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Abstract 56 

Obesity is a primary antecedent to non-alcoholic fatty liver disease whose cardinal feature is 57 

excessive hepatic lipid accumulation. Although total hepatic lipid content closely associates 58 

with hepatic and systemic metabolic dysfunction, accumulating evidence suggests that the 59 

composition of hepatic lipids may be more discriminatory. This review summarises cross-60 

sectional human studies using liver biopsy/lipidomics and proton magnetic resonance 61 

spectroscopy to characterise hepatic lipid composition in people with obesity and related 62 

metabolic disease. A comprehensive literature search identified 26 relevant studies published 63 

up to 31st March 2021 which were included in the review. The available evidence provides a 64 

consistent picture showing that people with hepatic steatosis possess elevated saturated and/or 65 

monounsaturated hepatic lipids and a reduced proportion of polyunsaturated hepatic lipids. 66 

This altered hepatic lipid profile associates more directly with metabolic derangements, such 67 

as insulin resistance, and may be exacerbated in non-alcoholic steatohepatitis. Further evidence 68 

from lipidomic studies suggests that these deleterious changes may be related to defects in lipid 69 

desaturation and elongation, and an augmentation of the de novo lipogenic pathway. These 70 

observations are consistent with mechanistic studies implicating saturated fatty acids and 71 

associated bioactive lipid intermediates (ceramides, lysophosphatidylcholines and 72 

diacylglycerol) in the development of hepatic lipotoxicity and wider metabolic dysfunction, 73 

whilst monounsaturated fatty acids and polyunsaturated fatty acids may exhibit a protective 74 

role. Future studies are needed to prospectively determine the relevance of hepatic lipid 75 

composition for hepatic and non-hepatic morbidity and mortality; and to further evaluate the 76 

impact of therapeutic interventions such as pharmacotherapy and lifestyle interventions. 77 

Word count: 248  78 

Key words: 79 
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Liver, fatty acid, quality, non-alcoholic fatty liver disease, ectopic fat, insulin resistance  80 

  81 

Key points: 

• Although total hepatic lipid content is often associated with obesity-related 

metabolic ill health, the composition of hepatic lipids may be more prognostic.  

• Obesity and hepatic steatosis are associated with a higher proportion of saturated 

and/or monounsaturated hepatic lipids, a lower proportion of polyunsaturated 

hepatic lipids and an elevated n-6/n-3 polyunsaturated fatty acid ratio.  

• This hepatic lipid profile may be further exacerbated in non-alcoholic 

steatohepatitis; however, additional larger scale studies are required.  

• Future clinical studies should focus on the quality in addition to the quantity of 

hepatic lipids, which could represent a novel target in the management of obesity-

related metabolic disease.  
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Introduction 82 

The obesity pandemic has been paralleled by a rise in the prevalence of related metabolic 83 

conditions such as non-alcoholic fatty liver disease (NAFLD)1, type 2 diabetes mellitus 84 

(T2DM)2 and the metabolic syndrome3. An integral component of this obesity-related 85 

metabolic dysfunction is lipid accumulation in ectopic tissues such as the liver (hepatic 86 

steatosis), which is the defining feature of NAFLD4. Indeed, obesity is a primary antecedent to 87 

hepatic steatosis, as once the finite adipose tissue lipid stores are overwhelmed, the resultant 88 

adipose tissue dysfunction promotes the redistribution of lipids towards the liver for disposal5. 89 

Consequently, hepatic steatosis is present in ~50-75% of individuals with obesity (BMI30 90 

kgm-2)1,6 and up to 94% of individuals with severe obesity (BMI40 kgm-2)7. This has 91 

important consequences for cardiometabolic and liver-related morbidity and mortality1,8,9.  92 

The liver is an important regulator of glucose and lipid metabolism, and hepatic steatosis is 93 

linked with multiple cardiometabolic comorbidities such as insulin resistance, hyperglycaemia, 94 

dyslipidaemia and hypertension8,10,11. Consequently, NAFLD is often regarded as the hepatic 95 

manifestation of the metabolic syndrome12, which augments the risk of developing T2DM and 96 

cardiovascular disease13,14. Additionally, the coexistence of T2DM in NAFLD is associated 97 

with an accelerated progression to non-alcoholic steatohepatitis (NASH)15; a more advanced 98 

form of chronic liver disease characterised by hepatocellular inflammation and injury4. A 99 

subset of people with NASH develop hepatic fibrosis which is a major precursor to end-stage 100 

liver diseases i.e. cirrhosis and hepatocellular carcinoma9. Importantly, the link between 101 

hepatic steatosis, metabolic dysfunction and liver disease progression displays significant 102 

heterogeneity; and the causal mechanisms are not completely understood. 103 

Despite this deleterious sentiment, growing evidence suggests that hepatic lipid accumulation 104 

as triacylglycerol (TAG) may not be inherently harmful16,17. This notion stems from preclinical 105 
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research demonstrating that promoting hepatic TAG synthesis is protective from lipotoxicity 106 

and insulin resistance induced by the accumulation of other lipids and/or intermediates18–21. 107 

Instead, the composition of hepatic lipids may be a dominant factor mediating the adverse 108 

metabolic and lipotoxic consequences of hepatic steatosis16,22. Specifically, saturated fatty 109 

acids (SFAs) and their incorporation into other lipid species, may be more harmful compared 110 

with monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs)22,23.  111 

Advancements in lipidomic and magnetic resonance (MR) techniques have enabled researchers 112 

to identify marked alterations in hepatic lipid composition in individuals with obesity and 113 

obesity-related diseases. Accumulating evidence suggests that a more deleterious hepatic lipid 114 

composition profile may underpin the poorer metabolic health and more aggressive liver 115 

disease trajectory observed as NAFLD and its associated ailments progress22. Therefore, 116 

elucidating the role of hepatic lipid composition in obesity-related metabolic disease is of 117 

paramount importance to support therapeutic intervention and advance understanding of 118 

disease prognosis.  119 

The purpose of this narrative review is to comprehensively evaluate existing human studies 120 

characterising hepatic lipid composition in obesity-related metabolic disease. To provide 121 

context, mechanistic aspects of hepatic lipid accumulation, and contemporary assessment 122 

techniques in humans, are discussed in the first part of this review. The review concludes by 123 

summarising the potential impact of lipid-lowering pharmacotherapies on clinical outcomes in 124 

NAFLD and hepatic lipid composition.   125 

Dysregulated lipid metabolism in hepatic steatosis 126 

Hepatic steatosis is characterised by an imbalance between the supply, uptake, synthesis and 127 

disposal of lipids, such that lipid supply exceeds the capacity for disposal24,25. Chronic energy 128 

surplus in obesity and its associated metabolic comorbidities, such as insulin resistance, are 129 



8 

 

 

 

key contributors to this dysregulation of hepatic lipid metabolism; and thus play an important 130 

role in the pathogenesis of hepatic steatosis26. 131 

The largest supply of hepatic lipids (~60% in NAFLD) is from circulating FFAs derived from 132 

adipose tissue lipolysis27. Crucially, adipose tissue dysfunction in obesity, characterised by 133 

enlarged/stressed adipocytes, chronic low-grade inflammation and insulin resistance, results in 134 

unrestricted adipose tissue lipolysis and augmented delivery of circulating FFAs to the liver24. 135 

Many studies report elevated rates of lipolysis in obesity and NAFLD28–30. The other main 136 

extra-hepatic source of hepatic lipids is from dietary fat (~15% in NAFLD)25,27. Notably, 137 

NAFLD is frequently associated with a Western dietary pattern in which excess dietary fat 138 

(particularly saturated and trans-fat) is prominent31,32. 139 

Hepatic lipids are also synthesized endogenously from non-lipid precursors such as glucose 140 

and fructose via de novo lipogenesis (DNL)24. This process involves the conversion of acetyl-141 

