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Abstract. An m-dimensional simplex ∆ in Rm is called empty lattice simplex if ∆∩Zm

is exactly the set of vertices of ∆. A theorem of White states that if m = 3 then, up to an
affine unimodular transformation of the lattice Zm, any empty lattice simplex ∆ ⊂ R3 is
isomorphic to a tetrahedron whose vertices have third coordinate 0 or 1. In this paper, we
prove a generalization of this theorem for some special empty lattice simplices of arbitrary
odd dimension m = 2d−1 which was conjectured by Sebő and Borisov. Our result implies
a classification of all 2d-dimensional isolated Gorenstein cyclic quotient singularities with
minimal log-discrepancy ≥ d.

1. Introduction

We work with polytopes ∆ in the m-dimensional real space Rm containing the standard
lattice Zm. By e1, . . . , em we denote the standard basis of Zm. A k-dimensional simplex ∆
is a convex hull of affinely independent vectors v1, . . . , vk+1 of Rm in which case v1, . . . , vk+1

are the vertices of ∆. We call ∆ a lattice simplex if its vertices v1, . . . , vk+1 are contained
in Zm. Similarly a polytope ∆ in Rm is called a lattice polytope if its vertices are in
Zm. A lattice simplex ∆ is called empty if ∆ ∩ Zm is the set of its vertices. In [Whi64]
White posed the problem to investigate general properties of empty lattice simplices and,
if possible, classify them. By “classification” one means a classification up to a natural
notion of isomorphism, namely up to affine linear isomorphisms respecting the lattice
Zm. Many mathematicians have already worked directly or indirectly on this question
[Whi64, Mor85, MMM88, Seb99, HZ00, Bor08, BBBK11, IVS18, IVnS19a, IVnS19b, CS20].
In [Whi64] White gave a full classification of 3-dimensional empty lattice simplices.

Theorem 1.1. (White) Let ∆ ⊂ R3 be a 3-dimensional lattice simplex, i.e., a lattice
tetrahedron. Then the following statements are equivalent:

(1) ∆ is empty;
(2) ∆ is affine unimodularly isomorphic to a lattice simplex conv(v1, v2, v3, v4) ⊂ R3

such that the third coordinate of v1, v2 is 0, the third coordinate of v3, v4 is 1, and
the edges ∆1 = conv(v1, v2),∆2 = conv(v3, v4) are empty.

The aim of the present paper is to generalize this theorem to an arbitrary odd dimension
2d− 1 (d ≥ 2). For this generalization we need some additional definitions.
First, we need the notion of unimodular lattice simplices.
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Figure 1. Illustration to the theorem of White (see Theorem 1.1).

Definition 1.2. (Unimodular lattice simplex) A k-dimensional lattice simplex

∆ = conv(v1, . . . , vk+1) ⊂ Rm

is called a unimodular lattice simplex if one of the following two equivalent conditions hold:

(1) There is an affine unimodular isomorphism α : Zm → Zm such that

α(∆) = conv(0, e1, . . . , ek);

(2) v1 − vk+1, v2 − vk+1, . . . , vk − vk+1 is part of a lattice basis for Zm.

Remark 1.3. Note that if a 3-dimensional lattice simplex ∆ ⊂ R3 is empty, then all its
codimension 1 faces are unimodular lattice simplices (i.e., unimodular lattice triangles).

Second, we use the notion of a Cayley polytope (see for instance [BN07] or [BN08]).

Definition 1.4. (Cayley Polytope) Let ∆1, . . . ,∆r ⊂ Rm be r lattice polytopes. Con-
sider the cone

σ :=
{
(λ1, . . . , λr,

∑
λi∆i) ⊂ Rm+r | λi ≥ 0

}
.

The intersection of σ with the hyperplane

Hr :=

{
(x1, . . . , xm+r) ∈ Rm+r |

r∑
i=1

xi = 1

}
is called the Cayley polytope of ∆1, . . . ,∆r and will be denoted by ∆1 ∗ . . . ∗ ∆r. It
is straightforward to show that ∆1 ∗ . . . ∗ ∆r is the convex hull of the polytopes e1 ×
∆1, . . . , er ×∆r in Rm+r. In particular, ∆1 ∗ . . . ∗∆r is a lattice polytope.

Remark 1.5. Using the notion of Cayley polytope, we can reformulate the theorem of
White (Theorem 1.1) in the following equivalent form: ∆ ⊂ R3 is an empty lattice tetra-
hedron if and only if ∆ is isomorphic to a Cayley polytope of two empty lattice segments
∆1 := conv(v1, v2) ⊂ R2 and ∆2 := conv(v3, v4) ⊂ R2, i.e., ∆ ∼= ∆1 ∗∆2.

Definition 1.6. (Lattice simplex ∆(a1, . . . , ad−1;n)) Let a1, . . . , ad−1, n be positive
integers with gcd(ai, n) = 1 (1 ≤ i ≤ d − 1). Consider the following 1-dimensional empty
lattice simplices:

∆i := conv(0, ei) ⊂ Rd (i = 1, . . . , d− 1), ∆d := conv(0, (a1, . . . , ad−1, n)) ⊂ Rd .
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Define
∆(a1, . . . , ad−1;n) := ∆1 ∗ · · · ∗∆d ⊂ R2d−1 .

Remark 1.7. It straightforwardly follows that the theorem of White (Theorem 1.1) is
equivalent to the following statement: ∆ ⊂ R3 is an empty lattice tetrahedron if and only if
∆ is isomorphic to a Cayley polytope of two empty lattice segments ∆1 := conv(0, e1) ⊂ R2

and ∆2 := conv(0, a1e1 + ne2) ⊂ R2 for some integers a1, n with gcd(a1, n) = 1, i.e.,
∆ ∼= ∆(a1;n).

