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Spin-dependent transport phenomena due to relativistic spin-orbit coupling and broken space-inversion sym-
metry are often difficult to interpret microscopically, in particular when occurring at surfaces or interfaces. Here
we present a theoretical and experimental study of spin-orbit torque and unidirectional magnetoresistance in
a model room-temperature ferromagnet NiMnSb with inversion asymmetry in the bulk of this half-Heusler
crystal. Aside from the angular dependence on magnetization, the competition of Rashba- and Dresselhaus-type
spin-orbit couplings results in the dependence of these effects on the crystal direction of the applied electric field.
The phenomenology that we observe highlights potential inapplicability of commonly considered approaches
for interpreting experiments. We point out that, in general, there is no direct link between the current-induced
nonequilibrium spin polarization inferred from the measured spin-orbit torque and the unidirectional mag-
netoresistance. We also emphasize that the unidirectional magnetoresistance has not only longitudinal but
also transverse components in the electric field: current indices which complicate its separation from the
thermoelectric contributions to the detected signals in common experimental techniques. We use the theoretical
results to analyze our measurements of the on-resonance and off-resonance mixing signals in microbar devices
fabricated from an epitaxial NiMnSb film along different crystal directions. Based on the analysis we extract an

experimental estimate of the unidirectional magnetoresistance in NiMnSb.
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I. INTRODUCTION

Anisotropic magnetoresistance (AMR) is an example of
a relativistic transport phenomenon in ferromagnets with a
long history. McGuire and Potter [1] provided a phenomeno-
logical model that fully explained the angular dependence
of AMR. The model was based on a general argument that
the magnetization-dependent conductivity tensor o;;(m), like
any other observable [2], reflects the symmetry of the ferro-
magnetic crystal. This means that if a symmetry operation
belongs to the crystallographic point group, the conductivity
tensor is left invariant under the same symmetry operation. As
an example, when an electrical current flows in an isotropic
(polycrystalline) ferromagnet, the magnetization direction de-
fines the only axis of rotational symmetry, which results in a
cos(260) angular dependence of AMR, with 6 being the angle
between the magnetization and the current.

While AMR is allowed by symmetry in any magnetic sys-
tem, ferromagnetic conductors with an inversion-asymmetric
crystal structure have been more recently identified as a
fruitful platform for discovering and utilizing a range of
new relativistic spintronics phenomena [3-8]. Apart from the
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exchange field B, which splits the electronic structure in
majority- and minority-spin bands, the inversion-symmetry
breaking in the lattice together with spin-orbit coupling
introduces an additional splitting AHso = Bso(K) - s. Here
Bso(k) is an effective magnetic field that depends on the
crystal momentum Kk, while s represents the spin polarization.
The key property of Bgo(K) is that it is odd in k and thus it
results in opposite spin splitting for opposite k. In inversion-
asymmetric strained zinc-blende semiconductors like GaAs,
Bso(k) is a combination of Rashba and Dresselhaus sym-
metry terms, B8 (k) o (ky, —k,) and BS, (k) o< (ky, —ky). A
direct manifestation of this splitting is found in the spin-orbit
torque (SOT) [9] in, e.g., (Ga,Mn)As, that emerges when
an electrical current is applied to this inversion-asymmetric
ferromagnetic semiconductor [3—6]. In metallic systems such
as half-Heusler NiMnSb studied here, Bso(K) is not described
by the simple linear-in-k Rashba and Dresselhaus form. SOT,
nevertheless, contains Rashba- and Dreselhaus-type terms
analogous to those observed in the zinc-blende semiconduc-
tors as those reflect the crystal symmetry which is the same in
zinc-blende and half-Heusler crystals [8].

SOT in bulk noncentrosymmetric crystals is associated
with a current-induced nonequilibrium spin polarization §sgo,
an effect often referred to as the Edelstein effect or the inverse
spin-galvanic effect ISGE) [9-14]. When §sso is perpendic-
ular to the magnetization, it will exert a torque on it via the
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exchange coupling. The component of §sgo that is parallel to
B.x does not lead to a magnetization torque and is, therefore,
transparent to any experimental method that relies on driving
the magnetization out of equilibrium by SOT [5,9,15].

Aside from SOT, Bgo(k) together with B can also
lead to magnetotransport terms that are second order in
the applied electric field and, unlike the first-order AMR,
are odd under the magnetization. The unidirectional magne-
toresistance (UMR) is an example of such a second-order
magnetotransport effect that was previously reported in non-
centrosymmetric ferromagnet/paramagnet bilayers or bulk
ferromagnets [16,17]. The origin of UMR was considered
to be closely connected to the phenomenology of the gi-
ant magnetoresistance (GMR) [17-20]. While in the GMR
multilayer, the fixed reference ferromagnetic layer acts as
an external source of spin §s, in UMR this is replaced with
8sso generated internally by the spin-orbit coupling. As for
GMR, spin-dependent scattering within the ferromagnet re-
sults in this scenario in a different resistance depending on
the orientation of §sgp relative to the magnetization of the
probed ferromagnet. Moreover, the accumulated spin can in-
troduce a proportional change in the exchange splitting of
the bands, further affecting the conductivity by influencing
spin transmission of minority and majority spins. Another
UMR mechanism considers that the magnons’ population of
the ferromagnet is increased or decreased depending on the
orientation of 8sgp relative to the magnetization. This leads to
a change in the average magnetization, which also results in
a net change of the magnetoresistance. Although it is possible
to experimentally distinguish these different contributions for
their particular dependence on current density and magnetic
field [20,21], they all share a common origin in the component
of 8sgo collinear with the ferromagnet’s magnetization.

