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Abstract: Nanostructured magnetic suspensions have superior thermophysical properties, which 

have attracted widespread attention owing to their industrial applications for heat transfer enhancement 

and thermal management. However, experimental measurements of the thermophysical properties of 

magnetic-based nanofluids, especially under an external magnetic field, are significantly complicated, 

expensive, and time consuming. Currently, the method of predicting and summarizing material 

properties through machine learning has accelerated the development of materials and practical 

industrial applications. This study aims to predict the thermophysical properties of magnetic nanofluids 

by establishing an artificial neural network (ANN) using experimental data on viscosity, thermal 

conductivity, and specific heat. The results based on the ANN model agree with the experimental 

results according to the different evaluation criteria. Different previous theoretical thermophysical 

models are reviewed, and the ANN model is proven to be more accurate by comparing the values of 

the ANN model and previous thermophysical models, which can also provide a theoretical basis for 

explaining the heat transfer of magnetic nanofluids. In the present study, a neural network model was 

developed for predicting the thermophysical properties of magnetic nanofluids and using material 

informatics to study functional materials. 
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Introduction 

Fluid thermophysical properties are the key to estimating heat transfer performance and efficiency, 

which are almost ubiquitous in industrial fields [1-6]. Nanoparticles dispersed in base fluids are 

collectively known as nanofluids, and their potential applications in electron cooling and heat transfer 

have been investigated in recent years [3,4]. Depending on the types of particles received, nanofluids 

can be divided into metal nanofluids (Au, Ag, Cu, Ni, etc.), metal-oxide nanofluids (e.g., ZnO, TiO2, 

Fe3O4, Al2O3), and nonmetallic nanofluids (e.g., carbon nanotube (CNT), graphene) [5,6]. Based on a 



report by Choi in 1995 [7,8], the nanofluid became popular as a coolant or thermal transport medium 

to obtain superior heat exchange efficiency when compared to the traditional working mediums in 

energy conversion systems [9,10]. According to the type of base fluid received, nanofluids included 

not only water-based nanofluids, but also oil-, ether-, and ester-based nanofluids [11,12]. Various 

experimental and numerical studies have focused on the heat transfer of nanofluids and their 

applications [4,13]. These studies have also shown that the superior thermal characteristics of 

nanofluids can be influenced by the thermophysical characteristics of the base liquid and nanoparticles 

[5,14]. 

Among the various nanofluids, magnetic nanofluids, which consist of a base fluid and 

superparamagnetic nanoparticles, have potential extensive applications in microfluidic chips, 

magnetofluid seals, and magnetic particle tracers because of their magnetic and fluid properties [15-

19]. Magnetic nanofluids, such as Fe, Co, Ni, and their oxides, are usually prepared using magnetic 

materials with different morphologies and sizes [20-24]. Comparing to most nanofluids such as ZnO, 

TiO2, and Al2O3 nanofluids, the cost of magnetic nanofluids is generally low because of their low-

priced raw materials and convenient preparation process [25,26]. The primary objective of using 

nanofluids for heat transfer applications is to enhance the thermal conductivity, which is achieved by 

adding nanoparticles [16,27]. Although the heat conduction performance of magnetic nanofluids has 

been reported [28], the mechanisms for explaining the measured experimental data under applied 

magnetism are still ambiguous [7,29]. In heat transfer applications, the development of controllable 

thermophysical properties of nanofluids is a new research hotspot [30,31]. However, magnetic 

nanofluids that are suitable for different heat transfer applications require conditions such as high 

specific heat and high conductivity [32,33]. Hence, the primary research topics include the control of 

nanofluid saturation susceptibility, free surface characteristics, and magnetorheological characteristics 

of magnetic nanofluids under applied magnetism [34-36]. With the growing demand for magnetic 

nanofluids with higher thermal conductivity, carbon-based magnetic nanofluids [36], which consist of 

base fluid and carbon-based magnetic nanoparticles (Fig. 1), have become increasingly attractive 

because of their superior thermal conduction and magnetism [37-41]. The use of carbon-based 

magnetic nanofluids as the working medium is of great significance [42,43]. Particularly, the 

possibility of inducing and controlling heat transfer processes and fluid flow through an external 

magnetic field has enhanced the energy conversion of magnetrons in heat transfer systems [44-49]. 



 

Fig. 1 Components of carbon-based magnetic nanofluids 

The enhancement of heat transfer using carbon-based magnetic nanofluids under external 

magnetism is defined as a compound thermal management technique that enhances the heat transfer 

process [50-53]. As an important branch of fluid mechanics, the coupling problem between 

magnetohydrodynamics and heat transfer has not yet been solved, although it has been investigated 

[16,17]. In terms of experiments, owing to the different research contents, the thermal properties of the 

same nanofluid, such as specific heat, viscosity, thermal conductivity, and other systems, are rarely 

tested in the same work [54]. For this reason, it is difficult to evaluate the thermal characteristics of 

nanofluids based on a single thermophysical property [55]. However, because the magnetic particles 

in a magnetic liquid under a magnetic field, which are under the action of thermophysical properties, 

especially viscosity and thermal conductivity, will exhibit corresponding changes [56,57], this type of 

dynamic distribution of magnetic particles under the thermophysical experimental measurement of 

magnetic liquids is significantly difficult [58,59]; consequently, so far, only a few reports have been 

published on the related theory of thermophysical properties under the action of magnetism [60,61]. 

The factors affecting the thermophysical properties of nanofluids have not been completely clarified; 

however, these factors are certainly affected by the base fluids, nanoparticles, and external field (Fig. 

2) [55-62]. Many of the influencing factors are not simply independent but have a complex coupling 

relationship [38,63]. For example, the Brownian motion of nanoparticles can increase the chance of 

collision between nanoparticles and affect the agglomeration of solids in the suspension; moreover, 

this motion is related to the size of nanoparticles, which can further affect the Brownian motion of 

nanoparticles [39,64]. Although several theoretical investigations and experimental studies have 

investigated the thermal and physical characteristics of different suspensions, related theories based 

on the characteristics of solid particles and liquids are still not appropriate for forecasting the thermal 

characteristics of nanofluids under an external field [65-68]. Therefore, it is essential to develop a new 

modeling method for nanofluids to better describe the impact of several factors on the thermophysical 

characteristics qualitatively and characterize the strengthening characteristics of the thermophysical 

properties of nanofluids [40,69]. 



 

Fig. 2 Analysis of factors that can affect the thermo-physical of carbon-based magnetic nanofluids 

Materials informatics is an emerging field that exploits the achievement of information 

technology to advance the exploration of the utilization, selection, development, and discovery of 

materials [31-33]. Comparing to experimental measurement, materials informatics only needs the cost 

of the calculation, which can replace the expense of experimental equipment and materials to a certain 

extent [70,71]. In the widely accepted scheme of determining structure–property relationships, the 

nonlinear and coupling problems are still a big challenge while directly modeling these relationships. 

Hence, material informatics provides an alternative way to predict them without too much concern for 

domain-specific assumptions and models [35]. Machine learning is a problem-solving approach based 

on a probability distribution model and statistical analysis rather than a domain-specific model. This 

significantly enlarges the application scope of machine learning approaches [66,73]. Generally, 

machine learning can be roughly divided into three categories: supervised learning, unsupervised 

learning, and reinforcement learning [22]. The work presented in this paper is under the category of 

supervised learning. Since the breakthrough of deep neural networks in the computer vision 

community in 2012, industry and academia have turned their attention to applying artificial 

intelligence methods to their specific domains [22,71]. A series of successes in other totally different 

applications prove the significant generality and flexibility of neural networks. There are several 

variants of artificial neural networks (ANNs), such as convolutional neural networks, recurrent neural 

networks, and long short-term memory networks [22,66]. Each of these networks is adapted to specific 

domains and with its own built-in inductive bias. The essential structure of an ANN contains at least 

three layers, including one input layer, one output layer, and several hidden layers. The neural network 

can be deployed during the training and testing stages [30]. Initially, a weight vector is randomly 

assigned. In the process of information transmission, the learning samples are input into the input layer. 

The output vector is obtained based on the initial weight vector. Then, the network calculates the error 

between the output and target output vectors. Through error backpropagation, the network corrects the 

weight based on the gradient descent method to obtain an optimal solution [22,24]. Weights are updated 

automatically while minimizing the error function on the training set until the error no longer decreases. 



The error in the testing set is an identifier of underfitting or overfitting and can be used as a reference 

to manually tune hyperparameters such as the learning rate or regularization coefficient [68]. On this 

basis, the thermophysical modeling theory of nanofluids is further improved [24,72]. Utilizing ANNs 

for thermophysical modeling is highly advantageous [24,73]. As a type of typical "black box" 

modeling technology, the ANN can effectively replicate the self-learning ability of natural neurons, 

i.e., the faculty of "memory"; moreover, setting up of the related process parameters is not required to 

achieve an accurately function model [70-74]; in addition, the directed graph topology can be used to 

approach nonlinear relationships with a degree of accuracy; further, ANNs also have the strong ability 

of self-organization and are adaptive [42-44]. With a high-dimensional parameter space, the ANN is 

sufficiently flexible to represent the coupling and uncertain relationship of complex nanofluid 

thermophysical properties. In addition, the exponential development of infrastructure related to ANN 

has made it more accessible, with an unprecedented utilization in the intelligent industry [66]. 

In this paper, an artificial intelligence approach for forecasting the thermophysical properties 

(viscosity, specific heat, and thermal conductivity) of carbon-based magnetic nanofluids is proposed. 

First, carbon-based magnetic nanofluids were prepared, and the thermophysical properties with 

different magnetic volume fractions in nanomaterials (φm), organic ethylene glycol (EG) mass fractions 

in the base fluid (φe), nanomaterial volume fractions in the nanofluid (φn), temperatures (T), and 

magnetic field strengths (M) were measured. Then, an optimal ANN was designed using experimental 

data. "Root mean square error" (RMSE), "mean absolute percentage error" (MAPE), "coefficient of 

determination" (R2), and "mean square error" (MSE) were determined to evaluate this proposed model. 

Finally, different previous models were reviewed, and their performances were compared with those 

of the ANN models to predict the thermophysical properties of the carbon-based magnetic nanofluids. 

The purpose of this work is to evaluate and forecast the thermophysical properties of carbon-based 

magnetic nanofluids by considering multiple factors using machine learning and statistical analysis. 

2. Experimental setup and research methodology 

2.1. Artificial neural network (ANN) and simulation 

The procedure in material informatics for determining the thermophysical properties of carbon-

based magnetic nanofluids is shown in Fig. 3. The structure of the ANN shows the connection between 

the neural layers and the neurons, and the model for predicting the thermophysical properties is used 

to build a bridge from the small amount of experimental and simulated data to practical application 

based on thermal exchange and flow of nanofluids. ANNs take inspiration from the human brain, which 

is a densely connected and packed network from the perspective of neurologists [62]. However, 



essentially and more mathematically, the ANN is a parametric functional approximation with several 

parameters to be fitted with the data [63]. The training of the ANN is cast into an optimization problem 

of the cost function in the ANN weight-parameter space. Given sufficient observations of dependable 

and undependable variables, the ANN is able to extract the underlying functional relationships and 

abstract features inside the data. The pipeline of the general machine learning approach in material 

informatics consists of the following three parts. (1) Data collection: Data are typically generated by 

simulations or experiments conducted by material analysis. (2) Data representation: Raw data in the 

real world are usually dirty and the unreasonable outliers must be removed. Rescaling of the data scope 

and removing unrelated features can improve the robustness and convergence of algorithms. (3) Data 

mining: It involves the exploration of the underlying relationship between structural features and 

desired properties [64]. During the training process, weights are updated using an efficient and popular 

stochastic gradient descent (SGD) method. Hyperparameters and the regularization method can be 

chosen appropriately based on the model performance on the test set, or alternatively, by cross 

validation. The tangent–sigmoid function is chosen as the transfer function in the hidden layers, while 

the output layer is without a transfer function. Furthermore, the training algorithm adopts 

backpropagation, which is the Adam algorithm version of the SGD. Five input dimensions were 

considered in this study, including the magnetic volume fraction in nanomaterials (φm), organic mass 

fraction in base fluid (φe), nanomaterial volume fraction in the nanofluid (φn), temperature (T), and 

magnetic field strength (M). The three output parameters were the specific heat capacity (Cp), viscosity 

(μ), and thermal conductivity (k).  