We also need the notion of h∗-polynomial of a lattice polytope (see [Sta80]).

Definition 1.8. (h∗-polynomial of a lattice polytope) Let ∆ ⊂ Rd be a d-
dimensional lattice polytope. Denote by

∣∣k∆ ∩ Zd
∣∣ the number of lattice points contained

in the kth dilate of ∆. The Ehrhart series of ∆ is a rational function

1 +
∑
k≥1

∣∣k∆ ∩ Zd
∣∣tk = h∗

0 + h∗
1t+ . . .+ h∗

dt
d

(1− t)d+1

where h∗
∆(t) :=

∑
h∗
i t

i is called the h∗-polynomial of ∆. The h∗-polynomial of ∆ has the
following properties:

(1) all coefficients h∗
k (0 ≤ k ≤ d) of h∗

∆(t) are non-negative integers;
(2) h∗

0 = 1, h∗
1 = |∆∩Zd |−d−1, h∗

d = |Int(∆)∩Zd |, i.e., h∗
d coincides with the number

of lattice points contained in the interior of ∆;
(3) h∗

∆(1) =
∑d

i=0 h
∗
i = Vold(∆), where Vold(∆) is the lattice normalized d-dimensional

volume of ∆.

Remark 1.9. It directly follows from the above properties of h∗-polynomials that a 3-
dimensional lattice polytope ∆ ⊂ R3 is an empty lattice tetrahedron (as in the theorem of
White) if and only if its h∗-polynomial has the form

h∗
∆(t) = 1 + (n− 1)t2,

where n = Vol3(∆) is the lattice normalized volume of ∆.

Finally, we call a set of 1-dimensional simplices conv(vi, wi) ⊂ Rd (i = 1, . . . , r) linearly
independent if the vectors vi − wi ∈ Rd for i = 1, . . . , r are linearly independent. The
codimension 1 faces of a polytope ∆ are called its facets.

Now we are ready to formulate our generalization of the theorem of White:

Theorem 1.10. (Generalized theorem of White) Let ∆ ⊂ R2d−1 be a (2d − 1)-
dimensional lattice simplex. Then the following conditions on ∆ are equivalent:

(1) h∗
∆(t) = 1+ (n− 1)td, where n = Vol2d−1(∆) is the lattice normalized volume of ∆.

(2) there exist positive integers a1, . . . , ad−1, n with gcd(ai, n) = 1 (1 ≤ i ≤ d− 1) such
that

∆ ∼= ∆(a1, . . . , ad−1;n).

(3) ∆ ∼= ∆1∗. . .∗∆d for some linearly independent 1-dimensional empty lattice simplices
∆i ⊂ Rd (i = 1, . . . , d), and all facets of ∆ are (2d − 2)-dimensional unimodular
lattice simplices.
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Remark 1.11. In the next section, we show that our generalization of the theorem of
White was expected by Sebő in [Seb99, Conjecture 4.1].

We have organized the paper as follows. In Section 2, we prove two equivalent formu-
lations of condition (1) from Theorem 1.10 which are used in the proof of Theorem 1.10.
In Section 3, we prove a number theoretic result about Bernoulli functions on which the
proof of Theorem 1.10 relies. In Section 4, we give the proof of Theorem 1.10. Section 5
concludes the paper with an application of our results to the classification of some isolated
cyclic quotient singularities.
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2. Lattice simplices and their h∗-polynomials

In this section, we give another equivalent formulation of the first condition in Theo-
rem 1.10 using some properties of h∗-polynomials of lattice simplices (see [BR15]).

Proposition 2.1. (h∗-polynomial of a lattice simplex) Let ∆ be an m-dimensional
lattice simplex of Rm with vertices v1, v2, . . . , vm+1. We set wj := (vj, 1) ∈ Rm+1 = Rm ×R
(1 ≤ j ≤ m + 1). Then the k-th coefficient h∗

k in the h∗-polynomial h∗
∆(t) =

∑m
i=0 h

∗
i t

i

equals the number of lattice points in the parallelepiped

par(∆) := {λ1w1 + λ2w2 + . . .+ λm+1wm+1 | 0 ≤ λ1, λ2, . . . , λm+1 < 1} ⊂ Rm+1

with last coordinate k.

We denote the interior of an m-dimensional polytope ∆ in Rm by Int(∆). We prove two
other equivalent characterizations of condition (1) from Theorem 1.10.

Theorem 2.2. Let ∆ ⊂ R2d−1 be a (2d − 1)-dimensional lattice simplex with vertices
v1, . . . , v2d. Then the following conditions on ∆ are equivalent:

(1) h∗
∆ = 1 + (n− 1)td, where n = Vol2d−1(∆) is the lattice normalized volume of ∆;

(2) for all k = 1, . . . , d − 1, Int(k∆) ∩ Z2d−1 = ∅ and all facets of ∆ are (2d − 2)-
dimensional unimodular lattice simplices;

(3) for all k = 1, . . . , d− 1, k∆ ∩ Z2d−1 ⊂ Z v1 + . . .+ Z v2d.

In the proof of Theorem 2.2, we use the fractional part {x} of a real number x which is
defined as {x} = x − ⌊x⌋ where ⌊x⌋ denotes the largest integer that is less than or equal
to x. The function x 7→ ⌊x⌋ is called the floor function.

