
Malliavin-type approach, based on the work of Watanabe (1987), for obtaining an expansion
of the transition density. See also Li (2014) and Li et al. (2016) who provide efficient methods
for calculation of the expansions developed in Li (2013), using a somewhat different expansion
to that considered here. However, in Li (2013) and the subsequent papers, there is no discus-
sion of joint asymptotics as ∆ → 0 and n → ∞, nor are any asymptotic normality results for
approximate maximum likelihood estimators stated or proved. Nevertheless, the approach of
Li (2013) for transition density approximation is a powerful one that deserves further study.

The Hermite polynomial method of Ait-Sahalia (1999, 2002) is concerned with the same
problem, that of estimating the transition density of the stochastic differential equation (1.1)
and, arguably, this approach provides the best numerical performance in the literature to date
of the so-called closed-form approximations. In the Hermite polynomial method the transition
density is approximated directly by a Hermite polynomial expansion. This is rather different
to the perspective taken here, where the transition density approximation is derived through a
combination of the Itô-Taylor expansion and the ε-expansion. A further factor which compli-
cates the comparison between our expansion and Ait-Sahalia’s expansion is that two distinct
asymptotic regimes are relevant in Ait-Sahalia’s approach: (i) ∆ → 0, where ∆ is the sampling
interval; and (ii) allowing J → ∞, where J is the number of terms in the expansion; see Chang
and Chen (2011) for extensive discussion. Only asymptotic regime (i) is relevant to the present
paper and we focus on this case below.

A key point is that our expansion and Ait-Sahalia’s expansion for the transition density
are essentially equivalent, in the sense that, when the comparison is done carefully, the two
methods give the same coefficient for a term of given order, though this may not be imme-
diately obvious due to the differences in the derivations. An important implication is that
differences in the two types of the expansion are due largely to which higher-order terms are
retained and which are omitted. We do not analyse Ait-Sahalia’s estimators within our asymp-
totic framework, as a comprehensive analysis under various asymptotic scenarios has already
been undertaken by Chang and Chen (2011), though we do compare the resulting approxi-
mations numerically in §5; see also Remark 4.3. However, an important consequence of this
equivalence is that, in the numerical comparisons given below in Section 5 and in part A of
the Supplementary Material, the approximation proposed in this paper, referred to as epsilon,
is a representative of approximations which are correct up to and including all terms of order
∆2 (see (3.15) while the Ait-Sahalia approximation AS is a representative of approximations
which are correct up to and including all terms of order ∆3). So to a considerable extent the
comparison is about comparing an expansion correct to order ∆2 to one correct to order ∆3.
This point is discussed further in Remark 3.6 and in Section B6 of the Supplementary Material.

The closed-form approximation approach inspired by Ait-Sahalia (1999, 2002) continues to
be an active area of research. Recent work includes Yang et al. (2019) who, as in this paper,
use the Itô-Taylor expansion approach but provide a completely different justification, based
on certain estimates from partial differential equation theory. One difference in outcome with
this paper is that they prove consistency of parameter estimates but not asymptotic normal-

3



ity whereas our results include both; but, on the other hand, they consider multidimensional
diffusions whereas we just consider the univariate case. An important new direction for the
closed-form approximation approach is the extension from continuous diffusions to jump dif-
fusions; see Li and Chen (2016) and Wang and Yang (2021). Further important recent work
includes Ait-Sahalia et al. (2021a), who consider parametric and nonparametric estimation
in implied stochastic volatility models; and Ait-Sahalia et al. (2021b), where the extension to
implied volatility surfaces for stochastic volatility models with jumps is considered.

1.2.2 Saddlepoint approximation.

Preston and Wood (2012) developed an alternative method based on obtaining the moment
generating function of the first few terms of the Itô-Taylor expansion, and then using the sad-
dlepoint method to approximate the transition density and hence the likelihood. The resulting
approximation of the maximum likelihood estimator performs quite well numerically, though
generally not as well as the approximation proposed in this paper, as indicated by results not
shown here. The Preston and Wood (2012) approximation also has a number of further draw-
backs relative to the new approximation: its calculation is relatively slow and cumbersome
when compared with the transition density approxmation proposed here; it is only possible to
include one non-Gaussian term if existence of the moment generating function off the imagi-
nary axis is to be retained; and its properties as an approximation are less amenable to theoreti-
cal study. In contrast, the new approximation is very fast to compute and there is no theoretical
or practical restriction on the number of non-Gaussian terms that can be included.

1.2.3 Simulation-based methods.

We also briefly mention simulation-based approaches to inference in model (1.1). In Beskos
et al. (2006), and in subsequent work by these and other authors, an exact simulation-based
approach to Bayesian inference is developed, while simulation-based approaches to frequen-
tist likelihood-based inference were developed in Pedersen (1995), Durham and Gallant (2002)
and Beskos et al. (2009). Two key differences between Beskos et al. (2006), Pedersen (1995),
Durham and Gallant (2002) and Beskos (2009) on the one hand, and the present paper and pa-
pers such as Dacunha-Castelle and Florens-Zmirou (1986), Prakasa Rao (1983, 1986), Yoshida
(1992), Kessler (1997), Ait-Sahalia (1999, 2002), Gobet (2002), Shoji and Ozaki (1998) on the
other, are the following: in contrast to the latter set of papers, the former papers do not require
∆ to be small; and, in contrast to the former set of papers, the latter set of papers typically
provide closed-form approximations to the likelihood.

One further point: fast, accurate and easy-to-implement closed-form small-∆ approxima-
tions to the log-likelihood of the type developed here can be used to advantage in, for example,
the importance-sampling approach of Durham and Gallant (2002).

1.2.4 Outline of paper.

The contents of the paper are as follows. In §2 we review the exact representation of the tran-
sition density. In §3 we introduce the ε-expansion and the Itô-Taylor expansion and show
how they can be used to construct an explicit transition density approximation whose theoret-
ical properties are summarised in Theorem 3.1. In §4 the key result, Theorem 4.2, compares the
proposed approximation with a variant of the Kessler approximation and identifies the asymp-
totic regimes in which the former has superior performance. Extensive numerical results are
described in §5 and in part A of the Supplementary Material. Auxiliary results are stated in §6
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and all theoretical results are proved in part B of the Supplementary Material and the Matlab
programs used for all the computations in the paper are given in part C of the Supplementary
Material.

2 Exact representation of the transition density

It is useful to transform the original diffusion process X∆ ≡ X(∆) in (1.1) to a related process
Y∆ ≡ Y(∆) that has a unit diffusion coefficient, i.e. σ ≡ 1 for the Y∆-process. The particular
motivation for employing this transformation in the present context is that it leads to a more
efficient expansion, in the sense that fewer terms are needed to attain a given order of accuracy.
For fixed parameter vector β, transformation from x∆ to y∆ for given X0 = x0 is defined by

y∆ − y0 =
∫ x∆

x0

1
σ(u, β)

du = γ(x∆, β)− γ(x0, β). (2.1)

If we apply Itô’s lemma to this integral then we find the the transformed SDE has unit diffusion
coefficient, i.e.

dYt = µY(yt; θ)dt + dBt, (2.2)

where
µY(yt, θ) = µ(γ−1(yt, β); α)

1
σ(γ−1(yt, β), β)

− 1
2

∂

∂y
σ(γ−1(yt, β), β). (2.3)

In (2.3), γ−1(., β) is the inverse function of γ(., β) with β fixed. This transformation improves
the accuracy of simulation methods; and further, even if a numerical approximation to γ is
required, the improvement in accuracy is usually worth the extra computing time; see Stramer
and Yan (2007) for a full treatment of this transformation. As we shall see shortly, this trans-
formation also enables us to write down high-order exapansions in more compact form.

Using the transformation of variables given by (2.1) we can write the transition density of
the X-process in terms of the transition density of the Y-process:

pX(x∆|x0; θ) =
1

σ(x∆, β)
pY(γ(x∆, β)|γ(x0, β); θ), (2.4)

where we have used the fact that dy∆/dx∆ = 1/σ(x∆, β), which is a consequence of (2.1).
Dacunha-Castelle and Florens-Zmirou (1986, lemmas 1 and 2) use Girsanov’s theorem (see

e.g. Øksendal, 1998) to show that, under mild conditions, the transition density of a stochatic
differential equation with unit diffusion coefficient, i.e. σ(Xt, β) ≡ 1 in (1.1), is

pY(y∆|y0; θ) =
1

(2π∆)1/2 exp
{
− (y∆ − y0)2

2∆
+
∫ y∆

y0

µY(u, θ)du
}

× E
[

exp
(

∆
∫ 1

0
g((1− u)y0 + uy∆ + ∆1/2Bu)du

)]
, (2.5)

where µY, defined in (2.3), is the drift of the unit diffusion Yt, the expectation in (2.5) is with
respect to the standard Brownian bridge (Bu)0≤u≤1 in (2.5) with B0 = 0 = B1, and

g(y) ≡ g(y, θ) = −1
2
(
µY(y, θ)2 + ∂yµY(y, θ)

)
, (2.6)

where ∂y indicates the partial derivative with respect to y.
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3 Small-∆ expansion of the transition density

Our approach is based on deriving an asymptotic approximation for the transition density for
small ∆. There are two quite different but mathematically equivalent ways of deriving such
expansions: (i) to expand the transition density (2.5) for Yt and then use the change of variable
formula (2.4) to obtain the transition density for the Xt process; and (ii) to derive an Itô-Taylor
expansion (Kloeden and Platen, 1992) of Y∆ − y0 and then use the so-called ε-expansion (Cox
and Reid, 1987; Barndorff-Nielsen and Cox, 1989) to derive an approximation to the Yt process,
and then use (2.4) to obtain the approximation of the transition density of the Xt process. It
turns out that approach (ii) is more convenient for the purpose of actually calculating the terms
in the expansion, while approach (i) provides a more convenient method for justifying the
expansion rigorously.

3.1 The ε-expansion

A direct and convenient method for approximating a finite sum of leading terms in an Itô-
Taylor expansion of the form (3.12) is to use the ε-expansion, defined in this subsection. For
some fixed m, consider a random variable X ≡ X(n) of the form

X = X0 +
m

∑
a=1

εacaXa, (3.1)

where the εa ≡ ε
(n)
a are non-zero numbers which converge to 0; c1, . . . , cm are constants; and

X0, . . . , Xm are fixed, continuous random variables with arbitrary dependence structure. We
denote the density function of X by g(x), the density function of X0 by g0(x), and it is assumed
that the joint density of X0, . . . , Xm is sufficiently smooth to allow the interchange of differenti-
ation and integration; see Cox and Reid (1987) and also Barndorff-Nielsen and Cox (1989) for
details. Define, for a, b = 1, . . . , m, κa(x) = E[Xa|X0 = x] and κab(x) = E[XaXb|X0 = x]. Also,
define

qj(x) =
1

g0(x)
∂

j
xg0(x), (3.2)

where ∂x denotes the partial differentiation operator with respect to x, so that q0(x) = 1,
q1(x) = {∂xg0(x)}/g0(x) and so on. Then the ε-expansion up to and including all terms
linear and quadratic in the ε1, . . . , εm is given by

ĝε
[2](x) = g0(x)

[
1−

m

∑
a=1

εaca {q1(x)κa(x) + ∂xκa(x)}

+
1
2

m

∑
a,b=1

εaεbcacb
{

q2(x)κab(x) + 2q1(x)∂xκab(x) + ∂2
xκab(x)

} ]
. (3.3)

Under suitable conditions, when εa → 0 for a = 1, . . . , m, we have

|ĝ[2](x)− g(x)| = O

(
m

∑
a=1

ε3
a

)
,

and the stronger result
sup
x∈R
|ĝ[2](x)− g0(x)| = O(ε3

m)

often holds too; see Cox and Reid (1987) for the types of conditions needed.
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The particular case of relevance here is where X0 is Gaussian. Suppose X0 ∼ N (ξ, 1) and
write x̄ = x− ξ. Then in this case (3.3) has the form

ĝ[2](x) = g0(x̄)
[

1 +
m

∑
a=1

εaca {H1(x̄)κa(x̄)− ∂xκa(x̄)}

1
2

m

∑
a,b=1

εaεbcacb
{

H2(x̄)κab(x̄)− 2H1(x̄)∂xκab(x̄) + ∂2
xκab(x̄)

} ]
, (3.4)

where Hj(x) is the Hermite polynomial of degree j, defined by (−1)j{∂j
xφ(x)}/φ(x) where φ

is the standard Gaussian density φ(x) = (2π)−1/2 exp(−x2/2). Consequently, it follows from
(3.2) that if g0(x) = φ(x), then qj(x) = (−1)jHj(x).