 

Fig. 3 Schematic diagram of artificial neural network structure predicting thermo-physical properties 



ANN techniques in machine learning commonly use a multilayer perceptron (MLP) network, 

which is one of the most valued methods of monitored networks. Inspired by the biological neural 

network (Fig. 4a), the function of the ANN model is to build a regression relationship between the 

thermophysical properties and various operating conditions using carbon-based magnetic nanofluids. 

The network architecture is constructed without recurrent or lateral connections, falling into the large 

category of feedforward networks [69]. The information in our dataset flows into the network from the 

input layers. The input data are forward propagated by each hidden layer and extracted into more 

manipulable features in the next hidden layer. The transfer function in each hidden layer is employed 

to change the input-output relationship from linear to nonlinear. If not, the MLP is equivalent to a 

trivial one-layer perceptron. Finally, the three thermophysical properties are obtained from the output 

layer [70]. All the weights between layers can be updated efficiently by a backpropagation algorithm 

to minimize the training error. Data processing within one neuron is shown in Fig. 4b. By assuming n 

inputs that are applied to the network, and an activation function f, the transitive output y of one neuron 

is defined as the weighted sum of its inputs. wi is the connection weight of the neuron and b is the bias. 

The process can be formulated as [71]: 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 )          (1) 

 

Fig. 4 (a) Schematic diagram of the biological neural network (b) The flow chart of data processing within a neuron [71] 

2.2. Experimental preparation and characterization of magnetic nanofluids 

Material preparation: Iron (II) chloride tetrahydrate, EG, CNTs, iron (III) chloride hexahydrate, 

Co3O4 nanoparticles, Ni nanoparticles, and ammonia solution were purchased from Aladdin Reagent 

(Shanghai, China). Deionized water (DW) that was purified in a laboratory-based ultrapure water 

system (arium mini plus; Sartorius, Göttingen, Germany) was used in all experiments. All reagents 

were used without further treatment because they were of analytical grade. The preparation and 

characterization of carbon-based magnetic nanofluids have been reported as follows. Two different 



iron (II) chloride tetrahydrate compounds were mixed with DW. Then, the ammonia solution was 

added and maintained at 80 °C. Subsequently, the dark Fe3O4 was combined with CNTs in different 

ratios (1:1, 2:1, 3:1, and 4:1) in DW under ultrasonic vibration. After drying, the Fe3O4/CNT 

composites were added to EG/DW solution, which was prepared in different ratios (1:1, 2:1, 3:1, and 

4:1) in advance. The thermal conductivity was measured using a conductometer (TC-3000L, Xiatech 

Electronic Technology, China), as shown in Fig. 5a. As Co3O4, Ni, and Fe3O4 nanofluids showed 

nearly indiscriminate thermal conductivity when using the same volume fraction, Co3O4, Ni, and Fe3O4 

nanoparticles can be regarded as unified magnetic nanoparticles when their nanofluids only serve as 

the working media for heat transfer. With an increase in the EG mass fraction (Fig. 5b) in the base 

fluid from 1:1 to 4:1, the thermal conductivity decreased, because EG weakens the thermal conduction 

between the DW and the nanoparticles. Conversely, when the magnetic nanoparticle mass fraction 

(Fig. 5c) in nanofluids was increased from 1:1 to 4:1, the thermal conductivity increased with an 

increase in the volume fraction, as depicted in Fig. 5d. 

 

Fig. 5 Experimental thermal conductivity data of magnetic nanofluids: (a) Different nanoparticles (Ni, Fe3O4, Co3O4); (b) 

Different ethylene glycol (EG) mass fractions in base fluid; (c) Different magnetic volume fractions in nanomaterials; (d) 

Different magnetic volume fractions in nanomaterial 

The rheological properties of the carbon-based magnetic nanofluids were measured using a super 

rheometer (Kinexus PRO, Malvern, US). From Fig. 6a, it can also be noted that Co3O4, Ni, and Fe3O4 

can be regarded as unified magnetic nanoparticles because of their undifferentiated viscosity. With the 



increase in EG mass fraction (Fig. 6b) in the base fluid from 1:1 to 4:1, the viscosity of carbon-based 

magnetic nanofluids increased because EG has a higher viscosity when compared to DW. Conversely, 

when increasing the Fe3O4 mass fraction (Fig. 6c) in carbon-based magnetic nanofluids from 1:1 to 

4:1, the viscosity of carbon-based magnetic nanofluids increased because the density of carbon-based 

magnetic nanofluids increases when the volume fraction is constant. The viscosity of carbon-based 

magnetic nanofluids increased with increasing volume concentration, as shown in Fig. 6d.  

 

Fig. 6 Experimental viscosity data of magnetic nanofluids: (a) Different nanoparticles (Ni, Fe3O4, Co3O4); (b) Different 

EG mass fractions in base fluid; (c) Different magnetic volume fractions in nanomaterials; (d) Different magnetic volume 

fractions in nanomaterial 

The specific thermal capacities of the carbon-based magnetic nanofluids were measured using a 

differential scanning calorimeter (204 FI, Netzsch, Germany) based on the sapphire method. Similar 

to viscosity and thermal conductivity, Co3O4, Ni, and Fe3O4 nanoparticles can be regarded as unified 

magnetic nanoparticles while measuring the specific heat capacity (Fig. 7a). With the increase in EG 

mass fraction (Fig. 7b) in the base fluid from 1:1 to 4:1, the specific heat of carbon-based magnetic 

nanofluids decreased because the EG weakens the specific heat of the base liquid when compared to 

DW. In contrast to the other parameters, when increasing the Fe3O4 mass fraction (Fig. 7c) in carbon-

based magnetic nanofluids from 1:1 to 4:1, the specific heat of the carbon-based magnetic nanofluids 

decreased. Meanwhile, the specific heat of carbon-based magnetic nanofluids with different volume 



concentrations was investigated, as shown in Fig. 7d. The specific heat of the carbon-based magnetic 

nanofluids decreased with an increase in the volume fraction from 0 to 4 vol. %. 

 

Fig. 7 Experimental specific heat capacity data of magnetic nanofluids: (a) Different nanoparticles (Ni, Fe3O4, Co3O4); 

(b) Different EG mass fractions in base fluid; (c) Different magnetic volume fractions in nanomaterials; (d) Different 

magnetic volume fractions in nanomaterial 

2.3. Data acquisition of thermophysical properties of materials 

For an effective data-driven prediction method, obtaining a sufficient amount of sample data is 

the key to accurate neural network prediction. The thermophysical properties of carbon-based 

magnetic nanofluids were predicted and analyzed by the neural network by selecting the experimental 

data of thermophysical properties published in existing literature and the measured data from previous 

experiments, which are listed in Table 1 [45-69]; thus, 713 sets of published experimental data were 

employed as samples to be input to the model. The datasets were randomly divided into test, validation, 

and training data. The training dataset contained 70% of the total data and was used to adjust the 

weights of the network. The validation dataset, accounting for 15% of the total database, was utilized 

to minimize overfitting and affected the tuning of the weights. Finally, the remaining 15% of the 

collected data were employed to test the samples. To verify the effect of the above prognostic 

framework, sufficient sample data on the thermophysical properties of magnetic nanofluids were used 

to train and test the ANN model. The hardware and software configurations used in this work are as 
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follows: Intel(R) Core(TM) i7-8700 CPU, Programming Language: Python 3.6, Pytorch 1.0.0. 

Table 1 Experimental thermo-physical properties data of previous works used in neural network prediction 

Date Authors Nanoparticles Base fluids Thermo-physical properties 

2005 Li et al. [45] Fe3O4 H2O thermal conductivity, viscosity 

2009 Phuoc et al. [46] Fe2O3 H2O thermal conductivity, viscosity 

2010 Abareshi et al. [47] Fe3O4 H2O thermal conductivity 

2010 Wright et al. [48] Ni/CNT H2O thermal conductivity 

2012 Sundar et al. [49] Fe3O4 EG/DW viscosity 

2012 Colla et al. [50] Fe2O3 H2O thermal conductivity 

2013 Ghofrani et al. [51] Fe3O4 H2O viscosity 

2013 Sundar et al. [52] Fe3O4 H2O thermal conductivity, viscosity 

2014 Yu et al. [53] Fe3O4 kerosene thermal conductivity 

2014 Sundar et al. [54] MWCNT-Fe3O4 H2O thermal conductivity, viscosity 

2014 Sundar et al. [55] Ni H2O thermal conductivity, viscosity, specific heat capacity 

2015 Esfe et al. [56] Fe H2O thermal conductivity, viscosity 

2015 Mariano et al. [57] Co3O4 EG/DW thermal conductivity, viscosity 

2015 Karimi et al. [58] Ni H2O thermal conductivity 

2016 Afrand et al. [59] Fe3O4 EG/DW viscosity 

2016 Harandi et al. [60] MWCNTs-Fe3O4 EG thermal conductivity 

2016 Shahsavar et al. [61] CNT/Fe3O4 H2O thermal conductivity, viscosity, specific heat capacity 

2016 Wang et al. [62] Fe3O4 H2O viscosity 

2016 Kumar et al. [63] Fe2O3 EG/DW thermal conductivity 

2016 Nurdin et al. [64] Fe2O3 H2O thermal conductivity, viscosity 

2017 Esfe et al. [65] Co3O4 EG/DW thermal conductivity, viscosity 

2017 Amani et al. [66] MnFe2O4 H2O thermal conductivity, viscosity 

2018 Vinod et al. [67] Fe3O4 H2O thermal conductivity, viscosity 

2018 Shi et al. [68] Fe3O4/CNT H2O thermal conductivity, viscosity, specific heat capacity 

2019 Fu et al. [69] Fe3O4 EG/DW thermal conductivity, viscosity, specific heat capacity 

2019 In this work Fe3O4/CNT EG/DW thermal conductivity, viscosity, specific heat capacity 
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2.4. Prediction model evaluation criteria 

To assess the accuracy of the prediction results from the ANN model for correlation, the 

standardized coefficient was implemented to determine the influence of each specialty variable on the 

value of the dependent variable; moreover, deviation analysis of the thermophysical property ratio 

(TPR) can be calculated as follows:                 

 
E p

E

TPR TPR
SCD

TPR

−
=                                      (2) 

where SCD is the standardized coefficient of deviation and TPRE and TPRP indicate the predicted 

values and experimental data of the TPR, respectively. To evaluate the predictive performance of the 

ANN, the testing data that were not used during the training process were analyzed. We analyzed 

unused test samples during network training to evaluate the predictive performance of the neural 

networks. Different criteria were used to evaluate the quality and accuracy of the predictive network. 

Subsequently, the Marquardt–Levenberg algorithm [70] was incorporated into the curve fitting to 

obtain a stable value for the correlation coefficient. The algorithm examined the parameter with the 

minimum sum of the squared error between the experimental thermophysical property data and the 

prediction result of the standardized magnetic nanofluid [71,72]. The sum of the squared error was 

calculated using the following equation.  

2

E pi=1

n
S TPR TPR= − （ ）                             (3) 

R2 reflects the difference between the predicted value and the experimental result and is used to assess 

the validity of the results predicted by the ANN. The calculation is as shown in following equation 

[71]. 
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                               (4) 

However, R2 is not sufficient to judge whether the obtained results are valid in certain cases. Hence, 

other parameters such as the MSE, RMSE, and MAPE are determined to verify the predicted results, 

where n is the number of data in the test set [72]. 
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n TPR TPR
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−
=                                 (5) 

A MAPE of 0% indicates a perfect model, and a MAPE greater than 100% indicates an inferior model. 
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RMSE measures the deviation between the observed and true values. It is often used as a standard for 

measuring the prediction results of machine learning models. 

   
2

E pi=1

1
MSE ( )

n
TPR TPR

n
= −                                 (7) 

To calculate MSE, the square of the difference between the true and predicted values is determined 

and then its sum is averaged. It is convenient to derive the derivative in the form of a square; 

consequently, this parameter is often used as the loss function of linear regression. 

3. Results and discussion 

The ANN model aims to study models or develop software that can mimic planned or real systems 

and analyze results with less effort or risk. It is helpful for predicting the potential costs and 

requirements of current systems, thereby achieving management with higher performance. This section 

first reviews the previous models used to analyze the thermophysical properties of nanofluids and then 

presents a comparison of the results of the simulation models that predict the thermophysical properties 

of carbon-based magnetofluids with those of the previous models. Finally, empirical models were 

developed to predict the thermophysical properties of carbon-based magnetic nanofluids, and certain 

possible theories are explained for the model proposed by the neural network. 