Proof. (3) ⇒ (2). Suppose condition (3) holds. We claim that

par(conv((vi, 1) : i ̸= j))∩Z2d =

{∑
i ̸=j

λi(vi, 1) : 0 ≤ λi < 1

}
∩Z2d = {0} for j = 1, . . . , 2d.
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Assume towards a contradiction that 0 ̸= (w, k) :=
∑

i ̸=j λi(vi, 1) ∈ Z2d for some 0 ≤ λi < 1

where k =
∑

i ̸=j λi ∈ Z>0. Since, by condition (3), w ̸∈ l∆ for l = 1, . . . , d − 1, it follows

that k ≥ d. Consider the lattice vector 0 ̸= w′ :=
∑

i ̸=j{1− λi}vi ∈ Z2d−1. We have∑
i ̸=j{1− λi} ≤ 2d− 1−

∑
i ̸=j λi < d, i.e., w′ ∈ k′∆ for some k′ ≤ d− 1. Contradiction.

By [Gru07, Corollary 21.2], there exists w2d ∈ Z2d such that (v1, 1), . . . , (v2d−1, 1), w2d

is a basis of Z2d. Notice we may assume that the last coordinate of w2d is 1. Thus for
j ∈ {1, . . . , 2d} the facet ∆j ≺ ∆ that does not contain vj is a (2d − 2)-dimensional
unimodular lattice simplex. Since for all k = 1, . . . , d− 1

Int(k∆) ∩ Z2d−1 =

{∑
i

λivi :
∑
i

λi = k, λi > 0 for all i = 1, . . . , 2d

}
,

it follows by condition (3) that Int(k∆) ∩ Z2d−1 = ∅.
(2) ⇒ (1). Suppose condition (2) holds. Consider par(∆) = {

∑
i λi(vi, 1) | 0 ≤ λi < 1}.

By Proposition 2.1, the kth coefficient of h∗
∆(t) equals to the number of lattice points

contained in par(∆) ∩ {x2d = k}. Let w :=
∑

i λi(vi, 1) ∈ par(∆) ∩ {x2d = k} ∩ Z2d,
i.e., 0 ≤ λi < 1 with

∑
i λi = k ∈ Z. Since all facets of ∆ are (2d − 2)-dimensional

unimodular lattice simplices, it follows that λi = 0 for all i, or λi > 0 for all i. Let
k > 0, then all λi > 0 for all i, i.e., w =

∑
i λivi ∈ Int(k∆) ∩ Z2d−1. Hence k ≥ d. We

claim that k ≤ d as well. Indeed, assume towards a contradiction that k > d. Then
0 ̸= w′ :=

∑
i{1− λi}vi ∈ par(∆) ∩ Z2d−1 with

∑
i{1− λi} ≤ 2d −

∑
i λi < d. The latter

contradicts the assumption (notice {1− λi} > 0). Hence, we have seen that all coefficients
of h∗

∆(t) are 0 except for the 0th and the dth, i.e., h∗
∆(t) = 1 + (n − 1)td for the integer

n = h∗
∆(1) = Vol2d−1(∆).

(1) ⇒ (3). Suppose condition (1) holds. Then

par(∆) ∩ {x2d = k} ∩ Z2d = ∅ for all k = 1, . . . , d− 1.

Let w :=
∑

i λivi ∈ k∆ ∩ Z2d−1 for 0 ≤ λi with
∑

i λi = k ∈ {1, . . . , d − 1}. Then

w′ :=
∑

i{λi}vi ∈ Z2d−1 with 0 ≤ {λi} < 1 and 0 ≤ l :=
∑

i{λi} ≤
∑

i λi = k ≤ d− 1, i.e.,∑
i{λi}(vi, 1) ∈ par(∆) ∩ {x2d = l} ∩ Z2d for an integer 0 ≤ l ≤ d − 1. The case l > 0 is

not possible by our assumption. Thus, l = 0. This implies {λi} = 0 for all i, i.e., λi ∈ Z,
and w =

∑
i λivi ∈ Z v1 + . . .+ Z v2d. □

3. The method of Morrison and Stevens

The proof of the generalized theorem of White (Theorem 1.10) is based on a method
of Morrison and Stevens that uses some number theoretic properties of the 1-st periodic
Bernoulli function whose Fourier series expansion is given by

B1(x) := −
∑
|n|≥1

e2πinx

2πin
= − 1

π

∑
n≥1

sin 2πnx

n
.
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By standard Fourier analysis, this series converges pointwise to the sawtooth function
{x} − 1

2
, where {y} := y − ⌊y⌋ denotes the fractional part of y ∈ R. Thus, we get

B1(x) =

{
{x} − 1

2
, if x ̸∈ Z

0 , if x ∈ Z

Remark 3.1. In general, one sets B0(x) := 1 and defines the l-th periodic Bernoulli
function Bl(x) (l ≥ 1) as

Bl(x) := − l!

(2πi)l

∑
|n|≥1

e2πinx

nl
.

Morrison and Stevens used the following statement [MS84, Section 1, Corollary 1.3]:

Theorem 3.2. 1 Let d, n be positive integers (n ≥ 2) and let a1, . . . , ad be integers such
that gcd(ai, n) = 1 (1 ≤ i ≤ d). Suppose for all t ∈ Z one has

d∑
i=1

B1

(
tai
n

)
= 0.

Then the integer d is even and after reordering the integers ai we get ai+ai+1 ≡ 0 (mod n)
for all i = 1, 3, 5, . . . , d− 1.

We give a complete proof of Theorem 3.2 for arbitrary d.

Remark 3.3. We remark that Theorem 3.2 is a special case of a conjecture of Borisov
[Bor97, Conjecture 2].