Remark 3.1. The ε-expansion is a generalisation of the Edgeworth expansion. To see this, take
m = 1 and consider the representation of Edgeworth-type expansions originally given by
Davis (1976); see also McCullagh (1987, p.145) where it is assumed that the random variables
Y and Z are independent, which results in an Edgeworth-type expansion. If we generalise
by allowing Y and Z to have arbitrary dependence, this leads to the ε-expansion in the case
m = 1.

Remark 3.2. The right side of (3.4) gives the two leading terms in the ε-expansion, i.e. the term
which is linear in the εa and the term which is quadratic in the εa. We note that the general
term of r-th order may be written

(−1)r

r!

m

∑
a1=1
· · ·

m

∑
ar=1

(
r

∏
i=1

εai cai

)
1

g0(x)
∂r

x {g0(x)κa1 ...ar(x)}

=
(−1)r

r!

m

∑
a1,...,ar=1

(
r

∏
i=1

εai cai

)
r

∑
j=0

(
r
j

)
qj(x)∂r−j

x κa1...ar(x), (3.5)

where κa1 ...ar(x) = E[Xa1 · · ·Xar |X0 = x], and we have used (3.2) and the Leibniz formula to
obtain the right side of (3.5). In the Gaussian case where g0 = φ, (3.5) becomes

1
r!

m

∑
a1,...,ar=1

(
r

∏
i=1

εai cai

)
r

∑
j=0

(−1)r−j
(

r
j

)
Hj(x)∂r−j

x κa1 ...ar(x), (3.6)

where the Hj are Hermite polynomials. In all our numerical calculations we have used (3.4).
However, in the proof of two of the parts of Theorem 4.2, we need to know something about
the structure of (3.6) when r > 2.

3.2 The Itô-Taylor expansion

Kloeden and Platen (1992) provide a detailed discussion of Itô-Taylor expansions of solutions
of stochastic differential equations. These are small-∆ expansions which are derived by re-
peated application of Itô’s lemma, applied to the drift and diffusion fuction µ and σ, respec-
tively, in (1.1). The particular Itô-Taylor expansion we focus on here is for a unit diffusion
stochastic differential equation and is given by

Y∆ = y0 + C0 I(0) + C00 I(0,0) + C000 I(0,0,0) + I1 + C10 I(1,0)

+ C110 I(1,1,0) + C100 I(1,0,0) + C010 I(0,1,0) + C1110 I(1,1,1,0). (3.7)
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In the above, the quantities C0, C00, C10, . . ., which are all of order 1, are functions of derivatives
of µY evaluated at y0 and θ, and are defined by

C0 = µY(y0, θ), C00 = µY∂yµY +
1
2

∂2
yµY,

C000 = µY

(
µY∂2

yµY + (∂yµY)
2 +

1
2

∂3
yµY

)
+

1
2
(µY∂3

yµY + 3∂yµY∂2
yµY +

)
+

1
4

∂4
yµY,

C10 = ∂yµY, C100 = µY∂2
yµY +

(
∂yµY

)2
+

1
2

∂3
yµY,

C010 = µY∂2
yµY +

1
2

∂3
yµY, C110 = ∂2

yµY and C1110 = ∂3
yµY. (3.8)

The quantities I(0), I(1), . . . are defined by (Kloeden and Platen, 1992)

I(0) = ∆, I(0,0) = ∆2/2, I(0,0,0) = ∆3/6, I(1) = B∆, I(1,0) =
∫ ∆

0
Budu,

I(1,0,0) =
∫ ∆

s=0

∫ s

u=0
Bududs, I(0,1,0) =

∫ ∆

s=0

∫ s

u=0
udBuds,

I(1,1,0) =
∫ ∆

s=0

∫ s

u=0
BudBuds and I(1,1,1,0) =

∫ ∆

s=0

∫ s

u=0

∫ u

v=0
BvdBvdBuds. (3.9)

The order of a typical I(ν) where ν is a finite sequence of zeros and ones is O(∆u+ψ/2), where u
is the number of zeros and ψ is the number of ones in ν.

The expression (3.7) and formulae in (3.8) and (3.9) follow easily from the expression in
Kloeden and Platen [20, p. 182], noting that in formula (5.1) (op. cit.), m = 1 and, because we
are considering a unit diffusion, i.e. b = 1 in their notation, so that many terms in the resulting
expression disappear.

By rescaling the time variables in the stochastic integrals in (3.9), and using the scaling
property of Brownian motion, it is easily checked that

I(1,0) = ∆3/2 Ǐ(1,0), I(1,1,0) = ∆2 Ǐ(1,1,0), I(1,0,0) = ∆5/2 Ǐ(1,0,0)

I(0,1,0) = ∆5/2 Ǐ(0,1,0), I(1,1,1,0) = ∆5/2 Ǐ(1,1,1,0), (3.10)

where in all cases in (3.10), Ǐ(ν) indicates evaluation at ∆ = 1, and the Ǐ(ν) are fixed random
variables which do not depend on ∆ or the sample size n. Using (3.9) and (3.10), we may
re-write (3.7) as

Y∆ = y0 + ∆C0 +
1
2

∆2C00 +
1
6

∆3C000 + ∆1/2 Ǐ(1) + ∆3/2C10 Ǐ(1,0)

+ ∆2C110 Ǐ(1,1,0) + ∆5/2
{

C100 Ǐ(1,0,0) + C010 Ǐ(0,1,0) + C1110 Ǐ(1,1,1,0)

}
. (3.11)

Note that the right side of (3.11) contains all terms in the Itô-Taylor expansion of Y∆ up to
and including those of order ∆5/2.

Since the Ǐ(ν) in (3.11) are fixed random variables, we can apply the ε-expansion directly to
(3.11) for the purpose of approximating the transition density.
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3.3 Application of the ε-expansion to the Itô-Taylor expansion

To apply the ε-expansion to (3.11), and noting (3.1), we define

X = ∆−1/2
(

Y∆ − y0 − ∆C0 −
1
2

∆2C00 −
1
6

∆3C000

)
= Ǐ(1) + ∆C10 Ǐ(1,0) + ∆3/2C110 Ǐ(1,1,0) + ∆2

(
C100 Ǐ(1,0,0) + C010 Ǐ(0,1,0) + C1110 Ǐ(1,1,1,0)

)
= X0 +

5

∑
a=1

εacaXa, (3.12)

where X0 = Ǐ(1), X1 = Ǐ(1,0), X2 = Ǐ(1,1,0), X3 = Ǐ(1,0,0), X4 = Ǐ(0,1,0) and X5 = Ǐ(1,1,1,0); ε1 = ∆,
ε2 = ∆3/2 and ε3 = ε4 = ε5 = ∆2; and c1 = C10, c2 = C110, c3 = C100, c4 = C010 and c5 = C1110.
Note that X0 is a standard normal random variable and that X1, . . . , X5 are not independent of
X0, as they are based on the same Brownian motion.

To calculate (3.3) in the case of (3.12) we need to find the conditional moments κa(x) =
E[Xa|X0 = x] for a = 1, . . . , 5, and κ11(x) = E[X2

1 |X0 = x]. The easiest way to calculate
these conditional moments is to use the representation of Brownian motion considered by
Shepp (1982), which is equivalent to the Karhunen–Loève expansion. Relevant calculations
are performed by Preston and Wood (2012), who calculate the moment generating function of
X0 + ∑4

a=1 εacaXa; the calculations needed here are much simpler than in Preston and Wood
(2012) because only low-order moments are needed. These turn out to be

κ1(x) =
1
2

H1(x), κ2(x) =
1
6

H2(x), κ3(x) =
1
6

H1(x), κ4(x) =
1
6

H1(x),

κ5(x) =
1
24

H3(x) and κ11(x) =
1
4

x2 +
1
12

, (3.13)

where Hj is Hermite polynomial of degree j; details of the calculations leading to (3.13) are
given in part B5 of the Supplementary Material.

In the present context it is not feasible to check the sufficient conditions for the validity of
the ε-expansion stated by Cox and Reid (1987) and Barndorff-Nielsen and Cox (1989), so we
have adopted a different approach for proving validity. In brief, the remainder term in the
ε-expansion is bounded by comparison with the remainder term in the expansion of the exact
representation of the transition density (2.5). See the statement and proof of Theorem 3.1 below
for further details.

3.4 Assumptions

We now state the assumptions on µ(x, α) and σ(x, β) in (1.1) which are needed in subsequent
results. Below, we assume that θ = (α>, β>)> denotes the full parameter vector and that θ ∈ Θ,
where Θ is the parameter space. Define also

A = {α : (α>, β>)> ∈ Θ for some β} and B = {β : (α>, β>)> ∈ Θ for some α}.

We have already defined ∂x for real x; if α is a p-vector, we define ∂α to be the gradient with
respect to α, and for integer h > 1 we interpret ∂h

α to be an array with ph elements, where each
element is a partial derivative of order h.

(A0) The parameter space Θ is a bounded open set. Moreover, this model is identifiable in
the sense that if θ1, θ2 ∈ Θ and θ1 6= θ2, then the resulting SDEs are distinct.
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(A1) The diffusion function σ is bounded away from zero, i.e.

inf
x∈R

inf
β∈B

σ(x, β) > 0.

(A2)k For j = 0, 1, . . . , 4 and h = 0, . . . , k, the functions ∂
j
x∂h

αµ(x, α) and ∂
j
x∂h

βσ(x, β) are
continuous in their arguments and satisfy

sup
x∈R

sup
α∈A
||∂j

x∂h
αµ(x, α)|| < ∞ and sup

x∈R
sup
β∈B
||∂j

x∂h
βσ(x, β)|| < ∞,

where ||.|| denotes the usual Euclidean norm, and we use the obvious definition if the argu-
ment is an array.

(A3) For some r > 0 and γ > 0, and all x such that |x| ≥ r,

µ(x, θ0)sgn(x) ≤ −γ,

where θ0 is the true value of θ and sgn(x) = −1, 0, 1 depending on whether x is negative, zero
or positive, respectively.

Remark 3.3. Note that the subscript k in (A2)k indicates how many derivatives with respect to
components of θ should be considered.

3.5 Approximation of the transition density

We are now in a position to state our main result concerning the density approximation derived
by applying the ε-expansion (3.4) to the Itô-Taylor expansion given in (3.7). The proof is given
in part B1 of the Supplementary Material. It will be slightly easier to express the transition
density approximation in terms of an approximation to the density of Z∆ = (X∆ − x0)/∆1/2

rather than X∆.

Theorem 3.1. Define z∆ = (x∆ − x0)/∆1/2 and

ȳ∆ ≡ ȳ∆(z∆) = ∆−1/2
(

γ(x0 + ∆1/2z∆, β)− γ(x0, β)− ∆C0 −
1
2

∆2C00 −
1
6

∆3C000

)
, (3.14)

and assume that assumptions (A0), (A1) and (A2)0 hold.

(i) The ε-expansion approximation for the density of the random variable Z∆ = (X∆ − x0)/∆1/2 given
X0 = x0 based on (3.4) and (3.7) up to and including all terms of order ∆2 or larger, is given by

p̂(ε)Z (z∆|x0; θ) =
1

σ(x0 + ∆1/2z∆, β)
φ(ȳ∆)

[
1 +

1
2

∆C10H2(ȳ∆) +
1
6

∆3/2C110H3(ȳ∆)

+ ∆2
{

1
8

C2
10H4(ȳ∆) +

1
6
(C100 + C010 + C2

10)H2(ȳ∆) +
1
24

C1110H4(ȳ∆)

} ]
,

(3.15)

where, as above, the Hj are Hermite polynomials and the C’s are defined in (3.8).

(ii) As ∆→ 0 we have

sup
z∆∈R

sup
x0∈R

sup
θ∈Θ
| p̂(ε)Z (z∆|x0; θ)− pZ(z∆|x0; θ)| = O(∆5/2), (3.16)
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where pZ(z∆|x0; θ) is the exact density of Z∆ (under model (1.1) with parameter vector θ) obtained from
(2.4), (2.5) and the transformation z∆ = (x∆ − x0)/∆1/2.

Remark 3.4. By strengthening assumption (A2)0 to (A2)k for k > 0, the result (3.16) can be ex-
tended to uniform bounds on the discrepancy between θ-derivatives of p̂(ε)Z and θ-derivatives
of pZ.

Remark 3.5. In (3.15) we have chosen to construct an approximation so that the square bracket
contains all terms up to and including order ∆2. There is no obstacle to calculating expansions
of higher order. This would involve calculating an Itô-Taylor expansion of higher order (see
Kloeden and Platen, 1992) and then applying an ε-expansion of higher-order, using formula
(3.6), with a larger m in (3.1). To derive higher-order versions of (3.15) one needs to calculate
conditional moments of the form κa1···ar(x) and their derivatives with respect to x; see Remark
3.2. This can be done using calculations similar to those in Section B5 of the Supplementary
Material. These calculations are elementary but become more cumbersome the higher the
order of the conditional moment.