3.1. Review of previous models related to theoretical thermophysical properties of nanofluids 

The physical properties of nanofluids change with the addition of nanoparticles in terms of density, 

viscosity, thermal conductivity, and specific heat capacity [68]. Different researchers have different 

perspectives on how and to what extent nanoparticles affect nanofluids; however, there is no doubt that 

these properties are affected [55]. The consensus on the effect of thermal conductivity is that the 

thermal conductivity of nanofluids increases when nanoparticles are added [55,66]. However, the 

effect of the addition of nanoparticles on the other physical properties of nanofluids has not been 

investigated [69]. Several studies have been conducted on the changes caused by the addition of 

nanoparticles. The addition of nanoparticles may affect the properties of nanofluids in multiple ways, 

which can be due to the properties of nanoparticles, temperature, pH, and the amount of added 

nanoparticles [54-63]. Certain researchers have reported that adding nanoparticles increases the pH of 

the solution, but others have provided completely different results [57]. Certain researchers have 



indicated that the addition of nanoparticles can increase the heat capacity of nanofluids [55,61]. To 

accurately understand the changes in these properties, experiments are required. Several experiments 

have been conducted on the various physical properties of nanofluids; however, there are insufficient 

theoretical models for calculating the viscosity and thermal conductivity of nanofluids based on the 

properties of nanofluids and solutions [45,52]. The experimentally measured results are more accurate 

but require tools that are not very convenient. 

3.1.1. Theoretical thermal conductivity models  

The cooling of all types of industrial equipment is a challenging task. A variety of industrial 

operations, such as heating, chemical reactions, require timely cooling. There are several types of 

liquids used to cool equipment; however, many of the fluids used to cool the industrial equipment have 

poor thermal conductivity; consequently, the cooling effect is not ideal. Thermal conductivity is an 

important thermophysical property that is typically used to evaluate the heat transfer capability of 

fluids [75-92]. The Maxwell model is well known for predicting the heat conduction performance of 

a liquid–solid suspension. It can be applied to statistically low bulk concentrations and homogeneous 

mixtures in which particles are dispersed randomly and the size is uniform [75]. In the Wasp and 

Hamilton–Crosser models [76,77], the influence of the shape of nanoparticles on the thermal properties 

was considered. When compared to the classical Maxwell equation, it was revealed that the thermal 

conductivity can be evaluated more effectively according to the approximate method of concentration 

distribution of magnetic nanoparticles. Choi first proposed the role of nanoparticles in improving the 

thermal conductivity of liquids in 1995. Many solid substances, such as metals or nonmetallic oxides, 

have good thermal conductivity, and nanoparticles of these substances can improve the thermal 

conductivity of the liquids used for cooling. In addition to being used for equipment cooling, there is 

also the problem of thermal conductivity in the heat transfer process. After the nanofluid concept was 

introduced, an estimation process for the thermal conductivity of nanofluids in thermal exchange 

calculations was proposed by Yu and Choi [78], who considered the ratio of nanoparticle radius to 

nanolayer thickness. It was ascertained that the results of analyzing the lognormal distribution of data 

depend on the experimental method and the facts of the relevant model. Koo and Kleinstreuer et al. 

[80] demonstrated that there is a region around the nanoparticle where liquid molecules behave 

differently than the rest of the base fluid. This region is similar to an interfacial layer, where a transition 

occurs between the nanoparticle and base fluid. This affects the conductivity of the liquid. This model 



can be used to determine the influence of different sizes, geometries, and distributions of nanoparticles 

on nanofluid properties. However, this model is also limited because it is based on the premise that the 

mixture is continuous, and the thermal conductivity is only related to the properties of the nanoparticles 

and the base solution. In 2005, Chon et al. [81] proposed another correlation method for computing 

the effective thermal conduction performance of nanofluids at specific temperatures. It should be noted 

that the thermal conductivity of nanofluids decreases if an interface layer is formed. This combination 

is not appropriate if there is significant thermal resistance at the interface between the nanoparticle and 

the base solution. In fact, the liquid properties at the interface also have significant research value. 

Different mask properties may affect the overall thermal conductivity. Nanofluids resemble composites 

in their structures. If the nanofluid is analogous to a composite material, then the nanoparticle is the 

core, surrounded by an interfacial layer of intermediate properties, which is then surrounded by a base 

fluid. This structure forms a polyphase system and improves the overall thermal conductivity. Till date, 

extensive thermal conduction performance models have been established for nanofluids, as shown in 

Table 2 [75-92]. Based on previous formulas and theories, these modes consider the influences of 

nanoparticle size, nanoparticle shape, temperature dependence, and particle volume fraction by 

considering the movement of nanoparticles in the base fluid, such as Brownian motion. However, 

nanofluids with nanocomposites and mixture base fluids have not yet been developed, especially 

magnetic nanofluids in this case. Certain theories have suggested that magnetic fields result in changes 

in the local concentration of magnetic fluids, thereby affecting the thermal conductivity, while others 

have proposed that magnetic fields generate a nanoparticle chain, which can result in directional 

thermal enhancement. 

Table 2 Summary of effective thermal conductivity models for nanofluids. 

Model Date Equation Remarks 

Maxwell [75] 1904 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [

(𝑘𝑛𝑝+2𝑘𝑏𝑓)−2𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)

(𝑘𝑛𝑝+2𝑘𝑏𝑓)+𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)
]  

Considered the volume fraction of 

solid 

Hamilton and 

Crosser [76] 

1962 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [

(𝑘𝑛𝑝+(𝑛−1)𝑘𝑏𝑓)−(𝑛−1)𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)

(𝑘𝑛𝑝+(𝑛−1)𝑘𝑏𝑓)+𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)
]  

n=3 

Wasp [77] 1979 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [

(𝑘𝑛𝑝+2𝑘𝑏𝑓)−2𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)

(𝑘𝑛𝑝+2𝑘𝑏𝑓)+𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)
]  

𝜑 is the particles shape parameter 

Yu and Choi 

[78] 

2003 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [

(𝑘𝑛𝑝+2𝑘𝑏𝑓)−2𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)(1+𝜂)3

(𝑘𝑛𝑝+2𝑘𝑏𝑓)+𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)(1+𝜂)3 ]  
𝜂 is the ratio of the nanolayer 

thickness to the particle radius 

Jang and Choi 

[79] 

2004 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [1 + 𝑐

𝑑𝑏𝑓

𝑑𝑛𝑝
𝑘𝑓𝜑𝑅𝑒𝑑𝑛𝑝

2 𝑃𝑟]  
Considered the convection and 

conduction heat transport 



Koo and 

Kleinstreuer 

[80] 

2004 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 {[

(𝑘𝑛𝑝+2𝑘𝑏𝑓)−2𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)

(𝑘𝑛𝑝+2𝑘𝑏𝑓)+𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)
] + 5 × 104𝛽𝜑𝜌𝑏𝑓𝐶𝑃,𝑏𝑓√

𝐾𝐵𝑇

𝜌𝑛𝑝𝑑𝑛𝑝
𝑓(𝑇, 𝜑)}  

𝑓(𝑇, 𝜑) = (−134.63 + 1722.3𝜑) + (0.4705 − 6.04𝜑) (
𝑇

𝑇0
)  

Considered the particle size, volume 

fraction and temperature dependence 

Chon et al. [81] 2005 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [1 + 64.7(𝜑)0.7640 (

𝑑𝑏𝑓

𝑑𝑛𝑝
)

0.3690

(
𝑘𝑏𝑓

𝑘𝑛𝑝
)

0.7476

𝑃𝑟𝑇
0.9955𝑅𝑒1.2321]  

Considered particle size and 

temperature 

Maiga et al. 

[82] 

2005 𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓[1 + 2.72𝜑 + 4.97𝜑2]  Considered nanoparticle volume 

fraction 

Prasher et al. 

[83] 

2005 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 {(1 + 𝐴𝑅𝑒𝑚𝑃𝑟0.333𝜑) [

(𝑘𝑛𝑝+2𝑘𝑏𝑓)−2𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)

(𝑘𝑛𝑝+2𝑘𝑏𝑓)+𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)
]}  

Considered the convection near the 

particle and interfacial resistance 

Patel et al. [84] 2005 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 {1 +

𝑘𝑛𝑝𝑑𝑏𝑓𝜑

𝑘𝑏𝑓𝑑𝑛𝑝(1−𝜑)
[1 + 𝑐

2𝐾𝐵𝑇𝑑𝑛𝑝

𝜋𝛼𝑏𝑓𝜇𝑏𝑓𝑑𝑛𝑝
2]}  

Considered the nanoparticle diameter, 

volume concentration and Brownian 

motion 

Timofeeva et al. 

[85] 

2009 𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓[1 + (𝐶𝑘
𝑠ℎ𝑎𝑝𝑒

+ 𝐶𝑘
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

)𝜑] = 𝑘𝑏𝑓[1 + 𝐶𝑘]  Considered the nanoparticle shape 

Vajjha et al. 

[86] 

2010 
𝑘𝑒𝑓𝑓 = [

(𝑘𝑛𝑝+2𝑘𝑏𝑓)−2𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)

(𝑘𝑛𝑝+2𝑘𝑏𝑓)+𝜑(𝑘𝑏𝑓−𝑘𝑛𝑝)
] 𝑘𝑏𝑓 + 5 × 104𝛽𝜑𝜌𝑏𝑓𝐶𝑃,𝑏𝑓√

𝐾𝐵𝑇

𝜌𝑛𝑝𝑑𝑛𝑝
𝑓(𝑇, 𝜑)  

𝑓(𝑇, 𝜑) = (2.8217 ∗ 10−2𝜑 + 3.917 ∗ 10−3) (
𝑇

𝑇0
) + (−3.0669 ∗ 10−2𝜑 −

3.3.91123 ∗ 10−3)  

Considered the nanoparticle diameter, 

volume concentration and Brownian 

motion 

Corcione et al. 

[87] 

2011 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [1 + 4.4𝑅𝑒𝑛𝑝

0.4𝑃𝑟𝑏𝑓
0.66 (

𝑇

𝑇𝑓𝑟
)

10

(
𝑘𝑛𝑝

𝑘𝑏𝑓
)

0.03

𝜑0.66]  

𝑅𝑒𝑛𝑝 =
2𝜌𝑏𝑓𝐾𝐵𝑇

𝜋𝜇𝑏𝑓
2𝑑𝑛𝑝

  

Considered the frizzing point of base 

fluid (0.2% ≤ 𝜑 ≤ 9%) 

Nkurikiyimfura 

et al. [88] 

2013 𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓[(3𝜑𝑖𝑛𝑡 − 1) + 3(1 − 𝜑𝑖𝑛𝑡) + [(3𝜑𝑖𝑛𝑡 − 1) − 1]2]  

 

Considered the magnetism parameter 

Sharma et al. 

[89] 

2014 
𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 [0.8938 (1 +

𝜑

100
)

1.37

(1 +
𝑇

70
)

0.2777

(1 +

𝑑𝑛𝑝

150
)

−0.0336

(
𝛼𝑛𝑝

𝛼𝑏𝑓
)

0.01737

]  

Considered the different components 

in the nanofluids 

Sundar et al. 

[90] 

2014 𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓[𝐴 + 𝐵𝜑] Considered the nanoparticle diameter, 

volume concentration temperature and 

thermal diffusivity 

Esfe et al. [91] 2015 𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓[1 + (0.26876 × 𝜑0.99288 × 𝑑𝑛𝑝
−0.35106)]  Fe-H2O 

Hassani et el. 

[92] 

2015 

𝑘𝑒𝑓𝑓 = 𝑘𝑏𝑓 {1.04 + 𝜑1.11𝜑0.99288 (
𝑘𝑛𝑝

𝑘𝑏𝑓
)

0.33

× 𝑃𝑟−1.7 [
1

𝑃𝑟−1.7
−

262

(
𝑘𝑛𝑝

𝑘𝑏𝑓
)

0.33 +

(135 (
𝑑𝑟𝑒𝑓

𝑘𝑛𝑝
)

0.23

(
𝑣𝑏𝑓

𝑑𝑛𝑝𝑣𝑩𝑟
)

0.82

(
𝐶𝑃

𝑇−1𝑣𝑩𝑟
2
)

−0.1

(
𝑇𝑏𝑓

𝑘𝑛𝑝
)

−7

)]}  

Considered Brownian velocity and 

molecular diameter of hydrogen 

3.1.2. Theoretical prediction models of viscosity 

While considering the viscosity of nanofluids, there are several published theoretical models for 

predicting the viscosity, as listed in Table 3 [82,85,87,89-101]. They summarized the effects of several 

property parameters of nanoparticles on the dynamic viscosity of nanofluids. These parameters include 

temperature and the shape of the particles. This shows that the addition of nanoparticles affects the 



viscosity of the liquid; moreover, as more nanoparticles are added, the increase in viscosity becomes 

greater. Further, as the temperature of the particle increases, the degree of viscosity increases. Although 

several factors influence the viscosity of nanofluids, correlations can still be identified. Till date, all 

the predicted modes indicate that temperature and concentration are two important factors affecting 

the viscosity of nanofluids. Different studies have proposed different theoretical models according to 

the volume concentration and temperature range, but there is no unified model with wider adaptability. 

