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A B S T R A C T   

Injection of carbon dioxide into shale reservoirs is a promising technology for enhancing natural gas recovery 
and reducing greenhouse gas emissions. Nanoscale phenomena contribute to a significant difference in mass 
transfer processes within shale-gas reservoirs compared to conventional gas reservoirs. Previous investigations 
have shown the significance of surface diffusion to gas transfer mechanisms. Surface diffusion was added to an 
established apparent permeability model, which was then applied for the first time to numerical reservoir 
simulations to model CO2 injection techniques. Most publications to date have used a theoretical model to 
predict surface diffusion coefficient in a low-pressure condition, whereas, in this paper, it has been estimated 
from gravimetric experiments. Shale reservoirs, with different reservoir and petrophysical properties, were 
generated to investigate the efficiency of transport of CO2 via surface diffusion. A recently proposed fractal model 
for surface diffusion was used to investigate the impact of rock surface roughness on CH4 production. The results 
show that surface diffusion plays a significant role in increasing CH4 recovery by up to 3.2% when the average 
pore radius is less than 2 nm. In particular, a high surface fractal dimension can potentially enhance CH4 pro-
duction by up to 1.5% and should not be neglected when the average pore radius is less than 1 nm. In areas with 
high surface capacity, adsorption of CO2 and desorption of CH4 molecules may increase by up to 2.74% and 
2.3%, respectively, when compared to models with no surface diffusion. In all the reservoirs examined, geo-
statistical reservoir simulations showed that reservoir heterogeneity is not favourable to methane recovery via 
CO2 injection techniques, except for the Barnett shale reservoir. To the best of our knowledge, this work is the 
first to implement an apparent model within a reservoir simulator to investigate the impact of surface diffusion 
on methane recovery via CO2 injection techniques at various shale reservoirs with different properties.   

1. Introduction 

The world today is faced with a scarcity of conventional energy 
sources due to population growth and technological advancement [1,2]. 
The global demand of natural gas is predicted to increase by 45% by 
2040, and 30–50% of its supply is expected to come from shale gas [3]. 
The production potential of shale gas reservoirs, which are amenable to 
hydraulic fracturing and horizontal drilling techniques, has been scru-
tinized in order to overcome the depletion of conventional reservoirs 
and to supply the world with greater quantities of clean-burning energy 
[4]. As a result, there has been a paradigm shift in thinking towards 
unconventional gas that is now, to a large extent, changing the world 
energy landscape, leading to a rapid expansion of shale gas production, 
especially over the past decade. In particular, there has been an increase 
in supply from the shale resources in North America [5]. For example, 
the Marcellus Shale is situated in the Appalachian basin, where it has a 

total area of greater than 100,000 miles, and its depth ranges between 
4000 and 8500 ft, having an average thickness of 50–200 ft. [6]. The 
Marcellus Shale has been estimated to contain 1500 TCF (trillion cubic 
feet) of original gas in place (OGIP) and has 141 TCF of technically 
recoverable gas [6]. CO2 injection is also used for enhanced oil recovery 
[7]. 

In a normal production process for shale gas, the free gas in large 
pores and fractures usually comes out first and its production usually 
lasts for just under two years [8]. In the later production processes, the 
dominant source of gas is then adsorbed gas because the small pores in 
shale have slow desorption kinetics which restricts diffusion from the 
matrix [9]. Subsequently, after few years of production from the shale 
gas well, the gas rate declines steeply. Thus, there has been a growing 
interest in enhanced shale gas recovery (ESGR) via carbon dioxide (CO2) 
injection. 

Even though rare field tests are reported for the CO2-ESGR injection 
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technique [10,11], there are both experimental and numerical studies 
conducted to assess its suitability in the exploration and production of 
shale [12–16]. According to a number of studies, CO2 sorption affinity to 
the shale is greater than that of CH4 in the subsurface situation [17,18]. 
In shale gas reservoirs, CO2 injection does not just improve the pro-
duction of CH4 but also enables CO2 sequestration. 

In general, shales can be the seal, the reservoir, and/or the hydro-
carbon source. Typically, the properties of gas shale include a very low 
permeability, of the order of nano-Darcy (10-6 mD), a very small grain 
size, increased total organic carbon (TOC), and a small porosity. Gas 
hold-ups in shale reservoirs are mainly made up of bulk gas within the 
pore space and gas absorbed on the internal shale matrix [19–21]. Ac-
cording to past studies, gases are adsorbed in the nanopores of clay 
minerals and organic matter, which make up the larger part of shale 
[22–24]. Notably, adsorbed gas is estimated to be up to 20%-80% of the 
total gas in place (OGIP) in five of United States shale formations, while 
a study conducted by Lu et al. [25] for 24 Devonian shales found that 
adsorbed gas can average 61% of the total gas volume. A study con-
ducted by Wang et al. [26] showed that, without the appropriate pet-
rophysical corrections to commercial simulators (Eclipse, CMG, VIP) 
when considering gas adsorption, the original gas in place (OGIP) can be 
overestimated by approximately 50%. 