Remark 3.6. As was mentioned in the Introduction, showing the essential equivalence of the
expansion underlying the AS approximation and the expansion underlying the epsilon approx-
imation is a non-trivial matter. In Section B6 of the Supplementary Material we offer some
comments which indicate how this can be done, but without going into details.

4 Asymptotic Properties of the Estimators

4.1 Asymptotic normality of the exact MLE

Let θ̂MLE = (α̂>MLE, β̂>MLE)
> denote the maximum likelihood estimator of θ0 based on the ex-

act transition density p(x∆|x0; θ) of the model (1.1), with log-likelihood specified in (1.2). In
Dacunha-Castelle and Florens-Zmirou (1986) it was proved under certain conditions that θ̂MLE
is asymptotically normal and efficient. Let us denote the distribution function of the invariant
distribution at the true parameter vector θ0 = (α>0 , β>0 )

> by F0(x); the invariant distribution
F0 exists under the conditions stated below; see for example the proof due to Gobet (2002). A
slightly more general version of the result in Dacunha-Castelle and Florens-Zmirou [11], in
which α and β may be vectors and a general σ(x, β) is permitted, is now stated. The details of
the proof are essentially the same and so it is omitted.

Theorem 4.1. Suppose that ∆ → 0 and n∆ → ∞. Assume that model (1.1) is correct and let
θ0 = (α>0 , β>0 )

> denote the true parameter vector. Under assumptions (A0), (A1), (A2)4 and (A3) in
Section 3, the following results hold:

(i) the estimator θ̂MLE is consistent, i.e θ̂MLE −→
p

θ0 as n→ ∞;

(ii) the estimator θ̂MLE = (α̂>MLE, β̂>MLE)
> is asymptotically normal and efficient, in the sense that

Ξn,∆

[
α̂MLE − α0

β̂MLE − β0

]
−→d Np+q

((
0p
0q

)
,

(
I−1

α,0 0q,p

0p,q I−1
β,0

))
, (4.1)

where Ξn,∆ = diag
{
(n∆)1/2 Ip, n1/2 Iq

}
, Ip is the p× p identity matrix, 0p is the p-vector of zeros, 0p,q
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is the p× q matrix of zeros, and

Iα,0 =
∫

x∈R

1
σ2(x, β0)

∂µ

∂α
(x, α0)

∂µ

∂α>
(x, α0)dF0(x) (4.2)

and
Iβ,0 = 2

∫
x∈R

1
σ2(x, β0)

∂σ

∂β
(x, β0)

∂σ

∂β>
(x, β0)dF0(x) (4.3)

are the p× p and q× q information matrices for α and β respectively, evaluated at α = α0 and β = β0,
and ∂/∂α and ∂/∂β produce column vectors while ∂/∂α> and ∂/∂β> produce row vectors.

4.2 Asymptotic proximity of the estimators

We now study the asymptotic closeness of two estimators, the Kessler (1997) estimator, and
the estimator based on the approximate likelihood (3.15) and (4.10) proposed in this paper, to
the exact maximum likelihood estimator. Recall that the estimator in Kessler (1997) is based
on a suitably high-order approximation of the mean and variance of the observed process,
but it uses a Gaussian approximation to the transition density in (1.2) rather than the exact
transition density. In order to specify these likelihoods explicitly, for i = 1, . . . , n define zi =
(xi − xi−1)/∆1/2 and define ȳi as ȳ∆ in (3.14), but with zi replacing z∆ and xi−1 replacing x0 on
the right hand side of (3.14). Let

pZ(zi|xi−1; θ) =
1

{2π}1/2σ(xi, β)
exp

[
−{γ(xi, β)− γ(xi−1, β)}2

2∆
+
∫ γ(xi ,β)

γ(xi−1,β)
µ(u, θ)du

]

× E
[

exp
{

∆
∫ 1

0
g
{
(1− u)γ(xi−1, β) + uγ(xi, β) + ∆1/2Bu

}
du
}]

(4.4)

denote the exact density of Zi = (Xi − Xi−1)/∆1/2 given Xi−1 = xi−1, where in (4.4), xi =
xi(zi) = xi−1 + ∆1/2zi. The corresponding exact likelihood for θ is given by

`0(θ) =
n

∑
i=1

log{pZ(zi|xi−1; θ)}, (4.5)

and the exact maximum likelihood estimator is defined as

θ̂MLE = (α̂>MLE, β̂>MLE)
> = argmax

θ=(α>,β>)>

n

∑
i=1

log {pZ(zi|xi−1; θ)} . (4.6)

We now consider Kessler’s (1997, formulae (1.7) and (1.8)) estimator. To match the notion
in (1.1) of our paper and (1.1) of Kessler’s (1997) paper, we put b(x, θ) = µ(x, θ) and c(x, θ) =
σ(x, θ)2. Then, using results in Kessler (1997), it is found that

E[Xi|Xi−1 = xi−1] = m(xi−1, θ) + O(∆3)

and
Var[Xi|Xi−1 = xi−1] = m2(xi−1, θ) + O(∆3),

where the expectations are taken under the “correct” value of θ,

m(x, θ) = x + ∆b +
∆2

2

(
bb′ +

1
2

cb′′
)
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and

m2(x, θ) = ∆c + ∆2
(

1
2

bc′ + b′c +
1
4

cc′′
)

,

b′ = ∂xb(x, θ) and c′′ = ∂2
xc(x, θ). The implied approximate conditional mean and conditional

variance of zi = ∆−1/2(xi − xi−1)|Xi−1 = xi−1 are then given by

m̃(xi−1, θ) = ∆1/2b +
∆3/2

2

(
bb′ +

1
2

cb′′
)

and

m̃2(xi−1, θ) = c + ∆
(

1
2

bc′ + b′c +
1
4

cc′′
)

.

Kessler’s (1997) Gaussian approximation to the conditional density of zi|xi−1 is then given by

p̂K(zi|xi−1; θ) =
1√

2πm̃2(xi−1, θ)
exp

[
−{zi − m̃(xi−1, θ)}2

2m̃2(xi−1, θ)

]
, (4.7)

the corresponding approximate log-likelihood is

`K(θ) =
n

∑
i=1

log{ p̂K(zi|xi−1; θ)}, (4.8)

and the Gaussian likelihood estimator is defined by

θ̂K = (α̂>K , β̂>K )
> = argmax

θ=(α>,β>)>

n

∑
i=1

log { p̂K(zi|xi−1; θ)} . (4.9)

However, the Gaussian approximation on which (4.7)–(4.9) are based does not account for any
skewness or kurtosis in the transition density, whereas the approximation likelihood (3.15) and
(4.10) proposed here includes two terms which account for skewness and kurtosis, namely

1
6

∆3/2C110H3(ȳ∆) and
1

24
∆2C1110H4(ȳ∆).

The new estimator θ̂(ε) is based on the density p̂(ε)(·|xi−1, θ) defined in (3.15); that is,

`(ε)(θ) =
n

∑
i=1

log
{

p̂(ε)(zi|xi−1; θ)
}

,

where zi = (xi − xi−1)/∆1/2, i = 1, . . . , n. Then we define the new estimator θ̂(ε) by

θ̂(ε) = argmax
θ=(α>,β>)>

`(ε)(θ). (4.10)

Interestingly, the exact maximum likelihood estimator θ̂MLE , Kessler’s (1997) estimator θ̂K and
the estimator θ̂(ε) obtained using (3.15) and (4.10) as an approximate likelihood, all satisfy The-
orem 4.1 and in particular are first-order efficient. However, it turns out that, in an asymptotic
sense, the distance between θ̂(ε) and θ̂MLE is an order of magnitude smaller than the distance
between θ̂K and θ̂MLE. These findings are summarised in the theorem below.

Theorem 4.2. Assume we are in the framework of model (1.1), with observations x(t0), x(t1), . . . , x(tn)
at equally-spaced time points t0, t1, . . . , tn, with ti − ti−1 = ∆. Suppose that n → ∞, ∆ → 0 and
n∆→ ∞. If assumptions (A0), (A1), (A2)4 and (A3) are all satisfied then the following results hold.
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(a) If n∆5 → 0 then

(n∆)1/2||α̂K − α̂MLE|| = Op

{
(n∆)−1/2 + ∆1/2 + (n∆5)1/2

}

=


Op
{
(n∆)−1/2} if n∆2 → 0

Op
{

∆1/2} if n∆2 → ∞ and n∆4 → 0

Op

{(
n∆5)1/2

}
if n∆4 → ∞

; (4.11)

(b) if n∆7 → 0 then

(n∆)1/2||α̂(ε) − α̂MLE|| = Op

{
(n∆)−1/2 + ∆3/2 + (n∆7)1/2

}
=

{
Op
{
(n∆)−1/2} if n∆4 → 0

Op

{(
n∆7)1/2

}
if n∆4 → ∞

; (4.12)

(c) if n∆5 → 0 then

n1/2||β̂K − β̂MLE|| = Op

{
(n∆)−1/2 + ∆ + (n∆5)1/2

}
=

{
Op
{
(n∆)−1/2} if n∆3 → 0

Op

{(
n∆5)1/2

}
if n∆3 → ∞

;

(4.13)

(d) and if n∆7 → 0 then

n1/2||β̂(ε)− β̂MLE|| = Op

{
(n∆)−1/2 + ∆2 + (n∆7)1/2

}
=

{
Op
{
(n∆)−1/2} if n∆4 → 0

Op

{(
n∆7)1/2

}
if n∆4 → ∞

.

(4.14)

Moreover, the rates specified in (4.11)–(4.14) are typically achieved.

Remark 4.1. In words, Theorem 4.2 tells us that (n∆)1/2||α̂(ε) − α̂MLE|| is never of larger order,
in probability, than (n∆)1/2||α̂K − α̂MLE||, and it will be of strictly smaller order, in probability,
when n∆2 → ∞. Similarly, n1/2||β̂(ε) − β̂MLE|| is never of larger order, in probability, than
n1/2||β̂K − β̂MLE||, and it will be of strictly smaller order, in probability, when n∆3 → 0.

Remark 4.2. The final statement in Theorem 4.2, that the stated rates are typically achieved,
follows in each case from careful scrutiny of the leading-order terms in the remainder: from
inspection it is clear that these terms will typically be non-zero.

Remark 4.3. Consider the version of Ait-Sahalia’s (2002, p.38 and formulae (4.10) and (4.11))
transition density approximation which includes all terms up to and including those of size
∆3, as opposed to all terms up to and including size ∆2 in (3.15). Under suitable assumptions,
it is possible to derive an analogue of Theorem 4.2 in this case, using a similar proof to that
given in the proof of Theorem 4.2. We omit this as the details are rather involved, but the main
message is that in some circumstances, Ait-Sahalia’s (2002) estimator is closer by an order of
magnitude to the MLE than the version of θ̂(ε) based on (3.15). However, the results in the
next section indicate that these theoretical differences are difficult to detect numerically and
the practical benefits are negligible in typical examples.
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5 The results of numerical experiments

5.1 Preliminaries

In this section numerical results comparing transition density approximations and approxi-
mate maximum likelihood estimators are given. The following notation is used throughout
this section. We refer to the ε-expansion developed in (3.15) as epsilon. This is the proposed
method of the paper. We also look at three approximations from the recent literature: the direct
Hermite polynomial approximation approach proposed by Ait-Sahalia (2002) as implemented
in the Matlab code found at https://www.princeton.edu/~yacine/closedformmle.htm for
the current version dated July 19, 2018, which we refer to by AS; the local linearisation ap-
proach of Shoji and Ozaki (1998), which we refer to by SO; and the method of Kessler (1997),
which we refer to by Kessler.

We carry out the numerical studies using the well-known Cox-Ingersoll-Ross process, often
used to model interest rates, given by

dXt = θ1 (θ2 − Xt)dt + θ3
√

XtdBt. (5.1)

This process has been widely used in similar numerical studies, such as Durham and Gallant
(2002) and Preston and Wood (2012), due to the fact that this is among the few stochastic dif-
ferential equations for which the transition density is the density of a well-known distribution
(non-central χ2 in this case). In part A of the Supplementary Material, we give numerical
results for the Ornstein-Uhlenbeck (OU) process, which has also been used in the above refer-
ence.