For instance, Koo and Kleinstreuer et al. [96] considered the effect that results from the Brownian 

motion of nanoparticles in low volume concentrations. When the volume concentration is greater than 

a certain value, the model underestimates the valid suspension viscosity because it reckons without 

considering the interaction between particles. Certain extended correlations for the case of higher 

nanoparticle fractions were also proposed based on the notional analysis. Nguyen et al. [97] presented 

a simple correlation based on experiments that considered high volume concentrations of nanoparticles. 

When the volume fraction further increases, certain studies consider the Krieger–Dougherty equation 

using the intrinsic viscosity and effective volume concentration. This model is widely used to forecast 

the valid viscosity of liquid–solid suspensions. Nevertheless, it is applicable in the case of low volume 

concentrations. In the case of the effect of temperature on nanofluid viscosity, Abu-Nada [98] predicted 

that the influence of temperature on the viscosity of the base fluid is approximately equivalent to its 

influence on the viscosity of the nanofluid. Certain definitions of the relationship between these two 

factors and the viscosity of nanofluids were proposed by Masoumi et al. They introduced magnetism 

into the viscosity of nanofluids. Their study identified that a fluid with magnetism, with or without an 

applied magnetic field, is more viscous than before. Here, the strength and direction of the magnetic 

field are the key factors. Saedodin et al. [100] proposed a theory within a dimensionless group in terms 

of bulk concentration, nanoparticle size, and temperature to calculate the effective viscosity of a 

nanofluid. Because the magnetic field blocks the motion of the particles, it can stop the movement of 

particles. The exact mechanism of this phenomenon is not yet clear, and further experiments and 

exploration are required. Moreover, Esfe et al. [101] believe this is because magnetic fields that are 

perpendicular to the fluid are more viscous than fields that are parallel to the fluid. This will allow the 

reader to have a more contradictory understanding. It is worth mentioning that Wang et al. developed 

a viscosity model of magnetic nanofluids by considering magnetic field intensity, temperature, and 

concentration. When the direction of the magnetic field is parallel or perpendicular to the direction of 



the fluid, the viscosity of the fluid also increases with an increase in the strength of the magnetic field, 

and the two are positively correlated. However, when the magnetic field increases to a certain strength, 

the viscosity of the fluid stabilizes, rather than increasing continuously. There are certain differences 

in the available data regarding the increase in fluid viscosity owing to the two different directions. 

Despite these works, the viscosity of composite-based nanofluids under applied magnetism has not 

been researched. 

Table 3 Summary of effective dynamic viscosity models for nanofluids. 

Model Date Equation Remarks 

Pak and Cho [95] 1998 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[1 + 39.11𝜑 + 533.9𝜑2]  Water-Al2O3 nanofluids 

Water-TiO2 nanofluids 

Maiga et al. [82] 2005 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[1 + 7.3𝜑 + 123𝜑2]  

𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[1 − 0.19𝜑 + 306𝜑2] 

Water-Al2O3 nanofluids 

Ethylene glycol-Al2O3 nanofluids 

Koo and Kleinstreuer 

[96] 

2005 𝜇𝑒𝑓𝑓 =
𝜇𝑏𝑓

(1−𝜙)2.5
+ 𝜇𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛  

𝜇𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 = 5 × 104𝛽𝜑𝜌𝑏𝑓√
𝐾𝐵𝑇

𝜌𝑛𝑝𝑑𝑛𝑝
𝑓(𝑇, 𝜑)  

𝑓(𝑇, 𝜑) = (−134.63 + 1722.3𝜑) + (0.4705 − 6.04𝜑) (
𝑇

𝑇0
)  

𝛽 = {
0.0137(100𝜑)−0.8229, 𝜑 < 0.01

0.0011(100𝜑)−0.7272, 𝜑 > 0.01
  

Water-CuO nanofluid 

1% ≤ 𝜑 ≤ 4% 

300𝐾 < 𝑇 < 325𝐾 

Water-Al2O3 nanofluids 

Nguyen et al. [97] 2007  𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[0.904𝑒0.148𝜑],  𝑑𝑛𝑝 = 47𝑛𝑚 

𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[1 + 0.025𝜑 + 0.015𝜑2], 𝑑𝑛𝑝 = 36𝑛𝑚  

𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[1.475 − 0.319𝜑 + 0.051𝜑2 + 0.009𝜑3], 𝑑 = 29𝑛𝑚  

CuO/water nanofluid 

1% ≤ 𝜑 ≤ 13% 

𝑇 = 295𝐾 

Abu-Nada [98] 2009 𝜇𝑒𝑓𝑓 = −0.155 −
19.582

𝑇
+ 0.794𝜑 +

2094.47

𝑇2
− 0.192𝜑2 −

8.11𝜑

𝑇
−

27463.863

𝑇3
+ 0.0127𝜑3 +

1.6044𝜑2

𝑇
+

2.175𝜑

𝑇2
  

Considering the effect of temperature 

of nanofluids; 1% ≤ 𝜑 ≤ 9.4%; 

295𝐾 < 𝑇 < 348𝐾 

Masoumi et al. [99] 2009 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓 +
𝜌𝑏𝑓𝑉𝐵𝑑𝑛𝑝

2

72𝐶𝛿
  

𝛿 = √
𝜋

6𝜑
𝑑𝑛𝑝

3
,  𝑉𝐵 =

1

𝑑𝑛𝑝
√

18𝑘𝑏𝑓𝑇

𝜋𝜌𝑛𝑝𝑑𝑛𝑝
, 𝐶 = 𝜇𝑏𝑓

−1(𝑎𝜑 + 𝑏)  

Al2O3(13𝑛𝑚, 28𝑛𝑚)/water 

nanofluids 

Timofeeva et al. [85] 2009 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓(1 + 𝐴1𝜑 + 𝐴2𝜑2)  Nonspherical nanoparticles (platelet, 

blade, cylinder, and brick) 

Corcione [87] 2011 
𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓 [

1

(1−34.87(𝑑𝑛𝑝/𝑑𝑏𝑓)
−0.3

𝜑1.03)
]  

𝑑𝑓 = 0.1 (
6𝑀

𝑁𝜋𝜌𝑏𝑓0
)

1/3

  

For oxide and metal nanoparticles 

suspended in water or ethylene glycol 

based nanofluids 

0.2% ≤ 𝜑 ≤ 9 

Esfe and Saedodin 

[100] 

2014 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[0.9118𝐸𝑥𝑝(5.49𝜑 − 0.00001359𝑇2) + 0.0303𝐿𝑛(𝑇)]  ZnO/EG; 0.25% ≤ 𝜑 ≤ 5% 

298𝐾 < 𝑇 < 323𝐾 

Esfe et al. [101] 2014 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[1 + 11.61𝜑 + 109𝜑2] 0.0625% ≤ 𝜑 ≤ 1% 

Sharma et al. [89] 2014 
𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓 [(1 +

𝜑

100
)

11.3

(1 +
𝑇

70
)

−0.038

(1 +
𝑑𝑛𝑝

170
)

−0.061

] 
0% ≤ 𝜑 ≤ 4% 

20𝑛𝑚 < 𝑑𝑛𝑝 < 150𝑛𝑚 

293𝐾 < 𝑇 < 343𝐾 



Sundar et al. [90] 2014 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[𝐴𝑒𝐵𝜑] (0.3% ≤ 𝜑 ≤ 1.5%) 

(293𝐾 < 𝑇 < 333𝐾) 

Esfe et al. [91] 2015 𝜇𝑒𝑓𝑓 = 𝜇𝑏𝑓[1 + (0.100 × 𝜑0.69574 × 𝑑𝑛𝑝
0.44708)]  Fe/water(37𝑛𝑚, 71𝑛𝑚, 98𝑛𝑚) 

0.0313% ≤ 𝜑 ≤ 1% 

Wang et al. [102] 2016 𝜇𝑒𝑓𝑓 = 𝑒−0.02𝑇[0.035𝐻2 + 3.1𝐻 − 27886𝜑2 + 4263𝜑 + 316] Temperature (T), magnetic field (H), 

and concentration (𝜑) 

3.1.3. Theoretical prediction models of specific heat 

For energy storage materials, especially phase change materials for heat storage, the parameter of 

specific heat has attracted considerable attention as it changes significantly with temperature. In 

nanofluids, the specific heat appears to be a weaker characteristic when compared to the thermal 

conductivity and viscosity of nanofluids because solid–liquid specific heat models that are stable over 

a large temperature range have been regarded as the criterion since they were proposed. The first 

assumption is that, by the mixing rule, the specific heat of the entire mixture is a combination of the 

specific heat of the individual components. However, according to the experimental results, the results 

obtained using this assumption were rather large. The second hypothesis is that there is thermal 

equilibrium between the nanoparticles and the base solution. Pak and Cho et al. [95] conducted 

viscosity measurements using a rotating viscometer and proposed a mathematical model by analyzing 

the specific heat of two different nanofluids. It was calculated considering the volume concentration, 

density, and average bulk temperature. In this century, models for determining nanofluid specific heat 

by temperature and concentration have been gradually developed, although temperature has a lesser 

effect on the nanofluid specific heat when compared to nanofluid concentration. Maiga et al. [82] 

showed that the suspension rheology results were significantly larger than the classical viscosity. Their 

work studied the specific heat of nanofluids from the perspective of molecular structure and mechanics. 

The experimental results show that nanofluids have stable specific heat at a certain temperature, and 

the length, diameter, and chirality of nanofluids do not affect the specific heat. Vajjha and Das et al. 

[103] proposed a viscosity mode by summarizing experimental research on different nanofluids. The 

results indicated that the specific heat of the base fluid and nanofluid had similar performances in the 

specific heat of bulk graphite powder. The aligned nanofluid specific heat was smaller and less 

dependent on temperature than the bulk in an environment with temperature higher than the room 

temperature. Pakdaman et al. [104] used the modulated temperature differential scanning calorimetry 

technique to determine the specific heat and reported a good agreement between the obtained and 



tabulated values of the constituting components of nanofluids. According to the experimental results, 

if nanoparticles are added, certain changes will occur in the crystallization and melting processes of 

the base solution. Within the scope of this study, it was determined that Cu nanoparticles affected the 

base solution by reducing its specific heat. Ghazvini et al. [105] proposed that the specific heat can be 

influenced by the nanoparticle type and different factors such as temperature, base fluid, and volume 

fraction. Moreover, Shin and Banerjee et al. [23] researched suspension-specific heat based on the 

thermal equilibrium assumption of salt eutectics. In 2015, Sharma and Sekhar [38] predicted the 

specific heat with the assumption of an infinitely dilute liquid mixture by adding spherical solid 

particles. They proposed three related parameters (temperature, concentration, and nanoparticle size) 

that can change the physical properties of nanofluids. The results of the experiment on the specific heat 

capacity of nanofluids measured using a differential scanning calorimeter showed that the size of 

nanoparticles had minimal effect on the ability of nanoparticles to improve the specific heat of 

nanofluids. The experimental results show that the specific heat of the base solution decreases after 

the addition of nanoparticles; moreover, with the increase in the added nanoparticles, the specific heat 

of the base solution decreases gradually. These models are summarized as follows. 