In addition, shale-gas reservoirs (SGRs) have a gas mass-transfer 
process exhibiting a significant rate difference from that seen in con-
ventional gas reservoirs. This kind of variation is ultimately attributed to 
the presence of organic matter and particular nano-scale phenomena. 
According to Xiong et al. [27] and Firouzi et al. [28] the diameter of 
organic pores is usually below 10 nm and accounts for 42% of the total 
volume. Moreover, the diameter of nanopores is comparable to the order 
of the gas molecular mean free path at reservoir conditions. The gas 
transfer regimes, occurring within the SGRs, include both bulk gas 
transfer and surface diffusion mechanisms. The latter regime tends to 
have been overlooked by previous researchers, who have conducted 
reservoir simulations [29,30] to investigate the practical feasibility of 
use of CO2 for gas extraction from shale reservoirs. Subsequently, gas 
production predicted may be significantly overestimated or under-
estimated. Further, researchers have shown the importance of Knudsen 
diffusion to the pore transport mechanism in nanopores and a study 
conducted by Darabi et al. [31] showed that Knudsen diffusion con-
tributes around 20% of the total produced gas at typical SGR conditions. 
Experimental studies have also been made of transport and phase 
changes in fabricated nanofluidic models for shale rocks [31,32]. 
However, while these model pore networks studied have included pore 
body-pore neck geometries, they are only 2D planar and thus miss the 

full three-dimensional connectivity of real rocks. These models also have 
only limited spatial extent and thus miss the impact of longer-range 
heterogeneities. Further, these experiments also only considered trans-
port by Knudsen diffusion and viscous flow. 

However, other experimental investigations have also indicated that, 
in comparison to bulk gas transport, surface diffusion, is more signifi-
cant where the pore network is not yet well-evolved within shale gas 
reservoirs [33,34]. This means that, surface diffusion dominates in the 
microporous kerogen due to high surface area and the non-development 
of fractures within shales. It has also been shown that the surface 
diffusion of adsorbed gas and the Knudsen diffusion of the free gas, can 
increase the apparent permeability of the SGRs. Previous studies have 
indicated that the estimated apparent permeability may be several or-
ders of magnitude higher than that of conventional hydrodynamic 
techniques (i.e. the Darcy and Klinkenberg models) [31,36,37]. Thence, 
it is reasonable to say that the surface diffusion of adsorbed gas and the 
Knudsen diffusion of the free gas, can increase the apparent permeability 
of the SGRs and must be included to ensure accurate prediction of gas 
recovery, despite them generally being omitted in previous work. 

In this paper, a new dual permeability-dual porosity model of the 
Marcellus shale reservoir will be primarily generated based on existing 
geological data. The Langmuir isotherm is considered as a model for 
adsorption in different areas of Marcellus shale. Then, the bulk porosity, 
free gas saturation, and connate water saturation of the models are 
corrected, a priori, according to Wang’s theory [38] to avoid over-
estimation of the volume of free gas and the original gas in place. 
Fracture height, fracture half-length, and fracture conductivity were the 
main fitting parameters used to obtain a good history match with gas 
field data [29]. Thereafter, surface diffusion is implemented into a 
reservoir scale simulator. This was achieved by utilizing an established 
approach based on apparent permeability model that included surface 
diffusion [39]. Most publications to date have used a theoretical model 
to predict surface diffusivity in a low-pressure condition [40,41]. In this 
study, the adsorbed-gas surface diffusivity in a low-pressure condition is 
estimated from gravimetric gas uptake experiments on Marcellus shale 
samples. In addition, Barnett and New Albany reservoir models are also 
generated from previous studies to investigate the significance of surface 
diffusion to CO2 injection techniques in these locales. A recently pro-
posed fractal theory for surface diffusivity [42] is applied, for the first 
time, to all reservoir models to permit the examination of the effects of 
degree of surface roughness on CH4 production and CO2 adsorption. 
Finally, a geostatistical approach is applied to assess the effect of larger- 
scale reservoir heterogeneity on gas production. The goal of this paper is 
to provide insights into a better understanding of the effectiveness of 

Fig. 1. Schematic diagram illustrating the volume fractions of shale matrix in a) Wang et al. [26] petrophysical model and b) commercial reservoir simulator.  
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surface diffusion on methane recovery via CO2 injection techniques at 
shale reservoir scale. 

2. Theory 

2.1. Multicomponent adsorption 

According to previous studies, adsorbed methane could be respon-
sible for 5–30% of the entire gas production in shale gas reservoirs 
[43–45]. Adsorption trapping is also a dominant means for storing CO2, 
because the adsorption interaction of CO2 with a highly organic shale is 
five times stronger than that of CH4 [11]. To formulate a model that 
includes competitive multi-component adsorption/desorption, the 
extended Langmuir isotherm has been identified as providing a good 
description of the binary gas sorption of CO2 and CH4, and, thus is 
applied in the current study. The generalised multi-component Lang-
muir isotherm is given as [46,47]: 

αζ =
αζmaxbiγζgP

1 + P
∑

ξbjYξg
(1)  

where αζ represents the quantity of adsorbed component ζ in moles per 
unit rock mass, αζmaxrepresents the highest quantity of adsorbed 
component ζ in moles for each unit mass of rock, bi represents the energy 
of interaction parameter for the Langmuir isotherm relation, γζg repre-
sents the molar fraction of adsorbed component i in the gas phase, and P 
represents the pressure. αζmax and bi depend upon the total organic 
content (TOC) of the shale and must be measured experimentally for 
core samples. 

Wang et al. [26] demonstrated a feasible approach to correct the 
petrophysical properties of shale gas reservoirs effectively within com-
mercial reservoir simulators when considering gas adsorption. Fig. 1 is a 
schematic depiction of the volumetric constituents of the nanopores 
within a typical shale matrix in both the petro-physical model and a 
commercial reservoir simulator. In commercial simulators, the volume 
of adsorbed gas is frequently treated as polymer, alkali or other chemical 
agents, or is often ignored. However, adsorbed gas comprises 20%-80% 
of the total gas in place and should not be overlooked as discussed in 
section 1. 