We mention one point concerning linear changes of the time variable. If a > 0 is a constant
and t 7→ at then dt 7→ adt and dBt 7→

√
adBt. Consequently, when t 7→ at, θ1 7→ aθ1 and θ3 7→√

aθ3, with θ2 unchanged. Therefore a linear time-change is equivalent to a reparametrisation
of the model. Hence there is nothing special about the time increment ∆ = 1/12 used in many
of the examples below, except that it was chosen to match the value used in many previous
papers. A similar remark applies to the OU model specified in formula (A1) in Section A1 of
the Supplementary Material.

The absolute error of the log density is used as a measure to compare the closed-form
transition density approximations. We plot the known transition density functions for the Cox-
Ingersoll-Ross processes and the transition density approximations. Consider the following
definition.

Definition 5.1. Given an initial value x0, and an interval between observations ∆, define p(x∆|x0, θ)
as the true density of a diffusion process, and p̃(x∆|x0, θ) as the approximate density. Then the Absolute
Error of the Log Density is defined as

AELD(x∆|x0, θ) = | ln p̃(x∆|x0, θ)− ln p(x∆|x0, θ)|.

Each figure consists of two plots. The top plot depicts the transition density over a subset
of the domain of the process and beneath it AELD(x∆|x0, θ) is given for each approximation
method.

In addition, we compare the accuracy of the approximate maximum likelihood estimators
found from using the various closed-form transition density approximations. The metrics used
for determining the accuracy of these estimators are the median absolute difference and root
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Figure 1: (Top) Approximations of the transition density, specified in §5.1, of the Cox-
Ingersoll-Ross process (5.1) and (bottom) corresponding absolute error of the log
densities. The model parameters are (θ1, θ2, θ3) = (0.5, 0.06, 0.15), x0 = 0.1 and
∆ = 1
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Figure 2: (Top) Approximations of the transition density, specified in §5.1, of the Cox-
Ingersoll-Ross process (5.1) and (bottom) corresponding absolute error of the log
densities. The model parameters are (θ1, θ2, θ3) = (0.2, 3, 0.2), x0 = 1 and ∆ = 1
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Figure 3: (Top) Approximations of the transition density, specified in §5.1, of the Cox-
Ingersoll-Ross process (5.1) and (bottom) corresponding absolute error of the log
densities. The model parameters are (θ1, θ2, θ3) = (0.2, 3, 0.2), x0 = 1 and ∆ = 1

4 .

18



mean square error (rmse). The exact method is the exact maximum likelihood estimator θ̂MLE.
For the exact method, we compare θ̂MLE with the true parameter vector θ0 used to generate
the data. For all the approximate methods, comparisons with both θ0 and θ̂MLE are given.
We report the median because we are looking at a skewed distribution of absolute differences
between the θ̂MLE and the other estimators. These methods were run on Matlab, and we used
the the Nelder-Mead method for optimisation as implemented by the function fminsearch,
which is consistent with the implementation of the AS method. We also report the average
time to compute the estimator in seconds per Monte Carlo run. The simulations were run on
a desktop computer with 3GHz processor speed. All simulations used n = 1000 simulated
data points (that is, 1001 observations including the fixed initial value x0) from the known
distribution and there were 5000 Monte Carlo runs.

5.2 Numerical results

Exact epsilon AS SO Kessler
θ1 median |θ̂ − θ0| 0.07904 0.07913 0.07899 0.07917 0.08119

rms |θ̂ − θ0| 0.13124 0.13103 0.13127 0.13096 0.13478
median |θ̂ − θ̂MLE| 0.00158 0.00006 0.00242 0.02125
rms |θ̂ − θ̂MLE| 0.01378 0.00328 0.00573 0.03313

θ2 median |θ̂ − θ0| 0.00531 0.00531 0.00530 0.00531 0.00531
rms |θ̂ − θ0| 0.00791 0.00791 0.00791 0.00791 0.00791
median |θ̂ − θ̂MLE| 0.00001 0.00000 0.00001 0.00002
rms |θ̂ − θ̂MLE| 0.00005 0.00001 0.00002 0.00006

θ3 median |θ̂ − θ0| 0.00235 0.00234 0.00235 0.00235 0.00231
rms |θ̂ − θ0| 0.00347 0.00347 0.00347 0.00347 0.00354
median |θ̂ − θ̂MLE| 0.00001 0.00000 0.00001 0.00042
rms |θ̂ − θ̂MLE| 0.00011 0.00005 0.00005 0.00064

Time (sec) 12.83800 0.19411 1.16876 0.22743 0.17332
Table 1: Performance of the various estimators, specified in §5.1, based on a trajectory of

1000 simulated data points from a Cox-Ingersoll-Ross process (5.1) with (θ1, θ2, θ3) =

(0.5, 0.06, 0.15), ∆ = 1
12 and x0 = 0.1 (the same parameter values as used by Durham

and Gallant (2002) and Preston and Wood (2012)). Here, θ̂ is θ̂MLE for the exact method
or the estimated value for the corresponding approximate method. Time is the aver-
age time to compute the estimator in seconds per Monte Carlo run.

In the results for the first Cox-Ingersoll-Ross process with ∆ = 1
12 in Figure 1 and Table 1,

AS is the best performing method, followed by epsilon. Results for the second Cox-Ingersoll-
Ross process with ∆ = 1

12 are shown in Figure 2 and Table 2. In this case, the initial location,
x0, is far from the mean-reversion level, and we see that epsilon is the best performing method,
though the difference between all the approximate estimators and the MLE are small. We also
consider the effect of changing the sampling interval to ∆ = 1

4 for the the second Cox-Ingersoll-
Ross process in Figure 3 and Table 3. The error of the approximate estimators compared to the
MLE is larger than in Table 2, and the conclusion is similar, with epsilon or SO being the best
performing method depending on the metric used. Kessler is the worst performing method
in this study. The results of the numerical studies shown in the figures and tables suggest
that there is no uniformly best method for approximating the transition density of a diffusion
process, though the approximation epsilon is either best or competitive in all three examples.
In Figures 1 and 3, where the exact transition density is skewed, we see that Kessler is unable
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Exact epsilon AS SO Kessler
θ1 median |θ̂ − θ0| 0.04077 0.04076 0.04076 0.04077 0.04088

rms |θ̂ − θ0| 0.07097 0.07097 0.07063 0.07098 0.07099
median |θ̂ − θ̂MLE| 0.00001 0.00003 0.00005 0.00174
rms |θ̂ − θ̂MLE| 0.00003 0.00059 0.00008 0.00265

θ2 median |θ̂ − θ0| 0.13484 0.13479 0.13484 0.13484 0.13476
rms |θ̂ − θ0| 0.19792 0.19792 0.19792 0.19792 0.19796
median |θ̂ − θ̂MLE| 0.00003 0.00003 0.00004 0.00076
rms |θ̂ − θ̂MLE| 0.00005 0.00005 0.00007 0.00159

θ3 median |θ̂ − θ0| 0.00301 0.00301 0.00301 0.00301 0.00300
rms |θ̂ − θ0| 0.00447 0.00447 0.00447 0.00447 0.00447
median |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000 0.00009
rms |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000 0.00014

Time (sec) 14.32346 0.21599 1.29910 0.25316 0.19248
Table 2: Performance of the various estimators, specified in §5.1, for a Cox-Ingersoll-Ross pro-

cess (5.1) with (θ1, θ2, θ3) = (0.2, 3, 0.2), ∆ = 1
12 and x0 = 1. Other details are the same

as in Table 1.

to exhibit the required skewness, due to being a normal approximation.

An issue that may arise in practice is that the transition density approximation is not strictly
positive. In most examples this only happens rarely if at all, but in some more challenging
examples it can happen with higher frequency. In the results in Table 1, in 46 and 4 out of
5000 Monte Carlo runs for epsilon and AS, respectively, the approximate likelihood function is
negative at the true parameter vector (θ1, θ2, θ3). This does not occur in the results in Tables
2 and 3. We avoid this problem by instead using the absolute value of the transition density
approximation. This is a “quick fix” which in our examples has done an effective job of side-
stepping the negativity problem.

A significant advantage of epsilon relative to AS is that the former is substantially faster—
typically around 6 times faster—than the latter; see Tables 1-3 in this section and the further
tables in part A of the Supplementary Material. The exact method is the slowest as it involves
evaluating a non-central χ2 density, which demonstrates the usefulness of the approximation
methods even in this example where the transition density is known. Moreover, to apply
the transition density approximation epsilon to a new diffusion process the user simply has
to calculate the relevant derivatives of the drift function given in (3.8) and substitute these
into (3.15). From the numerical studies we can see that, despite the simple implementation,
the approximation epsilon is very accurate. The Matlab programs that we used for all the
calculations presented in this paper are available in the Supplementary Materials.

5.3 Distribution of the estimates

In this subsection, we consider the distribution of the estimates (θ̂1, θ̂2, θ̂3) based on 5000 Monte
Carlo runs of the Cox-Ingersoll-Ross process (5.1) for the exact method (MLE), and the approx-
imation methods epsilon, AS, SO, and Kessler. The parameters are as given in Table 2, where
we saw that epsilon was the best performing approximation method.

Specifically, we provide the histograms (Figure 4), normal QQ plots (Figure 5), and a table
of sample moments (Table 4) for the mean, variance, standardised skewness and standardised
kurtosis. Under the assumptions of Theorem 4.1, the MLE is asymptotically normal. From
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Exact epsilon AS SO Kessler
θ1 median |θ̂ − θ0| 0.02628 0.02621 0.02591 0.02625 0.02619

rms |θ̂ − θ0| 0.04185 0.04183 0.04056 0.04186 0.04200
median |θ̂ − θ̂MLE| 0.00007 0.00020 0.00010 0.00175
rms |θ̂ − θ̂MLE| 0.00018 0.00223 0.00015 0.00268

θ2 median |θ̂ − θ0| 0.07501 0.07499 0.07497 0.07502 0.07503
rms |θ̂ − θ0| 0.11013 0.11013 0.11013 0.11013 0.11013
median |θ̂ − θ̂MLE| 0.00006 0.00006 0.00004 0.00033
rms |θ̂ − θ̂MLE| 0.00011 0.00019 0.00006 0.00060

θ3 median |θ̂ − θ0| 0.00304 0.00304 0.00304 0.00305 0.00305
rms |θ̂ − θ0| 0.00452 0.00452 0.00452 0.00452 0.00455
median |θ̂ − θ̂MLE| 0.00001 0.00000 0.00000 0.00022
rms |θ̂ − θ̂MLE| 0.00001 0.00002 0.00001 0.00032

Time (sec) 13.17059 0.19897 1.19451 0.23277 0.17751
Table 3: Performance of the various estimators, specified in §5.1, for a Cox-Ingersoll-Ross pro-

cess (5.1) with (θ1, θ2, θ3) = (0.2, 3, 0.2), ∆ = 1
4 and x0 = 1. Other details are the same

as in Table 1.

these results, the estimates are slightly skewed for θ̂1 and θ̂2, and approximately normal for
θ̂3. Based on Figure 4 and Table 4, the distribution of the estimates for all the approximation
methods appear to be virtually identical to that of MLE.

However, if we instead consider the histogram of the absolute difference between the esti-
mates of the approximation methods and MLE (see Figure 6), then there is a clear separation.
The variance of this absolute difference is much lower for epsilon than Kessler, which is consis-
tent with Theorem 4.2, and also lower than for AS.

Exact epsilon AS SO Kessler
θ̂1 mean 0.23117 0.23117 0.23102 0.23118 0.23108

variance 0.00407 0.00407 0.00403 0.00407 0.00407
skewness 0.77308 0.77301 0.75345 0.77339 0.76759
kurtosis 3.83514 3.83479 3.76104 3.83637 3.81484

θ̂2 mean 2.99696 2.99697 2.99697 2.99696 2.99706
variance 0.03917 0.03917 0.03917 0.03917 0.03919
skewness 0.18363 0.18365 0.18364 0.18360 0.18338
kurtosis 3.06971 3.06973 3.06965 3.06953 3.06820

θ̂3 mean 0.20006 0.20006 0.20006 0.20006 0.20008
variance 0.00002 0.00002 0.00002 0.00002 0.00002
skewness 0.04583 0.04582 0.04581 0.04580 0.04765
kurtosis 3.01893 3.01898 3.01900 3.01895 3.01781
Table 4: Various sample moments of 5000 estimates (θ̂1, θ̂2, θ̂3) for the Cox-Ingersoll-Ross pro-

cess (5.1) with (θ1, θ2, θ3) = (0.2, 3, 0.2), ∆ = 1
12 and x0 = 1.

5.4 Discussion

We now provide some discussion of the numerical results in this section and their implications
for practice. We use the acronyms defined in §5.1.