Table 4 Summary of effective specific heat models for nanofluids 

Model Date Equation Remarks 

Pak and Cho [95] 1998 𝐶𝑝−𝑐𝑝 =
1

𝛾3
𝐶𝑝−𝑝 + (1 −

1

𝛾3
) {

3𝐶𝑝−𝑝

𝑝𝑏′3 (2𝑡2 + 2𝑏′𝑟𝑝𝑡 + 𝑏′2
𝑟𝑝

2) −

3𝐶𝑝−𝑓

𝑝𝑏′3 [𝑡2(2 + 2𝑏′ + 𝑏′2
) + 𝑏′𝑟𝑝(𝑏′𝑟𝑝 + 2𝑏′𝑡 + 2𝑡)]}  

Water-Al2O3 nanofluids 

Water-TiO2 nanofluids 

Maiga et al. [82] 2005 
𝐶𝑝,ℎ𝑛𝑓 = 𝜑𝑛𝑝1𝐶𝑝,𝑛𝑝1 + 𝜑𝑛𝑝2𝐶𝑝,𝑛𝑝2 +

(1 − 𝜑𝑛𝑝1 − 𝜑𝑛𝑝2)𝐶𝑝,𝑏𝑓

𝜌ℎ𝑛𝑓

 
Water-Al2O3 nanofluids 

Ethylene glycol-Al2O3 nanofluids 

Vajjha and das et al 

[103] 

2009 
𝐶𝑝,𝑛𝑓 = 𝐶𝑝,𝑏𝑓

(𝐴𝑇 + 𝐵𝐶𝑝,𝑛𝑝/𝐶𝑝,𝑏𝑓)

(𝐶 + 𝜑)
 

A, B, C are different values 

Pakdaman et al. [104]   2012 𝐶𝑝,𝑛𝑓 − 𝐶𝑝,𝑏𝑓 = 𝐶𝑝,𝑏𝑓(𝐴𝑇 + 𝐵)𝑤𝑡𝑐 A, B, C are linked with different 

nanofluids 

Ghazvini et al. [105] 2012 𝐶𝑝,𝑛𝑓 = 𝐶𝑝,𝑏𝑓(𝐴 + 𝐵𝑇 + 𝐶𝑇2) A, B, C are linked with different 

factors 

Shin and Banerjee [23]   2014 
𝐶𝑝,𝑛𝑓 = 𝐶𝑝,𝑏𝑓

𝜌𝑛𝑠𝐶𝑝,𝑛𝑠𝜑𝑛𝑠 + 𝜌𝑠𝐶𝑝,𝑠𝜑𝑠 + 𝜌𝑛𝑝𝐶𝑝,𝑛𝑝𝜑𝑛𝑝

𝜌𝑛𝑠𝜑𝑛𝑠 + 𝜌𝑠𝜑𝑠 + 𝜌𝑛𝑝𝜑𝑛𝑝

 
Alkali carbonate-Al2O3 salt 

eutectics 

Sharma and Sekhar [38] 2015 

𝐶𝑝,𝑛𝑓 = 0.843𝐶𝑝,𝑏𝑓 (1 +
𝑇𝑛𝑓

50
)

−0.304

(1 +
𝑑𝑛𝑝

50
)

0.417

(1 +
𝜑

100
)

2.272

 

Al2O3 and SiO2, etc. 

15<dnp< 50, 20<T<50, 0.01<φ<4 

3.2. Model verification and evaluation of ANNs 

However, unitive theoretical formulas for predicting the dependence of the viscosity of nanofluids 

on mass concentration, temperature, and magnetism are insufficient [106-112]. An ANN is proposed 



to cope with the nonlinear fitting in this work on the basis of experimental results [113,114]. The 

Pearson correlation coefficients of the input and output parameters are listed in Table 5. It can be 

observed that there is a significant correlation between the input and output parameters. Then, the 

performance of the trained ANN model was tested using the training data. The results predicted using 

the ANN model were compared with the experimental data of carbon-based magnetic nanofluids. 

During the learning course of the ANN model (spread=1), the accuracy of training was considered to 

be acceptable if the evaluation index error conformed to the required tolerance. If not, hidden layer 

nodes were added and the routine was rerun [115-117]. On this basis, the number of hidden layers was 

analyzed to determine the final prediction model. Fig. 8 illustrates the transformation of the four 

evaluation indices when the number of hidden layer nodes were increased from 5 to 11 based on the 

statistical coefficient values of error indicators or multiple determinations. This suggests that more 

nodes must be considered to improve the predicted accuracy. The 10-node model demonstrated better 

prediction performance than other models for carbon-based magnetic nanofluids while also 

considering the computational efficiency. 

Table 5 The Pearson correlation coefficient (PCC) of the input and output parameters 

Pearson correlation 

coefficient (PCC) 

Input parameters 

φm φe φn T M 

Output 

parameters 

k 0.6610 0.7921 0.7426 0.8233 0.8961 

µ 0.7900 0.7179 0.9501 0.7846 0.8822 

Cp 0.9207 0.9572 0.9246 0.5464 0.5053 

 

Fig. 8 The MAPE evaluation of artificial neural networks for predicting thermo-physical properties (thermal 

conductivity, viscosity, specific heat capacity) of carbon-based magnetic nanofluid 

Owing to the small dataset (713 data items), the batch size should not be too large, and it should 

be reduced if memory constraints occur [118-120]. The number of epochs was divided into six stages; 

each stage was 50, and the initial learning rate was 10. After each stage, the learning rate was reduced 



for the next stage [118,119]. After debugging, the convergence speed was the fastest under the 

parameters listed in Table 6. The results showed good agreement (within the ±5% error) between the 

experimental and predicted viscosities of carbon-based magnetic suspensions. The effect of certain 

hyperparameters on the output of the network was determined by sensitivity analysis [120]. Hence, the 

most effective hyperparameters can be selected to improve the output [121-124]. The ANN model 

possesses a superior modeling ability to predict the suspension viscosity, which is based on the output-

input experimental data [123]. It can be noted that the ANN model with temperature as its input 

variable has a better prediction performance for carbon-based magnetic nanofluids. For the testing 

samples, a comparison of the data predicted by the ANN model and the experimental data of carbon-

based magnetic nanofluids is illustrated in Fig. 9. The standard deviation demonstrates that the 

thermophysical properties are almost similar to the test results, and it measures the variation in the 

model values. 

Table 6 The features and parameters of ANN models used in this work 

Neurons Batch Size Epoch Learning rate Decay coefficient 

10 4 50 0.0001 5 

 

Fig. 9 Comparison of experimental and predicted thermo-physical properties of carbon-based magnetic nanofluid: (a) 

Thermal conductivity; (b) Viscosity; (c) Specific heat capacity 

3.3. Comparison of ANN model with existing predicted models 

The purpose of data analysis is to use logical and statistical methods to assist in interpreting, 

summarizing, and evaluating data [125,126]. Normalization coefficients were used to determine the 

effect of the respective variables on the value of the dependent variable [127,128]. As previously 

mentioned, empirical correlations and theoretical models have also been developed. In this work, the 

established thermophysical properties using the ANN model is used to analyze the effects of different 

factors (such as nanoparticle volume concentration, temperature, and nanoparticle size) on the 



viscosity of nanofluids in comparison with the theoretical models [129]. Figs. 10-12 show the 

comparisons between the thermophysical properties predicted using the ANN models and the 

experimental data, as well as the functional values within the influence factors of other models that 

predict the thermophysical properties of carbon-based magnetic nanofluids after normalization. From 

Fig. 10a, it can be noted that the predicted values obtained using both the Maxwell and Timofeeva 

models are lower than the experimental data, which may be because these models do not consider 

effects other than the shape and volume concentration of the nanoparticles. Fig. 10b illustrates the 

enhancement of thermal conductivity with the increase in temperature, and it can be observed that the 

prediction result of the ANN model with the increase in temperature is closer to the experimental value 

than the other models. Recent investigations have proven that scientists have attempted to control the 

thermal conductivity of magnetic nanofluids under the influence of external forces such as magnetic 

fields, sound fields, and electric fields. This may be an important reason for the recent increased 

interest in enhancing the thermal conductivity of magnetic nanofluids. Nkurikiyimfura et al. [88] 

indirectly proposed a formula for thermal conductivity by considering the interaction energy with the 

local magnetic field. When compared to his model, as shown in Fig. 10c, the ANN model can 

accurately predict the trend of nanofluid thermal conductivity with better results under varying 

magnetic field intensities. The data deviation predicted by the ANN model relative to the experimental 

data was smaller than that of the other models (Figs. 10a-c). These results indicate that the ANN model 

has better prediction performance for the thermal conductivity of carbon-based magnetic nanofluids 

than other models. Meanwhile, it was indicated that when the temperature changed, the difference 

between the experimental and predicted values was small, whereas, when the magnetic field changed, 

the difference between the experimental and predicted values was large. 

 

Fig. 10 The effect comparison of (a) nanoparticle volume concentration, (b) temperature, and (c) magnetic field intensity 

on thermal conductivity of carbon-based magnetic nanofluid between various model and experimental data 

javascript:;


The same analysis was also performed for the viscosity of carbon-based magnetic nanofluids. Fig. 

11 compares the prediction of viscosity based on different models with the experimental results for the 

carbon-based magnetic nanofluids as functions of solid volume concentration, temperature, and 

magnetic field intensity. Fig. 11a shows the comparisons between the results of the ANN model and 

the predicted data of other models. Thus, it can be observed that the viscosity of carbon-based magnetic 

nanofluids depends significantly on the solid volume concentration. As the concentration increases, 

the nanoparticles in the suspension enhanced the internal shear effect, leading to an increase in the 

viscosity of the nanofluid. It can also be observed that the prediction result of the ANN model with a 

tendency of variation in concentration is more accurate than the experimental value. These models 

only obtain the changes in the viscosity of the nanofluid based on the influence of temperature. It can 

be concluded from Fig. 11b that the ANN model could achieve a superior prediction performance for 

viscosity when considering the effect of temperature. Fig. 11c compares the experimental 

measurements with the predicted viscosity under a magnetic field using the ANN model. For the Wang 

model [102], the additional effects of the magnetic field are directly considered in viscosity modeling. 

All the above statements indicate that the prediction of experimental data by other models is 

significantly lower than that of the ANN model and its experimental data, which further illustrates that 

the ANN model can be successfully used to assess the viscosity of carbon-based magnetic nanofluids. 

When compared to all the prediction results of the ANN model, the predicted viscosity under the 

magnetic field has the highest data deviation (4.97%), which is less than ±5%. This further illustrates 

that the ANN model can be successfully used to predict the viscosity of carbon-based magnetic 

nanofluids. 

 

Fig. 11 The effect comparison of (a) nanoparticle volume concentration, (b) temperature, and (c) magnetic field intensity 

on viscosity of carbon-based magnetic nanofluid between various model and experimental data. 

The present study provides useful information about the specific heat of magnetic nanofluids 



under a magnetic field. An ANN model was established to forecast the specific heat by considering the 

temperature, nanoparticle concentration, and magnetic intensities based on experimental results. As 

shown in Fig. 12, the specific heat of carbon-based magnetic nanofluids decreased with the increase 

in solid particle concentration and slowly increased with the increase in temperature. When compared 

to the temperature and magnetic field, volume concentration performs a more important role in the 

specific heat of carbon-based magnetic nanofluids because it satisfies the bulk average value in 

mathematics. Hence, the change in the specific heat is still not obvious with a low solid volume 

concentration. Most models that contained an ANN model assumed that the specific heat capacity of 

the nanofluids increased slowly with increase in temperature and the increase could even be negligible, 

which is consistent with the experimental results. The data deviation predicted by the ANN model 

relative to the experimental specific heat capacity data under a magnetic field was 0.01%, which is the 

closest experimental value among all the predictions. Because the measurement is the average specific 

heat capacity in volume, previous models, including this work, indicated that the magnetic field 

primarily affects the magnetic nanofluid thermal conductivity and viscosity, but has little influence on 

the specific heat capacity. When compared to the thermal conductivity and viscosity, the data deviation 

of the specific heat capacity predicted by the ANN model is smaller owing to the stability of this 

parameter.

 

Fig. 12 The effect comparison of nanoparticle volume concentration, temperature, and magnetic field intensity on 

specific heat of carbon-based magnetic nanofluid between various model and experimental data 

4. Application, challenges, and prospects 

4.1. Application of magnetic nanofluids 

4.1.1 Applying magnetic nanofluids in a heat exchanger 

Magnetohydrodynamics has attracted considerable interest because of its potential in the flow 



control of mini-devices and heat dissipation of electronic components [9,130,131]. Owing to their 

flexible and superparamagnetic properties, magnetic nanofluids are employed not only as tunable 

templates for the fabrication of orderly lined microarrays, but also as carrier solutions for heat and 

mass transport under an external magnetic field in thermal management devices [9]. From the 

perspective of materials, the thermophysical properties of nanofluids can be controlled based on 

parameters such as the type and diameter of nanoparticles. Meanwhile, the heat flux and force acting 

on nanofluids can be tuned through gravity, pumps, and capillarity forces [130]. Till date, the idea of 

precise manipulation has been developed for the continuous generation of magnetic or electrical 

droplets and nanofluids controlled by an external field [9,130]. Based on this, devices can be designed 

within the function to open or close thermal fluxes, thereby controlling the direction and intensity of 

the heat flux. Thus, remote heat and mass transport under an external field in thermal management 

devices can be achieved [131]. 