CoA, to palmitoyl-CoA, the coenzyme A derivative of the SFA palmitate33. Compared to lean 142 

individuals, the contribution of DNL is elevated in people with obesity (19% vs. 11%), and 143 

further increased in those with coexisting hepatic steatosis (38%)34. These higher rates of DNL 144 

arise from both the increased intake of dietary glucose and fructose35, and from hyperglycaemia 145 

and hyperinsulinaemia36. Collectively, elevations in each of these lipid sources contribute to 146 

dysregulated lipid metabolism in NAFLD.  147 

The two lipid disposal routes in the liver are fatty acid oxidation, through -oxidation and 148 

ketogenesis, and export into the circulation as very-low-density lipoprotein-TAG26. Data are 149 

conflicting about how these may be altered in hepatic steatosis, with some studies reporting 150 

increases, potentially as a buffering mechanism28,29,37. However, malonyl-CoA, an 151 

intermediate metabolite of DNL, can inhibit fatty acid oxidation, whilst reactive oxygen species 152 

produced from -oxidation may also promote mitochondrial dysfunction38. Furthermore, rates 153 
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of very-low-density lipoprotein-TAG secretion may plateau28 or even decrease39 as liver fat 154 

content increases. Therefore, although no consensus exists, these lipid disposal pathways 155 

appear to be overwhelmed in people with obesity and related metabolic dysfunction24. 156 

Hepatic lipid composition as a mediator of lipotoxicity and metabolic dysfunction 157 

The hepatic lipidome comprises of six main categories of lipids including fatty acyls, 158 

glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids40,41. The 159 

glycerolipid TAG represents the predominant form of lipid storage in the liver42,43. Hepatic 160 

FFAs partitioned into esterification pathways are converted to TAG via the acyltransferases 161 

glycerol 3-phosphate acyltransferase and diacylglycerol transferase (DGAT), before being 162 

compartmentalised into lipid droplets17.  163 

Despite hepatic TAG being used as a clinical marker for NAFLD4, and demonstrating close 164 

associations with metabolic impairments such as insulin resistance10,11, accumulating evidence 165 

suggests lipid deposition as TAG may not be inherently harmful16,22,23. Indeed, various 166 

instances exist whereby hepatic TAG dissociates from insulin resistance and lipotoxicity. For 167 

example, early rodent studies found that overexpressing DGAT2, which catalyses the 168 

conversion of diacylglycerol (DAG) to TAG, promotes hepatic steatosis without affecting 169 

insulin resistance or hepatic inflammation19. Conversely, inhibiting hepatic DGAT2 reduces 170 

hepatic TAG synthesis but exacerbates oxidative stress, inflammation and fibrosis in mice with 171 

obesity and NASH20. Therefore, hepatic TAG stored in lipid droplets may be relatively inert 172 

and could actually represent a protective mechanism to combat the accumulation of more 173 

harmful lipid species16,17. Nevertheless, excessive hepatic lipid flux leads to the accumulation 174 

of SFAs and other associated bioactive lipid intermediates such as ceramides, 175 

lysophosphatidylcholines (LPCs) and DAG22. Importantly, these lipid species have been 176 

directly implicated in the development of hepatic lipotoxicity and/or insulin resistance44–47. 177 
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Therefore, hepatic lipid composition, rather than absolute quantity, may underpin the hepatic 178 

and systemic metabolic dysfunction associated with hepatic steatosis.  179 

Saturated fatty acids (SFAs) 180 

Palmitate (C16:0) and stearate (C18:0) are the two most abundant hepatic SFAs; characterised 181 

by the absence of double bonds within their hydrocarbon chains42,43. SFAs, particularly 182 

palmitate, are suggested to be more metabolically harmful than MUFAs and PUFAs, as high 183 

saturated fat diets in people with overweight or obesity lead to greater increases in hepatic TAG 184 

content and insulin resistance when compared to energy-matched unsaturated and 185 

polyunsaturated fat diets48,49. Notably, exposure of cultured hepatocytes to palmitate induces 186 

cellular apoptosis but does not stimulate TAG synthesis18. This suggests SFAs may be less 187 

preferentially directed towards TAG synthesis in favour of more lipotoxic fates. Indeed, 188 

multiple studies report inverse associations between SFA-induced lipotoxicity and TAG 189 

synthesis21,50,51.  190 

The mechanisms of SFA-induced lipotoxicity and insulin resistance in hepatocytes are depicted 191 

in Figure 1. Preclinical research demonstrates that SFAs promote both endoplasmic reticulum 192 

(ER) stress52 and oxidative stress46 in cultured hepatocytes. Notably, an important contributor 193 

to ER stress is the incorporation of SFAs into phospholipid species which are integral structural 194 

components of the ER membrane53. Subsequently, these factors initiate the c-Jun N-terminal 195 

kinase pathway which promotes apoptosis and disrupts insulin signal transduction54. In non-196 

parenchymal cells, SFAs activate hepatic stellate cells and Kupffer cells leading to the initiation 197 

of pro-inflammatory and pro-fibrogenic responses55,56.   198 

These deleterious effects may be partly mediated by their preferential conversion to bioactive 199 

lipid intermediates such as ceramides, LPCs and DAG22. Ceramides are sphingolipids which 200 

can promote inflammation, mitochondrial dysfunction, insulin resistance and apoptosis57,58. 201 
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Notably, palmitate is the preferred substrate for de novo ceramide synthesis47, and inhibiting 202 

this process alleviates hepatic inflammation, fibrosis and insulin resistance in murine models 203 

of obesity and NAFLD59,60. In humans, plasma and hepatic concentrations of ceramides are 204 

elevated in patients with NAFLD and NASH, and are positively associated with markers of 205 

insulin resistance61,62. Furthermore, in the aforementioned overfeeding study by Luukkonen 206 

and colleagues48, high saturated fat overfeeding also increased plasma ceramide concentrations 207 

and other intermediates of de novo ceramide synthesis. Consequently, ceramides are 208 

recognised as important lipids in both the pathogenesis of NAFLD and NASH, and the 209 

associated metabolic dysfunction.  210 

LPCs are glycerophospholipids derived from phosphatidylcholines (PCs) via the enzyme 211 

phospholipase A2 and share similar lipotoxic effects to SFAs including ER stress, 212 

mitochondrial dysfunction, inflammation and apoptosis45,63. These lipids may be a downstream 213 

mediator of SFA-induced lipotoxicity as pharmacological inhibition of phospholipase A2 in 214 

isolated hepatocytes impairs the conversion of palmitate to LPC, leading to a reduction in 215 

palmitate-induced apoptosis22,45. DAG are formed during the penultimate step of TAG 216 

synthesis and have been strongly implicated in the development of hepatic insulin resistance 217 

through activation of protein kinase C (PKC)44,64. Indeed, palmitate treatment in HepG2 cells 218 

resulted in the accumulation of DAG rather than TAG which was associated with greater 219 

insulin resistance and PKC activation65. Therefore, SFAs and their associated bioactive lipid 220 

intermediates are important contributors to hepatic lipotoxicity and insulin resistance resulting 221 

from excessive lipid flux in the liver.  222 

 223 

Insert Figure 1 224 

 225 
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Monounsaturated fatty acids (MUFAs) 226 

MUFAs such as palmitoleate (C16:1) and oleate (C18:1) contain a single double bond and can 227 

be converted from palmitate and stearate, respectively, by the rate-limiting enzyme stearoyl-228 

CoA desaturase-1 (SCD1)66. Compared to SFAs, MUFAs are less lipotoxic and appear to be 229 

preferentially incorporated into TAG species22. Indeed, oleate supplementation in cultured 230 

hepatocytes results in marked TAG accumulation with minimal impact on apoptosis, whilst 231 

co-supplementing oleate with palmitate sufficiently prevents palmitate-induced lipotoxicity18. 232 

Furthermore, SCD1 knockout in mice with diet-induced NASH reduces hepatic steatosis but 233 

exacerbates hepatic inflammation and injury compared to mice with intact SCD1 activity50. 234 

Together, these data suggest that the conversion of SFAs to MUFAs and their preferential 235 

incorporation into hepatic TAG may be a key mechanism by which hepatic TAG accumulation 236 

protects the liver from SFA-induced lipotoxicity.   237 

Polyunsaturated fatty acids (PUFAs) 238 

PUFAs contain multiple double bonds in their hydrocarbon chain and form two classes based 239 

on the position of the first double bond in relation to the methyl end of the fatty acid chain: n-240 