1. All four methods perform at least respectably in most of the examples. However, as pre-
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Figure 5: Normal QQ plots of 5000 estimates (θ̂1, θ̂2, θ̂3) for the Cox-Ingersoll-Ross process (5.1)
with model parameters (θ1, θ2, θ3) = (0.2, 3, 0.2), x0 = 1 and ∆ = 1
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dicted by the theory, Kessler tends to be less accurate than the epsilon and AS estimators; it also
tends to be less accurate than SO.

2. In terms of accuracy, there is little to choose between epsilon, AS and SO in most of the
examples. Usually the most accurate is one of epsilon and AS, with AS more frequently the
best, but usually by a small margin. Occasionally SO performs best.

3. In terms of speed, epsilon is faster than AS by roughly a factor of six and approximately
15-20% faster than SO, while Kessler is roughly 10% faster than epsilon.

4. The implementation of AS we have used represents an approximation with error O(∆3)
while epsilon represents an approximation with error O(∆2), both measured on the scale of the
conditional density of z∆ given by (3.15). This suggests that the rather modest degree of addi-
tional accuracy achieved by the former comes at a substantial cost in terms of computational
speed.

If both speed and accuracy are important then the numerical results in the examples considered
suggest that epsilon will be the best choice.

6 Auxiliary Results

6.1 A result on perturbed M-estimators

We now present a result which plays a key role in simplifying the proof of Theorem 4.2. Al-
though we use notation suggestive of a likelihood framework, the result applies to a large class
of M-estimators.

Suppose we have a sequence of estimators (θ̂
(n)
0 ) of a parameter vector θ0 such that θ̂

(n)
0

solves the vector of estimating equations S0(θ̂
(n)
0 ) = 0p. Consider also a sequence of modified

estimators (θ̂
(n)
1 ) which satisfy S0(θ̂

(n)
1 ) + S1(θ̂

(n)
1 ) = 0p, where in the present context, S1(θ) is

of smaller order in probability than S0(θ). To simplify notation we will drop the superscript
(n). Define the p× p square matrices

Ji(θ) = −∂θ>Si(θ), i = 0, 1, (6.1)

and assume that J0 and J1 are continuously differentiable in θ. Consider the identity

θ̂0 − θ0 = (J∗0 )
−1 S0(θ0), (6.2)

where J∗0 is suitably chosen. Since the exact form of Taylor’s theorem does not hold for vector-
valued functions, there does not exist a single θ̂∗0 lying on the line segment connecting θ̂0 and
θ0 such that (6.2) holds with J∗0 = J0(θ∗). However, it is possible to construct such a J∗0 if the θ̂∗0
we use can be different in different rows of J0(θ). It is assumed below that J∗0 is constructed in
this way. We also consider the corresponding perturbed identity

θ̂1 − θ0 = (J∗∗0 + J∗∗1 )−1 {S0(θ0) + S1(θ0)} , (6.3)

where J∗∗0 + J∗∗1 is defined similarly to J∗0 , i.e. a different θ̂∗1 is used for each row of J0(θ) + J1(θ).
In the present context we need to allow for the situation in which different components

of the vector of parameter estimators converge at different rates. Define θ0 = (θ>01, . . . , θ>0r)
>,

where for j = 1, . . . , r, θ0j is a sub-vector of dimension dj. Similarly, we write θ̂i = (θ̂>i1 , . . . , θ̂>ir )
>

and Si(θ) = (S>i1 , . . . S>ir )
> for i = 0, 1; and we define the block diagonal matrix

Dn = diag (δn,1 Id1 , . . . , δn,r Idr) . (6.4)

25



Proposition 6.1 Assume that for all n, δn,1 ≤ δn,2 . . . ≤ δn,r and that δn,1 → ∞ as n → ∞. Suppose
that, with probability approaching 1 as n → ∞, the identities (6.2) and (6.3) both hold. Moreover,
suppose that for j = 1, . . . , r

||S0j(θ0)|| = Op(δn,j), ||S1j(θ0)|| = op(δn,j); (6.5)

and that, after suitable re-scaling, J∗0 and J∗∗0 converge in probability in the sense that

D−1
n J∗0 D−1

n −→p I(θ0), D−1
n J∗∗0 D−1

n −→p I(θ0), (6.6)

where I(θ) = diag(I1(θ), . . . , Ir(θ)) is a block-diagonal matrix, with diagonal block j of dimension
dj × dj, which is strictly positive definite in some neighbourhood of θ0; for j = 1, . . . , r,

||J∗∗1j || = op(δ
2
n,j); (6.7)

and, finally,
||Dn

{
(J∗∗0 )−1 − (J∗0 )

−1
}

Dn|| = Op(δ
−1
n,1). (6.8)

Then
(i) θ̂0 and θ̂1 are both consistent estimators of θ0 and
(ii) for j = 1, . . . , r,

||δn,j(θ̂1,j − θ̂0,j)|| = Op

(
δ−1

n,j ||S1j(θ0)||
)
+ Op

(
δ−2

n,j ||J
∗∗
1j ||
)
+ Op(δ

−1
n,1) = op(1). (6.9)

Remark 6.1. In a standard repeated sampling setting we take r = 1 and δn,1 = n1/2. In the
setting of this paper, with θ> = (α>, β>)> as in (1.1), we have r = 2, where we may take
j = 1 < r to correspond to the α parameters, and we should choose δn,1 to be (n∆)1/2; while
j = 2 = r corresponds to the β parameters, where we should choose δn,2 = n1/2.

Remark 6.2. In most of our applications of Proposition 6.1, the first term on the right-hand side
of (6.9) will be the dominant one, and the third term will be smaller than the second term.

6.2 Mixing Results

The mixing result that we need is based on a theorem in Veretennikov (1988) combined with a
result in Hall and Heyde (1980, Corollary A.2 ).

Let (Ω,F , P) denote a probability space and let G and H denote two sub-sigma-fields of
F . Then the α-mixing, or strong-mixing, coefficient α(G,H) between G andH is defined by

α(G,H) = sup
G∈G,H∈H

|P(G ∩ H)− P(G)P(H)| .

It will be sufficient for our purposes to consider a stochastic differential equation with unit
diffusion coefficient of the form

dXt = µ(Xt)dt + dBt, (6.10)

subject to the initial condition X0 = x, where {Bt : t ≥ 0} is a standard Brownian motion in
R. It is assumed that the solution of (6.10) is (a) unique in distribution, and (b) satisfies the
strong Markov property. Sufficient conditions for (a) and (b) to hold are that µ is bounded and
Lipschitz, i.e.

sup
x∈R

|µ(x)| < ∞ and |µ(x)− µ(y)| < K|x− y|, x, y ∈ R, (6.11)
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for some constant K ∈ (0, ∞). Note that the conditions in (6.11) follow from (A2)0 in §3.4. We
also define F x

[a,b] to be the sub-sigma-field of F , subject to the initial condition X0 = x, defined
by

F x
[a,b] = σ(Xt : a ≤ b ≤ t), (6.12)

for any a and b satisfying 0 ≤ a ≤ b ≤ ∞. The one-dimensional version of Veretennikov’s
result is now stated.

Result A (Veretennikov, 1988). Assume that the conditions in (6.11) hold and that (Xt)t≥0 is the
solution of the SDE (6.10). Suppose that, for some r > 0 and γ > 0, and all |x| ≥ r,

µ(x)sgn(x) ≤ −γ,

where sgn(x) = −1, 0, 1 depending on whether x is negative, zero or positive, respectively. Then, for
some λ > 0 and any s > 0,

α(s) ≡ sup
t>0

α(F x
[0,t],F

x
[t+s,∞)) ≤ C0 exp(−λs), (6.13)

where F x
[a,b] is defined in (6.12) and C0 is a constant independent of s.

We shall also make use of the following result.

Result B (Hall and Heyde, 1980, Corollary A.2) Suppose that X and Y are random variables which
are G-measurable and H-measurable, respectively, and that E[|X|p] < ∞ and E[|Y|q] < ∞, where
p > 1, q > 1 and p−1 + q−1 < 1. Then

|E[XY]− E[X]E[Y]| ≤ 8 {E[|X|p]}1/p {E[|Y|q]}1/q {α(G,H)}1/r ,

where r > 1 is chosen such that p−1 + q−1 + r−1 = 1.

These results lead to the following proposition which is used repeatedly in the proof of
Theorem 4.2.

Proposition 6.2. In the context of Theorem 4.2, suppose that Ui, a function of Xi only, has, for some
fixed ε > 0, uniformly bounded moments of order 2 + ε, i.e. supi E[|Ui|2+ε] < ∞. Let Ȳi be defined
as in (3.14). Then for any fixed non-negative integer k, with Hk denoting the Hermite polynomial of
degree k,

Var

{
n

∑
i=1

Ui−1Hk(Ȳi)

}
= O(n∆−1).

The proof of Proposition 6.2 is given in part B4 in the Supplementary Material.
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SUPPLEMENTARY MATERIAL

A: Further numerical results

A1: Numerical results for the Ornstein-Uhlenbeck process

We also carried out the numerical studies using the Ornstein-Uhlenbeck process

dXt = θ1 (θ2 − Xt)dt + θ3dBt, (A1)

with the same parameters as were used by Ait-Sahalia (1999) and Preston and Wood (2012);
see the caption of Table 4. Note that the Shoji and Ozaki (1998) local linearisation approach
is exact for the Ornstein-Uhlenbeck process and hence this is omitted from simulations using
this model as a benchmark.

Exact epsilon AS Kessler
θ1 median |θ̂ − θ0| 0.03238 0.03238 0.03238 0.03237

rms |θ̂ − θ0| 0.06549 0.06549 0.06549 0.06550
median |θ̂ − θ̂MLE| 0.00000 0.00000 0.00003
rms |θ̂ − θ̂MLE| 0.00002 0.00000 0.00005

θ2 median |θ̂ − θ0| 0.02439 0.02440 0.02439 0.02440
rms |θ̂ − θ0| 0.03830 0.03830 0.03830 0.03831
median |θ̂ − θ̂MLE| 0.00000 0.00000 0.00002
rms |θ̂ − θ̂MLE| 0.00001 0.00000 0.00003

θ3 median |θ̂ − θ0| 0.00034 0.00034 0.00034 0.00034
rms |θ̂ − θ0| 0.00050 0.00050 0.00050 0.00050
median |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000
rms |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000

Time (sec) 0.09483 0.15956 0.13531 0.14268
Table 5: Performance of the various estimators, specified in §5.1, based on a trajectory of

1000 observations from an Ornstein-Uhlenbeck process (A1) with (θ1, θ2, θ3) =

(0.0717, 0.261, 0.02237), ∆ = 1
12 and x0 = 0.1. Other details are the same as in Ta-

ble 1.

In Table 5 and Figure 7, AS is the best performing method, followed by epsilon, though
all the approximate methods give almost exactly the same results as the exact method in this
example.

A2: Numerical results for changing the sampling interval

For the second Cox-Ingersoll-Ross process in Figure 2 and Table 2, we considered increas-
ing the sampling interval to ∆ = 1

4 in Figure 3 and Table 3. Here we consider the effect of
decreasing the sampling interval to ∆ = 1

24 .
In Table 6, the error of the approximate estimators compared to the MLE are smaller than

in Table 2, as expected, and epsilon remains the best performing method. When looking at
Tables 2, 3 and 6 together, changing the sampling interval does not appear to affect the relative
performance of the four approximate methods in this example.

A3: Numerical results with differing numbers of observations
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Uhlenbeck process (A1) and (bottom) corresponding absolute error of the log den-
sities. The model parameters are (θ1, θ2, θ3) = (0.0717, 0.261, 0.02237), x0 = 0.1 and
∆ = 1
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Exact epsilon AS SO Kessler
θ1 median |θ̂ − θ0| 0.05416 0.05416 0.05417 0.05417 0.05423

rms |θ̂ − θ0| 0.09754 0.09754 0.09737 0.09754 0.09746
median |θ̂ − θ̂MLE| 0.00000 0.00001 0.00003 0.00166
rms |θ̂ − θ̂MLE| 0.00002 0.00042 0.00005 0.00252

θ2 median |θ̂ − θ0| 0.19355 0.19355 0.19355 0.19353 0.19276
rms |θ̂ − θ0| 0.29793 0.29793 0.29793 0.29792 0.29789
median |θ̂ − θ̂MLE| 0.00001 0.00002 0.00004 0.00126
rms |θ̂ − θ̂MLE| 0.00004 0.00005 0.00008 0.00362

θ3 median |θ̂ − θ0| 0.00308 0.00309 0.00308 0.00308 0.00309
rms |θ̂ − θ0| 0.00454 0.00454 0.00454 0.00454 0.00454
median |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000 0.00006
rms |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000 0.00010

Time (sec) 15.06433 0.22798 1.36738 0.26711 0.20362
Table 6: Performance of the various estimators, specified in §5.1, for a Cox-Ingersoll-Ross pro-

cess (5.1) with (θ1, θ2, θ3) = (0.2, 3, 0.2), ∆ = 1
24 and x0 = 1. Other details are the same

as in Table 1.