Notice that the case n = 2 in Theorem 3.2 is straightforward. Hence in the following
n ≥ 3. We consider the finite abelian group Gn := (Z /nZ)∗, i.e., the group of units in
the finite ring Z /nZ. Since n ≥ 3, we have |Gn| = φ(n) ≥ 2 and g ̸= −g for all g ∈ Gn.
Denote by C[Gn] the group algebra of Gn over C, i.e., C[Gn] = {

∑
g∈Gn

agσg : ag ∈ C},
where the elements σg for g ∈ Gn form a canonical C-basis of C[Gn]. Since Gn naturally
acts on Z /nZ by multiplication, and Z /nZ is canonically isomorphic to the subgroup
1
n
Z /Z ⊂ R /Z, the value B1(gx) is well-defined for any g ∈ Gn and for any x ∈ 1

n
Z /Z.

For any x ∈ 1
n
Z /Z, we consider the Stickelberger element

S(x) :=
∑
g∈Gn

B1(gx)σg ∈ C[Gn],

and denote by U the C-vector subspace of C[Gn] generated by all Stickelberger elements
S(x), i.e., U := span

{
S(x) : x ∈ 1

n
Z /Z

}
.

Let {σ∗
g : g ∈ Gn} be the basis of the dual vector space Ĉ[Gn] which is dual to the

canonical basis {σg : g ∈ Gn} of C[Gn]. We denote by

⟨·, ·⟩ : C[Gn]× Ĉ[Gn] → C, ⟨v, f⟩ := f(v)

1Morrison and Stevens only gave a proof for d = 4. A similar result has been shown by Reid in [Rei87,
Appendix to §5]. A generalization of Theorem 3.2 using Reid’s method was found by Celaya [Cel18].
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the natural dual pairing. The key idea is to show that a basis of the orthogonal complement

U⊥ = {f ∈ Ĉ[Gn] : f(u) = 0 for all u ∈ U}
of the subspace U ⊂ C[Gn] is given by the φ(n)/2 elements u∗

g := σ∗
g + σ∗

−g for g ∈ Gn:

Lemma 3.4. {u∗
g := σ∗

g + σ∗
−g : g ∈ Gn} is a basis of U⊥. In particular dimC(U

⊥) =
dimC(U) = φ(n)/2.

We postpone the proof of Lemma 3.4 until the end of this section and now complete the
proof of Theorem 3.2.

Proof of Theorem 3.2. We consider the element

u∗ := σ∗
a1
+ σ∗

a2
+ . . .+ σ∗

ad
∈ Ĉ[Gn],

where a1, . . . , ad are the elements ofGn = (Z /nZ)∗ corresponding to the integers a1, . . . , ad.
From the assumptions in Theorem 3.2, it follows that for all integers t ∈ Z we have〈

S

(
t

n

)
, u∗
〉

=

〈∑
g∈Gn

B1

(
tg

n

)
σg, σ

∗
a1
+ σ∗

a2
+ . . .+ σ∗

ad

〉

= B1

(
ta1
n

)
+B1

(
ta2
n

)
+ . . .+B1

(
tad
n

)
= 0.

Thus u∗ ∈ U⊥. On the other hand, we can write u∗ =
∑

g∈Gn
kgσ

∗
g for some nonnegative

integral coefficients kg (g ∈ Gn), where kg is the nonnegative multiplicity of the basis vector

σ∗
g in the sum

∑d
i=1 σ

∗
ai
. By Lemma 3.4, we can write u∗ as a unique linear combination of

sums σ∗
g + σ∗

−g over all φ(n)/2 pairs {g,−g}, i.e., there exists a set of φ(n)/2 coefficients
λ{g,−g} corresponding to pairs {g,−g} such that

u∗ =
∑
g∈Gn

kgσ
∗
g =

∑
{g,−g}⊂Gn

λ{g,−g}(σ
∗
g + σ∗

−g),

d =
∑
g∈Gn

kg = 2
∑

{g,−g}⊂Gn

λ{g,−g}.

Hence kg = k−g = λ{g,−g} for all g ∈ Gn, and d ∈ 2Z. Thus one can reorder the integers
{ai}di=1 into pairs {ai, ai+1} for i = 1, 3, . . . , d− 1 such that ai + ai+1 ≡ 0 (mod n). □

It remains to show Lemma 3.4.

Proof of Lemma 3.4. Consider the regular representation ρ : G → GL(C[Gn]) of Gn, i.e.,
for all g ∈ Gn

ρg : C[Gn] → C[Gn], σh 7→ σgh.

Since Gn is a finite abelian group, the C-space C[Gn] splits into a direct sum of φ(n) =
|Gn| 1-dimensional invariant subspaces Wi ⊂ C[Gn] (i = 1, . . . , φ(n)) corresponding to
pairwise different characters χ1, . . . , χφ(n). By simultaneous diagonalization of commuting
endomorphisms ρg (g ∈ Gn), we obtain another C-basis e1, . . . , eφ(n) of C[Gn] consisting
of orthogonal idempotents ei ∈ C[Gn] such that for all i ∈ {1, . . . , φ(n)} one has e2i = ei,
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ρg(ei) = χi(g)ei (for all g ∈ Gn), eiej = 0 for i ̸= j, and 1 =
∑φ(n)

i=1 ei. Let X (n) :=
{χ1, . . . , χφ(n)} be the group of characters of Gn. Then X (n) ∼= Gn, but this isomorphism
is not canonical. By well-known properties of characters (see for instance [Isa06, Theorem
2.12]), we obtain the following relation between the two bases e1, . . . , eφ(n) and {σg}g∈Gn :

σg =

φ(n)∑
i=1

χi(g)ei for all g ∈ Gn

and

ei =
1

φ(n)

∑
g∈Gn

χi(g
−1)σg for all i ∈ {1, . . . , φ(n)}.