In Sec. II we report our symmetry analysis and ab initio
calculations of current-induced spin polarization and UMR in
NiMnSb. We use this model system to highlight potential mis-
conceptions when inferring these quantities from experiment.
In Sec. III we then discuss our measurements in NiMnSb
microbars patterned along different crystal directions, and in
Sec. IV we summarize our main results.

II. THEORETICAL RESULTS AND GENERAL
IMPLICATIONS FOR THE ANALYSIS OF EXPERIMENTS

A. Current-induced spin polarization and spin-orbit torque

The tetragonal distortion of the noncentrosymmetric cubic
unit cell of NiMnSb, induced by the lattice mismatch with
the substrate, lowers its symmetry to a —42m symmetry point
group and results in a Dresselhaus-type k-linear term of the
spin-orbit coupling. Experiments in NiMnSb epilayers show
an additional Rashba-type k-linear term of the spin-orbit cou-
pling which we model by introducing a shear strain [8]. This
lowers the symmetry further to a point group mm2. When
an electrical current is passed in the plane perpendicular to
the growth direction, carriers acquire a nonequilibrium spin
polarization §ssg, which in general can be decomposed into a
component that is parallel to the in-plane magnetization of the
NiMnSb film 85'5[0 and a component that is perpendicular to it
8s35- This includes both intrinsic and extrinsic contributions.

We use ab initio calculations to evaluate the current-
induced nonequilibrium spin polarization as a function of
the directions of magnetization and applied electric field (see
Appendix C for the description of the numerical method).
We consider here only the in-plane components of current-
induced spin polarization since this is the component relevant
for the UMR and the fieldlike torque. For these calculations
we used the relaxation time t chosen so that the theoret-
ical conductivity matches the experimental value of 3.3 x
10* Secm™!. The tetragonal and shear strains are chosen to
make the Rashba and Dresselhaus contributions of compara-
ble strength [8], resulting in a nontrivial dependence of §sso
on the crystal direction of the applied electric field. In Fig. 1
we plot the perpendicular (SSSLO) and parallel (8520) compo-
nents of the current-induced nonequilibrium spin polarization.
The dependence of 8s3, ~ cos(§ — 6so) on the magnetization
angle 6 corresponds to what we would expect to find for
a fieldlike SOT generated by a magnetization-independent
effective spin-orbit field hgp & —Jx8Ss0/m, where J is the
exchange constant between carrier spins and the in-plane
magnetization m. 6so would then correspond to the angle of
8sso for the given crystal direction of the applied electric field.
In our case, 650 = 0O for the electric field along [110] or [110]
axes since the Rashba- and Dresselhaus-type spin-orbit fields
are (anti)parallel for these two crystal directions. For [100]
or [010] axes, the two spin-orbit fields are orthogonal to each
other and their vector sum results in 8o # 0.

Remarkably, when we include Ssgo, total 8sso becomes
magnetization dependent (see Fig. 1). We emphasize that
this dependence of §sso (hsp) on the magnetization angle
would be invisible when measuring SOT, which only depends
on 8s3o. SOT can be reliably obtained from on-resonance
mixing-signal measurements since the detected signal can be
directly attributed to the precessing magnetization driven by
the SOT. Our calculations in Fig. 1 demonstrate, however,
that a simple harmonic dependence of §s3, on the magneti-
zation angle, when inferred from the SOT measurement, does
not imply that the total dssp is constant and that its parallel
component Ssgo is a 90° phase shifted replica of the per-

pendicular component. Therefore, if considering Ssgo as the
driving mechanism behind UMR, SOT measurements cannot
be, in general, used to quantify experimentally 3520 in a given
structure.

B. Unidirectional magnetoresistance

When writing the total current density j up to the second
order in the applied electric field E as

Jji=Jj" + i = 0y E; + & EEx, (D

UMR has been associated with the longitudinal component
of the & transport coefficient [16,17]. Formally, & is
described by the second-order quantum mechanical Kubo for-
mula. However, finding accurate solutions of the formula is a
major challenge, in particular in the presence of electron scat-
tering. Here we analyze &;; using a semiclassical Boltzmann
approximation, where
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FIG. 1. Calculations of current-induced spin polarization for different directions of electric field. The plots show the total spin polarization,
as well as its components that are longitudinal and transverse to the magnetization, as a function of the magnetization orientation within the
(001) plane. In each plot, 6 denotes the angle of the magnetization measured from the electric field. Dashed lines represent harmonic fits to the

numerical points.

and v,(k) = %‘Zik, fo is the Fermi-Dirac equilibrium distribu-

tion function, and €, (k) is the band energy (see Appendix A
for the derivation of this formula).