 

Fig. 13 (a) A cooling system designed to explore the thermo and hydraulic behaviors of magnetic nanofluids in CPU; (b) 

A magnetically-activated heat exchanger with remote activation based on magnetic nanofluids; (c) A magnetically driven 

thermal exchanger without moving parts 

4.1.2 Applying magnetic nanofluids in fluid mechanics 

The semi-active control achieved by the magnetorheological damping effect has been widely used 

in the fields of automobile manufacturing [4], hydraulic control [132], and robotics [130]. The 

magnetic nanofluid is maintained in the region with the strongest magnetic field without an external 

force. Under the action of external force, the position and shape of the magnetic fluid change, resulting 

in a change in the magnetic field force, and the magnetic field force is balanced with the external force, 

resulting in a new equilibrium state for the magnetic fluid. Based on this principle, a magnetic 



nanofluid seal was used to protect key components [132]. As a new type of lubricant, it can maintain 

the liquid at the lubrication part, and even change the pressure distribution of the polishing pad under 

the action of an external magnetic field, which satisfies the requirements for the workpiece during the 

sealing process [133]. 

 

Fig. 14 (a) Structure of the planar multitooth magnetic fluid seal [132]; (b) Schematic diagram of the magnetorheological 

mount using magnetorheological seal structure with external coil; (c) Annular and radial flow [133] 

4.1.3 Applying magnetic nanofluids in micro-nano devices 

Droplet manipulation and microfluidic control are emerging as promising tools in various 

applications, including physics, medicine, and engineering, owing to the development of microfluidic 

chips [134]. However, conventional methods of controlling fluids are inadequate in satisfying the 

changing demands of technology and industries. Magnetic nanofluid is one of the key control 

components in the manipulation of droplets and fluids owing to its outstanding features, such as rapid 

magnetic reaction, flexible flowability, and thermal properties [135]. In recent years, magnetic 

microfluidic systems have developed rapidly and are regarded as an indispensable branch of 

microfluidics. Magnetic microfluidics can be divided into continuous-flow and digital magnetic 

microfluidics, which harness magnetic fields as actuators and magnetic materials as driven objects 

[136-139]. Magnetic microfluidics not only inherits systematic and precise control over individual 

fluids and droplets of traditional microfluidics but is also characterized by a simple actuation strategy, 

flexible controllability, remote operation, and noninvasive manipulation ability [140]. 



 

Fig. 15 (a) Schematic illustration of the direct patterning of liquid metal using magnetic field and detailed operation steps 

for the patterning [134]; (b) Schematic of magneto-patterning setup with the application of the magnetic field [135] 

4.2. Challenges and prospects of magnetic nanofluids 

This current ANN model could be continuously developed and the database content can be 

enriched, which can ensure more accurate prediction results when compared to the experimental data 

[146,147]. The use of magnetic nanofluids in heat transfer applications is promising [148]. Certain 

investigations of flow heat transfer, such as the enhancement of thermal conductivity based on 

magnetic nanofluids, were discussed under an external magnetic field [149,150]. In fact, magnetic 

control of liquid flow opens new possibilities in the field of microfluidics, allowing new channel 

shapes and low-pressure cargo transport to surpass the current capabilities of standard methods [151-

155]. It promises low-shear flow and pumping, which is of growing importance in thermal 

management [155], fluid mechanics [154], and micro-nano devices [36]. However, there is still a lack 

of systematic research on the preparation of magnetic nanoparticles, magnetohydrodynamic 

thermophysical characteristics of nanofluids, and microflow heat switch applications [156]. In 

particular, there is still a lack of a prediction model for thermophysical properties of magnetic 

nanofluids that considers magnetic field intensity, temperature, and concentration [93,156]. Based on 

this, certain studies are still required to develop and explore the following aspects.  

a) To prepare magnetic nanoparticles with controllable morphology and then investigate the 

magnetic nanofluids and droplet manipulation techniques through experiments.  



b) To determine the thermophysical properties of the nanofluid under a magnetic field. The 

thermophysical properties of the prepared magnetic nanofluids were experimentally characterized 

under a dynamic magnetic field. 

c) To establish a multiphysics numerical model that precisely describes the magnetic response 

processes of heat release and storage. Based on this, the magnetohydrodynamic heat transfer can 

be fully understood. 

d) To establish a dynamic magnetic-response thermophysical model based on machine learning, 

which can provide a precise description of the magnetic field on the thermophysical properties of 

magnetic nanofluids using a low-cost and time-saving method.  

e) To provide a noncontact control method for microflow and heat transfer. Potential applications 

could be verified and explored, such as wettability manipulation, drug delivery, and heat sinking. 

5. Conclusion 

In this study, the specific heat capacity, thermal conductivity, and viscosity of carbon-based 

magnetic nanofluids were measured for different magnetic volume fractions in nanomaterials, organic 

mass fractions in the base fluid, nanomaterial volume fractions in the nanofluid, temperatures, and 

magnetic field strengths. Then, the thermophysical properties of the previous measurement results of 

carbon-based magnetic nanofluids were reviewed. Based on these experimental data, an ANN was 

established and a comparison was performed with the experimental results. A minireview of previous 

models of nanofluid thermophysical properties was presented. Meanwhile, the proposed ANN model 

can obtain a lower statistical error index and a higher multiple decision statistical coefficient. The 

comparative results showed that there were deviations of ±5% for the ANN from the experimental data. 

It was identified from comparisons that the optimal ANN model is more accurate in predicting the 

thermophysical properties of carbon-based magnetic nanofluids than other models, and certain 

possible theories were explained for the model proposed by the neural network. It should also be noted 

that the major limitations associated with ANN applications are the requirement of a large number of 

parameters and lack of parameter selection methods. To conclude, this work summarized the 

thermophysical properties of carbon-based magnetic fluids and discussed their applications and 

prospects. It established a neural network model for predicting the thermophysical properties of 

magnetic nanofluids and proposed a method that uses material informatics to study functional materials. 



References 

[1] Vanaki S, Ganesan P, Mohammed H. Numerical study of convective heat transfer of nanofluid: A review, 

Renewable and Sustainable Energy Reviews 2016; 54: 1212-1239. 

[2] Pinto RV, Augusto F, Fiorelli S. Review of the mechanisms responsible for heat transfer enhancement using 

nanofluids. Applied Thermal Engineering 2016; 108: 720-739. 

[3] Xu B, Liu L, Lim H, Qiao Y, Chen X. Harvesting energy from low-grade heat based on nanofluids. Nano Energy 

2012; 1(6): 805-811. 

[4] Lv P, Liu C, Rao Z. Review on clay mineral-based form-stable phase change materials: preparation, 

characterization and applications. Renewable & Sustainable Energy Reviews 2017; 68: 707-726. 

[5] Azmi WH, Sharma KV, Mamat R, Najafi R, Mohamad MS. The enhancement of effective thermal conductivity 

and effective dynamic viscosity of nanofluids-a review. Renewable & Sustainable Energy Reviews 2016; 52: 

1046-1058. 

[6] Zhai X, Qi C, Yang Y, Wang J. Thermo-hydraulic performance of nanofluids under adjustable magnetic field. 

Applied Thermal Engineering 2021; 186:116491. 

[7] Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids-A review, Renewable & 

Sustainable Energy Reviews 2013; 21: 548-561. 

[8] Hu Y, He Y, Zhang Z, Wen D. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic 

binary nitrate salt for solar power applications. Energy Conversion and Management 2017; 142: 366-373. 

[9] Qi, C, Tang J, Fan F, Yan Y. Effects of magnetic field on thermo-hydraulic behaviors of magnetic nanofluids in 

CPU cooling system. Applied Thermal Engineering 2020; 179: 115717. 

[10] McGrail BP, Thallapally PK, Blanchard J, Nune SK, Jenks JJ, Dang LX. Metal-organic heat carrier nanofluids. 

Nano Energy 2013; 2(5): 845-855. 

[11] Zhu T, Cheng R, Sheppard GR, Locklin J, Mao L. Magnetic-field-assisted fabrication and manipulation of 

nonspherical polymer particles in ferro fluid-based droplet micro fluidics. Langmuir 2015; 8531-8534. 

[12] Liu Y, Wang X, Wu H. High-performance wastewater treatment based on reusable functional photo-absorbers. 

Chemical Engineering Journal 2017; 309: 787-794. 

[13] Shi L, He Y, Wang X, Hu Y. Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 

nanoparticles. Energy Conversion and Management 2018; 171: 272-278. 

[14] Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: A review. Journal of 

Magnetism and Magnetic Materials 2015; 374:125-138. 



[15] Li Y, Hong W, Li H, Yan Z, Wang S, Liu X, Li B, Jiang H, Niu X. Solar absorber with tunable porosity to control 

the water supply velocity to accelerate water evaporation. Desalination 2021, 511: 115113. 

[16] Selimefendigil F, Öztop HF. Corrugated conductive partition effects on MHD free convection of CNT-water 

nanofluid in a cavity. International Journal of Heat and Mass Transfer 2019; 129: 265-277. 

[17] Mei S, Qi C, Liu M, Fan F, Liang L. Effects of paralleled magnetic field on thermo-hydraulic performances of 

Fe3O4-water nanofluids in a circular tube. International Journal of Heat and Mass Transfer 2019; 134: 707-721. 

[18] Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and 

thermophysical properties of hybrid nanofluids. Journal of Cleaner Production 2018; 190: 169-192. 

[19] Wang G, Qi C, Liu M, Li C, Yan Y, Liang L. Effect of corrugation pitch on thermo-hydraulic performance of 

nanofluids in corrugated tubes of heat exchanger system based on exergy efficiency. Energy Conversion and 

Management 2019; 186: 51-65. 

[20] Sundar LS, Naik MT, Sharma KV, Singh MK, Reddy TCS. Experimental investigation of forced convection 

heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Experimental Thermal and Fluid 

Science 2012; 37: 65-71. 

[21] Wang L, Lin X, Chai L, Peng L, Yu D, Chen H. Cyclic transient behavior of the Joule-Brayton based pumped 

heat electricity storage : Modeling and analysis. Renewable and Sustainable Energy Reviews 2019; 111: 523-

534. 

[22] Ren T, Modest M F, Fateev A, Sutton G, Zhao W, Rusu F. Machine learning applied to retrieval of temperature 

and concentration distributions from infrared emission measurements. Applied Energy 2019; 252: 113448. 

[23] Shin D, Banerjee D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt 

eutectic. International Journal of Heat and Mass Transfer 2014; 74: 210-4. 

[24] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N. Materials discovery and properties prediction in 

thermal transport via materials informatics: A mini review. Nano Letter 2019; 19: 3387-3395. 

[25] Anirudh K, Dhinakaran S. Effects of Prandtl number on the forced convection heat transfer from a porous square 

cylinder. International Journal of Heat and Mass Transfer 2018; 126: 1358-1375. 

[26] Afrand M. Using a magnetic field to reduce natural convection in a vertical cylindrical annulus. International 

Journal of Thermal Sciences 2017; 118: 12-23. 

[27] Wang X, Yan Y, Meng X, Chen G. A general method to predict the performance of closed pulsating heat pipe by 

artificial neural network. Applied Thermal Engineering 2019; 157: 113761. 

[28] Longo GA, Zilio C, Ceseracciu E, Reggiani M. Application of artificial neural network (ANN) for the prediction 



of thermal conductivity of oxide-water nanofluids. Nano Energy 2012; 1: 290-296. 

[29] Papari MM, Yousefi F, Moghadasi J, Karimi H, Campo A. Modeling thermal conductivity augmentation of 

nanofluids using diffusion neural networks. International Journal of Thermal Sciences 2011; 50: 44-52. 

[30] Yigit KS, Ertunc HM. Prediction of the air temperature and humidity at the outlet of a cooling coil using neural 

networks. International Communications in Heat and Mass Transfer 2006; 33: 898-907. 

[31] Ariana MA, Vaferi B, Karimi G. Prediction of thermal conductivity of aluminawater-based nanofluids by 

artificial neural networks. Powder Technology 2015; 278: 1-10. 