One has X (n) = X+(n) ⊔ X−(n), where X+(n) := {χ ∈ X (n) : χ(−1) = 1} is the
subgroup of even characters and X−(n) := {χ ∈ X (n) : χ(−1) = −1} is the set of odd
characters. Obviously, one has |X+(n)| = |X−(n)| = φ(n)/2.
For any χ ∈ X (n) there exists a minimal positive integer Cχ dividing n such that the

character χ : Gn = (Z /nZ)∗ → C∗ factors through the natural homomorphism (Z /nZ)∗ →
(Z /Cχ Z)∗. The integer Cχ is called the conductor of χ. We denote by the same letter
χ the lift of χ : Gn = (Z /nZ)∗ → C∗ to its corresponding Dirichlet character. This is a
function χ : Z → C satisfying the following conditions

(1) χ(a) = χ(b) if a ≡ b (mod Cχ);
(2) χ(ab) = χ(a)χ(b) for all a, b ∈ Z;
(3) χ(a) = 0 if gcd(a, Cχ) ̸= 1;
(4) χ(a) = χ(a) if gcd(a, Cχ) = 1, a = a + Cχ Z, where χ on the right hand side is

considered as the unique homomorphism χ : (Z /Cχ Z)∗ → C∗.

Since Cχ | n, the values of the function χ : Z → C on elements g of Gn are well-defined.
To any character χ ∈ X (n), one assigns a complex number

B1,χ :=

Cχ∑
k=1

χ(k)B1

(
k

Cχ

)
.

In [Was97, Chapter 4], the numbers B1,χ are called generalized Bernoulli numbers. We will
need the following nontrivial result on the nonvanishing of B1,χ

2.

Theorem 3.5. If χ is an odd Dirichlet character, then B1,χ ̸= 0.

Theorem 3.5 is a direct consequence of the following three statements from classical
number theory (see for instance [BS66, Ch. V, §2], or [Rib01, Ch. 21 and Ch. 22]):

Theorem 3.6. Let χ be a non-trivial Dirichlet character and let

L(s, χ) =
∞∑
n=1

χ(n)

ns
, Re(s) > 0

2Washington writes in [Was97, p. 38]: “. . . Note that the theorem implies that B1,χ ̸= 0 if χ is odd.
There is no elementary proof known for this fact. . . ”.



A GENERALIZATION OF A THEOREM OF WHITE 9

be the corresponding Dirichlet L-function. Then L(1, χ) ̸= 0.

Theorem 3.7. [BS66, Ch. V, §2, Theorem 3] Let χ be an odd Dirichlet character with
conductor Cχ. Denote by χ the conjugate odd character. Then

L(1, χ) = πi
τ(χ)

C2
χ

Cχ∑
k=1

χ(k)k = πi
τ(χ)

Cχ

B1,χ,

where τ(χ) denotes a Gauss sum

τ(χ) =

Cχ∑
a=1

χ(a)e2πia/Cχ .

Theorem 3.8. Let χ be a Dirichlet character with conductor Cχ. Then the absolute value
|τ(χ)| of the Gauss sum τ(χ) is

√
Cχ. In particular, τ(χ) ̸= 0.

Take an odd Dirichlet character χi induced by an odd character χi ∈ X−(n) of Gn. By
Theorem 3.5, we have B1,χi

̸= 0. We rescale the vector ei ∈ C[Gn] by the non-zero factor
|Gn|B1,χi

and obtain

uχi
:= |Gn|B1,χi

ei = B1,χi

∑
g∈Gn

χi(g
−1)σg =

∑
g∈Gn

B1,χi
χi(g

−1)σg

=
∑
g∈Gn

Cχi∑
k=1

χi(k)χi(g
−1)︸ ︷︷ ︸

χi(kg−1)

B1

(
k

Cχi

)
σg

k′:=kg−1

=
∑
g∈Gn

Cχi∑
k′=1

χi(k
′)B1

(
k′g

Cχi

)
σg

=

Cχi∑
k′=1

χi(k
′)
∑
g∈Gn

B1

(
k′g

Cχi

)
σg =

Cχi∑
k′=1

χi(k
′)S

(
k′

Cχi

)
∈ U.

It follows that for all χ ∈ X−(n) the vector uχ is contained in U . Since the ei are linearly
independent, we obtain a linearly independent set {uχ : χ ∈ X−(n)}. Hence dimC(U) ≥
φ(n)/2. Since dimC(U) + dimC(U

⊥) = dimC(C[Gn]) = φ(n) it follows that dimC(U
⊥) ≤

φ(n)/2. On the other hand, the φ(n)/2 elements u∗
g = σ∗

g + σ∗
−g are contained in U⊥,

because for all x ∈ 1
n
Z /Z one has

〈
S(x), u∗

g

〉
=

〈∑
g∈Gn

B1(gx)g, σ
∗
g + σ∗

−g

〉
= B1(gx) +B1(−gx) = 0.

Moreover, the φ(n)/2 elements {u∗
g : g ∈ Gn} are linearly independent, since {σ∗

g : g ∈ Gn}
form a basis of Ĉ[Gn]. Thus, we obtain the opposite inequality dimC(U

⊥) ≥ φ(n)/2. Hence,
dimC(U

⊥) = φ(n)/2 and the set {u∗
g : g ∈ Gn} is a basis of U⊥. Lemma 3.4 is proved. □
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4. The proof of Theorem 1.10

In this section we prove Theorem 1.10. We need the following statement which was
implicitly used in the proof of Theorem 2.2.

Proposition 4.1. Let ∆ = conv(v1, . . . , v2d) ⊂ R2d−1 be a (2d − 1)-dimensional lattice
simplex with h∗

∆(t) = 1 + (n − 1)td, where n = Vol2d−1(∆) (see Theorem 2.2). Sup-
pose that for some rational numbers 0 ≤ λi < 1 (i ∈ {1, . . . , 2d}) the linear combination∑2d

i=1 λi(vi, 1) ∈ Z2d is a lattice vector. Then either
∑

i λi = 0, or
∑

i λi = d. Furthermore,
if
∑

i λi = d, then λi ̸= 0 for all i.