Next, we consider the effect of changing the number of observations on the numerical results.
Using the second Cox-Ingersoll-Ross model in Table 2, we consider the effect of having n = 500
and n = 2000 simulated data points instead of n = 1000.

Exact epsilon AS SO Kessler
θ1 median |θ̂ − θ0| 0.05372 0.05371 0.05355 0.05378 0.05360

rms |θ̂ − θ0| 0.09710 0.09709 0.09586 0.09711 0.09719
median |θ̂ − θ̂MLE| 0.00001 0.00005 0.00006 0.00224
rms |θ̂ − θ̂MLE| 0.00005 0.00241 0.00011 0.00352

θ2 median |θ̂ − θ0| 0.19228 0.19230 0.19227 0.19229 0.19234
rms |θ̂ − θ0| 0.29238 0.29238 0.29240 0.29238 0.29271
median |θ̂ − θ̂MLE| 0.00003 0.00004 0.00006 0.00180
rms |θ̂ − θ̂MLE| 0.00006 0.00021 0.00013 0.00521

θ3 median |θ̂ − θ0| 0.00417 0.00417 0.00418 0.00418 0.00419
rms |θ̂ − θ0| 0.00625 0.00625 0.00625 0.00625 0.00625
median |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000 0.00013
rms |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000 0.00020

Time (sec) 7.43730 0.11348 0.67716 0.13286 0.10160
Table 7: Performance of the various estimators, specified in §5.1, based on a trajectory of

500 simulated data points from a Cox-Ingersoll-Ross process (5.1) with (θ1, θ2, θ3) =

(0.2, 3, 0.2), ∆ = 1
12 and x0 = 1. Other details are the same as in Table 1.

The results in Tables 7 and 8 show that epsilon performs best in this case. When comparing
these results with Table 2, changing the sample size does not appear to have an effect on the
relative performance of the four approximate methods in the example for the range of sample
sizes considered.

A4: Breakdown of the approximations with large sampling intervals

The approximations to the transition densities are based on a sampling scheme that re-
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Exact epsilon AS SO Kessler
θ1 median |θ̂ − θ0| 0.03014 0.03014 0.03015 0.03018 0.03008

rms |θ̂ − θ0| 0.05000 0.05000 0.04991 0.05000 0.04997
median |θ̂ − θ̂MLE| 0.00001 0.00002 0.00004 0.00125
rms |θ̂ − θ̂MLE| 0.00002 0.00018 0.00006 0.00187

θ2 median |θ̂ − θ0| 0.08826 0.08826 0.08826 0.08832 0.08804
rms |θ̂ − θ0| 0.13546 0.13546 0.13546 0.13546 0.13545
median |θ̂ − θ̂MLE| 0.00002 0.00002 0.00003 0.00031
rms |θ̂ − θ̂MLE| 0.00004 0.00004 0.00005 0.00058

θ3 median |θ̂ − θ0| 0.00207 0.00207 0.00207 0.00207 0.00206
rms |θ̂ − θ0| 0.00316 0.00316 0.00316 0.00316 0.00316
median |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000 0.00007
rms |θ̂ − θ̂MLE| 0.00000 0.00000 0.00000 0.00010

Time (sec) 27.55245 0.41493 2.49948 0.48533 0.36967
Table 8: Performance of the various estimators, specified in §5.1, based on a trajectory of

2000 simulated data points from a Cox-Ingersoll-Ross process (5.1) with (θ1, θ2, θ3) =

(0.2, 3, 0.2), ∆ = 1
12 and x0 = 1. Other details are the same as in Table 1.

quires ∆ → 0. We now consider a Cox-Ingersoll-Ross process with a larger value of ∆, ∆ = 1,
where the approximation methods begin to break down.

Exact epsilon AS SO
θ1 median |θ̂ − θ0| 0.05399 0.06155 0.09381 0.05251

rms |θ̂ − θ0| 0.08093 0.13050 0.19402 0.07718
median |θ̂ − θ̂MLE| 0.07567 0.08094 0.01715
rms |θ̂ − θ̂MLE| 0.13189 0.17987 0.01893

θ2 median |θ̂ − θ0| 0.00663 0.01133 0.00726 0.00720
rms |θ̂ − θ0| 0.00969 0.01583 0.01078 0.01043
median |θ̂ − θ̂MLE| 0.01051 0.00257 0.00382
rms |θ̂ − θ̂MLE| 0.01272 0.00509 0.00389

θ3 median |θ̂ − θ0| 0.00716 0.02136 0.00847 0.00712
rms |θ̂ − θ0| 0.01063 0.02424 0.01606 0.01031
median |θ̂ − θ̂MLE| 0.02123 0.00435 0.00174
rms |θ̂ − θ̂MLE| 0.02313 0.01298 0.00186

Time (sec) 13.03974 0.18826 2.28452 0.23206
Table 9: Performance of the various estimators, specified in §5.1, based on a trajectory of

1000 simulated data points from a Cox-Ingersoll-Ross process (5.1) with (θ1, θ2, θ3) =
(1, 1, 0.3), ∆ = 1 and x0 = 2. Other details are the same as in Table 1.

No results are given for Kessler in Table 9 because the variance of the normal approximation
is negative. In Figure 9, the AS approximation to the transition density is negative for a large
part of the range; the epsilon approximation also goes negative, though for a smaller part of
the range. Numerical results for the estimators are given in Table 9. Recall that we take the
absolute value of the approximate transition densities when they go negative. In the results in
Table 9, SO is the best performing method, followed by epsilon. These approximations still pro-
duce reasonably accurate results without any optimisation problems. Out of the 5000 Monte
Carlo runs for the AS method, there are 829 simulations where the optimisation method fails
to converge due to running out of function evaluations, and 345 simulations where the esti-
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Figure 9: (Top) Approximations of the transition density, specified in §5.1, of the Cox-
Ingersoll-Ross process (5.1) and (bottom) corresponding absolute error of the log
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mator appears to diverge, defined as having at least one of the three parameter estimates with
|θ̂i| > 100. These unsuccessful simulation runs have been excluded from the AS results.

A5: Additional example for the distribution of estimates

Similar to §5.3, we now consider the distribution of the estimates (θ̂1, θ̂2, θ̂3) based on 5000
Monte Carlo runs for the Cox-Ingersoll-Ross process (5.1) given in Table 1, where we saw that
AS was the best performing approximation method. As before, the histograms (Figure 10), the
normal QQ plots (Figure 11), and the table of sample moments (Table 10) show that estimates
are slightly skewed for θ̂1 and θ̂2, approximately normal for θ̂3, and the distribution of the
estimates for all the approximation methods appear to be virtually identical to that of MLE,
though the variance of θ̂1 is slightly higher for Kessler. The histogram of the absolute difference
between the estimates of the approximation methods and MLE (Figure 12) again shows much
lower variance for epsilon than Kessler, but AS gives lower variance than epsilon.

Exact epsilon AS SO Kessler
θ̂1 mean 0.55055 0.55082 0.55034 0.54904 0.54879

variance 0.01467 0.01459 0.01470 0.01475 0.01579
skewness 0.61674 0.61285 0.61614 0.61097 0.60626
kurtosis 3.65202 3.66184 3.64881 3.63846 3.59933

θ̂2 mean 0.05995 0.05995 0.05995 0.05994 0.05994
variance 0.00006 0.00006 0.00006 0.00006 0.00006
skewness 0.39731 0.39747 0.39728 0.39705 0.39844
kurtosis 3.21092 3.21164 3.21076 3.21029 3.21660

θ̂3 mean 0.15015 0.15015 0.15015 0.15014 0.15019
variance 0.00001 0.00001 0.00001 0.00001 0.00001
skewness 0.00397 0.00074 0.00408 0.00391 0.01778
kurtosis 3.08384 3.08152 3.08407 3.08455 3.14358
Table 10: Various sample moments of 5000 estimates (θ̂1, θ̂2, θ̂3) for the Cox-Ingersoll-Ross pro-

cess (5.1) with (θ1, θ2, θ3) = (0.5, 0.06, 0.15), ∆ = 1
12 and x0 = 0.1.

B: Proofs

B1: Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the following three lemmas. In what follows, µ0 =

µY(y0, θ0), and µ
(j)
0 = ∂

j
yµY(y0, θ0), j = 1, 2, 3, is the jth partial derivative of µY(y, θ0) evaluated

at y = y0. Note also that, from (3.14) and the fact that y∆ = γ(x∆, β) and y0 = γ(x0, β), we
have the relationship

ȳ∆ = ∆−1/2 (y∆ − y0 − ∆C0 − ∆2C00 − ∆3C000
)

, (B1)

where C0, C00 and C000 are defined in (3.8).
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Figure 10: Histogram of 5000 estimates (θ̂1, θ̂2, θ̂3) for the Cox-Ingersoll-Ross process (5.1) with
model parameters (θ1, θ2, θ3) = (0.5, 0.06, 0.15), x0 = 0.1 and ∆ = 1

12 . The plots
from top to bottom are for the exact, epsilon, AS, SO and Kessler methods. The y-axis
is frequency.
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Figure 11: Normal QQ plots of 5000 estimates (θ̂1, θ̂2, θ̂3) for the Cox-Ingersoll-Ross process
(5.1) with model parameters (θ1, θ2, θ3) = (0.5, 0.06, 0.15), x0 = 0.1 and ∆ = 1

12 . The
plots from top to bottom are for the exact, epsilon, AS, SO and Kessler methods. The
x-axis are the standard normal quantiles.
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Figure 12: Histogram of 5000 absolute differences |θ̂ − θ̂MLE| for the Cox-Ingersoll-Ross pro-
cess (5.1) with model parameters (θ1, θ2, θ3) = (0.5, 0.06, 0.15), x0 = 0.1 and ∆ = 1

12 .
The plots from top to bottom are for the exact, epsilon, AS, SO and Kessler methods.
The y-axis is frequency.
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Lemma B.1. Recall the definition of g(.) in (2.6). Under the assumptions of Theorem 3.1, as ∆→ 0,

E
[

exp
{

∆
∫ 1

0
g
(

y0 + u(y∆ − y0) + ∆1/2Bu

)
du
}]

= 1− ∆
2
(
µ2

0 + µ′0
)
+

∆2

24

{
3µ4

0 +
(
µ′0
)2 − 6µ2

0µ′0 − 8µ0µ
(2)
0 − µ

(3)
0

}
− ∆3/2

4

(
2µ0µ′0 + µ

(2)
0

)
ȳ∆ −

∆2

12

{
2
(
µ′0
)2

+ 2µ0µ
(2)
0 + µ

(3)
0

}
ȳ2

∆ + ∆5/2R1,

where R1 ≡ R1(θ, y0, ȳ∆) satisfies

sup
θ∈Θ

sup
y0∈R

|R1(θ, y0, ȳ∆)| ≤ P1(ȳ∆),

for some fixed polynomial P1(ȳT).

Proof. From condition (A2)0, it follows that g has three derivatives which are continuous and
bounded, so we may use a 4-term Taylor expansion, including an exact remainder term; we
omit the details of the calculations, which are long but straightforward. Moreover, the largest
power of Ȳ∆ that appears in the remainder term R1(θ, ȳ∆, y0) is ȳ3

∆. Consequently, Lemma B.1
holds because |R1| is bounded above by a polynomial of the form P1(ȳ∆) = K1

(
1 + ȳ4

∆

)
, for

some suitable constant K1 independent of θ and y0. �

In the next lemma, σ(x∆, β) is the diffusion coefficient in (1.1). However, as we are focusing
on the density of z∆ = (x∆ − x0)/∆1/2 rather than x∆, we should think of x∆ = x0 + ∆1/2z∆ as
being a function of z∆ with x0 fixed.

Lemma B.2. Under the assumptions of Theorem 3.1, as ∆→ 0,

1
{2πσ(x∆, β)}1/2 exp

{
− (y∆ − y0)2

2∆
+
∫ y∆

y0

µ(u)du
}

(B2)

=
1

{2πσ(x∆, β)}1/2 exp
(
− 1

2
ȳ2

∆

) [
1 +

∆
2

µ2
0 +

∆2

8

(
µ4

0 + 4µ2
0µ′0

)
+

∆3/2

2

(
µ0µ′0 −

1
2

µ
(2)
0

)
ȳ∆

∆
2

{
µ′0 + ∆

(
µ0µ

(2)
0 +

1
2

µ2
0µ′0

)}
ȳ2

∆ +
∆3/2

6
µ
(2)
0 ȳ3

∆

+
∆2

24

{
3
(
µ′0
)2

+ µ
(3)
0

}
ȳ4

∆ + ∆5/2R2

]
, (B3)

where R2 ≡ R2(θ, y0, ȳ∆) satisfies

sup
θ∈Θ

sup
y0∈R

|R2(θ, y0, ȳ∆)| ≤ P2(ȳ∆),

for some fixed polynomial P2(ȳ∆).