As illustrated in Fig. 1b, the total void volume (Vt’) is equal to the 
sum of the connate water volume (Vcw’) and the free gas volume (Vf’). In 
contrast, the total void volume (Vt) in the petrophysical model is equal to 
the sum of the connate water (Vcw), free gas (Vf), and gas adsorbed (Va) 
(Fig. 1a). Hence, the total void volumes (Vt’) and porosity (φt’) of both 
the petrophysical model and commercial simulator are expressed as: 

V ’
t = V ’

cw +V ’
f < Vt = Vcw +Vf +Va (2)  

ϕ’
t = ϕ’

cw +ϕ’
f = ϕcw +ϕf = ϕt − ϕa (3)  

where φcw and φα are the connate water porosity and adsorbed gas 
porosity, respectively. Eqs. (2) and (3) show that the free gas volume and 
porosity in the commercial simulator are overestimated, and, thus both 
the total void volume and porosity in the simulator should be less than 
that in Wang’s petrophysical model of the shale matrix. Subsequently, 
bulk porosity, free gas saturation, and connate water saturation were 
corrected in order to accurately predict the gas production and reduce 
the error of OGIP. The theory behind the derivations will be given only 
briefly, since it is described extensively in previous paper [26]. 

Ambrose [48] proposed a new method for obtaining the storage 
capacities of both adsorbed and free gas. The storage capacities of free 
gas (Gf) and adsorbed gas (Ga) on the basis of Langmuir isotherm are: 

Ga = VL

(
P/Z

P/Z + PL

)

(4)  

Gf =
32.0368

Bgf

[
ϕt(1 − Sw)

ρr
−

1.318 × 10− 6M
ρga

Ga

]

(5)  

where Вgf is the free gas volume factor, PL is the Langmuir pressure, VL is 
the Langmuir volume, Sw is the water saturation, ρr is the rock density, 
ρga the adsorbed gas density and Z is the gas factor. Moreover, Ambrose 
et al. [48] showed that the density of free gas and adsorbed gas is 
different in the shale matrix nanopore. Hence, the porosity ratio of free 
gas and adsorbed gas in the petrophysical model is: 

ϕgf

ϕga
=

Vgf

Vga
=

Gf ⋅ρga

Ga⋅ρgf
(6) 

Hence, 

ϕga =
ϕgf ⋅Ga⋅ρgf

Gf ⋅ρga
(7) 

At connate saturation, the total gas porosity is: 

ϕgf +ϕga = ϕt(1 − Swc) (8) 

Substituting Eqs. (2) and (7) into Eq. (8), the corrected bulk porosity 
in the commercial simulator is: 

ϕ’t = ϕgf +ϕwc = ϕt −
ϕgf ⋅Ga⋅ρgf

Gf ⋅ρga
(9) 

The connate water saturation and free gas saturation in the simula-
tion model are: 

S’
wc =

ϕt⋅Swc

ϕ’
t

=
Gf ⋅ρga⋅ϕt⋅Swc

Gf ⋅ρga⋅ϕt − ϕgf ⋅Ga⋅ρgf
(10)  

S’
gf =

Gf ⋅ρga⋅ϕt⋅(1 − Swc) − ϕgf ⋅Ga⋅ρgf

Gf ⋅ρga⋅ϕt − ϕgf ⋅Ga⋅ρgf
(11) 

Consequently, the total porosity, water saturation and gas saturation 
used in the commercial reservoir simulator are calculated, a priori, ac-
cording to Eqs. (9)–(11) respectively. It should be mentioned that these 
equations have already been validated in previous studies using field 
data obtained from Marcellus and Barnett shale [26,38]. 

2.2. Multiple flow mechanisms for shale gas 

Numerical simulations play a major role in comprehending and 
forecasting the production of gas and oil from reservoirs. In industry a 
range of commercial reservoir simulator packages are used. However, 
mass transport within reservoir models constructed with these com-
mercial simulators is generally based upon Darcy’s law, and, thence 
neglects certain gas transfer mechanisms that exist within the SGRs. As a 
result, the shale gas production forecasted can be overestimated, or 
underestimated, when the apparent permeability, which is the transport 
parameter that includes provision for these additional mechanisms, is 
not used. Previous studies have demonstrated [38,39] that the Darcy 
flow permeability can be corrected for additional transport mechanisms 
via multipliers, which are functions of gas pressure and are input into 
the simulator model. 

The theory behind the derivation of the apparent permeability 
approach will only be given briefly here, since it is described in more 
detail in other work [39,49,50]. The mass flux for total fluid transfer, Jt, 
is given by: 

Jt = Jb + Js =
1

1 + Kn
.ωs.ωm.Jvs +

1
1 + 1/Kn

.ωs.ωm.Jk + Js (12)  

where Jb is the mass flux of the bulk gas transfer and Js is the mass flux of 
the adsorbed gas surface diffusion. Jb includes the contributions from Jvs 
and Jk, which are the slip-flow flux and Knudsen diffusion flux, 
respectively. ωm and ωs are the poromechanical, and the sorption- 
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induced, swelling response coefficients of the shale matrix, respectively. 
From eq.12, it can be observed that the adsorbed-gas flux and bulk-gas 
flux are determined from a simple sum, whereas the resultant gas flux in 
the bulk transfer phase is obtained by taking the weighted sum of 
Knudsen diffusion flux and slip-flow flux based on their respective 
contributions. Moreover, eq. (12) demonstrates a correlation, for both 
the poromechanical and sorption-induced swelling responses, to the 
bulk gas flux, which varies with permeability during the development of 
SGRs [51]. 