3 and n-6 PUFAs22,42. Eicosapentaenoic acid (C20:5n-3; EPA) and docohexaenoic acid 241 

(C22:6n-3; DHA) are important long-chain n-3 PUFAs, whilst arachidonic acid (C20:4n-6; 242 

AA) is an important long-chain n-6 PUFA67. These PUFAs are formed from a series of 243 

desaturation and elongation steps via several fatty acid desaturase (FADS) and fatty acid 244 

elongase (ELOVL) enzymes, respectively68. Notably, only a minor portion (5-10%) are derived 245 

from 18-carbon precursors such as linoleic acid (C18:2n-6) and -linolenic acid (C18:3n-3); 246 

thus, intake from the diet represents an essential source68.   247 

PUFAs, particularly of the n-3 series, have been shown to exert protective metabolic effects as 248 

n-3 PUFA supplementation reduces hepatic steatosis, improve markers of liver injury and 249 
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enhance insulin sensitivity in humans and rodents with NAFLD69,70. Mechanistically, PUFAs 250 

interact with transcription factors to upregulate oxidative pathways and downregulate 251 

pathways relating to lipogenesis, inflammation and fibrogenesis71,72. Additionally, they are 252 

readily incorporated into phospholipid species to maintain cell membrane fluidity and 253 

permeabilization73. Therefore, PUFAs appear to play an active role in maintaining hepatic lipid 254 

homeostasis and alleviating hepatic lipotoxicity and insulin resistance resulting from excessive 255 

lipid accumulation.  256 

The aforementioned long-chain n-3 and n-6 PUFAs are also synthesised into specialised pro-257 

resolving mediators and eicosanoids, respectively22. Specialised pro-resolving mediators are a 258 

class of signalling molecules which exhibit profound anti-inflammatory and anti-fibrogenic 259 

properties74,75. In contrast, eicosanoids such as prostaglandins, thromboxane and leukotrienes 260 

are signalling molecules which are primarily considered to play a proinflammatory role in the 261 

liver76. Consequently, given that n-6 PUFAs are the major precursors for proinflammatory 262 

eicosanoids, an increased flux through the n-6 PUFA pathway and a concomitant increase in 263 

the n-6/n-3 PUFA ratio may also contribute to the pathogenesis of NASH and its associated 264 

metabolic dysfunction22,43,77. 265 

Assessment of hepatic lipid composition 266 

Liver biopsy/lipidomics 267 

Liver biopsy is the gold-standard technique for the clinical diagnosis of hepatic steatosis and 268 

is currently the only technique which can reliably detect other features of NASH such as 269 

hepatocyte ballooning, lobular inflammation and fibrosis (although non-invasive markers are 270 

increasingly used to distinguish advanced stages of fibrosis)4,78. This permits the distinction 271 

between stages of chronic liver disease. Lipidomic analysis techniques such as chromatography 272 

and mass spectrometry can be paired with liver biopsies to quantify the relative amounts of 273 
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different lipid species in liver tissue samples and assess their fatty acid compositions79. Gas 274 

chromatography and liquid chromatography (particularly high-performance liquid 275 

chromatography) have traditionally been used to assess the composition of multiple hepatic 276 

lipid species, including TAG, DAG, FFAs and phospholipids, in populations with obesity and 277 

obesity-related metabolic disease80–83. A major recent advancement is the coupling of these 278 

techniques with mass spectrometry, enabling a more detailed characterisation of the hepatic 279 

lipidome84,85. Recent studies using this approach have examined differences in the composition 280 

of sphingolipids, PCs, LPCs, cholesterol esters, and free cholesterol, in addition to the other 281 

lipid species mentioned previously61,62,77,86. A key limitation, however, is that its invasiveness 282 

has often limited its application to those with severe metabolic phenotypes80,81,86,87. The 283 

heterogenous nature of hepatocytes is another consideration with small biopsy samples88.  284 

Proton magnetic resonance spectroscopy (1H-MRS) 285 

Recent advances in precision imaging have enabled scientists to non-invasively monitor 286 

important metabolic pathways and outcomes in obesity-related metabolic disease89. 287 

Specifically, advanced MR techniques, such as 1H-MRS and chemical-shift-encoded MR 288 

imaging, now permit the non-invasive assessment of hepatic lipid composition in vivo90. 1H-289 

MRS has emerged as the gold-standard non-invasive technique for assessing liver fat content 290 

and strongly correlates with histologically-derived measurements (r=0.93)91. The theoretical 291 

basis for 1H-MRS is underpinned by the ‘chemical shift’ effect whereby, when placed in a 292 

strong magnetic field, hydrogen protons within water molecules and hydrocarbon fatty acid 293 

chains resonate at different frequencies based on their surrounding chemical milieu (Figure 294 

2A)90. By irradiating these molecules with a radio frequency field, protons are excited and 295 

subsequently emit a signal at specific frequencies. Consequently, in a typical liver MR 296 

spectrum, water forms a large spectral peak, whilst six smaller lipid peaks are formed owing 297 

to different functional groups within a fatty acid chain (Figure 2B)92. Liver fat fraction is then 298 
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expressed as the total fat signal as a percentage of the combined water and fat signal, with 299 

≥5.56% being considered clinically elevated93.  300 

 301 

Insert Figure 2 302 

 303 

Of the six visible lipid peaks, two (methene and allylic) relate to functional groups associated 304 

with double bonds in a fatty acid chain i.e. unsaturated fatty acids, whilst one (diallylic) relates 305 

to a functional group exclusively associated with consecutive double bonds i.e. PUFAs94. With 306 

this knowledge, multiple research groups have developed indices to represent the ratio of 307 

saturated, (mono)unsaturated and polyunsaturated lipids within the liver92,94,95. Due to the 308 

ethical considerations of liver biopsies, the 1H-MRS technique has currently only been 309 

validated against gas chromatography in human adipose tissue samples. Nevertheless, these 310 

studies report strong correlations between techniques95,96, supporting 1H-MRS as a non-311 

invasive alternative to liver biopsy. Given the potential for repeat measurements, the technique 312 

is ideally suited for use in therapeutic trials89.  313 

Unlike lipidomic approaches, 1H-MRS only provides a semi-quantitative assessment of hepatic 314 

lipid saturation measured through ratios of fat groups, rather than a quantitative assessment of 315 

the relative abundances of different lipid species and their fatty acid constituents90. 316 

Additionally, 1H-MRS is currently unsuitable for determining hepatic lipid composition in 317 

individuals with low liver fat fractions owing to insufficient fat signal and therefore spectral 318 

resolution at clinical field strengths97. Other limitations include high costs, low spatial coverage 319 

from single voxel spectroscopy, and the specialist expertise required. 320 

Hepatic lipid composition in obesity-related metabolic disease 321 
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Liver biopsy/lipidomic studies 322 

We identified 18 cross-sectional studies using liver biopsy and lipidomic analyses to examine 323 

the hepatic lipid composition of people with obesity and related metabolic disease (Table 1). 324 

 325 

Insert Table 1 326 

 327 

Takahashi and Tanaka98 first noted that posthumous liver samples of individuals with hepatic 328 

steatosis comprised of a greater percentage of MUFAs and a lower percentage of PUFAs in 329 

multiple lipid fractions compared to individuals without hepatic steatosis. More recently, Araya 330 

et al.80 observed a relative depletion of n-3 and n-6 long-chain PUFAs and an increase in the 331 

n-6/n-3 PUFA ratio in the livers of patients with NAFLD compared to healthy controls; 332 

however, no differences were observed between NAFLD stages i.e. non-alcoholic fatty liver 333 

(NAFL; elevated steatosis without hepatic inflammation) and NASH. Similar findings have 334 

been reported by others83,99–101; however, these studies observed greater long-chain PUFA 335 

depletion in individuals with NASH compared to NAFL. Notably, the NAFLD populations 336 

recruited by Araya et al.80 were undergoing bariatric surgery and the extreme metabolic 337 

phenotype may have negated potential differences. Nevertheless, these studies indicate that a 338 

depletion of hepatic long-chain PUFAs, particularly of the n-3 series, and a concomitant 339 

increase in the n-6/n-3 PUFA ratio may contribute to the pathogenesis and progression of 340 