Since the group velocity v(k) is odd under space inversion,
the second-order term will vanish in crystals that have inver-
sion symmetry. Moreover, it will also vanish in nonmagnetic
crystals since v(K) is odd under time reversal. Furthermore,
similarly to the anomalous Hall effect in coplanar magnetic
systems, the second-order term will vanish in the absence of
spin-orbit coupling, as the system will then be invariant under
combined spin rotation and time-reversal symmetry [22]. &; ;%
will thus be present in magnetic crystals with broken inversion
symmetry as a consequence of the spin-orbit coupling. These
are the same symmetry requirements as for the existence of
SOT.

In Fig. 2 we plot the calculations of the longitudinal and
transverse components of the second-order current obtained
from the Boltzmann equation (2), normalized to the first-order
current as a function of the magnetization angle for different
directions of the electric field and for a current density of
10'® A m~2. The relative amplitudes of the longitudinal com-
ponent for different directions of the applied electric field are
similar to the relative amplitudes of 8sg,, (cf. Figs. 1 and 2).
In both cases, the amplitudes are comparable for the electric
field along [100] and [010] axes, while the largest (smallest)
amplitude is obtained for fields along [110] ([110]) axes. From
these results we can expect similar amplitude ratios also in the
measured UMR and SOT. We point out, however, that this is
not necessarily a consequence of a common proportionality
of UMR and SOT to §sso. The Boltzmann approximation for-
mula (2) gives an explicit example of a contribution to UMR
with no direct relationship to §sso. The similar amplitude
ratios in the two cases are merely a reflection of a common

Rashba-Dresselhaus—type symmetry of the underlying spin-
orbit coupled electronic structure.

Our calculations in Fig. 2 also illustrate that the second-
order current can have a sizable transverse component.
Specifically in NiMnSb, the transverse component has a com-
parable amplitude to the longitudinal component for [100]
and [010] crystal directions. Here we recall that in earlier
experimental studies, the separation of UMR from competing
thermoelectric contributions was based on the assumption that
UMR had only a longitudinal component while the thermal
effects contributed to both longitudinal and transverse signals
[16,17]. Our results show that using the transverse signal
for experimentally calibrating the magnitude of the thermal
contribution is not, in general, reliable because the transverse
component can also contain a contribution from UMR.

III. MEASURED DATA AND DISCUSSION

In our experiments, we pattern all our bars from the same
34-nm-thick film of ferromagnetic NiMnSb epitaxially grown
on a 200-nm-thick Ings3Gag 47As buffer layer on an Fe:InP
insulating substrate and capped with a 5-nm MgO layer. The
vertical lattice constant of 5.97 A indicates that the film is
under compressive strain and is close to a stoichiometric
composition [23]. Figure 3(a) illustrates our measurement
setup. The NiMnSb film is patterned into 4 x 40 um? bars
along different crystal directions and mounted on the rota-
tional stage of an electromagnet. See Appendix D for further
details about the experimental setup. A microwave current
Iy cos(wt), where w = 2w 13 GHz, is passed in the bars and
the polarizing action of the spin-orbit coupling induces an os-
cillating nonequilibrium spin population ésso (@) which scales
linearly with the current. The transverse component 8s3g, is
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FIG. 2. Second-order current calculations for different directions of the electric field. The plots show the second-order current separated
into parallel and perpendicular components to the electric field as a function of the magnetization orientation within the (001) plane. In each
plot, & denotes the angle of the magnetization measured from the electric field. The fits were done using the lowest-order expansion of the
second-order conductivity tensor given in Eq. (B1). This tensor does not depend on E and thus the fitting is done together for all directions of
E. The fitting is done for both the transverse and longitudinal components together. We plot the results as a ratio of the second-order current to
the first-order longitudinal current. This ratio depends linearly on the electric field, and the values are given for an electric field that corresponds

to a longitudinal current density of 10'® Am~2.
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FIG. 3. Experimental setup and on- and off-resonance measurements of the mixing dc signal. (a) Design of the experimental layout.
(b) Longitudinal dc voltage measured as a function of the external field B and its direction € with respect to the bar for a bar patterned along
the [110] and one patterned along the [100] direction. A current density of 5.7 x 10'© A m~2 was used for the [110] bar while a current density

of 4.7 x 10" A m~2 was used for the [100] bar.
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FIG. 4. Experimental SOT measurements for different bar orientations. The plots show the measured transverse components of the effective
field By,, normalized to a unit current density of 10'® Am~2, as a function of the magnetization orientation within the (001) plane. In each plot
6 denotes the angle of the magnetization measured from the electric field, as illustrated in Fig. 3(a). Dashed lines are the harmonic fits.

responsible for generating torques on the magnetization via
the effective field hg, &~ —Jed83o/m. As described in the
previous paragraph, the longitudinal component 85!l is re-
sponsible for generating both longitudinal and transverse
components of the unidirectional magnetoresistance. Here we
focus on the longitudinal components only and measure the
dc longitudinal voltage Vy via a bias tee.