Proof. The proof is similar to that of Lemma B.1; in this case it follows from (B1) that we should
expand

exp
{

1
2

(
ȳ∆ + ∆1/2C0 + ∆3/2C00 + ∆5/2C000

)2
+
∫ y∆

y0

µ(u)du
}

.

After some straightforward but lengthy calculations using Taylor’s expansion again, this leads
to the expression on the right side of (B3). Moreover, in this case the highest power of ȳ∆
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that appears in the remainder term R2(θ, ȳ∆, y0) is ȳ5
∆. Consequently, the absolute value of

the remainder term |R2| is bounded above by a polynomial of the form P2(ȳ∆) = K2
(
1 + ȳ6

∆

)
,

where K2 is a suitable constant independent of θ and y0. �

We now combine Lemma B.1 and Lemma B.2 to obtain the following. Note that the right
side in Lemma B.3 is the factor in the square brackets on the right side of (3.15).

Lemma B.3. Using the definition of the Cα given in (3.8) we have

1 +
∆
2

C10H2(ȳ∆) +
∆3/2

6
C110H3(ȳ∆)

+
∆2

24
{(

3C2
10 + C1110

)
H4(ȳ∆) + 4

(
C100 + C010 + C2

10
)

H2(ȳ∆)
}

= 1− ∆
2

µ′0 +
∆2

24

{(
µ′0
)2 − 8µ0µ

(2)
0 − µ

(3)
0

}
− ∆3/2

2
µ
(2)
0 ȳ∆

+

{
∆
2

µ′0 −
∆2

12

(
5
(
µ′0
)2

+ µ
(3)
0 − 4µ0µ

(2)
0

)}
ȳ2

∆

∆3/2

6
µ
(2)
0 ȳ3

∆ +
∆2

24

{
3
(
µ′0
)2

+ µ
(3)
0

}
ȳ4

∆.

Proof. To prove Lemma B.3 we simply write the Hermite polynomials H2, H3 and H4 explicitly
as polynomials and then write the right side as a polynomial in ȳ∆. �

To prove the first part of Theorem 3.1, we note that the product of the left side of the
expression in Lemma B.1 and the left side of the expression in Lemma B.2 gives (2.5). Moreover,
it is straightforward to show that multiplying the right side of the expression in Lemma B.1 by
the right side of the expression in Lemma B.2 gives

1
{2πσ(x∆, θ)}1/2 exp

(
−1

2
ȳ2

∆

){
A(ȳ∆) + ∆5/2R3

}
,

where A(ȳ∆) is equal to the right side, and therefore the left side, of the expression in Lemma
B.3; and, in addition,

sup
θ∈Θ

sup
y0∈R

|R3(θ, y0, ȳ∆)| ≤ P3(ȳ∆),

where P3(ȳ∆) can be expressed in terms of P1(ȳ∆) and P2(ȳ∆). Consequently, (3.15) contains
all terms of order up to and including ∆2, and part (i) of Theorem 3.1 is proved. Part (ii) of
Theorem 3.1 follows because the left side of (3.16) is bounded above by

sup
ȳ∆∈R

φ(ȳ∆)∆5/2P3(ȳ∆) = O(∆5/2),

so now the proof of Theorem 3.1 is complete. �

B2: Proof of Theorem 4.2

We begin by recalling an elementary result: for any sequence of real-valued random vectors
(Wn)n≥1 with a finite covariance matrix Σn and therefore well-defined mean µn for each n,

||Wn|| = Op(||µn||+ ||Σn||1/2). (B4)
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We recall the definitions of the exact log-likelihood `0(θ), given in (4.5); and the approxi-
mate log-likelihood, or contrast, function, `K(θ), given in (4.8) and due to Kessler (1997). De-
fine `1(θ) = `K(θ)− `0(θ), the difference between the Kessler (1997) contrast function and the
exact log-likelihood. Below, for ν a finite sequence of zeros and ones, we write Cν,i−1 for Cν

evaluated at time ti−1, where the Cν’s that we need are defined in (3.8). Similarly, we write

ȳi = ∆−1/2
(

γ(xi−1 + ∆1/2zi, β)− γ(xi−1, β)− ∆C0,i−1 −
1
2

∆2C00,i−1 −
1
6

∆3C000,i−1

)
,

where zi = (xi − xi−1)/∆1/2; cf (3.14). Then it turns out that

`1(θ) = −
n

∑
i=1

[
1
6

∆3/2C110,i−1H3(ȳi) +
1
24

∆2C1110,i−1H4(ȳi)

− 1
24

∆5/2C10,i−1C110,i−1H2(ȳi)H3(ȳi) + ∆3RK,i

]
, (B5)

where RK,i = RK,i(θ) = Op(1) uniformly in i. In (B5) we have picked out those leading terms
which appear in `0(θ) but not in `K(θ), and put the remainders into the Ri. Write S11(θ0) =
S1α(θ0) and S12(θ0) = S1β(θ0). From (B5),

S1(θ0) =
∂`1

∂θ

∣∣∣∣
θ=θ0

= −
n

∑
i=1

[
1
6

∆3/2
(

∂C110,i−1

∂θ
H3(ȳi) + 3C110,i−1H2(ȳi)

∂ȳi

∂θ

)
+

1
24

∆2
(

∂C1110,i−1

∂θ
H4(ȳi) + 4C1110,i−1H3(ȳi)

∂ȳi

∂θ

)
− 1

24
∆5/2

{(
∂C10,i−1

∂θ
C110,i−1 + C10,i−1

∂C110,i−1

∂θ

)
H2(ȳi)H3(ȳi)

+ C10,i−1C110,i−1
(
2H1(ȳi)H3(ȳi) + 3H2(ȳi)

2) ∂ȳi

∂θ

}
+ ∆3 ∂RK,i

∂θ

]
, (B6)

where the C’s, the ȳi’s and the ∂ȳi/∂θ’s are all evaluated at θ = θ0. Writing

S1 = (S>11, S>12) = (S>1α, S>1β)
> =

(
∂`1

∂α>
,

∂`1

∂β>

)>
,

we now consider S1α(θ0) and focus on S1β(θ0) later, where S1α and S1β are the α and β com-
ponents of S1. In the case of S1α, it is easily checked that ||∂ȳi/∂α|| = O(∆1/2). Moreover,
under the assumed model at θ = θ0, if follows from Theorem 3.1 and, in particular (3.15), that
|E[H2(Ȳi)]| = O(∆), |E[H3(Ȳi)]| = O(∆3/2), and consequently∣∣∣∣∣∣∣∣∆3/2E

[(
∂C110,i−1

∂α
H3(ȳi) + 3C110,i−1H2(ȳi)

∂ȳi

∂α

)] ∣∣∣∣∣∣∣∣ = O(∆3/2∆3/2) = O(∆3),

uniformly over i. Applying similar calculations to the other terms on the right-hand side of
(B6), we find that ||E[S1α(θ0)]|| = O(n∆3). Also, applying Proposition 6.2 to the elements
of S1α we find that ||∆3/2Cov(S1α)||1/2 = O(∆3/2n1/2∆−1/2) = O(n1/2∆). Therefore from
(B4), ||S1α(θ0)|| = Op(n∆3 + n1/2∆) and consequently, recalling that in the present setting
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δn,1 = (n∆)1/2,

δ−1
n,1 ||S1α(θ0)||+ Op(δ

−1
n,1) = Op{(n∆5)1/2 + ∆1/2 + (n∆)−1/2} (B7)

= Op{(n∆)−1/2(1 + n1/2∆ + n∆3)}
= Op{(n∆)−1/2 + ∆1/2 + (n∆5)1/2}.

Note that the second term on the left side of (B7) corresponds to the third term on the right
side of (B7) and also the third term on the right side of (6.9). So (B7) agrees with the first part
of Theorem 4.2. To complete the proof of the first part of Theorem 4.2, we need to show that, in
part (ii) of Proposition 6.1, the middle term on the right-hand side of (6.9) is of the same order
as (B7). This is indeed the case because, due to the uniformity established in Theorem 3.1, it is
seen by inspection of (B6) that

||J∗∗1α || =
∣∣∣∣∣∣∣∣ ∂2`1

∂α∂α>
(θ∗∗)

∣∣∣∣∣∣∣∣ = Op(n∆3/2),

where, in view of the discussion at the beginning of §4 concerning the exact form of Taylor’s
theorem for vector valued functions, θ∗∗1 is different for each row of ∂2`1/∂α∂α>. Consequently,
bearing in mind that δn,1 = (n∆)1/2,

||δ−2
n,1 J∗∗1α || = δ−2

n,1Op(n∆3/2) = Op(∆1/2),

which is of order (B7), and so (4.11) is proved.
The proof of (4.13) is similar to that of (4.11) but with the following differences: in place of

δn,1 = (n∆)1/2 we use δn,2 = n; and ∂ȳi/∂β = Op(1) rather than Op(∆1/2). In this case,∣∣∣∣∣∣∣∣∆3/2E
[(

∂C110,i−1

∂β
H3(ȳi) + 3C110,i−1H2(ȳi)

∂ȳi

∂β

)] ∣∣∣∣∣∣∣∣ = O(∆3/2∆) = O(∆5/2).

Moreover, with further, similar calculations whose details we omit, it can be shown that E[S1β] =

O(n∆5/2). So, using Proposition 6.2 several times, we obtain

||δ−1
n,2S1β|| = Op{n−1/2(n∆5/2 + ∆3/2(n/∆)1/2)} = Op{(n∆5)1/2 + ∆}. (B8)

Also, recalling that δn,2 = n1/2, the second and third terms on the right side of (6.9) are, respec-
tively,

Op(n−1n∆3/2) = O(∆3/2) and Op{(n∆)−1/2}. (B9)

Finally, using (6.9), (B8) and (B9), it is seen that

n1/2||β̂K − β̂MLE|| = Op{(n∆)−1/2 + ∆ + (n∆5)1/2},

as required.
We now sketch the proof of parts (b) and (d). First, we consider approximation of the exact

density pZ(z∆|x0; θ) in by a higher-order ε-expansion as follows:

p̂Z(z∆|x0; θ) =
1

σ(x0 + ∆1/2z∆, θ)
φ(ȳ∆)

[
1 +

1
2

∆C10H2(ȳ∆) +
1
6

∆3/2C110H3(ȳ∆)

+ ∆2
{

1
8

C2
10H4(ȳ∆) +

1
6
(C100 + C010)H2(ȳ∆) +

1
24

C1110H4(ȳ∆)

}
+ ∆5/2

2

∑
j=1

A5,2j+1H2j+1(ȳ∆) + ∆3
3

∑
j=1

A6,2jH2j(ȳ∆)

+ ∆7/2
4

∑
j=1

A7,2j−1H2j−1(ȳ∆) + ∆4Rε. (B10)
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A key point to note is that the term A6,0, the coefficient of H0(ȳ∆) = 1, is zero, so that a
constant term of order ∆3 does not appear in the above. This is a consequence of the structure
of the typical term in the ε-expansion given by (3.5). In particular, if we put g0(x) = φ(x) and
integrate a typical term on the left side of (3.5) with respect to the standard Gaussian density
φ(x), with any fixed r ≥ 1, the result is zero provided φ(x)κa1 ...ar(x) → 0 as |x| → ∞, as is the
case here.

Following the proofs of (a) and (c), we re-define `1(θ) by `∗1(θ) = `(ε)(θ) − `0(θ), where
`(ε)(θ) and `0(θ) are defined in (4.10) and (4.5) respectively. In this case, the analogue of (B5) is

`∗1(θ) = −
n

∑
i=1

[
∆5/2

2

∑
j=1

A5,2j+1H2j+1(ȳ∆) + ∆3
3

∑
j=1

A6,2jH2j(ȳ∆) + ∆7/2
4

∑
j=1

A7,2j−1H2j−1(ȳ∆)

− 1
4

∆7/2C10

2

∑
j=1

A5,2j+1H2j+1(ȳ∆) + ∆4Rε,i

]
, (B11)

where all terms of order ∆4 or smaller have been absorbed in the remainder term Rε,i.
The remaining steps in the proofs for cases (b) and (d) closely parallel those for parts (a)

and (c) respectively and we omit the details.
�

B3: Proof of Proposition 6.1

We first prove part (i) concerning consistency of θ̂0 and θ̂1 under the stated assumptions. Using

(6.2), and writing (J∗0 )
−1 in block form (J∗0 )

−1 =
(

J∗jk
0

)r

j,k=1
, where block J∗jk

0 has dimensions

dj × dk in the notation of §6.1, we have

θ̂0j − θ0j = δ−1
n,j

r

∑
k=1

δn,jδn,k J∗jk
0 δ−1

n,k S0k(θ0).