NAFLD. This may be through favouring lipid synthesis over lipid export and oxidation71, and 341 

promoting a proinflammatory state76.  342 

Hepatic long-chain PUFA depletion may be related to deficiencies in dietary intake, desaturase 343 

activity and/or greater lipid peroxidation80,83,99,100. Importantly, no differences in dietary intake 344 
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were reported in any of these studies; however, the product/precursor ratios for n-6 345 

(AA/C18:2n-6) and n-3 PUFAs (EPA+DHA/C18:3n-3), which indirectly reflect desaturase 346 

enzyme activity (FADS1 and FADS2, respectively), were decreased in NAFLD80,100 and 347 

NASH99. Thus, defective desaturation and synthesis from their precursors may contribute to 348 

hepatic long-chain PUFA depletion. PUFAs are also highly susceptible to lipid peroxidation 349 

induced by oxidative stress and inflammation68; however, data are inconsistent regarding the 350 

contribution of lipid peroxidation to hepatic PUFA depletion in humans.  351 

Puri et al.43 comprehensively characterised the human liver lipidome in patients with NAFL 352 

and NASH, and compared their compositions to controls with obesity. Alongside a stepwise 353 

depletion of long-chain PUFAs in hepatic TAG, DAG and FFA fractions, it was found that 354 

SFAs and MUFAs were augmented in hepatic TAG and DAG in the NAFL and NASH groups, 355 

despite similar BMIs and metabolic profiles to controls43. In agreement, Peng et al.86 recently 356 

observed greater SFAs and MUFAs in hepatic TAG and DAG, respectively, in NAFL and 357 

NASH along with lower long-chain PUFAs. Therefore, this enrichment of hepatic TAG and 358 

DAG with SFAs and MUFAs represents a more lipotoxic hepatic lipid profile in individuals 359 

with NAFLD. Interestingly, the greater MUFA concentrations in these studies were primarily 360 

driven by an increase in oleate (C18:1), whilst reductions were seen in the SFA stearate 361 

(C18:0), suggesting that an accelerated conversion of SFAs to MUFAs may occur to limit SFA-362 

induced lipotoxicity22.  363 

The fatty acid composition of phospholipids was also altered such that patients with NAFL and 364 

NASH exhibited progressively lower long-chain PUFAs in hepatic PCs43,86. Furthermore, total 365 

hepatic PCs were lower and hepatic LPCs were higher in these populations43. Elizondo et al.81 366 

specifically compared the fatty acid composition of phospholipids in the liver and erythrocytes 367 

of lean individuals and people with severe obesity/NAFLD. The NAFLD group, who had 368 

markedly higher insulin resistance and hyperglycaemia, displayed 34% higher total SFAs and 369 
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63% lower total n-3 long-chain PUFAs in hepatic phospholipids, resulting in a 2.4-fold greater 370 

n-6/n-3 PUFA ratio81. Given that phospholipids are integral to membrane bilayers, a reduction 371 

in total hepatic phospholipids and enrichment with SFAs may disrupt membrane integrity of 372 

structures such as the ER and mitochondria, thereby promoting ER stress and mitochondrial 373 

dysfunction53,102. In support, Peng et al.86 noted elevated concentrations of the mitochondrial 374 

lipids cardiolipin, ubiquinone and acylcarnitine in NASH, suggestive of mitochondrial 375 

dysfunction. 376 

To investigate the relationship between hepatic lipid composition and metabolic dysfunction, 377 

Luukkonen et al.61 recruited 125 bariatric surgery patients and divided them into two groups 378 

based on their median homeostatic model assessment of insulin resistance (HOMA-IR). In 379 

addition to 2-fold higher liver fat content, the high HOMA-IR group exhibited a greater 380 

proportion of SFAs and MUFAs in hepatic TAG and FFA fractions compared to the low 381 

HOMA-IR group61. These associations between insulin resistance, augmented hepatic SFAs 382 

and MUFAs, and depleted PUFAs have also been replicated recently in patients with less 383 

severe metabolic dysfunction and obesity103. Whilst observational, these findings concur with 384 

preclinical evidence implicating SFAs in the development of insulin resistance104.  385 

In a further analysis, Luukkonen et al.61 investigated the apparent dissociation between insulin 386 

resistance and hepatic steatosis by additionally dividing their cohort based on PNPLA3 387 

genotype (rs738409), given that carriers of the I148M variant display hepatic steatosis without 388 

metabolic dysfunction105. As expected, these individuals exhibited a 3-fold greater liver fat 389 

content compared to non-carriers, whilst metabolic parameters were similar between groups61. 390 

Interestingly, the greater hepatic lipid accumulation in I148M variant carriers was driven by 391 

elevated PUFAs in hepatic TAG61. These findings are corroborated by Peter et al.82 who 392 

reported 44% higher concentrations of the n-3 PUFA ɑ-linolenic acid and reductions in 393 

multiple n-6 PUFAs in hepatic TAG in I148M variant carriers vs. non-carriers. PNPLA3 394 
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functions as a transacylase, transferring PUFAs from hepatic TAG and DAG to phospholipid 395 

species106; however, recent in vivo and in vitro experiments demonstrate that the I148M variant 396 

promotes the retention of PUFAs in hepatic TAG107. Collectively, these studies demonstrate 397 

that ‘metabolic NAFLD’ associated with insulin resistance is characterised by an enrichment 398 

of SFAs in hepatic TAG; whilst PUFA enrichment in ‘genetic NAFLD’ may underpin a more 399 

favourable metabolic profile.  400 

Alterations in multiple ceramide species and their derivatives have also been observed in 401 

obesity and NAFLD61,62,86. Specifically, Luukkonen et al.61 reported higher hepatic 402 

concentrations of almost all ceramide species in metabolic NAFLD but minimal differences in 403 

genetic NAFLD; whilst Apostolopoulou et al.62 observed elevated total hepatic ceramides in 404 

patients with NASH compared to NAFL and controls with obesity. These differences were 405 

primarily accompanied by higher dihydroceramide species, indicating an upregulation of the 406 

de novo ceramide synthetic pathway in which palmitate is a key substrate61,62. However, the 407 

potential contribution of DAG to insulin resistance could not be discounted in the study by 408 

Luukkonen et al.61 as multiple DAG species were also elevated. In support, Kumashiro et al.64 409 

found that hepatic DAG species containing C16:0 and C18:1 were the most abundant in 410 

individuals with severe obesity, whilst total DAG content in lipid droplets strongly correlated 411 

with greater insulin resistance (r=0.80) and hepatic PKC activation (r=0.67). Therefore, these 412 

studies support a role for both ceramides and DAG in the development of insulin resistance in 413 

people with metabolic-associated NAFLD.  414 

Mechanistically, multiple studies have identified marked changes in the expression of 415 

numerous genes involved in hepatic lipid metabolism which could underpin the altered hepatic 416 

lipid composition in obesity-related metabolic disease77,83,108–110. Indeed, these studies 417 

consistently show an upregulation of genes related to lipogenesis (e.g. sterol regulatory 418 

element-binding protein 1, acetyl-CoA carboxylase, fatty acid synthase) and a downregulation 419 
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of genes related to lipid oxidation (e.g. peroxisome proliferator-activated receptor-ɑ; PPAR 420 

ɑ)77,108,110, which is consistent with higher rates of DNL in obesity and NAFLD34,111. Hepatic 421 

DNL may be a key driver of the more saturated hepatic lipid profile in obesity-related metabolic 422 

disease61 given that DNL exclusively produces palmitate and is directly stimulated by 423 

hyperglycaemia and hyperinsulinaemia33,34,36. Additionally, the expression of hepatic SCD1, 424 

FADS2 and ELOVL5 were also elevated in NASH77,109,110, consistent with an enhanced 425 

conversion of SFAs to MUFAs in these individuals. Conversely, Chiappini et al.77 reported 426 

lower hepatic FADS1 and ELOVL6 expression and activity in humans and rodents with NASH 427 

which the authors suggested was responsible for a bottleneck upstream of long-chain PUFA 428 

synthesis, leading to long-chain PUFA depletion and the accumulation of <20-carbon SFAs 429 

and MUFAs. Earlier studies, however, noted elevated FADS1109 and ELOVL6110 expression 430 

in patients with NASH; thus further research is required to clarify this discrepancy.  431 