[32] Al-waeli AHA, Sopian K, Yousif JH, Kazem HA, Boland J, Chaichan MT. Artificial neural network modeling 

and analysis of photovoltaic/thermal system based on the experimental study. Energy Conversion and 

Management 2019; 186: 368-379. 

[33] Chandrasekar M, Suresh S. A review on the mechanisms of heat transport in nanofluids. Heat Transfer 

Engineering 2009; 30(14): 1136-1150. 

[34] Qi HB, Zhou GZ, Yu FH, Ge W, Li JH. Researches on mixing of granular materials with discrete element method. 

Progress in Chemistry 2015; 27(1): 113-124. 

[35] Mahbubul IM, Saidur R, Amalina MA. Latest developments on the viscosity of nanofluids. International Journal 

of Heat and Mass Transfer 2012; 55(4): 874-885. 

[36] Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices : A critical review. 

Renewable and Sustainable Energy Reviews 2019; 103: 556-592. 

[37] Hussein AM, Sharma KV, Bakar RA, Kadirgama K. A review of forced convection heat transfer enhancement 

and hydrodynamic characteristics of a nanofluid. Renewable and Sustainable Energy Reviews 2014; 29: 734-

743. 

[38] Sekhar YR, Sharma K. Study of viscosity and specific heat capacity characteristics of water-based Al2O3 

nanofluids at low particle concentrations. Journal of experimental Nanoscience 2015; 10: 86-102. 

[39] Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer 

applications. Renewable and Sustainable Energy Reviews 2017; 74: 638-670. 

[40] Jia BP, Gao L, Sun J. Self-assembly of magnetite beads along multi-walled carbon nanotubes via a simple 

hydrothermal process. Carbon 2007; 45: 1476-81. 

[41] Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological 

behavior of Fe3O4-Ag/EG hybrid nanofluid: an experimental study. Experimental Thermal and Fluid Science 

2016; 77: 38-44 



[42] Kurt H, Kayfeci M. Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial 

neural networks. Applied Energy 2009; 86: 2244-2248. 

[43] Harandi SS, Karimipour A, Afrand M, D'Orazio A. An experimental study on thermal conductivity of F-

MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. International Communications 

in Heat and Mass Transfer 2016; 76: 171-177. 

[44] Shi L, He Y, Huang Y, Jiang B. Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation. 

Energy Conversion and Management 2017; 149: 401-408. 

[45] Li Q, Xuan Y, Wang J. Experimental investigations on transport properties of magnetic fluids. Experimental 

Thermal and Fluid Science 2005; 30(2): 109-116. 

[46] T.X. Phuoc, M. Massoudi, Experimental observations of the effects of shear rates and particle concentration on 

the viscosity of Fe2O3-deionized water nanofluids. International Journal of Thermal Sciences 2009; 48: 1294-

1301. 

[47] Abareshi M, Goharshadi EK, Mojtaba S. Fabrication, characterization and measurement of thermal conductivity 

of Fe3O4 nanofluids. Journal of Magnetism and Magnetic Materials 2010; 322: 3895-3901. 

[48] Wright B, Thomas D, Hong H, Groven L, Puszynski J, Duke E, Ye X, Jin S. Magnetic field enhanced thermal 

conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes. Applied Physics 

Letters 2010; 173116. 

[49] Sundar LS, Ramana EV, Singh MK, De Sousa ACM. Viscosity of low volume concentrations of magnetic Fe3O4 

nanoparticles dispersed in ethylene glycol and water mixture. Chemical Physics Letters 2012; 554: 236-242.  

[50] Colla L, Fedele L, M. Scattolini, Bobbo S. Water-based Fe2O3 nanofluid characterization: thermal conductivity 

and viscosity measurements and correlation. Advances in Mechanical Engineering 2012; 674947. 

[51] Ghofrani A, Dibaei MH, Sima AH, Shafii MB. Experimental investigation on laminar forced convection heat 

transfer of ferrofluids under an alternating magnetic field. Experimental Thermal and Fluid Science 2013; 49: 

193-200. 

[52] Sundar LS, Singh MK, Sousa ACM. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for 

heat transfer applications. International communications in heat and mass transfer 2013; 44:7-14. 

[53] Yu W, Xie H, Chen L, Li Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared 

via phase-transfer method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 355(1-3): 

109-113. 

[54] Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid 



nanofluids. International Communications in Heat and Mass Transfer, 2014, 52: 73-83. 

[55] Sundar LS, Singh MK, Bidkin I, Sousa ACM. Transfer Experimental investigations in heat transfer and friction 

factor of magnetic Ni nanofluid flowing in a tube, International Journal of Heat and Mass Transfer 2014; 70: 

224-234. 

[56] Esfe M H, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal 

conductivity and dynamic viscosity of Fe/water nanofluids. Journal of Thermal Analysis and Calorimetry 2015; 

119(3): 1817-1824. 

[57] Mariano A, Pastoriza-Gallego MJ, Lugo L, Mussari L, Piñeiro MM. Co3O4 ethylene glycol-based nanofluids: 

thermal conductivity, viscosity and high pressure density. International Journal of Heat and Mass Transfer 2015; 

85: 54-60. 

[58] Karimi A, Amin M, Sadatlu A, Saberi B, Shariatmadar H. Experimental investigation on thermal conductivity 

of water based nickel ferrite nanofluids. Advanced Powder Technology 2015; 26: 1529-1536. 

[59] Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: 

development of a new correlation and modeled by artificial neural network. International Communications in 

Heat and Mass Transfer 2016; 75: 262-269. 

[60] Harandi SS, Karimipour A, Afrand M, Akbari M, D'Orazio A. An experimental study on thermal conductivity 

of F-MWCNTs-Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. International 

Communications in Heat and Mass Transfer 2016; 76: 171-177. 

[61] Shahsavar A, Saghafian M, Salimpour M, Shafii, M. Experimental investigation on laminar forced convective 

heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields. 

Experimental Thermal and Fluid Science 2016; 76: 1-11. 

[62] Wang L, Wang Y, Yan X, Wang X, Feng B. Investigation on viscosity of Fe3O4 nanofluid under magnetic field. 

International Communications in Heat and Mass Transfer 2016; 72: 23-28. 

[63] Kumar N, Sonawane SS. Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer 

enhancement in a shell and tube heat exchanger. International Communications in Heat and Mass Transfer 2016; 

78: 277-284. 

[64] Nurdin I, Idris I, Rafie M. Enhancement of thermal conductivity and kinematic viscosity in magnetically 

controllable maghemite (γ-Fe2O3) nanofluids. Experimental Thermal and Fluid Science 2016; 72: 265-271. 

[65] Esfe MH, Hajmohammad MH. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG 

(40:60) aqueous nanofluid using NSGA-II coupled with RSM. Journal of Molecular Liquids 2017; 238: 545-



552. 

[66] Amani M, Ama P, Kasaeian A, Mahian O, Pop I. Modeling and optimization of thermal conductivity and 

viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Scientific Reports 2017; 1-13. 

[67] Vinod S, Philip J. Experimental evidence for the significant role of initial cluster size and liquid confinement on 

thermo-physical properties of magnetic nanofluids under applied magnetic field. Journal of Molecular Liquids 

2018; 257: 1-11. 

[68] Shi L, He Y, Hu Y, Wang X. Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer 

performance under magnetic field. Energy Conversion and Management 2018; 177: 249-257. 

[69] Fu R, Liu Z, Chen Y, Yan Y. Experimental investigation of turbulent forced heat transfer of Fe3O4 ethylene 

glycol-Water nanofluid with highly disaggregated particles. Thermal Science and Engineering Progress 2019; 

10: 1-9. 

[70] Esen H, Inalli M, Sengur A, Esen M. Performance prediction of a groundcoupled heat pump system using 

artificial neural networks. Expert Systems with Applications 2008; 35:1940-8. 

[71] Aydinalp M, Ugursal VI, Fung AS. Modelling of the appliance, lighting and space-cooling energy consumption 

in the residential sector using neural networks. Applied Energy 2002; 71: 87-110. 

[72] Lin C, Wang J, Chen T. Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared 

through ultrasonic vibration. Applied Energy 2011; 88: 4527-4533. 

[73] Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P. Experimental investigations of the viscosity of 

nanofluids at low temperatures. Applied Energy 2012; 97: 876-880. 

[74] Shi D, Cheng JP, Liu F, Zhang XB. Controlling the size and size distribution of magnetite nanoparticles on 

carbon nanotubes. Journal of Alloys and Compounds 2010; 502: 365-70. 

[75] Maxwell JC. A treatise on electricity and magnetism. London: Oxford University Press; 1904. 

[76] Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Industrial & 

Engineering Chemistry Fundamentals 1962; 1: 187-91. 

[77] Wasp EJ, Kenny JP, Gandhi RL. Solid-liquid flow slurry pipeline transportation: Gulf Publishing Company; 

1979. 

[78] Yu W, Choi S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated 

Maxwell model. Journal of Nanoparticle Research 2003; 5:167-71. 

[79] Jang SP, Choi SU. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied 

Physics Letters 2004; 84:4316-8. 

https://www.journals.elsevier.com/journal-of-alloys-and-compounds/


[80] Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research 2004; 

6:577-88. 

[81] Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size 

for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters 2005; 87:153107.  

[82] Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced 

convection flows. International Journal of Heat and Fluid Flow 2005; 26:530-46.  

[83] Prasher R, Bhattacharya P, Phelan PE. Thermal conductivity of nanoscale colloidal solutions (nanofluids). 

Physical Review Letters 2005; 94(2): 025901. 

[84] Patel HE, Anoop K, Sundararajan T, Das SK. A micro-convection model for thermal conductivity of nanofluids. 

International Heat Transfer Conference 13: Begel House Inc; 2006.  

[85] Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. 

Journal of Applied Physics 2009; 106(1): 014304. 

[86] Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development 

of new correlations. International Journal of Heat and Mass Transfer 2009; 52: 4675-4682. 

[87] Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic 

viscosity of nanofluids. Energy Conversion Management 2011; 52:789-93.  

[88] Nkurikiyimfura I, Wang Y, Pan Z. Effect of chain-like magnetite nanoparticle aggregates on thermal 

conductivity of magnetic nanofluid in magnetic field. Experimental Thermal and Fluid Science 2013; 44: 607-

612. 

[89] Sharma KV, Sarma PK, Azmi WH, Mamat R, & Kadirgama K. Correlations to predict friction and forced 

convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. International Journal 

of Microscale and Nanoscale Thermal and Fluid Transport Phenomena 2012; 3(4): 283. 

[90] Sundar LS, Ramana EV, Singh MK, Sousa AC. Thermal conductivity and viscosity of stabilized ethylene glycol 

and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study. International 

Communications in Heat and Mass Transfer 2014; 56: 86-95. 

[91] Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal 

conductivity and dynamic viscosity of Fe/water nanofluids. Journal of Thermal Analysis and Calorimetry 2015; 

119: 1817-24. 

[92] Hassani S, Saidur R, Mekhilef S, Hepbasli A. A new correlation for predicting the thermal conductivity of 

nanofluids; using dimensional analysis. International Journal of Heat and Mass Transfer, 2015; 90: 121-30.  



[93] Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in 

various heat transfer devices. Journal of Thermal Analysis and Calorimetry 2020; 1-56.   

[94] Sezer N, Atieh MA, Koç M. A comprehensive review on synthesis, stability, thermophysical properties, and 

characterization of nanofluids. Powder Technology 2019, 344: 404-31. 

[95] Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide 

particles. Experimental Heat Transfer an International Journal 1998; 11:151-70.  

[96] Koo J, Kleinstreuer C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of 

nanofluids. International Communications in Heat and Mass Transfer 2005; 32:1111-8.  

[97] Nguyen C, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, et al. Temperature and particle-size dependent 

viscosity data for water-based nanofluids-hysteresis phenomenon. International Journal of Heat and Fluid Flow 

2007; 28:1492-506.  

[98] Abu-Nada E. Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer 

enhancement in natural convection. International Journal of Heat and Fluid Flow 2009; 30:679-90.  

[99] Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. 

Journal of Physics D: Applied Physics 2009; 42(5): 055501. 

[100] Esfe MH, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and 

thermophysical properties of MgO-water nanofluid under turbulent flow. Experimental Thermal and Fluid 

Science 2014; 52:68-78. 

[101] Ganvir RB, Walke PV, Kriplani VM, Heat transfer characteristics in nanofluid-A review. Renewable and 

Sustainable Energy Reviews, 2017, 75: 451-460. 