When ferromagnetic resonance is excited, rectification be-
tween the microwave current and the oscillating AMR results
in a resonance in Vg, [5]. The resonance is clearly visible in
the two-dimensional (2D) plots in Fig. 3(b). It shows Vg as
a function of the external magnetic field and its direction 6
with respect to the current direction, for bars parallel to the
[110] and [100] axes. From the analysis of its line shape (see
Ref. [6] for details) we are able to quantify hgy,. In agreement
with previous studies on different systems [5,6,15], we exper-
imentally identify the 6 dependence of hg;, for the different
crystal directions in which the microbars are patterned, as
shown in Fig. 4. As in the theoretical calculations of BSé-O,
the amplitudes of measured hg, for bars along the [100] and
[010] axes are similar, while the largest (smallest) ampli-
tudes are obtained for the [110] [110] directions, consistent
with the combined Rashba-Dresselhaus—type symmetry of the
NiMnSb electronic structure. The theoretical magnitude of
lhdy| ~ [Jexd8so/m| ~ 10 uT at 10'© Am~2 current density
was reported earlier in Ref. [8] and is of the same order of
magnitude as in the experiment.

In Fig. 3(b) we notice that the resonance is sitting on a
sinusoidally varying background, which we refer to as Vpg.
This is also shown in Fig. 5, where the 8 dependence of the
background voltage at a saturating magnetic field is plotted
for bars patterned along the four different crystal directions
[100], [010], [110], and [110]. The striking feature is that
the magnitude of Vg is again strongly dependent on the bar

direction, however, the directions corresponding to the largest
and smallest Vg switched place compared to hgg (or §ssp).
We note that these amplitude ratios of Vg, as well as the
crystal-direction-dependent phase shifts, are reproducible in
different physical sets of samples patterned along the four
crystal directions and do not depend on applied power, as
shown in Appendix E.

To interpret the measured Vg we now consider UMR
and the thermoelectric contribution, namely, the anomalous
Nernst effect (ANE). When exciting the system by the ap-
plied ac current, an out-of-plane temperature gradient due
to Joule heating can result in an electrical signal detected
in the sample plane due to ANE. Since the heat deposited
by the current scales with the square of the current density,
ANE is a second-order effect in the electric field, just like
the second-order term of the conductivity. Based on a recent
experimental measurement [24] of ANE in NiMnSb and our
numerical simulation of the heat gradient, we estimate that
the contribution to Vg due to ANE is ~0.01-0.1 uV per
current density of 10! Am™2 (see Appendix F). While the
magnitude is similar to that of the measured signals in Fig. 5,
we do not expect a strong dependence of the ANE contribution
to Ve on the crystal direction of the applied current. This is
because ANE requires only the time-reversal symmetry break-
ing by the magnetization while broken spatial symmetries of
the crystal only lead to additional, higher-order corrections.
Since we find that Vgg strongly depends on the direction of
the current and even changes sign for the [110] direction the
ANE itself cannot explain the Vpg.

UMR, on the other hand, is generated by the inversion-
symmetry breaking which is of the combined Rashba-
Dresselhaus—type form in our NiMnSb samples. As discussed
in the theory section, this leads to a strong crystal-direction
dependence of the UMR. Since theory suggests that the
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FIG. 5. Extraction of the UMR and ANE contributions from the measured background voltage. The plots show the measured background
voltage for 10" Am~2 current density as a function of the magnetization orientation within the (001) plane. The UMR and ANE fits are
done assuming that the ANE is isotropic and UMR is described by the lowest-order second-order conductivity tensor given in Eq. (B1) with
the additional assumption that the relative amplitudes of the UMR for different bar directions are the same as the relative magnitudes of the
SOT. This leaves three fitting parameters, which can be understood as the overall UMR magnitude, UMR phase shift for the [100] and [010]

directions, and the ANE magnitude.

amplitude ratios for the different crystal directions of SOT
and UMR are similar, we can use this as a constraint when
fitting the measured Vpg data. The results of the fitting shown
in Fig. 5 were obtained by assuming fixed amplitude ratios
of UMR, corresponding to the measured amplitude ratios
of the SOT fields hsio, plus an ANE contribution with an
amplitude which is independent of the crystal direction. The
extracted experimental ANE component is ~0.13 uV per
current density of 10' A m~2, which is of the same order of
magnitude as the above estimate. The fitted UMR contribution
is ~ —0.16 wV per current density of 10'© A m~2. This is an
order of magnitude larger than our theoretical value which we
attribute to the crude semiclassical Boltzmann approximation
used in the UMR calculations. In the future, more elaborate
Kubo formula calculations seem necessary to capture UMR
in NiMnSb on the quantitative level. They will also allow
for verifying the correspondence between the SOT and UMR
amplitude ratios, and by this for more firmly establishing the
fitting method we used to separate the UMR and thermoelec-
tric contributions in the measured data.

IV. SUMMARY

Based on our study of ferromagnetic NiMnSb with non-
centrosymmetric bulk crystal structure we make the following
observations regarding the explored nonequilibrium spin-orbit
coupling effects: (i) A harmonic dependence on the magne-
tization angle of the component of the current-induced spin
polarization transverse to the magnetization does not im-
ply, in general, that the in-plane component is its 90° phase
shifted replica with the same amplitude. Despite the harmonic