Proof. By Proposition 2.1 and our assumption, if w =
∑2d

i=1 λi(vi, 1) ∈ Z2d is a lattice
vector for some rational numbers 0 ≤ λi < 1 (i ∈ {1, . . . , 2d}), then either

∑
i λi = 0 (if

w = 0) or
∑

i λi = d (if w ̸= 0).
To show the second part of the statement, assume towards a contradiction that there

is a lattice vector as above 0 ̸= w =
∑2d

i=1 λi(vi, 1) ∈ Z2d but with, e.g., λ1 = 0. Then

0 ̸=
∑2d

i=1{1− λi}(vi, 1) ∈ Z2d with 0 ≤ {1− λi} < 1 (i ∈ {1, . . . , 2d}) and
∑2d

i=1{1− λi} ≤
2d− 1−

∑2d
i=1 λi = d− 1. A contradiction to our assumption on ∆. □

Proof of Theorem 1.10. (1) ⇒ (2). Let ∆ = conv(v1, . . . , v2d) ⊂ R2d−1 be a (2d − 1)-
dimensional simplex such that h∗

∆(t) = 1 + (n − 1)td. By Theorem 2.2, all facets of
∆ are (2d − 2)-dimensional unimodular lattice simplices and for all k = 1, . . . , d − 1,
Int(k∆) ∩ Z2d−1 = ∅. Therefore, the facet Γ := conv(v1, . . . , v2d−1) ⊂ ∆ is a (2d − 2)-
dimensional unimodular lattice simplex, and thus we can extend the set of lattice vectors
(v1, 1), . . . , (v2d−1, 1) to a Z-basis

(v1, 1), . . . , (v2d−1, 1), (w, l) ∈ Z2d = Z2d−1×Z .

Hence the lattice vector (v2d, 1) ∈ Z2d can be written as an integral linear combination:

(v2d, 1) = n1(v1, 1) + · · ·+ n2d−1(v2d−1, 1) + n(w, l),

where the last coefficient n equals Vol2d−1(∆). We set

∆′ := conv((v1, 1), . . . , (v2d, 1)) ⊂ R2d

such that ∆′ ∼= ∆. Consider the finite abelian group

G(∆′) := Z2d /(Z(v1, 1) + . . .+ Z(v2d, 1)),

which is generated by (w, l) such that G(∆′) ∼= Z /nZ. Therefore, we can choose the lattice
vector (w, l) ∈ Z2d ∩ par(∆) as a rational linear combination

(w, l) =
2d∑
i=1

µi(vi, 1), µi ∈
1

n
Z, 0 ≤ µi < 1.

We write

µi =
ai
n

for some integers 0 ≤ ai < n (i = 1, . . . , 2d).
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By Proposition 4.1, for all t ∈ Z \nZ and for all i = 1, . . . , 2d, one has {tai/n} ≠ 0, i.e.,
gcd(ai, n) = 1 for all i = 1, . . . , 2d. The last condition implies that for all t ∈ Z \nZ

0 ̸=
2d∑
i=1

{
tai
n

}
(vi, 1) ∈ par(∆) ∩ Z2d .

This shows that we can assume a2d = 1. Furthermore, we obtain for all t ∈ Z \nZ

d =
2d∑
i=1

{
tai
n

}
(by Proposition 4.1) ⇔ 0 =

2d∑
i=1

B1

(
tai
n

)
.

The right hand side of this equation is satisfied for all integers t ∈ nZ, since B1(k) = 0
for all integers k ∈ Z. By Theorem 3.2, we can assume (after reordering the lattice vectors
v1, . . . , v2d−1) that a2i−1 + a2i ≡ 0 (mod n) for all i = 1, . . . , d (we can leave the lattice
vector v2d at its place, i.e., a2d−1 = n− 1, a2d = 1).
Let α be the unique unimodular linear isomorphism which maps the basis

{(v1, 1), . . . , (v2d−1, 1), (w, l)− (v2, 1)− (v4, 1)− . . .− (v2d−2, 1)} ⊂ Z2d−1×Z
of Z2d to the basis

{(e1, 0), (e1, e1), (e2, 0), (e2, e2), . . . , (ed, 0), (ed, ed)} ⊂ Zd ×Zd .

With the equations a2i−1 + a2i = n for all i = 1, . . . , d and the linear relations

(v2d, 1) = n(w, l)−
2d−1∑
i=1

ai(vi, 1), (ed, ed) = α((w, l))−
d−1∑
i=1

(ei, ei),

we obtain

α((v2d, 1)) = nα((w, l))−
2d−1∑
i=1

aiα((vi, 1))

= n(ed, ed) + n

(
d−1∑
i=1

(ei, ei)

)
− a2d−1(ed, 0)−

(
d−1∑
i=1

a2i−1(ei, 0) + a2i(ei, ei)

)

= n(ed, ed) +

(
d−1∑
i=1

(a2i−1(ei, ei)− a2i−1(ei, 0))

)
− (n− 1)(ed, 0)

= (ed, ned) +
d−1∑
i=1

(0, a2i−1ei)

= (ed, a1e1 + a3e2 + a5e3 + · · ·+ a2d−3ed−1 + ned).