Proton magnetic resonance spectroscopy (1H-MRS) studies 432 

Eight cross-sectional studies were identified using 1H-MRS to assess hepatic lipid composition 433 

in individuals with obesity-related metabolic disease (Table 2).   434 

 435 

Insert Table 2 436 

 437 

Pollesello et al.112 first used 1H-MRS to determine the composition of lipid extracts from liver 438 

biopsy samples of patients with vs. without hepatic steatosis by calculating the average fatty 439 

acid chain length and a lipid unsaturation ratio. Each outcome was lower in patients with 440 

hepatic steatosis, indicating the presence of shorter, more saturated fatty acids in hepatic lipids 441 

in NAFLD. However, the first in vivo assessment of hepatic lipid composition was performed 442 
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by Johnson et al.94 who developed and validated indices to assess the degree of hepatic lipid 443 

saturation. In this study, the hepatic lipid saturation index (SI), unsaturation index (UI) and 444 

polyunsaturation index (PUI) were compared between people with obesity, NAFLD and 445 

healthy controls. It was found that the hepatic SI was higher and the hepatic PUI was lower in 446 

the groups with NAFLD and obesity compared to controls, whilst the hepatic PUI was depleted 447 

to a greater extent in the NAFLD group94. 448 

Using the same indices, Erickson et al.113 recently reported that patients with NAFLD exhibited 449 

a higher hepatic SI and lower hepatic UI when compared to controls with overweight/obesity. 450 

Notably, the greater hepatic lipid saturation in NAFLD was accompanied by greater 451 

dyslipidaemia, lower exercise capacity and poorer peripheral insulin sensitivity113. The 452 

relationship between hepatic steatosis and a more saturated hepatic lipid profile was further 453 

highlighted by Hamilton et al.97 who found inverse associations between liver proton density 454 

fat fraction and the number of double bonds and methylene-interrupted double bonds in 455 

patients with suspected or diagnosed NAFLD, reflecting unsaturated and polyunsaturated 456 

hepatic lipids, respectively. Therefore, in line with the liver biopsy/lipidomic literature, these 457 

findings demonstrate that NAFLD is characterised by a greater proportion of saturated and a 458 

lower proportion of unsaturated/polyunsaturated hepatic lipids, and this lipid profile is 459 

accompanied by greater metabolic dysfunction.  460 

Roumans et al.95 most recently introduced novel indices to specifically quantify hepatic SFA, 461 

MUFA and PUFA fractions, and compared these fractions in individuals with NAFL, T2DM 462 

and overweight/obesity. The hepatic SFA fraction was elevated in both the NAFL and T2DM 463 

groups compared to controls with overweight/obesity; however, the hepatic MUFA and PUFA 464 

fractions were similar between groups95. Furthermore, hepatic insulin sensitivity was inversely 465 

associated with the hepatic SFA fraction (r=-0.55) and positively associated with the hepatic 466 

MUFA fraction (r=0.39). Only one other study has examined hepatic lipid composition in 467 
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T2DM which reported greater total hepatic unsaturated fatty acids in NAFLD patients with vs. 468 

without T2DM114. Notably, however, these findings are not directly comparable as the 469 

unsaturation ratio used by van Werven et al.114 was calculated by expressing the methene 470 

(unsaturated) resonance as a proportion of the total water rather than total lipid signal. 471 

Therefore, this elevated unsaturation ratio suggests greater absolute amounts of unsaturated 472 

hepatic lipids but does not necessarily represent differences in the relative proportion of lipid 473 

fractions, and could merely reflect greater total liver fat in the T2DM group (data not 474 

reported)114. 475 

Given the proposed role of hepatic DNL as a key contributor to the saturated hepatic lipid pool, 476 

Roumans et al.95 determined rates of hepatic DNL in a sub-group of their study volunteers. 477 

Hepatic DNL was positively associated with the hepatic SFA fraction (r=0.52) and negatively 478 

associated with the hepatic MUFA fraction (r=-0.71)95. To further scrutinise this relationship, 479 

the authors recruited an additional group of participants with glycogen storage disease 1a95, a 480 

condition characterised by a genetic deficiency in glucose-6-phosphatase activity, leading to 481 

elevated rates of hepatic DNL115. These individuals displayed a greater hepatic SFA fraction 482 

compared to the NAFL and control groups; whilst the hepatic MUFA fraction was lower 483 

compared to the control group95. These data provide further support that hepatic DNL may play 484 

a causal role in the accumulation of saturated hepatic lipids. 485 

Only one 1H-MRS study has compared hepatic lipid composition between patients with NAFL 486 

and NASH, and no differences in hepatic SI, UI or PUI were observed116. In contrast, a greater 487 

hepatic SFA fraction has been reported in NASH compared to NAFL when assessed using MR 488 

imaging as opposed to 1H-MRS117. In addition to the differing assessment techniques, these 489 

discrepant findings may be related to the fact that Leporq et al.117 restricted their analyses to 490 

participants with a liver fat fraction >15%; whilst Trausnigg et al.116 included a large number 491 

of participants with more mild steatosis. Consequently, further studies using 1H-MRS are 492 
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required to compare the hepatic lipid composition of patients with NAFL and NASH, and 493 

confirm the differences reported in studies using a lipidomic approach.  494 

Trausnigg et al.116 also examined the influence of PNPLA3 on hepatic lipid composition by 495 

sub-dividing their participants into carriers and non-carriers of the I148M variant. In agreement 496 

with lipidomic studies61,82, homozygous carriers had a greater hepatic PUI and a lower HOMA-497 

IR compared to non-carriers despite all participants possessing hepatic steatosis116. From the 498 

opposing perspective, Fellinger et al.118 recently compared hepatic lipid composition between 499 

people with acromegaly and healthy controls. Notably, acromegaly is an endocrine disorder 500 

resulting from excessive growth hormone production and is characterised by insulin resistance 501 

despite having reduced liver fat content119. Accordingly, Fellinger et al.118 reported greater 502 

insulin resistance and lower hepatic lipids in people with acromegaly compared to healthy 503 

controls and this was accompanied by a lower proportion of unsaturated hepatic lipids. 504 

Therefore, these studies provide further human evidence of the dissociation between hepatic 505 

steatosis and insulin resistance, and support the notion that elevated saturated hepatic lipids, 506 

rather than total hepatic lipids, may be a more important determinant of the metabolic 507 

consequences of hepatic lipid accumulation.  508 

Lipid-lowering agents as a potential pharmacotherapy 509 

To date, no approved pharmacotherapies exist for the treatment of NAFLD/NASH; however, 510 

multiple pharmacological approaches are currently under investigation. These include existing 511 

antidiabetic medications with insulin-sensitising/glucose-lowering properties and experimental 512 

agents currently in phase II and III clinical trials which target multiple aspects of hepatic lipid 513 

metabolism; both have been reviewed recently41. Lipid-lowering agents are another category 514 

of pharmaceuticals demonstrating potential efficacy in NAFLD treatment. These broadly act 515 

through reducing circulating concentrations of various lipids and are currently used for the 516 
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treatment of dyslipidaemia and cardiovascular disease12. Given the potential of these lipid-517 

lowering effects in NAFLD treatment, the following section will summarise the available 518 

evidence regarding their potential impact on hepatic lipid composition.  519 

Statins are a class of lipid-lowering agents which inhibit cholesterol biosynthesis and may exert 520 

anti-inflammatory and antioxidative effects120. Multiple (albeit mainly uncontrolled) studies 521 

have demonstrated some efficacy for statins in improving liver biochemistry, steatosis grade 522 

and risk of cardiovascular events in patients with NAFLD121–123; however, their impact on 523 

histological endpoints is more equivocal124–126. Nevertheless, preclinical research suggests 524 

statins may also alter lipid composition in multiple cell lines including human liver cells127. In 525 

vivo, data are currently restricted to plasma fatty acid compositions (which may not reflect 526 

hepatic lipid composition); however, these studies found that statins increase the proportion of 527 

long-chain PUFAs and decrease the proportion of SFAs and MUFAs128,129. Furthermore, statin 528 