2.2.1. Continuum flow of free gas 
Continuum no-slip flow, or Darcy flow, occurs when the Knudsen 

number (Kn) < 10− 3. The collisions between molecules then dominate, 
and, thus the gas flow is continuum flow, which can be expressed ac-
cording to the Hagen–Poiseuille equation [52]: 

Jv = − ζmb
r2P

8μRT
dp
dl

(13)  

where 

ζmb =
ε
τ (14)  

where Jv is the continuum-flow, ζmbis a dimensionless correction factor 
of apparent permeability, μ is the gas viscosity, P is the pressure, R is the 
universal gas constant, l is the gas transport distance, T is the tempera-
ture, ε is the porosity, τ is the tortuosity (equal to 1.8) [42], and r is the 
nanopores radius. 

2.2.2. Slip flow of free gas 
Slip flow occurs when 10-3 < Kn < 10− 1, where gas molecules slip on 

the nanopore wall. In addition, both the intermolecular collisions, and 
collisions between gas molecules and nanopore walls, are similarly 
dominant. The slip boundary condition was achieved by modifying the 
no-slip boundary condition in continuum flow [53]: 

Jvs = −
1

1 + Kn
ζmbωsωm

r2P
8μRT

(1+αKn)
(

1+
4Kn

1 − ψKn

)
dP
dl

(15)  

where ψ is the dimensionless gas-slip constant and α the dimensionless 
rarefaction coefficient. 

2.2.3. Knudsen diffusion of free gas 
Knudsen diffusion arises for Kn ≥ 1, when collisions between gas 

molecules and nanopore walls dominate. Assuming that the pore is 
circular in cross-section, with a radius r, and taking into account the wall 
roughness, the Knudsen equation can be expressed as [35,52]: 

Jk = −
1

1 + 1/Kn
2
3
ζmbωsωmrδDf − 2

(
8

πRTM

)0.5dP
dl

(16)  

where 

Dk =
2
3
ζmb

(
8RT
πM

)0.5

(17)  

where Dk is the Knudsen diffusion coefficient, δ the ratio of the gas 
molecule diameter, Df the fractal dimension of the pore wall and M the 
gas molar mass. 

2.3. Surface diffusion of adsorbed gas 

Surface diffusion plays a significant role in mass transport within the 
nanopores of shale, wherein there is organic matter with a large surface 
area, and, thence, in the overall gas mass transfer [12,27,54,55]. During 
gas phase mass transfer in nanopores, the surface diffusion of adsorbed 
gas is characterised by a large concentration gradient, which plays a 

crucial role in this process [35]. Surface diffusion is a physical process 
that entails a random hopping mechanism, such that the adsorbed par-
ticles periodically escape from, and move between, lower-energy 
adsorption sites. The activated molecules can, thence, jump between 
fixed sites with a specific velocity, which leads to surface migration in 
the adsorbed phase. Once a molecule acquires enough energy to fully 
escape from the surface, it returns to the gaseous state. 

Previous studies have shown that it is more appropriate to investi-
gate shale gas sorption by using the Langmuir isotherm which is based 
on single-layer adsorption [56,57]. Thus, the hopping model can be 
most appropriate to surface diffusion of adsorbed gas in shales. Various 
researchers established different classical hopping models. For instance, 
a widely used analytical mode was developed by Hwang and Kammer-
meyer [40] and Guo et al. [41] for low-pressure conditions where the 
equation of the surface diffusion coefficient is influenced by tempera-
ture, adsorbent and adsorbate. However, this model overpredicts surface 
diffusivity at low pressure, which is an observation made by Do [58]. In 
particular, Do [58] estimated surface diffusivities by analyzing kinetic 
data collected using three different kinetics methods: constant molar 
flow, the differential adsorption bed, and the differential permeation 
methods. The experimental results showed that the apparent surface 
diffusivity decreases very rapidly with molecular weight, and much 
more strongly than the inverse of the square root of molecular weight, as 
obtained by Hwang and Kammermeyer [40] and Guo et al. [41], and, 
thus this latter model will not be used. In contrast, the surface diffusivity 
at zero coverage was obtained using a dual-diffusion model [59] and the 
analysis will be given in Section 2.3.1. 

In order to simplify the treatment of the contribution of surface 
diffusion to flow in the reservoir simulations, the component of effective 
permeability resulting from surface diffusion will be estimated using the 
properties of carbon dioxide alone. This assumption means that the 
impact of surface diffusion on methane production estimated below is 
likely to be a lower limit, given the relatively higher mobility of methane 
compared with carbon dioxide. In order to estimate the contribution of 
surface diffusion to effective permeability a series of models were used. 
First, an estimate of the surface diffusivity at zero coverage on a refer-
ence shale was obtained using a dual-diffusion model to analyse low 
pressure gas uptake experiments. Second, if considering simulations in 
shales other than the reference, this zero-coverage surface diffusivity 
was adjusted for the influence of different surface roughness between 
shales using a fractal model. Third, where the pressure was such that the 
surface coverage was above zero the surface diffusivity was also 
adjusted accordingly using a model for the impact of surface occupancy 
on migration. The resultant surface diffusivity was then used to obtain 
the contribution of surface diffusion to the effective permeability for a 
particular shale. 