Hence ∆ is affine unimodularly isomorphic to ∆1 ∗ . . . ∗∆d for

∆i := conv(0, ei) ⊂ Rd for i = 1, . . . , d− 1 and

∆d := conv(0, (a1, a3, a5, . . . , a2d−3, n)) ⊂ Rd

This proves (1)⇒(2).
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(2)⇒(3). Suppose that ∆ = ∆(a1, . . . , ad−1;n) for some positive integers a1, . . . , ad−1, n
with gcd(ai, n) = 1 for all i ∈ {1, . . . , d − 1}. Clearly, then ∆ is isomorphic to a Cayley
polytope ∆1 ∗ · · · ∗∆d for some linearly independent 1-dimensional empty lattice simplices
∆i ⊂ Rd. Moreover, G(∆′) ∼= Z /nZ, where

∆′ := (∆, 1) = (∆(a1, . . . , ad−1;n), 1) ⊂ R2d .

Now we can directly compute the h∗-polynomial of ∆ and obtain h∗
∆(t) = 1 + (n − 1)td.

By Theorem 2.2, it follows that all facets of ∆ are (2d− 2)-dimensional unimodular lattice
simplices. This proves (2)⇒(3).

(3) ⇒ (1). If ∆ = ∆1 ∗ . . . ∗∆d is a Cayley polytope, then we obtain a surjective lattice
projection π : ∆ → Σd−1, where Σd−1 is a (d− 1)-dimensional unimodular lattice simplex.
Since kΣd−1 has no interior lattice points for k ≤ d− 1, it follows that

Int(k∆) ∩ Z2d−1 = ∅ for all k ∈ {1, . . . , d− 1}.

By Theorem 2.2, this implies that h∗
∆(t) = 1 + (n − 1)td, where n = Vol2d−1(∆). This

proves (3)⇒(1). □

Theorem 1.10 together with Theorem 2.2 implies the following expanded version of a
generalization of Theorem 1.1.

Corollary 4.2. (Expanded version of the generalized theorem of White) Let
∆ ⊂ R2d−1 be a (2d− 1)-dimensional lattice simplex. Then the following conditions on ∆
are equivalent:

(1) For all k = 1, . . . , d− 1, k∆ ∩ Z2d−1 ⊂ Z v1 + . . .+ Z v2d.
(2) For all k = 1, . . . , d − 1, Int(k∆) ∩ Z2d−1 = ∅ and all facets of ∆ are (2d − 2)-

dimensional unimodular lattice simplices.
(3) h∗

∆ = 1 + (n− 1)td, where n = Vol2d−1(∆) is the lattice normalized volume of ∆.
(4) ∆ is isomorphic to one of the simplices ∆(a1, . . . , ad−1;n) from Definition 1.6.
(5) ∆ ∼= ∆1∗. . .∗∆d for some linearly independent 1-dimensional empty lattice simplices

∆i ⊂ Rd, and all facets of ∆ are (2d− 2)-dimensional unimodular lattice simplices.

As an illustration we consider the case of 5-dimensional lattice simplices (i.e., d = 3).

Corollary 4.3. Let ∆ ⊂ R5 be a 5-dimensional empty lattice simplex with Vol5(∆) = n.
Then the following statements are equivalent:

(1) h∗
∆ = 1 + (n− 1)t3, where n = Vol5(∆) is the lattice normalized volume of ∆.

(2) ∆ is isomorphic to one of the lattice simplices ∆(a1, a2;n) from Definition 1.6.
(3) ∆ ∼= ∆1 ∗∆2 ∗∆3 for linearly independent 1-dimensional lattice simplices ∆i ⊂ R3,

and all lattice points contained in 2∆∩Z5 are either the vertices of the simplex 2∆,
or the midpoints of its edges.

Finally, we give an example which shows that the assumption about lattice points in 2∆
in Corollary 4.3(3) cannot be dropped, in other words, one cannot omit the assumption
that all codimension 1 faces of ∆ are unimodular lattice simplices in Theorem 1.10(3).
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Example 4.4. Let p ̸= q be two prime integers and consider the following linearly inde-
pendent segments in R3:

∆1 := conv(0, (1, 0, 0)), ∆2 := conv(0, (1, p, 0)), ∆3 := conv(0, (1, 0, q)).

Then the Cayley polytope ∆1 ∗∆2 ∗∆3 is an empty 5-dimensional lattice simplex in the
affine lattice plane {x1 + x2 + x3 = 1} ⊂ R6 and it is isomorphic to

∆ = conv(0×∆1, e1 ×∆2, e2 ×∆3) ⊂ R5 = R2×R3 .

Notice the doubled simplex 2∆ contains lattice points which are not an integer linear
combination of the vertices of ∆, namely for k = 1, . . . , p− 1 and l = 1, . . . , q− 1, we have

(1, 0, 1, k, 0) =
k

p
(1, 0, 1, p, 0) +

p− k

p
(1, 0, 0, 0, 0) +

p− k

p
(0, 0, 1, 0, 0) +

k

p
(0, 0, 0, 0, 0)

and

(0, 1, 1, 0, l) =
l

q
(0, 1, 1, 0, q) +

q − l

q
(0, 1, 0, 0, 0) +

q − l

q
(0, 0, 1, 0, 0) +

l

q
(0, 0, 0, 0, 0).

We claim that there is an isomorphism

G(∆) := Z6 /(Z(v1, 1) + . . .+ Z(v6, 1)) ∼= Z /pZ⊕Z /q Z ∼= Z /pq Z,

where vi are the vertices of ∆ defined above. Indeed every element of G(∆) has a unique
representative in par(∆). By [Cas97] or [Seb90, Lemma 2], the total number of lattice
points contained in par(∆) equals to the determinant of the matrix, whose rows consist of
the vertices of ∆ and added a column with ones. It is straightforward to show that the
determinant of this matrix is pq. The remaining non-zero elements in G(∆) are induced
by lattice points in 3∆, namely for k = 1, . . . , p− 1 and l = 1, . . . , q − 1

k

p
(1, 0, 1, p, 0) +

p− k

p
(1, 0, 0, 0, 0) +

l

q
(0, 1, 1, 0, q) +

q − l

q
(0, 1, 0, 0, 0)+{

−kq + lp

pq

}
(0, 0, 1, 0, 0) +

{
kq + lp

pq

}
(0, 0, 0, 0, 0).