treatment also led to elevations in the n-6/n-3 PUFA ratio130; however, the physiological role 529 

this plays in their mode of action remains unclear. Additional studies are required to determine 530 

the impact of statins on hepatic lipid composition. 531 

Ezetimibe is another cholesterol-lowering agent which acts through inhibiting the intestinal 532 

reabsorption of cholesterol120. No definitive consensus exists on the effectiveness of ezetimibe 533 

in NAFLD treatment as a meta-analysis of the available literature found that ezetimibe 534 

treatment was effective at improving liver biochemistry, steatosis severity and hepatocellular 535 

ballooning but had no effect on hepatic inflammation and fibrosis131. However, when the 536 

analyses were restricted to randomised controlled trials (n=2), only the positive effect on 537 

hepatocellular ballooning remained131. Only one previous study has examined the impact of 538 

ezetimibe on hepatic lipid composition, and it was found that six months of ezetimibe treatment 539 

increased multiple hepatic SFAs and MUFAs in patients with NAFLD132. Notably, these 540 

changes were accompanied by impairments to glycaemic control and insulin sensitivity which 541 
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could be related to the shift in hepatic lipid composition132. Thus, combination therapy with 542 

insulin-sensitising agents may be useful to combat this adverse off-target effect and has shown 543 

potentially greater benefit to liver-related outcomes120.   544 

Fibrates such as fenofibrate are PPARɑ agonists used clinically to lower circulating TAG and  545 

increase circulating high-density lipoprotein12. Whilst some studies show that fenofibrate 546 

lowers circulating liver enzymes and indirect markers of hepatic fibrosis, stiffness and 547 

inflammation133,134, others have failed to report any histological benefits133,135. Conversely, 548 

pemafibrate is a novel selective PPARɑ modulator in phase III trials which produces more 549 

potent lipid-lowering effects and has recently been shown to improve markers of hepatic 550 

inflammation, function and fibrosis in patients with NAFLD136,137. Regarding hepatic lipid 551 

composition, fenofibrate treatment increases the SFA and MUFA content and decreases the 552 

PUFA content of hepatic lipids in C57BL/6J mice138. These changes were ascribed to the dual 553 

role of PPARɑ in promoting hepatic lipogenesis and esterification in addition to -oxidation 554 

following fenofibrate administration138. Similar observations have been made in multiple 555 

plasma lipid fractions in patients with hypercholesterolaemia139; however, the effect of fibrates 556 

on hepatic lipid composition in humans remains to be elucidated.  557 

Long-chain n-3 PUFAs, namely EPA and DHA, are used pharmacologically in the treatment 558 

of hypertriglyceridaemia12. Given the established anti-inflammatory properties of n-3 PUFAs 559 

and their modulatory role in hepatic lipid metabolism71,72,74,75, research has focused on their 560 

potential in NAFLD/NASH treatment. Recent meta-analyses have found n-3 PUFA 561 

supplementation to be effective in reducing hepatic steatosis and liver enzyme concentrations 562 

concomitantly with improvements in circulating lipid profiles and insulin sensitivity140,141. 563 

Conversely, no effects of n-3 PUFA supplementation on histological features of NASH were 564 

reported however140,141. Interestingly, n-3 PUFA supplementation in a diet-induced murine 565 

model of NASH has been shown to increase hepatic n-3 PUFAs and decrease hepatic SFAs, 566 
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MUFAs and the n-6/n-3 PUFA ratio142. In humans, Stephenson et al.143 examined the effect of 567 

three months of n-3 PUFA supplementation on 1H-MRS-assessed hepatic lipid composition in 568 

patients with NAFLD but reported no changes in hepatic lipid composition. Notably, validated 569 

hepatic lipid composition indices were not used by the authors, thus further clarification is 570 

required to establish the influence of n-3 PUFA supplementation on hepatic lipid composition 571 

in NAFLD.    572 

Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are an emerging 573 

pharmacotherapy which reduce circulating low-density lipoproteins and cardiovascular risk by 574 

inhibiting the PCSK9-mediated lysosomal degradation of the low-density lipoprotein 575 

receptor120. Most144–146, but not all147, studies demonstrate positive associations between 576 

circulating concentrations and hepatic expression of PSCK9 and steatosis severity, whilst it 577 

was recently found that the PCSK9 R46L loss-of-function genetic variant was protective from 578 

hepatic steatosis and the histological features of NASH146. Experimentally, preliminary 579 

evidence has shown that two different PCSK9 inhibitors were successful in ameliorating 580 

hepatic steatosis and resolving NASH in 40 patients with heterozygous familial 581 

hyperlipidaemia148. No studies have examined the relationship between PCSK9 inhibition and 582 

hepatic lipid composition, although multiple studies report positive associations between 583 

PCSK9 and hepatic expression of DNL-related genes144–146. Therefore, PCSK9 inhibition may 584 

theoretically promote a less saturated hepatic lipid profile through a reduction in DNL; 585 

however, this hypothesis needs to be tested experimentally. 586 

Conclusions 587 

Hepatic lipid accumulation is a central feature of obesity-related metabolic dysfunction and is 588 

associated with a greater risk of developing T2DM, cardiovascular disease and advanced liver 589 

disease13–15. It is increasingly recognised, however, that the composition rather than the 590 
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quantity of hepatic lipids may be the primary factor impacting liver disease progression and 591 

related metabolic consequences16,22,23. This paper reviewed studies using liver 592 

biopsy/lipidomic approaches and 1H-MRS to characterise the hepatic lipid composition in 593 

people with obesity and related metabolic disease. The available data provide a consistent 594 

picture demonstrating that people with hepatic steatosis exhibit an elevated proportion of 595 

saturated and/or monounsaturated hepatic lipids and a reduced proportion of polyunsaturated 596 

hepatic lipids (Figure 3). This more lipotoxic hepatic lipid profile is associated with metabolic 597 

derangements such as insulin resistance and may be further exacerbated in NASH. Data 598 

published very recently by Ooi et al.149 challenge this notion as the authors failed to observe 599 

differences in the composition of multiple liver lipid species in patients with NASH compared 600 

to NAFL. Definitive conclusions remain elusive, however, owing to a far smaller sample size 601 

in their NASH group; therefore, additional larger scale studies are required. Nevertheless, the 602 

observations from these studies are consistent with mechanistic studies implicating SFAs in 603 

the development of hepatic lipotoxicity and wider metabolic dysfunction18,23,46,52–56,104, whilst 604 

MUFAs and PUFAs may exhibit a protective role18,50,68–72. However, it must be appreciated 605 

that the studies included in this review are cross-sectional, limiting judgements about causal 606 

inference. 607 

 608 

Insert Figure 3 609 

  610 

Studies employing liver biopsy/lipidomic approaches have provided the most detailed 611 

characterisation of hepatic lipid composition and related metabolic pathways within this 612 

review. In NAFLD, these studies detail an enrichment of SFAs/MUFAs and a depletion of 613 

long-chain PUFAs in hepatic TAG, DAG, FFA and phospholipid species, and an accumulation 614 
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of toxic lipid intermediates such as ceramides and LPCs. These differences are related to 615 

dysregulated hepatic lipid metabolism, specifically defective lipid desaturation and elongation, 616 

and an upregulation of hepatic DNL77,83,108,110.  617 

1H-MRS offers a non-invasive alternative to assess hepatic lipid composition, and whilst 618 

currently only providing a semi-quantitative measurement, the technique demonstrates the 619 

same general trends observed with liver biopsy/lipidomic techniques. These studies 620 

demonstrate higher indices of hepatic lipid saturation and lower indices of hepatic lipid 621 

unsaturation/polyunsaturation in obesity-related metabolic disease which is associated with 622 

greater hepatic and peripheral insulin resistance. However, this technique is yet to be validated 623 

against the gold-standard gas chromatography measurement in human liver tissue. Other 624 

limitations include a lack of consistency with post-processing techniques and lipid composition 625 

indices used90, and measurement difficulty at low liver fat fractions97. Nevertheless, 1H-MRS 626 

enables repeat assessments of hepatic lipid composition in response to therapeutic interventions 627 

(previously unviable in many instances). Preliminary (mainly preclinical) evidence suggests 628 

that pharmacotherapies such as lipid-lowering agents may be able to alter hepatic lipid 629 

composition41,67, whilst lifestyle interventions have also shown promising results in patients 630 

with NAFLD150. Further experimental studies are needed to extend this evidence base and to 631 

prospectively determine whether changes in hepatic lipid composition impact metabolic and 632 

liver-related health.  633 
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Table 1. Summary of the findings from 18 liver biopsy/lipidomic studies examining hepatic lipid composition in individuals with obesity-related 

metabolic diseases. 