[102] Wang L, Wang Y, Yan X, et al. Investigation on viscosity of Fe3O4 nanofluid under magnetic field. International 

Communications in Heat and Mass Transfer, 2016, 72: 23-28. 

[103] Vajjha RS, Das DK. Specific heat measurement of three nanofluids and development of new correlations. 

Journal of Heat Transfer 2009; 131(7): 071601. 

[104] Fakoor Pakdaman M, Akhavan-Behabadi MA, Razi P. An experimental investigation on thermo-physical 

properties and overall performance of MWCNT/heat transfer oil nanofluids flow inside vertical helically coiled 

tubes. Experimental Thermal and Fluid Science 2012; 40: 103-11. 

[105] Ghazvini M, Akhavan-Behabadi M, Rasouli E, Raisee M. Heat transfer properties of nanodiamond-engine oil 

nanofluids in laminar flow. Heat Transfer Engineering 2012; 33: 525-32. 

[106] Sheikholeslami M, Gorji-Bandpy M, and Ganji D. Lattice Boltzmann method for MHD natural convection heat 



transfer using nanofluid. Powder Technology 2014; 254: 82-93. 

[107] Ding Y, Alias H, Wen D, Williams R, Heat transfer of aqueous suspensions of carbon nanotubes (CNT 

Nanofluid). International Journal of Heat and Mass Transfer 2006; 49: 240-250. 

[108] Zhu HT, Zhang CY, Liu SQ, Tang YM, Yin YS. Effects of nanoparticle clustering and alignment on thermal 

conductivities of aqueous nanofluids. Applied Physics Letters 2006; 89(2): 023123. 

[109] Zhang Q, Zhu M, Zhang Q, Li Y, Wang H. The formation of magnetite nanoparticles on the sidewalls of multi-

walled carbon nanotubes. Composites Science and Technology 2009; 69: 633-8. 

[110] Fujita T, Jeyadevan B, Yamaguchi K, Nishiyama H. Preparation, viscosity and damping of functional fluids 

that respond to both magnetic and electric fields. Powder Technology 1999; 101(3): 279-287. 

[111] Afrand M, Rostami S, Akbari M, Wongwises S, Esfe MH, Karimipour A. Effect of induced electric field on 

magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium. International Journal 

of Heat and Mass Transfer 2015; 90: 418-426. 

[112] Oya T, Nomura T, Tsubota M, Okinaka N, Akiyama T. Thermal conductivity enhancement of erythritol as PCM 

by using graphite and nickel particles. Applied Thermal Engineering 2013; 61(2): 825-828. 

[113] Mo S, Chen Y, Jia L, Luo X. Investigation on crystallization of TiO2-water nanofluids and deionized water. 

Applied Energy 2012; 93: 65-70. 

[113] Gang W, Wang J, Wang S. Performance analysis of hybrid ground source heat pump systems based on ANN 

predictive control. Applied Energy 2014; 136: 1138-1144.  

[114] Rahimikhoob A. Estimating global solar radiation using artificial neural network and air temperature data in a 

semi-arid environment. Renewable Energy 2010; 35(9): 2131-2135.  

[115] Kalogirou SA. Artificial neural networks in the renewable energy systems applications: a review. Renewable 

and Sustainable Energy Reviews 2001; 5: 373-401.  

[116] Kurt H, Atik K, Ozkaymak M, Binark AK. The artificial neural networks approach for evaluation of 

temperatureand density profiles of salt gradient solar pond. Journal of the Energy Institute 2006; 80(1): 46-51.  

[117] Yang IH, Yeo MS, Kim KW. Application of artificial neural network to predict the optimal start time for heating 

system in building. Energy Conversion and Management 2003; 4: 2791-809.  

[118] Ertunc HM, Hosoz M. Artificial neural network analysis of a refrigeration system with an evaporative condenser. 

Applied Thermal Engineering 2006; 26: 627-35.  

[119] Hojjat M, Etemad SG, Bagheri R, Thibault J. Thermal conductivity of non-Newtonian nanofluids: experimental 

data and modeling using neural network. International Journal of Heat and Mass Transfer 2011; 54: 1017-1023. 

http://www.so.com/link?m=aw868bf4EFO5ambHc8RkR3DG2OpzdDA045Shxruk2SJjc7Hk3CdoWpJYhJCL41xOx6Bo95YV3zutyFUefXsCLwvOS2yhNVZOhE1INhtCwvFxe2ZY5nlHXlp6lTWH7MHygmKYel4aNgB4%3D


[120] Islamoglu Y, Kurt A, Parmaksızoglu C. Performance prediction for nonadiabatic capillary tube suction line 

heat exchanger: an artificial neural network approach. Energy Conversion and Management 2005; 46: 223-32. 

[121] Al-waeli AHA, Kazem HA, Yousif JH, Chaichan MT, Sopian K. Mathematical and neural network modeling 

for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable 

Energy 2020; 145: 963-980. 

[122] Xu J, Gao B, Kang F. A reconstruction of Maxwell model for effective thermal conductivity of composite 

materials, Applied Thermal Engineering 2016; 102: 972-979.  

[123] Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for refrigeration, air-

conditioning and heat pump systems-a review. Renewable and Sustainable Energy Reviews 2012; 16: 1340- 

1358.  

[124] Behrang MA, Assareh E, Ghanbarzadeh A, Noghrehabadi AR. The potential of different artificial neural 

network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 

2010; 84(8): 1468-1480 

[125] Al-waeli A H A, Kazem H A, Yousif J H, Chaichan M T, Sopian K. Mathematical and neural network modeling 

for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable 

Energy 2020; 145: 963-980. 

[126] Xu J, Gao B, Kang F. A reconstruction of Maxwell model for effective thermal conductivity of composite 

materials, Applied Thermal Engineering 2016; 102: 972-979. 

[127] Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for refrigeration, air-

conditioning and heat pump systems-a review. Renewable and Sustainable Energy Reviews 2012; 16: 1340-

1358. 

[128] Behrang MA, Assareh E, Ghanbarzadeh A, Noghrehabadi AR. The potential of different artificial neural 

network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 

2010; 84(8): 1468-1480. 

[129] Said Z, Assad MEH, Hachicha AA, Bellos E, Ali M, Zeyad D, Yousef BAA, Enhancing the performance of 

automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews 2019; 112: 183-194. 

[130] Puga J B, Bordalo B D, Silva D J, Dias M M, Belo J H. Novel thermal switch based on magnetic nanofluids 

with remote activation. Nano Energy, 2017, 31: 278-285. 

[131] Rodrigues C, Dias M, Martins L, Silva D, Araújo J, Oliveira J, Pereira A, Ventura J. A magnetically-activated 

thermal switch without moving parts. Energy Conversion and Management, 2019, 197: 111881. 



[132] Zhou H, Zhao W, Zhang H, Wang Y, Wu X, Sun Z. Magnetorheological seal: A review. International Journal 

of Applied Electromagnetics and Mechanics 2020; 62: 763-786. 

[133] Zhou H, Chen Y, Zhang Y, Li D. Simulation and experimental study on pressure transfer mechanism in 

multitooth magnetic fluid seals. Tribology Transactions 2021; 64(1): 31-41. 

[134] Zlotnick HM, Clark AT, Gullbrand SE, Carey JL, Cheng XM, Mauck RL. Magneto‐driven gradients of 

diamagnetic objects for engineering complex tissues. Advanced Materials 2020; 32(48): 2005030. 

[135] Ma B, Xu C, Chi J, Chen J, Zhao C, Liu H. A versatile approach for direct patterning of liquid metal using 

magnetic Field. Advanced Functional Materials 2019; 29: 1901370. 

[136] Mehrez Z, El Cafsi, A. Forced convection Fe3O4/water nanofluid flow through a horizontal channel under the 

influence of a non-uniform magnetic field. The European Physical Journal Plus 2021; 136(4): 1-22. 

[137] Shi L, Hu Y, He Y. Magnetocontrollable convective heat transfer of nanofluid through a straight tube. Applied 

Thermal Engineering 2019; 162: 114220. 

[138] Yang C, Liu Z, Yu M, Bian X. Magnetic nanofluid based on amorphous Fe-Ni-B@OA particles applied in the 

treatment of oil slick. Soft Materials 2021; 19(2): 159-167. 

[139] Guo K, Chang F, Li H. Application of a magnetic field in saturated film boiling of a magnetic nanofluid (MNF) 

under reduced gravity. Energies 2021; 14(3): 634. 

[140] Xia BH, Wang J, Tian Y, Chen Q, Du X, Zhang Y. Ferrofluids for Fabrication of remotely controllable micro-

nanomachines by two-photon polymerization. Advanced Materials 2010; 3204-3207. 

[141] Tang Y, Jin T, Flesch RC, Gao Y, He M. Effect of nanofluid distribution on therapeutic effect considering 

transient bio-tissue temperature during magnetic hyperthermia. Journal of Magnetism and Magnetic Materials 

2021; 517: 167391. 

[142] Ahmed S, Xu H. Forced convection with unsteady pulsating flow of a hybrid nanofluid in a microchannel in 

the presence of EDL, magnetic and thermal radiation effects. International Communications in Heat and Mass 

Transfer 2021; 120: 105042. 

[143] Abdulkadhim A, Hamzah HK, Ali FH, Yıldız Ç, Abed AM, Abed EM, Arıcı M. Effect of heat generation and 

heat absorption on natural convection of Cu-water nanofluid in a wavy enclosure under magnetic field. 

International Communications in Heat and Mass Transfer 2021; 120: 105024. 

[144] Akram S, Afzal Q, Aly Emad H. Half-breed effects of thermal and concentration convection of peristaltic 

pseudoplastic nanofluid in a tapered channel with induced magnetic field. Case Studies in Thermal Engineering 

2020; 22:100775. 



[145] Katta R, Jayavel P. Heat transfer enhancement in radiative peristaltic propulsion of nanofluid in the presence 

of induced magnetic field. Numerical Heat Transfer, Part A: Applications 2020; 79(2): 83-110. 

[146] Shi L, Hu Y, Bai Y, He Y. Dynamic tuning of magnetic phase change composites for solar-thermal conversion 

and energy storage. Applied Energy 2020; 263: 114570. 

[147] Ijaz Khan M, Qayyum S, Farooq S, Chu Y, Kadry S. Modeling and simulation of micro-rotation and spin 

gradient viscosity for ferromagnetic hybrid (Manganese Zinc Ferrite, Nickle Zinc Ferrite) nanofluids. 

Mathematics and Computers in Simulation 2021; 185: 497-509. 

[148] Zhang Y, Wu J, He J, Wang K, Yu G. Solutions to obstacles in the commercialization of room-temperature 

magnetic refrigeration. Renewable & Sustainable Energy Reviews 2021; 143, 110933. 

[149] Zhang X, Zhang Y. Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids 

under alternating magnetic field. International Journal of Thermal Sciences 2021; 164: 106897. 

[150] Rajarathinam M, Chamkha AJ. Effect of partial open on natural convection heat transfer of CNT-water 

nanofluid in a square cavity with magnetic field. The European Physical Journal Plus 2021; 136(1): 52. 

[151] Kushawaha D, Yadav S, Singh DK. Magnetic field effect on double-diffusion with magnetic and non-magnetic 

nanofluids. International Journal of Mechanical Sciences 2021; 191: 106085. 

[152] Raki E, Afrand M, Abdollahi, A. Influence of magnetic field on boiling heat transfer coefficient of a magnetic 

nanofluid consisting of cobalt oxide and deionized water in nucleate regime: An experimental study. 

International Journal of Heat and Mass Transfer 2021; 165: 120669. 

[153] Rawa M, Abu-Hamdeh N, Golmohammadzadeh A, Goldanlou AS. An investigation on effects of blade angle 

and magnetic field on flow and heat transfer of non-Newtonian nanofluids: A numerical simulation. 

International Communications in Heat and Mass Transfer 2021; 120: 105074. 

[154] Tian M, Rostami S, Aghakhani S, Goldanlou AS, Qi C. Investigation of 2D and 3D configurations of fins and 

their effects on heat sink efficiency of MHD hybrid nanofluid with slip and non-slip flow. International Journal 

of Mechanical Sciences 2020; 189: 105975.  

[155] Zhang S, Feng D, Shi L, Wang L, Jin Y, Tian L, Li Z, Wang G, Zhao L, Yan Y. A review of phase change heat 

transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy 

storage. Renewable and Sustainable Energy Reviews 2020; 135: 110127. 

[156] Shi L, Hu Y, He Y. Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer 

based on magnetic nanofluid. Nano Energy 2020; 71: 104582. 