dependence of the transverse component, the total spin-
polarization vector, and the corresponding total current-
induced spin-orbit field vector, are not necessarily indepen-
dent of the magnetization angle. As a result, a measurement
of SOT, driven by the transverse component of the current-
induced spin-orbit field, should not be used, in general,
for extracting the total nonequilibrium spin-orbit field (spin-
polarization) vector. (ii) The approximate Boltzmann theory
of UMR, together with the approximate assumption of SOT
being proportional to the current-induced spin polarization,
suggest that the amplitude ratios of UMR and SOT for
electric fields applied along different crystal directions are
similar. This can be used for separating experimental UMR
and thermoelectric (e.g., ANE) contributions, by employing
independently measured SOT. On the other hand, measure-
ments of the diagonal and off-diagonal components in the
electric field current indices is not, in general, a reliable tool
for separating UMR and thermoelectric contributions because
both can have sizable diagonal and off-diagonal components.
(iii) Finally, the Boltzmann theory also illustrates that UMR
can have microscopic contributions which are not directly
related to the current-induced spin-polarization vector. Similar
phenomenologies observed in UMR and SOT can be a mere
reflection of the common underlying relativistic electronic
structure with broken time and space-inversion symmetries.
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APPENDIX A: SECOND-ORDER BOLTZMANN
FORMULA DERIVATION

Here we derive the second-order Boltzmann formula (2).
The general form of the Boltzmann formula for a distribution
function g(z, r, k) under the assumptions of a stationary and
spatially homogeneous g and no magnetic field [25] can be

expressed as
d
g ovie= (%) .
h dt ] .o

where e is the (positive) elementary charge, E is the electric
field, and (j—f )eol 18 the change of the distribution function due
to scattering.
We  will
approximation

(AD)

assume the constant relaxation-time

g\ _ 8~ &
dt J . T

where t is the relaxation time and gy is the equilibrium
distribution function, which for electrons is the Fermi-Dirac
distribution function

(A2)
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Within the constant relaxation-time approximation the Boltz-
mann formula has the following form:

_°k. Vg = _m.
i T

To find a solution for g up to second order in £ we expand g
in powers of E:

(A4)

g= g+ &\ E + gJEE;, (A5)

and insert it into the Boltzmanm formula (A4). Keeping only
the terms up to E2 we find

e Bgo
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Since this equation must hold for all E, the coefficients for

the E and E? terms on both sides of the equation must be the
same. Therefore,
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Considering that the dependence of gy on k is only through €
we find
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Taking into account the relation
1 e
k)= -— All
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we have
0
g = etv' 22, (A12)
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Electrical current is then given by
/ dk v(k) (Al14)
— e | 2
@y ¢

We note that this integral is done over the first Brillouin zone
or any other unit cell in the reciprocal space. The first-order
contribution to the current is given by

dk -880
—_— 2 . l_
Ji = —€e1E; (271)3VU 3’ (A15)
and the second-order contribution
8 go 13v/dg
= T’ EiE; / —— ).
Jho=—er Qry " e T 1ok de
(A16)

Note that in a multiband system, these expressions give a
contribution from each individual band and the total current
will be a sum over all bands.

The expression for the second-order current can be further
simplified. We first define a second-order conductivity tensor

&iji:

Jy, =& EE;. (A17)
From Eq. (A18) we have
Eijt = &y + &, (A18)
where
A2 g
= — Al19
S f (271)3 a (19
;1o agy
b 3.2
= A20
Sijp = et (271)3 7 ok; e (A20)

Alternatively, using Egs. (A7) and (A8), & can be written in
the form

er? dk 0 1980
§iji = — SV |V
h (2m)? k; de

(A21)
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(a)

FIG. 6. (a) Unit cell of the reciprocal space defined by the re-
ciprocal lattice vectors by, b,, bs. (b) Coordinate system used for
the symmetry analysis. The vectors X, y, z define the Cartesian
coordinate system used for the symmetry analysis. a|, a,, a; are the
lattice vectors of the NiMnSb in presence of shear strain. Without
the strain, the lattice vectors would correspond to the conventional
lattice of the cubic NiMnSb lattice and would be oriented along the
Cartesian coordinate system.
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here I" signifies integral over the unit-cell boundary and v is
the outward unit normal vector to the boundary. The first term
in this relation in fact vanishes. To see that this is the case, it
is useful to use for the integration a unit cell of the reciprocal
space spanned by the reciprocal lattice vectors by, b,, bs (see
Fig. 6'), instead of the first Brillouin zone. The first term in
(A22) is then given by sum over six surfaces. Since g is a
periodic function of K, also 3g° must be periodic. This means

that at the opposite boundarles of the reciprocal unit cell dﬁ is

the same. However, since the outward unit normal Vector v is
opposite for the opposite boundaries, the whole term vanishes.
Combining Egs. (A21) and (A22) we have

_ b
&ij1 = ,,;‘f‘ézjz —&i-

To simplify this further we need to show that &;; is symmetric
under interchanging any two indices. This is clearly satisfied

for £, however, it is less obvious for 5” From Eq. (A17),
2.b
il

Sl}l

, (A22)

(A23)

we see that &j = &;; must hold and thus also &° =&

'Image adapted from https://commons.wikimedia.org/w/index.
php?curid=29922624 under CC BY-SA 3.0..

should be satisfied. This can be explicitly verified from ;li g}j =
3%

ok, which is symmetric as long as € is sufficiently smooth

function. To show that the tensors are also symmetric under
interchanging the other indices, we consider

§jit — &iji = _Ell;j + Szbji =0.