Ref. Study 

Year 

Population Analysis 

Method 

Lipid 

Species 

Main differences in hepatic lipid fatty acid composition 

98 1961 Healthy liver vs. 

Steatosis 

GC Total lipids 

Neutral lipids 

Phospholipids 

CEs 

Total lipids: ↑ MUFAs (C16:1, C18:1) and ↓ SFAs (C18:0) and 

PUFAs (C18:2) in steatosis vs. healthy liver.  

Neutral lipids: ↑ C14:0 and MUFAs (C16:1) and ↓ C18:0 and PUFAs 

(C18:2) in steatosis vs. healthy liver.  

Phospholipids: ↑ C14:0 and MUFAs (C16:1, C18:1) and ↓ C18:0 and 

PUFAs (C18:2) in steatosis vs. healthy liver. 

CEs: ↑ MUFAs (C16:1) and ↓ PUFAs (C18:2) in steatosis vs. healthy 

liver.  

80 2004 Control (obesity) vs. 

NAFL vs.  

NASH 

GC Total lipids 

TAG 

Phospholipids 

Total lipids: ↑ C16:0, MUFAs (C16:0, C14:1, C16:1, C18:1) and n-

6/n-3 PUFA ratio, and ↓ n-3 PUFAs (EPA, DHA) and n-6 PUFAs 

(AA) in NAFLD vs. control.  

TAG: ↓ C18:0, n-3 PUFAs (C18:3, EPA, DHA) and n-6 PUFAs (AA) 

in NAFLD vs. control.  

Phospholipids: ↑ n-6 PUFAs (AA) and n-6/n-3 PUFA ratio and ↓ n-3 

PUFAs (EPA, DHA) in NAFLD vs. control.  

43 2007 Control (obesity) vs. 

NAFL vs.  

NASH 

TLC / 

GC 

Total lipids 

TAG 

DAG 

FFAs 

Phospholipids 

Total lipids: ↑ proportion of MUFAs and n-6/n-3 PUFA ratio, and ↓ 

proportion of PUFAs in NAFLD vs. control.  

TAG: ↑ SFAs (C16:0), MUFAs (C18:1) and n-6/n-3 PUFA ratio, and 

↓ in n-3 PUFAs (EPA, DHA) and n-6 PUFAs (AA) in NASH vs. 

NAFL vs. control (trend).  
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CEs 

Cholesterol 

DAG: ↑ SFAs (C16:0), MUFAs (C18:1) and n-6/n-3 PUFA ratio, and 

↓ in n-3 PUFAs (EPA, DHA) and n-6 PUFAs (AA) in NASH vs. 

NAFL vs. control (trend). 

FFAs:  ↓ n-3 PUFAs (EPA, DHA) and ↓ n-6 PUFAs (AA, C18:3) in 

NASH vs. NAFL vs. control (trend). ↑ n-6/n-3 PUFA ratio in NASH 

vs. control.  

Phospholipids: ↑ n-6/n-3 PUFA ratio and ↓ in n-3 PUFAs (EPA, 

DHA) and n-6 PUFAs (AA) in phosphatidylcholines in NASH vs. 

NAFL vs. control (trend).  

CEs: ↓ SFAs and ↑ n-3 PUFAs (trend) and n-6 PUFAs in NAFLD vs. 

control.  

81 2007 Control (lean) vs. 

NAFLD 

GC Phospholipids ↑ total SFAs (C18:0), C22:5n-6 and n-6/n-3 PUFA ratio in NAFLD 

vs. control. 

↓ total n-3 PUFAs (EPA, DHA, C22:5n-3) and n-6 PUFAs (AA, 

C18:2) in NAFLD vs. control.  

99 2008 Healthy liver vs. 

NAFL vs. 

NASH 

GC Total lipids ↑ MUFAs (C16:1, C18:1) in NASH vs. healthy liver. 

↓ n-3 PUFAs (EPA, DHA) and n-6 PUFAs (AA) in NASH vs. 

healthy liver. 

↓ total n-6 PUFAs in NASH vs. NAFL.  

108 2009 Control (lean) vs. 

NAFLD 

GC Total lipids ↓ n-3 PUFAs (DHA) in NAFLD vs. control.  

100 2011 Control (healthy) vs. 

NAFLD 

GC Total lipids ↓ n-3 PUFAs (EPA, DHA) and n-6 PUFAs (AA) in NAFLD vs. 

control.  

64 2011 Obesity LC-MS /  

MS 

DAG C18:1-C16:0, C18:1-C18:1, C18:1-C18:2 and C16:0-C18:2 were 

most abundant and positively correlated with HOMA-IR.  
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C20:4-C20:5 inversely correlated with HOMA-IR.  

82 2014 PNPLA3148II vs. 

PNPLA3I148M 

TLC TAG 

DAG 

FFAs 

Phospholipids 

CEs 

TAG: ↓ SFAs (C18:0, C20:0, C22:0) and n-6 PUFAs (AA, 20:3, 22:4, 

22:5) and ↑ n-3 PUFAs (C18:3) in PNPLA3I148M vs. PNPLA3148II. 

FFAs: ↓ n-6 PUFAs (AA, 20:3) and ↑ n-3 PUFAs (18:3) in 

PNPLA3I148M vs. PNPLA3148II. 

109 2014 Control (healthy) vs. 

NASH 

GC Total lipids ↑ n-6/n-3 PUFA ratio and ↓ n-3 PUFAs (EPA, DHA) in NASH vs. 

control.  

83 2015 NAFL vs. 

NASH 

GC Total lipids ↓ n-3 PUFAs (EPA, DHA) and n-6 PUFAs (AA, C20:3) in NASH vs. 

NAFL.  

110 2015 Control (lean) vs. 

NAFL vs.  

NASH 

GC Total lipids ↑ proportion of SFAs (C14:0, C16:0), MUFAs (C16:1, C18:1) and n-

6/n-3 PUFA ratio in NASH vs. NAFL vs. control. 

↓ proportion of C18:0, n-3 PUFAs (DHA) and n-6 PUFAs (C18:2, 

C22:2) in NASH vs. NAFL vs. control.   

61 2016 NAFLD 

(high HOMA-IR vs. 

low HOMA-IR / 

PNPLA3148II vs. 

PNPLA3148MM/MI) 

GC-MS / 

UHPLC-MS 

TAG 

DAG 

FFAs 

Ceramides 

 

TAG: ↑ saturated and monounsaturated TAG in high HOMA-IR vs. 

low HOMA-IR. ↑ polyunsaturated TAG in PNPLA3148MM/MI vs. 

PNPLA3148MII. 

FFA: ↑ SFAs (C16:0, C18:0) and MUFAs (C18:1) in high HOMA-IR 

vs. low HOMA-IR.  

Ceramides: ↑ ceramide (almost all species) in high HOMA-IR vs. 

low HOMA-IR.  

DAG: ↑ (4 species) in high HOMA-IR vs. low HOMA-IR and ↑ 

polyunsaturated DAG in PNPLA3148MM/MI vs. PNPLA3148MII. 

77 2017 Control (lean) vs. GC /  Neutral lipids ↑ SFAs (C14:0, C16:0), MUFAs (C16:1, C18:1n-7, C18:1n-9), 

C18:2n-6 and n-6/n-3 PUFA ratio in NASH vs. NAFL and control.  
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NAFL vs.  

NASH 

LC-MS ↓ n-3 PUFAs (EPA, DHA) and n-6 PUFAs (AA) in NASH vs. NAFL 

and control.  

86 2018 Control (obesity) vs.  

NAFL vs. 