2.3.1. Surface diffusivity at low pressure 
Experimental measurements of kinetic gas uptake into a reference 

shale material were used to estimate the surface diffusivity of carbon 
dioxide at the limit of surface coverage tending to zero. The analysis of 
the experimental kinetic data was performed using the dual-diffusion 
model proposed by Do and Rice [59]. This analysis was used to obtain 
an estimate of the surface diffusivity at zero coverage for the reference 
surface. The Do and Rice model is an approximate analytical solution for 
the uptake half-time considering particle size, Langmuir constant, 
maximum adsorption capacity, and pore and surface diffusivity. The 
model is given by the expressions: 

Ω = εMDp +(1 − εM)DsoΞ (18)  

where: 

Ω =
AR2[εM + (1 − εM)

Cμ0
C0
](1 − BbC0

1+γbC0
)

t0.5
(19)  

and 
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Ξ = (1 −
BbC0

1 + ΓbC0
)(

Cμ0

C0
) (20)  

where Cμo (mole/volume of solid) is the adsorbed amount in equilibrium 
with the bulk concentration Co (mole/volume of fluid); εМ is the local 
porosity; А,В,Γ are the shape factors depending on the shape of the 
adsorbent particles, and b is the Langmuir constant which can be 
described using the local Langmuir isotherm: 

Cμo = Cμs
bC0

1 + bC0
(21) 

Eq. (18) implies that if one plots Ω versus Ξ, a straight line will be 
thereby obtained, whose intercept (εMDp) and slope(1-εM)Dso are related 
to pore and surface diffusivities. Moreover, Eq. (18) is valid for any of 
the three possible ideal shapes of the solid particle, namely the slab, 
cylinder and sphere, whose corresponding factors are α, β, γ, respec-
tively. The sample particles used in this work have a roughly spherical 
shape and will be analysed as such in Section 3. However, the model was 
applied in a low-pressure condition, and, thus cannot be used for 
calculating surface diffusion of adsorbed gas in a high-pressure 
condition. 

2.3.2. Fractal theory for surface diffusivity at low pressure 
The difference in surface diffusion rates between different shales 

resulting from variation in surface roughness was determined using a 
fractal model. Recently, Spanakos and Rigby [42] showed that, for 
shales, both the pre-exponential factor and the activation energy for 
surface diffusivity are functions of the surface fractal dimension, and, 
thus the surface diffusivity on shales could be established from an 
equilibrium gas adsorption isotherm. Hence, the surface diffusivities for 
new surfaces can be obtained from measurements performed on a 
reference material and knowledge of the surface fractal dimension for 
the new surface. The theory behind the derivations below will be given 
briefly, since it is described in more detail elsewhere [42,60]. In an 
activated process of surface diffusion, in which the rate varies with 
temperature, the surface diffusivity can often be estimated using the 
Arrhenius expression: 

Dso = Doexp(
− ED

RT
) (22)  

where Do is the pre-exponential factor and ED is the activation energy for 
diffusion. 

The pre-exponential factor is the entropic term, and can be given by 
the expression: 

lnDo = [lnDor − drln(
R∞

rs
)] + dln(

R∞

rs
) (23)  

where dr is the fractal dimension for a reference material, R∞ is the 
apparent limiting upper length scale cutoff for the area within the mo-
lecular jump range as the temperature tends to infinity, and rs the cross- 
sectional area of the molecule. 

The activation energy is the enthalpy term and is given by the 
expression: 

ED = w + x
(

Rn

rs

)d

(24)  

where w and x are terms composed only of constants relating to the 
strength of the interactions with the surface. Rn represents the distance 
from the middle of a molecule to the furthest edge of an immediately 
adjacent site. In this work, where the model is used to predict surface 
diffusivity at zero coverage, the lateral interactions of the diffusing 
molecule are envisaged to be with the solid surface in adjacent empty 
adsorption sites, rather than neighbouring molecules, as for the case of 
monolayer coverage studied previously. Eqs. (23) and (24) demonstrate 
that both the pre-exponential factor and the activation energy are linear 

functions of the fractal dimension d and the group (Rn/r)d, respectively. 

2.3.3. Surface diffusivity at high pressure 
The impact, on surface flow of surface occupancies above the zero 

limit, was obtained using the Chen and Yang model [61]. These authors 
established a surface diffusion model describing the influence of 
adsorbed-gas coverage from a hopping model. In particular, a kinetic 
method was applied to derive the surface diffusion coefficient under a 
high-pressure condition such that: 

Ds = Dso
(1 − θ) + k

2 θ(2 − θ) + [H(1 − κ) ](1 − κ) k
2θ

2

(
1 − θ + κ

2 θ
)2 (25)  

H(1 − κ) =
{

0, κ ≥ 1
1, 0 ≤ κ ≤ 1 (26)  

κ =
κb

κm
(27)  

where Ds is the gas surface diffusion coefficient; θ is the dimensionless 
gas coverage; H(1-κ) is the dimensionless Heaviside function; κ is the 
ratio constant for blockage to the rate constant for forward migration 
and takes a value of 0.5 [49]; κb and κm are the coefficients for surface- 
gas molecules for the blocking velocity and forward velocity, 
respectively. 

According to Eq. (18), Dso is initially estimated via gravimetric ex-
periments using the dual-diffusion model and implemented in Eq. (25). 
Thereafter, in cases where the surface roughness for shales was other 
than that of the reference, the fractal model in Eq. (22) was applied to 
estimate Dso. 

2.3.4. Surface diffusion contribution to effective permeability 
According to previous studies [39,49,50] the apparent permeability 

of adsorbed gas surface diffusion can be expressed as: 

ks = −
JsVstdμ

MdP/dx
= ζmsDs

CsVstdμ
PM

(28)  

where 

ζms =
ϕ
τ

[(

1 −
dM

r

)− 2

− 1

]

(29)  

and 

Cs =
4θM

πd3
MNA

(30)  

θ =
P

PL + P
(31)  

where Cs is the adsorbed gas concentration; ζms is the correction factor of 
surface diffusion of adsorbed gas; dM is gas molecular diameter; and NA 
is Avogadro’s constant. 

Eq. (28) is based on the combination of the Maxwell-Stefan method, 
which states that the driving force of surface diffusion is a chemical 
potential gradient, and the assumption that the gas behaves as an ideal 
gas [62,63]. 