Then it must also hold that the &;;; and Eil}] tensors are sym-
metric under interchanging indices i and [:

(A24)

it =& =&j1i = &1ji. (A25)
We can thus rewrite Eq. (A23) as
Ej =&l +E = —E. (A26)
Therefore, éul = —éul/Z and we finally find
511 e3t2 dk . . ,9%g
S = vl . A27
St = 5 2 ] @np’l Y Be (A27)

APPENDIX B: SYMMETRY OF SECOND-ORDER
CURRENTS

Here we study the symmetry of the second-order currents.
Similarly to other response phenomena, the second-order cur-
rents will in general contain both time-reversal even (7 -even)
and time-reversal odd (7 -odd) components. Here we consider
only the time-reversal odd component since this component
corresponds to the UMR. In the following &;;; will denote
the 7 -odd second-order conductivity tensor. Furthermore, we
assume the &;; tensor is symmetric under interchanging any
two indices. As shown in Appendix A, this holds for the
Boltzmann formula that we use in our calculations. It is not
clear whether this holds for the & in general, thus, the
symmetry analysis here should be taken to refer specifically
to the Boltzmann contribution. The method for the symmetry
analysis is analogous to the one used in Ref. [26]. We have
implemented the second-order symmetry analysis in the open
source code SYMMETR [27]. All the results shown here are
given in a Cartesian coordinate system described in Fig. 6(b).
Since in the experiment the magnetization always lies in the
[001] plane, we consider here only magnetization in this
plane. In Table I we give the general shape of the &;;; for
general direction of magnetization within this plane as well
as for the [110] and [-110] directions where the symmetry is
higher.

To describe the dependence of the second-order currents
on magnetization, it is useful to expand the &;;; tensor in

TABLE I. Symmetry of second-order conductivity tensor in NiMnSb for different directions of the magnetization. Note that the &;j

coefficients between different directions of M are not in general related.

E,\' Jjl éy Jjl %‘z Jjl
g)rxx S yXX 0 E yxx g yyx 0 0 0 SZ X
ML [00 1 ] g VXX ‘i: yyx 0 Syyx Eyyy 0 0 0 ‘i: 22y
0 0 %-zzx 0 0 %' $24% ‘i: 22X ‘i:zzy 0
sxxx syxx 0 “;:yxx - gyxx 0 0 0 %‘Z X
M ” [1 10] or [ 1— 10] E)'xx _Syxx 0 _syxx _Sxxx 0 0 0 _";:zzx
0 0 Szzx 0 0 - 5 2zx g zzx - ‘E zzx 0
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powers of the magnetization. We consider only the lowest-
order term since it describes well both the calculations and the
experiment:

Mxxl - M\VXQ Mxx?, - MyX4 szS
Ele = Mx3 — Myx4 M xy — MyX3 0 ,
M:xs 0 M, xe — Myx7
MX)C3 — My)C4 MX)C4 — MyX3 0
Eviil = | Mixy — Myxs  Myxy — Myx, —M. x5 ,
0 —M, x5 M x7 — M,xg
M. xs 0 My xs — Myx;
&1 = 0 —M_ x5 M x7 — Myxg
Mxxﬁ - ZW),X7 MXX7 — My.X@ 0

B

Here x; denotes free parameters of the expansion.

APPENDIX C: CALCULATION DESCRIPTION

The calculations utilize the full-potential local-orbital
(FPLO) density-functional theory (DFT) code [28,29] for de-
scription of the electronic structure. This DFT uses a local
orbitals basis set for solving the Kohn-Sham equations. This
makes it easy to transform the DFT Kohn-Sham Hamilto-
nian into a Wannier form, which is needed for the transport
calculations. We use the full set of basis orbitals for this
transformation, which makes the Wannier Hamiltonian very
accurate. This is crucial for the second-order calculations
since the second-order contributions are very small and very
sensitive to small symmetry violations that often exist in
Wannier Hamiltonians generated by the more conventional
approach based on maximally localized Wannier functions.
The transport calculations utilize Wannier interpolation to
evaluate the response formula on a tight grid in the reciprocal
space. We have implemented the second-order Boltzmann
calculation in the freely accessible LINRES code [30]. We have
also utilized this code for the calculations of the current-
induced spin polarization.

The spin-polarization calculations use the following Kubo
formula for the response tensor (i.e., tensor such that §sso; =
xi; Ej) [31]:

{1t (1)1 tt (K)) {24 (K) | D; | 4 (K)) T

Xij = —
k,m,

(ChH

Here, S is the spin operator, u,(k) are the Bloch functions
of a band n, k is the Bloch wave vector, &,(Kk) is the band
energy, Er is the Fermi energy, ¥ is the velocity operator,
and I" is a quasiparticle broadening parameter that describes
the disorder strength. This formula becomes equivalent to the
first-order constant relaxation time Boltzmann formula for
small I' (with T = i/2T"), but differs for finite values of I'.
For the I" value that we consider the formula is close to the
Boltzmann formula. We only consider the Boltzmann formula
for the second-order calculations since the derivation and
evaluation of the second-order Kubo formula is much more
complex. We note that the Kubo formula (C1) describes only
the 7 -even part of the Kubo formula. We do not consider here

ﬁReZ:
€4 ‘{[Er— E,(K)+ T2)[Ep — E (K> + T2}

the 7T-odd component since experimentally it is seen that the
in-plane SOT has a fieldlike character and the corresponding
current-induced spin polarization is thus 7 even. Our test
calculations of the 7-odd component also suggest that it is
much smaller than the 7 -even component for realistic values
of I'.