NASH 

LC-MS TAG 

DAG 

Phospholipids 

Sphingolipids 

CEs 

 

TAG: ↑ SFAs (C14:0, C17:0, C18:0) in NASH vs. control and ↓ n-6 

PUFAs (AA) in NASH vs. NAFL vs. control.  

DAG: ↑ MUFAs (C16:1, C18:1) and ↓ SFAs (C18:0), n-3 PUFAs 

(DHA, C22:5n-3) and n-6 PUFAs (AA, C18:2) in NAFLD vs. 

control. 

CEs: ↑ C16:1, C16:2, C17:1, C18:2, C18:3, C22:6 and ↓ C16:0, 

C18:1, C20:1, C20:2, C22:4 in NASH vs. control. ↑ C16:2 and ↓ 

C16:0 in NAFL vs. control. ↓ C20:2 in NASH vs. NAFL.  

Phospholipids: ↓ n-3 PUFAs (DHA) in NAFLD vs. control.  

Sphingolipids: ↑ Cer(d18:0/18:0) in NAFLD vs. control and ↑ 

Hex2Cer(d18:1/18:0) and Hex2Cer(d18:1/24:1) in NASH vs. NAFL 

and control.  

62 2018 Control (healthy) vs. 

Obesity vs.  

NAFL vs.  

NASH 

LC-MS /  

MS 

Sphingolipids Ceramides: ↑ total ceramides and C24:0 in NASH vs. other groups. ↑ 

C16:0 in obesity vs. control.  

Dihydroceramides: ↑ total dihydroceramides and C16:0, C22:0 and 

C24:1 in NASH vs. control.  

Lactosylceramides: ↑ total lactosylceramides and C24:1 in NASH vs. 

control.  

Hexosylceramides: ↑ C22:0 and C24:0 in NASH vs. other groups.  

101 2019 NAFL vs.  

NASH 

GC Total lipids ↑ proportion of C16:0 and MUFAs (C16:1, C18:1) in NASH vs. 

NAFL.  

↓ proportion of C18:0, MUFAs (C22:1), n-3 PUFAs (DHA) and n-6 

PUFAs (C18:2, C22:2) in NASH vs. NAFL.  
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103 2020 Healthy liver vs. 

Steatosis /  

High HOMA-IR vs. 

Low HOMA-IR 

GC FFAs ↑ proportion of SFAs (C14:0, C16:0) and MUFAs (C16:1, C18:1) and 

↓ proportion of C18:0 and PUFAs (AA, C18:2) in steatosis vs. 

healthy liver.  

↑ proportion of SFAs (C14:0, C16:0) and MUFAs (C16:1, C18:1) and 

↓ proportion of C18:0 and PUFAs (AA, C18:2) in high HOMA-IR vs. 

low HOMA-IR.   

AA, arachidonic acid; CE, cholesterol ester; DAG, diacylglycerol; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FFA, free fatty acids; 

GC, gas chromatography; HOMA-IR, homeostatic model assessment of insulin resistance; LC, liquid chromatography; LPC, 

lysophosphatidylcholine; MS, mass spectrometry; MUFA, monounsaturated fatty acid; NAFL, non-alcoholic fatty liver; NAFLD, non-alcoholic 

fatty liver disease; NASH, non-alcoholic steatohepatitis; PC, phosphatidylcholine; PNPLA3, patatin-like phospholipase domain-containing protein 

3; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid; TLC, thin-layer chromatography; UHPLC, ultra-high-performance liquid 

chromatography. 

  



52 

 

 

 

Table 2. Summary of the findings from eight proton magnetic resonance spectroscopy studies examining hepatic lipid composition in 

individuals with obesity-related metabolic diseases. 

Ref. Study 

Year 

Population Main differences in hepatic lipid composition indices 

112 1993 Healthy liver vs.  

NAFLD 

↓ unsaturation ratio and chain length in NAFLD vs. healthy liver.  

94 2008 Lean vs.  

Obesity vs. 

NAFLD 

↑ SI in obesity and NAFLD vs. lean. 

↓ PUI in NAFLD vs. obesity vs. lean. 

114 2010 Suspected NAFLD 

(With T2DM vs. 

Without T2DM) 

↑ proportion of unsaturated fatty acids in group with T2DM vs. without T2DM.  

116 2017 NAFL vs. 

NASH 

No differences in SI, UI or PUI in NAFL vs. NASH. 

↓ PUI/UI ratio in participants with vs. without obesity.  

↑ PUI in PNPLA3 I148M homozygous carriers vs. non-carriers.  

113 2019 Healthy liver vs. 

NAFLD 

↑ SI and ↓ UI in NAFLD vs. healthy liver.  

No differences in PUI in NAFLD vs. healthy liver.  

97 2020 NAFLD (or suspected) ↓ number of double bonds and number of methylene-interrupted double bonds with ↑ liver proton 

density fat fraction.  

95 2020 Overweight/Obesity vs. 

NAFL vs.  

T2DM vs.  

↑ SFA fraction in NAFL and T2DM vs. overweight/obesity.  

↑ SFA fraction in GSD1a vs. NAFL and overweight/obesity.  

↓ MUFA fraction in GSD1a vs. overweight/obesity.  
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GSD1a 

118 2020 Control (healthy) vs. 

Acromegaly 

↓ UI in acromegaly vs. control.  

1H-MRS, proton magnetic resonance spectroscopy; GSD1a, glycogen storage disease type 1a; HOMA-IR, homeostatic model assessment of insulin 

resistance; NAFL, non-alcoholic fatty liver; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PNPLA3, patatin-

like phospholipase domain-containing protein 3; PUI, polyunsaturation index; SI, saturation index; T2DM, type 2 diabetes mellitus; UI, 

unsaturation index.  
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Figure legends 

Figure 1. The mechanistic pathways underpinning SFA-induced lipotoxicity and insulin 

resistance in hepatocytes. SFAs induce ER stress through activation of the unfolded protein 

response pathway, and promote oxidative stress via mitochondrial dysfunction and the 

accumulation of reactive oxygen species. Both factors indirectly trigger apoptosis through 

activation of the JNK stress signalling pathway. Additionally, SFAs can directly promote 

apoptosis through binding to various death receptors located on the cell membrane. JNK 

activation also impairs insulin signalling via phosphorylation of the insulin receptor substrate-

1, leading to the development of insulin resistance. SFAs also promote lipogenesis which may 

be mediated by their conversion to MUFAs which are preferentially incorporated into lipid 

droplets as triacylglycerol. Furthermore, the activation of TLR4 signalling by SFAs leads to 

the production of proinflammatory cytokines through the upregulation of the transcription 

factor NF-kB. Notably, some of these effects of SFAs on lipotoxicity and insulin resistance 

within hepatocytes may be mediated through their conversion to bioactive lipid intermediates 

such as ceramides, LPCs and DAG. DAG, diacylglycerol; ER, endoplasmic reticulum; JNK, 

c-Jun N-terminal kinase; LPC, lysophosphatidylcholine; MUFA, monounsaturated fatty acid; 

NF-kB, nuclear factor kappa B; SFA, saturated fatty acid; TLR4, toll-like receptor 4.  

Figure 2. (A) Example chemical structures of a saturated (palmitic), monounsaturated (oleic) 

and polyunsaturated (linoleic) fatty acid chain with the hydrogen protons associated with 

different functional fatty acid groups highlighted. (B) Peak assignments and chemical shifts of 

the functional fatty acid groups in a typical lipid proton magnetic resonance spectrum. 

Figure 3. Summary of the relative alterations in the fatty acid composition of hepatic lipids   

across the progression of NAFLD. The percentage of SFAs and MUFAs in hepatic lipids are 

elevated in NAFL compared to individuals with a healthy liver; whilst the percentage of PUFAs 
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are reduced, leading to an elevation in the n-6/n-3 PUFA ratio. The percentage of SFAs and 

MUFAs and the n-6/n-3 PUFA ratio may be further increased in NASH compared to NAFL; 

whilst there is a further depletion in the percentage of PUFAs. These alterations in hepatic lipid 

composition are associated with greater obesity-related metabolic dysfunction and hepatic 

lipotoxicity as NAFLD progresses. MUFA, monounsaturated fatty acid; NAFL, non-alcoholic 

fatty liver; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; 

PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid. 
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