2.4. Apparent permeability model flow gas transfer in shale nanopores 

The gas transfer mechanisms discussed above include slip flow, 
Knudsen diffusion, and surface diffusion in the nanopores of SGRs. The 
sum of each gas flux mechanism comprises the total gas flux. While the 
adsorbed-gas flux and bulk-gas flux are determined from a simple sum, 
the slip-flow flux and Knudsen diffusion flux are determined from the 
weighted sum. 
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By combining Eqs. (15), (16), and (28), the apparent permeability for 
the total gas transport through shale nanopores, comprising of slip flow, 
Knudsen diffusion and surface diffusion, is expressed as: 

kt = kvs + kk + ks (32)  

where 

kvs =
1

(1 + Kn)
ζmbωmωs

r2(1 + αKn)
8

(

1+
4Kn

1 − ψKn

)

(33)  

kk =
1

(1 + 1/Kn)
ζmbωmωs

2
3

rδDf − 2
(

8RT
πM

)0.5 μ
P

(34)  

ks = −
JsVμ
dP/dl

= ζmsDs
CsRTμ
P2M

(35) 

Eq. (32) has been validated through molecular simulation and 
experimental data [39,49]. The model includes the effects of rarefaction, 
slippage, poromechanical response, nanopore structure (porosity, pore 
size, surface roughness, and tortuosity), and sorption-induced-swelling 
response on the bulk-gas transfer. It can successfully describe the con-
tributions of each gas transfer mechanism taking into account the impact 
of Knudsen diffusion and slip-flow on bulk gas transfer. Notably, it in-
cludes the contribution of surface diffusion which is considered as an 
essential mechanism for transport in the nanopores of shale reservoirs. 

3. Methods 

3.1. Experimental method 

Marcellus Shale samples were used as the reference material for this 
study to estimate surface diffusion at a low-pressure condition. Dynamic 
measurements were made by using a gravimetric method. Kinetic gas 
uptake data were obtained from a gravimetric analyser (Hiden XEMIS) 
using a sensitive microbalance (see Fig. 2), which measured the change 
in weight of a shale sample subjected to a step change in adsorbate 
concentration. 

Marcellus shale samples were initially degassed at 383 K overnight to 
remove the atmospheric moisture. Then, the sample is brought to the 
adsorption temperature (328 K), chosen to be similar to the actual 
reservoir conditions used in the simulations. The reservoir temperature 
is achieved by immersing the adsorbent in an isothermal water bath. 
Thereafter, adsorption initiates where the adsorbent was exposed to 
adsorbate gas which passes through the ceramic tube. With sufficiently 
long adsorption times and monitoring of the sample weight change, 
constant mass was determined indicating that equilibrium had been 
attained. Then, the sample was degassed at elevated temperature in 
order to desorb the gas that was initially injected. By repeating this 
procedure for a series of various bulk concentrations, a series of uptake 
curves was generated. Lastly, the uptake curves were corrected for 
buoyancy effects. 

Fig. 2. Scematic diagram of the Xemis gravimetric Analyser (Spanakos and Rigby [42], reproduced under Creative Commons licence CC-BY).  
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3.2. Numerical reservoir simulation method 

In this study, the main tool that is used for simulating CO2 injection is 
the GEM simulator, which is the CMG (Computer Modelling Group) 
advanced general equation-of-state compositional simulator [64]. First, 
a single porosity (SP) model, as proposed by Yu et al. [29] without 
considering the gas-desorption effect, was generated. 

However, the model did not consider the natural fracture system 
which is crucial for CO2 injection. Previous studies showed that, actu-
ally, a dual permeability model in unconventional reservoirs offers the 
best prediction of production performance, and yields more reliable 
outcomes for shale reservoir analysis [65–67]. Hence, for the base case, 

a dual porosity dual-permeability model (DP-DP) was developed by 
keeping constant the main parameters from the SP model (Table 1) and 
adding natural fracture porosity and permeability. Subsequently, flow 
via matrix and fractures to the production well, were considered. Once 
the DP-DP numerical model was history matched with existing field 
data, then the adsorption capacity from different areas of Marcellus 
shale was included (Table 2). The corrections presented in section 2.1 
were also applied to avoid overestimation of the volume of free gas and 
the original gas in place. 

3.2.1. Basic reservoir model 
A commercial simulator (CMG-GEM) was used for the numerical 

modelling and the analysis of CO2 injection into the shale reservoirs. The 
basic 3-dimensional DP-DP model for the Marcellus reservoir (see Fig. 3) 
was constructed via history matching with existing field scale gas pro-
duction data published by Chief Oil and Gas LLC [29], using CMG-MOST 
[64]. Fracture half-length, fracture conductivity, and fracture height 
were the main tuning parameters used to obtain a good history match 
(Table 3). After extensive numerical simulations, the best match ob-
tained for the cumulative gas production data has only 0.7% of average 
matching error (see Fig. 4). Similar to previous researchers, the flowing 
BHP [29] was utilised to constrain the reservoir simulation. 

The field reservoir dimensions are 6000 ft × 1500 ft × 130 ft (i.e. 
length, width and thickness respectively), and there are two shale layers 

Table 1 
Reservoir and fracture parameters for the Marcellus Shale well [29].  

Parameter Value 

Initial reservoir pressure, psi 5100 
Reservoir Temperature, K 328 
Reservoir permeability, nD 800 
Reservoir porosity, upper layer 7.1% 
Reservoir porosity, bottom layer 14.2% 
Initial water saturation 10% 
Total compressibility, psi-1 3 × 10− 6 

Number of stages 16 
Cluster spacing, ft 50 
Gas specific gravity 0.58 
Fracture height, ft 95 
Fracture conductivity, md-ft 3.5 
Fracture half-length, ft 400 
Total number of fractures 64  

Table 2 
Parameters of the multicomponent Langmuir isotherm model for adsorption of 
CH4 and CO2 for shales taken from the various stated areas of the Marcellus shale 
reservoir.   