Thus, the h∗-polynomial of ∆ equals

h∗
∆(t) = 1 + (p+ q − 2)t2 + (p− 1)(q − 1)t3.

By Theorem 1.10, this implies ∆ ̸∼= ∆(a1, a2; pq).

5. Classification of some isolated cyclic quotient singularities

Let us now explain how Theorem 1.10 gives rise to a full classification of 2d-dimensional
isolated cyclic quotient singularities with minimal log-discrepancy ≥ d.
An m-dimensional cyclic quotient singularity is an affine variety obtained as the quotient

of Cm by a linear action of the cyclic group µn of n-th roots of unity. After diagonalizing,
we can always assume that the µn-actions is given by

µn × Cm → Cm, (ζ, (x1, . . . , xm)) 7→ (ζa1x1, . . . , ζ
amxd)
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for some integers ai (1 ≤ i ≤ m), where ζ ∈ C is a primitive n-th root of unity. We call
the rational vector (a1

n
, . . . , am

n
) ∈ Qm the type of the quotient singularity. If ai = 0 for

some i ∈ {1, . . . ,m}, then the quotient X = Cm /µn is isomorphic to a product X ′ × C,
where X ′ = Cm−1 /µn is a lower-dimensional quotient singularity. Hence we may assume
that ai ̸= 0 for all i. The quotient singularity Cm /µn of type (a1

n
, . . . , am

n
) has an isolated

singularity at the origin if and only if gcd(ai, n) = 1 for all i = 1, . . . ,m (see [MS84,
Corollary 2.2]). To a cyclic quotient singularity one associates the minimal log-discrepancy.
In the cyclic case it has the following combinatorial description (see [Bor97] or [Rei83]):

Definition 5.1. Let Cm /µn be an isolated cyclic quotient singularity of type (a1
n
, . . . , am

n
).

Then the minimal log-discrepancy is given by

min
t∈{1,...,n−1}

m∑
i=1

{
tai
n

}
.

Furthermore, a quotient singularity Cm /µn is called Gorenstein if the image of the
homomorphism µn → GL(m;C) induced by the linear µn-action on Cm is contained in
SL(m;C). This property is easy to see from the type of the quotient singularity:

Proposition 5.2. Let X = Cm /µn be a cyclic quotient singularity of type (a1
n
, . . . , am

n
).

Then X is Gorenstein if and only if
m∑
i=1

ai
n

∈ Z .

Now we can prove the following theorem.

Theorem 5.3. Let C2d /µn be an isolated cyclic quotient singularity of type (a1
n
, . . . , a2d

n
).

Then the following two statements are equivalent:

(1) The minimal log-discrepancy of the quotient singularity is at least d.
(2) After reordering the integers ai, one obtains a2i−1 + a2i ≡ 0 (mod n) for all i =

1, . . . , d. In other words, the µn-action on C2d is determined by a diagonal matrix

diag(ζa1 , ζ−a1 , ζa3 , ζ−a3 , . . . , ζa2d−1 , ζ−a2d−1),

where ζ is a primitive n-th root of unity.

Proof. The statement (2)⇒(1) easily follows by the general fact that {x} + {−x} = 1 for
all x ∈ R \Z. Thus, we obtain

2d∑
i=1

{
tai
n

}
= d for all t ∈ {1, . . . , n− 1}.

Therefore, the minimal log-discrepancy of C2d /µn is d.
(1)⇒(2). Suppose now that (a1

n
, . . . , a2d

n
) is an isolated cyclic quotient singularity with

minimal log-discrepancy≥ d, i.e., gcd(ai, n) = 1 and

2d∑
i=1

{
tai
n

}
≥ d for all t ∈ {1, . . . , n− 1}.
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We claim that
∑2d

i=1{tai/n} = d for all t ∈ {1, . . . , n − 1}. Indeed, assume towards a

contradiction that there exists t ∈ {1, . . . , n− 1} such that
∑2d

i=1{tai/n} > d. Then

2d∑
i=1

{
(n− t)ai

n

}
=

2d∑
i=1

{
−tai
n

}
= 2d−

2d∑
i=1

{
tai
n

}
< d

contradicting the fact that the minimal log-discrepancy is at least d. Thus, we have

0 =
2d∑
i=1

({
tai
n

}
− 1

2

)
=

2d∑
i=1

B1

(
tai
n

)
for all t ∈ {1, . . . , n− 1}.

The assertion follows from Theorem 3.2. □

Remark 5.4. The singularities classified in Theorem 5.3 are automatically Gorenstein,
because

m∑
i=1

{
tai
n

}
∈ {0, d} for all t ∈ {0, 1, . . . , n− 1},

or because of the conditions a2i−1+a2i ≡ 0 (mod n) for all i = 1, . . . , d (see Proposition 5.2).
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vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 395–418.
[Rei87] , Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985

(Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence,
RI, 1987, pp. 345–414.

[Rib01] P. Ribenboim, Classical theory of algebraic numbers, Universitext, Springer-Verlag, New York,
2001.
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gen, Germany

Email address: victor.batyrev@uni-tuebingen.de

School of Mathematical Sciences, University of Nottingham, University Park, Not-
tingham NG7 2RD, UK

Email address: johannes.hofscheier@nottingham.ac.uk


	1. Introduction
	Acknowledgement
	2. Lattice simplices and their h*-polynomials
	3. The method of Morrison and Stevens
	4. The proof of Theorem 1.10
	5. Classification of some isolated cyclic quotient singularities
	References