Since by assumption I(θ) is strictly positive definite in a neighbourhood of θ0, if follows from
(6.6) and the continuous mapping theorem that δn,jδn,k J∗jk

0 converges in probability to I jk(θ0),
which is block (j, k) of the inverse of I(θ0). Therefore, from the first statement in (6.5) com-
bined with Slutsky’s Lemma, we conclude that

||θ̂0j − θ0j|| = δ−1
n,j

∣∣∣∣∣∣∣∣ r

∑
k=1

δn,jδn,k J∗jk
0 δ−1

n,k S0k(θ0)

∣∣∣∣∣∣∣∣
≤ δ−1

n,j

r

∑
k=1

(
||I jk(θ0)||∞ + ||δn,jδn,k J∗jk

0 − I
jk(θ0)||∞

)
||δ−1

n,k S0k(θ0)||

= δ−1
n,j

r

∑
k=1

Op(1)

= Op(δ
−1
n,j ),

as required. In the above, ||A||∞ is equal to the absolute value of the element of the matrix A
with largest absolute value.

The proof that θ̂1 is a consistent estimator of θ0 is similar to the above but has as starting
point (6.3), and makes use of the second statement in (6.5) and (6.7) to take care of the terms
S1(θ0) and J∗∗1 respectively.
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For part (ii), we recall the result that for a q× q matrix A with ||A|| small,

(Iq + A)−1 = Iq − A + B,

where ||B|| = O(||A||2). Using this result, combined with (6.4), (6.6) and (6.7), we obtain

Dn(J∗∗0 + J∗∗1 )−1Dn = Dn(J∗∗0 )−1Dn − Dn(J∗∗0 )−1Dn(D−1
n J∗∗1 D−1

n )Dn(J∗∗0 )−1Dn + R, (B12)

where
||R|| = op

(
||D−1

n J∗∗1 D−1
n ||2

)
.

Therefore, using (6.2), (6.3) and (B12),

Dn(θ̂1 − θ̂0) = Dn(θ̂1 − θ0)− Dn(θ̂0 − θ0)

= Dn (J∗∗0 + J∗∗1 )−1 DnD−1
n {S0(θ0) + S1(θ1)} − Dn (J∗0 )

−1 DnD−1
n S0(θ0)

= Dn

{
(J∗∗0 )−1 − (J∗0 )

−1
}

DnD−1
n S0(θ0) +

(
D−1

n J∗∗0 D−1
n

)−1
D−1

n S1(θ0)

−
(

D−1
n J∗∗0 D−1

n

)−1
D−1

n J∗∗1 D−1
n

(
D−1

n J∗∗0 D−1
n

)−1
D−1

n S0(θ0) + R0

= a + I(θ0)
−1D−1

n S1(θ0)− I(θ0)
−1D−1

n J∗∗1 D−1
n I(θ0)

−1D−1
n S0(θ0) + R1, (B13)

where
a = (a>1 , . . . , a>r )

> = ∆n

{
(J∗∗0 )−1 − (J∗0 )

−1
}

∆n∆−1
n S0(θ0)

is such that ||a|| = Op(δ
−1
n,1), and R1 is a remainder term such that

||R1|| = op

(
||D−1

n J∗∗1 D−1
n ||+ ||D−1

n S1(θ0)||
)

Since I(θ0) is block diagonal by assumption, if we focus on sub-vector j of θ̂1 − θ̂0, for j =
1, . . . , r, and use (6.5)-(6.8), we obtain (6.9). �

B4: Proof of Proposition 6.2

Under the model, any given (positive) moment of Hk(Ȳi) is uniformly bounded over i .
Now

Var

{
n

∑
i=1

Ui−1Hk(Ȳi)

}
=

∣∣∣∣ n

∑
i=1

n

∑
j=1

Cov{Ui−1Hk(Ȳi), Uj−1Hk(Ȳj)}
∣∣∣∣

≤
n

∑
i=1

n

∑
j=1

∣∣∣∣Cov{Ui−1Hk(Ȳi), Uj−1Hk(Ȳj)}
∣∣∣∣.

Assuming supi E[|Ui|2+ε] = C0 < ∞, choose p = q = 2 + ε/2 and r = ε/(4 + ε) in Result B in
§6.2 to obtain

|Cov{Ui−1Hk(Ȳi), Uj−1Hk(Ȳj)}| ≤ 8
{

E[|Ui−1Hk(Ȳi)|2+ε/2
}1/(2+ε/2)

×
{

E[|Uj−1Hk(Ȳj)|2+ε/2
}1/(2+ε/2)

α(G,H)ε/(4+ε).

Applying Hölder’s inequality to each of the expectations on the right side of the above expres-
sion with

p′ = (2 + ε)/(2 + ε/2) and q′ = (4 + 2ε)/ε,
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we obtain

|Cov{Ui−1Hk(Ȳi), Uj−1Hk(Ȳj)}| ≤ 8C2/(2+ε)
0

{
E[|Hk(Ȳi)|(4+ε)(2+ε)/ε]

}ε/{(4+ε)(2+ε)}

×
{

E[|Hk(Ȳj)|(4+ε)(2+ε)/ε]
}ε/{(4+ε)(2+ε)}

× α(G,H)ε/(4+ε)

≤ C1α(G,H)ε/(4+ε), (B14)

for some finite constant C1, since any given moment of Hk(Ȳi) is uniformly bounded over i.
Now we use Result A in §6.2. Define λ0 = λε/(4 + ε). Then, using (6.13) and (B14), and
bearing in mind that ∆→ 0 and n→ ∞,

Var

{
n

∑
i=1

Ui−1Hk(Ȳi)

}
≤

n

∑
i=1

n

∑
j=1
|Cov{Ui−1Hk(Ȳi), Uj−1Hk(Ȳj)}|

≤ C1

n

∑
i=1

n

∑
j=1

α(|i∆− j∆|)ε/(4+ε)

≤ C1

n

∑
i=1

n

∑
j=1

{
e−λ∆|i−j|

}ε/(4+ε)

= C1

n

∑
i=1

n

∑
j=1

e−λ0∆|i−j|

= C1

n−1

∑
r=0

(n− r)e−λ0r∆

≤ nC1
1

1− e−λ0∆

≤ nC2

λ0∆
= O(n∆−1),

as required, where C2 is another constant. �.

B5: Derivation of formulae in (3.13).

To derive these expressions we make use of the Schepp (1982) representation for Brownian
motion defined on [0, 1] :

Bt = η0t +
∞

∑
n=1

ηn

√
2

nπ
sin(nπt), t ∈ [0, 1],

where (ηn)n≥0 is an IID sequence of N(0, 1) variables. Note that B0 = 0 and B1 = η0. Using
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formulae on p.208 and p.210 of Preston and Wood (2012), and putting T = ∆ = 1, we obtain

X0 ≡ Ǐ(1) = η0;

X1 ≡ Ǐ(1,0) =
1
2

η0 + 2
√

2π−2
∞

∑
n=1

η2n−1(2n− 1)−2;

X2 ≡ Ǐ(1,1,0) =
1
6

η2
0 −

1
4
+

1
2π2

∞

∑
n=1

η2
nn−2 +

√
2π−2η0

∞

∑
n=1

ηn(−1)n+1n−2;

X3 ≡ Ǐ(1,0,0) =
1
2

η0 + 2
√

2π−2
∞

∑
n=1

η2n−1(2n− 1)−2 − 1
3

η0 −
√

2π−2
∞

∑
n=1

ηn(−1)n+1n−2

=
1
6

η0 + 2
√

2π−2
∞

∑
n=1

η2n−1(2n− 1)−2 −
√

2π−2
∞

∑
n=1

ηn(−1)n+1n−2;

X4 ≡ Ǐ(0,1,0) =
1
6

η0 − 2
√

2π−2
∞

∑
n=1

η2n(2n)−2.

Bearing in mind that the ηn are IID N(0, 1), it follows immediately that

κ1(x) ≡ E[X1|X0 = x] =
1
2

x =
1
2

H1(x),

κ2(x) ≡ E[X2|X0 = x] =
1
6
− 1

4
+

1
2π2

π2

6
=

1
6
(x2 − 1) =

1
6

H2(x),

κ3(x) ≡ E[X3|X0 = x] =
1
6

x =
1
6

H1(x),

κ4(x) ≡ E[X4|X0 = x] =
1
6

x =
1
6

H1(x),

κ11(x) ≡ E[X2
1 |X0 = x] =

1
4

x2 +
8

π4

∞

∑
n=1

(2n− 1)−4 =
1
4

x2 +
8

π4
π4

96
=

1
4

x2 +
1

12
,

where for κ2(x) and κ11(x) we have used the identities

∞

∑
i=1

1
n2 =

π2

6
and

∞

∑
n=1

1
(2n− 1)4 =

π4

96
,

both of which can be evaluated using contour integration combined with the “coth” construc-
tion.

Finally, we need to calculate κ5(x) ≡ E[X5|X0 = x] where X5 = Ǐ(1,1,1,0). We know that that∫ s2
0 dBs3 = Bs2 , and from Itô’s formula applied with f (y) = y2,∫ s1

0

∫ s2

0
dBs3 dBs2 =

1
2
(

B2
s1
− s1

)
.

Therefore, using Itô’s formula again, this time applied with f (x) = x3/3,∫ s

0

∫ s1

0

∫ s2

0
dBs3 dBs2 dBs1 =

∫ s

0

1
2
(

B2
s1
− s1

)
dBs1 =

1
6

B3
s −

1
2

∫ s

0
Bs1 ds1 −

1
2

∫ s

0
s1dBs1 . (B15)

The conditional expectation of the terms on the RHS of (B15) given η0 = x are found to be

E
[

1
6

B3
s

∣∣∣∣η0 = x
]
=

1
6

s3x3 +
1
2

sx
∞

∑
n=1

2
n2π2 {sin(nπs)}2 ,
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1
2

∫ s

0
Bs1 ds1 =

1
4

s2x =
1
2

∫ s

0
s1dBs1 .

Substituting into the RHS of (B15) and integrating each term over s ∈ [0, 1] and we obtain

1
24

x3 + x

(
∞

∑
n=1

1
n2π2

∫ 1

0
s {sin(nπs)}2 ds

)
− 1

6
x =

1
24

H3(x),

as required. �

B6: Some comments on asymptotic expansions.

Suppose that for ∆→ 0 and for α > 0 and smooth functions f , fr, f̃r(·; ∆), r = 1, . . . , k,

f (x; ∆) ∼ ∆α
k

∑
r=0

fr(x)∆r + O(∆α+k+1) (6.14)

and

f (x; ∆) ∼ ∆α
k

∑
r=0

f̃r(x; ∆)∆r + O(∆α+k+1). (6.15)

Due to the coefficient functions fr(x) in (6.14) not depending on ∆, the expansion (6.14) is
unique. However, there are many (in fact an infinite number) of expansions of the form (6.15)
which, when we Taylor-expand each f̃r(x, ∆) about ∆ = 0 and then collect terms in powers of
∆r, we end up with the expansion (6.14). Morever, expansions of the form (6.15) are often more
accurate than expansions of the form (1); e.g. compare saddlepoint approximations and Edge-
worth expansions. In the case of the AS and epsilon expansions, both are of the general form
(6.15), but with different f̃r functions, so each needs to be expanded into the standard form
(6.14). When this is done for the two expansions, they agree up to the relevant order. Conse-
quently, AS may be seen as a representative of those expansions correct up to and including
all ∆3 terms (see Ait-Sahalia, 2002, Section 4); epsilon may be seen as a representative of those
expansions correct up to and including all order ∆2 terms; and the Kessler approximation may
be seen as a representative of those expansions only correct up to and including all order ∆
terms.

In summary, to a large extent, three of the approximations considered in this paper, namely
AS, epsilon and Kessler, may be seen as representatives of an expansion of a specific order. For
this reason we have not compared all combinations of type (AS, epsilon) and order (correct
up to ∆2 or correct up to ∆3); specifically, we have not included in our comparisons the AS
approximation correct up to and including all terms of order ∆2 with the epsilon approximation
correct up to and including all terms of order ∆3, due to the redundancy indicated above.
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