The DFT calculations utilized 12 x 12 x 12 k points
and the GGA-PBE potential. The current-induced spin-
polarization and the second-order conductivity response
calculations use a 400 x 400 x 400 k mesh, which we have
confirmed to be sufficient for good convergence. To estimate
the value of I' we calculate the first-order conductivity using
a conductivity formula analogous to Eq. (C1) and choose the
I" so that the conductivity matches the experimental conduc-
tivity. This corresponds to I' & 0.05 eV or alternatively to
T & 6.6 fs. In previous calculations of SOT in NiMnSb, a
I' = 0.036 eV was used [8] because the samples used in those
experiments had somewhat larger conductivity. We note that
our calculations of the current-induced spin polarization were
done for the I' = 0.036 eV value and have been afterwards
rescaled to I' = 0.05 eV, assuming 1/I" scaling. This is quite
accurate since for these values of I' the formula is very close
to the Boltzmann formula and thus has 1/T" scaling.

APPENDIX D: EXPERIMENTAL DETAILS

All devices measured in these experiments are 2-terminal
4 x 40 pum? resistors obtained from the same wafer, patterned
by e-beam lithography followed by ion milling. The bars are
wedge bonded to the contact pads of a printed circuit board,
which is mounted on the rotational stage of an electromagnet.
All the experiments are carried at room temperature in air.
The table below summarizes the resistance and AMR ratios
measured for the four bars along the four crystal directions
considered in the main paper.

Direction Average resistance R,y () AMR ratio AR/R,, (x107%)

[100] 105.4 £ 0.1 0.20 £ 0.01
[110] 97.4+0.1 —1.30£0.02
[010] 98.0 £ 0.1 0.21£0.01
[—110] 104.2 £ 0.1 —1.16 £0.01

We point out that these are 2-terminal measurements which
do not exclude contact resistance, estimated as 10 €2/contact
from the comparison of bars with different aspect ratios.
While the values of the resistance vary within 8% from bar
to bar, the AMR ratio strongly depends on the crystal direc-
tion in which the bar is patterned. This is due to the partial
compensation of noncrystalline and crystalline AMR terms in
the NiMnSb film (please refer to the Supplemental Material
of Ref. [6]).

Amplitude-modulated microwave power at a fixed fre-
quency of 13 GHz is applied to the bars while the longitudinal
dc voltage Vj. is extracted with a bias-tee and measured via
a lock-in. To estimate the power that actually reaches the
NiMnSb bar we use it as a resistance thermometer to quantify
the Joule heating induced by the incident microwave signal.
This procedure is discussed in detailed in the Supplemental
Material of Ref. [6]. The values of the microwave current
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FIG. 7. (a) Top: phase shift 5o of Vig, fitted by VSOO sin(6 + 6so), for a bar along [100] at different values of the microwave power. Bottom:
angular dependence of Vg for different microwave powers passed in the bar, showing no phase shift. (b) Power dependence of Vi, for the

same bar.

densities passed in each bar that we extract from this analysis
are summarized in the following table.

Direction Microwave current density (A m?)
[100] 4.7 x 101
[110] 1.3 x 10
[010] 5.1 x 10
[—110] 5.7 x 10

APPENDIX E: POWER DEPENDENCE
AND REPRODUCIBILITY

In Fig. 7 we show that, as expected, the background voltage
VBg scales linearly with power and that the angular depen-
dence of Vg is independent of the power. In Fig. 8 we show
that the results are reproducible between different bars pat-
terned on the same chip.

APPENDIX F: MODELING TEMPERATURE GRADIENT
USING FINITE ELEMENT METHOD

The system is excited by an ac current passing mainly
through the NiMnSb layer which results in Joule heating.
The heat scales with the square of the current density and
dissipates into surrounding material giving rise to tempera-

ture gradients. The out-of-plane temperature gradient drives
ANE which contributes to the electrical signal detected in
the sample plane. We perform a simulation of heat transfer
in the cross section of our device utilizing the finite element
method (FEM) as implemented in COMSOL MULTIPHYSICS
[32]. The software solves the heat equation numerically us-
ing an automatically generated triangular mesh with density
adjusted to the size of individual domains of the device. The
geometry is shown in Fig. 9 and consists of the NiMnSb wire
(thickness = 37 nm, width = 1 pwm) deposited on a (In,Ga)As
mesa (thickness = 200 nm, width = 1 um). There is also
an InP substrate (thickness = 1 um, width =2 pum), a thin
MgO capping layer (thickness = 5 nm, width = 1 um), and
a He atmosphere included in the simulation. We note that the
experiments are done in air rather than in He, however, the
choice of the atmosphere does not play an important role for
the simulations. We find that replacing the He by air has a
negligible effect on the thermal gradient. The simulations also
consider much smaller thickness of the InP substrate since
the full width of the experimental substrate would be difficult
to simulate. This does not have any significant effect on the
thermal gradient since the thickness we consider is sufficient
to capture the substrate’s cooling effect on the NiMnSb layer.