CH4 CO2 

Region of 
Marcellus 

PL(psi) VL(scf/ 
ton) 

bi(1/psi) PL(psi) VL(scf/ 
ton) 

bi(1/psi) 

Oatka 2833  209.0  0.000353 1155  283.5  0.000866 
Bedford 1209  133.5  0.000827 1116  352.1  0.000896 
Burlington 4771  26.3  0.000210 2951  93.1  0.000339 
Canoga 1027  283.5  0.000974 326  360.0  0.003068  

Fig. 3. Schematic view of the DP-DP model of Marcellus shale reservoir. The dark blue area and the colour variation represent hydraulic fractures and reservoir 
thickness (ft), respectively. The scale bar is the reservoir thickness (ft). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Table 3 
Optimised reservoir and fracture parameters obtained from history matching.   

Regions of Marcellus 

Parameters No 
desorption 

Oatka Bedford Burlington Canoga 

Reservoir 
Temperature, K 

328 328 328 328 328 

Matrix permeability, 
nD 

800 800 800 800 800 

Fracture 
permeability, nD 

1000 1000 1000 1000 1000 

Fracture height, ft 95 70 80 78 80 
Fracture half length, 

ft 
350 235 325 325 350 

Fracture 
conductivity, md- 
ft 

3.5 1.5 4 3.7 4.6  
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in the reservoir (the upper and the bottom layers) whose porosity values 
are 7.1% and 14.2%, respectively [29]. Stimulation of the horizontal 
well is done in the bottom layer that contains 16 fracturing stages, as 
well as four perforation clusters in every stage with a cluster spacing of 

about 50 ft in total, such that the length of the well is approximately 
3900 ft. It is assumed that the reservoir is homogeneous, where the 
fractures are spaced evenly with stress independent permeability and 
porosity. It should be mentioned that the distance between production 
and injection wells is 775 ft and remains constant for all of the areas 
within the Marcellus reservoir. 

In the subsequent simulation studies, gas adsorption capacity was 
considered in the DP-DP model for different areas of Marcellus shale. In 
particular, the shale samples investigated in this study are taken from 
the areas of Oatka, Canoga, Bedford, and Burlington [6]. Since gas 
adsorption is to be considered, the petrophysical properties of the 
models are corrected according to the theory proposed by Wang et al. 
[38]. 

In order to correct the total porosity, water saturation, and gas 
saturation a priori, Eqs. (9)–(11) were used, respectively. Fig. 5 shows 
that, otherwise, gas production leads to an overestimated OGIP without 
applying formula corrections (Eqs. (9)–(11)) after 30 years. The results 
in Fig. 5 are in agreement with similar findings by Wang et al. [38], 
where an overestimation of up to 50% of gas production was observed. 

Competitive adsorption of CO2 and CH4 on the shales was described 
using a multi-component Langmuir isotherm. The parameters for this 
isotherm were obtained from pure component adsorption experiments. 
The Langmuir constants for CH4 and CO2 for the calculation of the 
competitive sorption mechanism were obtained from experiments on 
Marcellus shale cores [6]. Since these experiments were performed at 
different temperatures from the reservoir simulation model, the com-
bined Langmuir-Freundlich model 2 (Eq. (36)) was applied which has 
been shown to predict successfully the gas adsorption data at multiple 
temperatures [68] (see Figs. 6 and 7): 

V = VLexp
(− q1

T

)( biPn

1 + biP

)

(36)  

where 

bi = b0exp
(

−
ΔHads

RT

)

(37)  

and where ΔHads is the heat of adsorption, bo is the pre-exponential 
factor, and q1 a temperature-independent constant. The Langmuir con-
stants of CH4 and CO2 for the calculation of the competitive sorption are 
presented in Table 2. 

Once the gas adsorption capacities with the corrected petrophysical 
properties were implemented in the base case model (i.e. DP-DP without 
desorption), separate history matching was performed for all the 

Fig. 4. Comparison between field data (symbols) for cumulative gas production 
and simulation data (lines) of SP model and DP-DP model. 

Fig. 5. Comparison of predictions of cumulative gas production performance 
carried out both with (W) and without (W/O) corrections proposed by Wang 
et al. [38]. 

Fig. 6. Experimentally(Expt.) measured adsorption data (symbols) for CH4 on 
Oatka area of Marcellus shale at temperature of 349 K. Also shown (dashed 
lines)are fits of the combined Langmuir-Freundlich isotherm model. 

Fig. 7. Experimentally (Expt.) measured adsorption data (symbols) for CO2 on 
shale from the Oatka area of the Marcellus shale at temperature of 349 K. Also 
shown (dashed lines) are fits of the combined Langmuir-Freundlich 
isotherm model. 
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different areas. 
Previous studies have shown that fracture half-length, fracture 

height, and fracture conductivity are the key parameters to obtain a 
good history match at the early stage of gas production [29,69]. Thus, 
history matching was performed by tuning these three parameters. 
During the history-matching process both fracture height and half- 
length were reduced relative to the base case model (i.e. DP-DP with 
no desorption) for each sample (Table 3) from different locales. This 
observation is in agreement with past findings of previous researchers 
[29,69] for different regions in Marcellus shale reservoir. As shown in 
Fig. 8, a good match to the raw adsorption data was obtained using the 
Langmuir adsorption isotherm for the four samples from the different 

areas of the Marcellus reservoir. 