The reference temperature Ti.s is set to 300 K (before
the Joule heating takes place). The current density applied
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FIG. 8. Angular dependence of Vgg, normalized to a current density of 10'® A m~2, measured for two different bars patterned on the same
chip along each of the four crystal directions. Top: measurements for the first set of bars. Bottom: measurement for the second set of bars.
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FIG. 9. Simulated geometry, cross section of the device, NiMnSn
conducting the ac current is highlighted in blue, thin MgO capping
layer (poorly visible in this plot) is included in the simulation.

to NiMnSb is 10'° or 10'" Am~2. At the boundary of the
simulated area the temperature is fixed to T or a thermal
insulation is assumed (except the bottom boundary again fixed
to Tier). These two types of boundary condition correspond to
very efficient cooling (transfer of heat to the surroundings)
or to extremely poor cooling, respectively. The real system
would fall between these two limiting cases. Figures 10 and
11 show the simulated steady-state temperature distribution
for the case with boundaries fixed to Tis and with insulating
boundaries, respectively.

The former case (Fig. 10) is simulated with applied current
density of 10'° and 10'"" A m~2 but we show the temperature
profile only for 10'® Am~2. The 10 times larger current den-
sity results visually in the same temperature profile but the
maximum temperature increase T-Ty is 100 times larger.

The latter case (Fig. 11) is simulated only with applied
current density of 10’ Am~2 and all the heat is dissipated
only via the bottom boundary, through the substrate. The out-
of-plane temperature gradient is evaluated along a vertical cut
line (along the z coordinate) running through the middle of the
mesa. Figure 12 shows the temperature increase 7'-T;.¢ along

nm

T[K]

1600} 1
1400} 1 #®300.009
1200k | ®300.008
300.007
20001 1 t1300.006
800 1 t1300.005
600} 4 300.004
o] | | 300.003
300.002
200¢ 1 W 300.001

ot ! : : \ 1 | W30
-500 0 500 1000 nm

FIG. 10. Temperature distribution in case the applied current
density is 10'° A m~2 and all boundaries are set to T,y = 300 K, the
most efficient cooling.
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FIG. 11. Temperature distribution in case the applied current
density is 10" Am~2 and the top, left, and right boundaries of the
simulated domain are insulating and the bottom boundary is set to
Tier = 300 K, the least efficient cooling.

the cut line within the NiMnSb layer (1200 to 1237 nm) for
the three cases simulated.

As expected, the case with insulating boundaries shows a
larger increase in temperature but the dependence on the z
coordinate is the same. The case with 10 times larger applied
current shows a 100 times larger increase of temperature
which is due to the Joule heating scaling with the square of
the applied current density.

Finally, Fig. 13 shows the out-of-plane temperature gra-
dient generating ANE in the NiMnSb wire. It is evaluated
simply as a numerical derivative of the temperature given in
Fig. 12 for the three cases. Note that the gradient decreases
linearly in the NiMnSb layer towards the top surface. The
efficiency of the cooling (insulating boundaries or fixed tem-
perature) does not affect the gradient so the approximation
of the cooling mechanism assumed in our model should not
significantly compromise the validity of our numerical re-
sults. Our model does not include heat convection in helium
explicitly. To test whether a heat convection could be impor-
tant, we have approximated this contribution to cooling by

a constant heat flux through the top surface g = 250 H}Q’—K

0.014
0012 ——— === pmmtm e ==
0.010 |

< 0.008 |

n—I@ 0.006 r —T*0.01,J = 10 MA/cm?

~ oooa L ---T,J=1MA/cm?
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0.000 ~ ' '
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z-coordinate (nm)

FIG. 12. Temperature increase 7-T.; along vertical cut line
within the NiMnSb layer.
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FIG. 13. Out-of-plane temperature gradient along vertical cut
line within the NiMnSb layer.

This value corresponds to a forced air flow [33] so it overesti-
mates the convection in our setup. The resulting temperature
gradient shows only negligible difference to the case with
fixed-temperature boundary condition described above. The
main result of the FEM simulation relevant to the experimen-
tal device is that the average out-of-plane temperature gradient
is of the order of 10* Km™' for current density of 10'© Am~2.

TABLE II. Material parameters used as input of FEM model:
electrical conductivity o, thermal conductivity o7, heat capacity c,,
and mass density p.

op (Sm™") or Wm™'K™) ¢, Jkg7'K™") p(kgm™)

MgO 0 200 [34] 900 [35] 3600
NiMnSb 3.3 x 10° 23 [36] 420 [37] 7600
InGaAs 1.43 x 10* 200 [38] 300 [39] 5500
InP 0 68 [40] 310 [40] 4800
He 0 0.15 [41] 5200 [41] 145

Our FEM results depend on the material parameters used.
We have measured the electrical conductivity of the individual
layers at room temperature. The room-temperature thermal
conductivity and heat-capacity parameters of our films are
estimated based on literature as listed in Table II. In case of
NiMnSb they are estimated based on related materials [36,37].
The thermal conductivity is underestimated, considering the
metallic character of the film, so we report an upper estimate
of the thermal gradient. The results are obtained for a steady
state so there is no significant dependence on the heat capacity
or mass density. (We estimate the mass density based on the
molar masses and unit-cell volume.)
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