4. Results and discussion 

4.1. Surface diffusivity 

Fig. 9 shows the CO2 equilibrium isotherm data for a representative 
sample of the Marcellus shale, obtained at the reservoir temperature 
(328 K) via the aforementioned gravimetric method. The Langmuir 
isotherm fits the experimental data well for the reservoir temperature, 
and the parameters Cμs and b, thereby obtained via nonlinear regression 
are given in Table 4. 

The gravimetric kinetic uptake method was used to obtain the vari-
ation of fractional uptake of CO2 with time at 328 K for various bulk 
concentrations of CO2 on Marcellus shale. The characteristic half time of 
the adsorption process was obtained by fitting a single exponential 
Linear Driving Force (LDF) model to the experimental data. The 
measured half-time was incorporated into Eq. (19) to estimate the sur-
face diffusivity. 

Fig. 10 shows an example of a typical plot of a fit of the experimental 
data to the Linear Driving Force (LDF) model. Adsorption dynamics 
were measured at different ultimate bulk gas concentration steps for use 
in the Do model for surface diffusion. 

The experimental uptake data was then fitted to the Do and Rice 

Fig. 8. Comparison between field data (symbols) and simulation results, ob-
tained with Langmuir isotherms, for cumulative gas production from different 
areas of Marcellus shale reservoir (lines). 

Fig. 9. Equilibrum adsorption data for CO2 on Marcellus shale at reservoir 
temperature of 328 K. Also shown (dashed line) a fit of the Langmuir isotherm 
model. The parameters are given in Table 4. 

Table 4 
Langmuir isotherm and surface diffusivity parame-
ters obtained from fit of the Do model to CO2 uptake 
data for shale samples from Marcellus shale 
reservoir.  

Parameter Value 

Temperature(K) 328 
Cμs (mol/cm3) 0.00036 
b (cm3/mol) 22,188 
εM 0.076 
Dso(cm2/sec) 1.3E-07  

Fig. 10. Experimentally measured (symbols) uptake curves and fits to the LDF 
mode (dashed line) for CO2 on Marcellus shale at reservoir temperature of 
328 K. 

Fig. 11. Plot of Ω versus Ξ for CO2 for the Marcellus shale reservoir.  
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Fig. 12. A comparison of the CH4 production from the Marcellus shale reservoir with no CO2 injection, CO2 flooding, and huff and puff scenarios for the areas of (a) 
Bedford, (b) Burlington, (c) Oatka, and (d) Canoga. 

Fig. 13. Distributions of pressure (psi) for the areas of a) Canoga b) Oatka, c) Burlington and d) Bedford of Marcellus shale reservoir at the end of simulation of CO2 
huff and puff after 30 years. 
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model [59] for surface diffusion. It can be seen from Fig. 11 that the 
agreement between the experimental data and the linear variation ex-
pected from the model of Do and Rice is good. Plotting the parameter Ω, 
from Eq. (19), versus the parameter Ξ, as shown in Fig. 11, gave rise to a 
linear form for the data, and a fit to a straight line was used to determine 
the slope which corresponds to the group (1-εМ)Dso . 

4.2. Simulation of CO2 injection scenarios in Marcellus shale reservoir 

A simplified segment, for each of the areas of Marcellus shale 
reservoir, was generated in order to reduce computational demands 
(Fig. 13). Three different simulation cases have been compared in order 

to analyse the effects of different CO2 injection methods in shale reser-
voirs, namely no-injection, CO2 flooding, and CO2 huff and puff 
scenarios. 

In the case without CO2 injection, both horizontal wells produce CH4 
for 30 years. Production was conducted by dropping the BHP gradually 
to 500 psi and maintaining that pressure for 30 years. 

In the CO2 flooding case, both horizontal wells produce shale gas for 
the first 5 years. After 5 years of production, one well is converted to a 
CO2 injector well with a rate of 350 Mscf/day. After 6 years of CO2 in-
jection, the injector is shut-in, while the other well continues to produce 
CH4 for the entire period of 30 years. It should be noted that the carbon 
dioxide injected is in a supercritical state due to the reservoir conditions. 

In the huff and puff case, both horizontal wells produce CH4 for 5 
years, and then both wells are converted to CO2 injectors with a rate of 
640 Mscf/day for 2 months. After a 1 month soaking period, both wells 
are converted back to producers for 3 months. This cycle is repeated for 
10 years and the overall amount of CO2 injected is the same as for the 
CO2 flooding case. 

As can be seen from the findings shown in Fig. 12(a–d), CH4 pro-
duction for the cases with CO2 injection is higher than that of the models 
without CO2 injection in all areas except for the Oatka area. The reason 
for this exception is probably due to the combination of a small fracture 
conductivity value, and the reduced fracture half-length, in Oatka. 

In the findings for the Bedford and Canoga areas (in Fig. 12a, b), it 
can be observed that CH4 production with CO2 flooding starts approxi-
mately after 8 years. Despite the fact that the sample from the Burlington 
area has the lowest Langmuir b constant for CH4, and thus it might be 
expected that CH4 is more weakly bound to the shale there, the CH4 
production with CO2 flooding starts approximately after 12 years. A 
potential reason, for this apparent anomaly, is a combination of the low 
fracture conductivity value, along with the low monolayer volume of 
CH4 for the Burlington area, when compared to the samples from Bed-
ford and Canoga areas. The cumulative gas production from the Bedford, 
Canoga, and Burlington areas were 4.8%, 8.3%, and 2.2%, respectively, 
higher than for the no CO2 injection model at the end of production. 

Fig. 14. Schematic views of the a) Barnett and b) New Albany shale reservoirs along with the movement of gas (shown by green lines) at the end of simulation with 
CO2 flooding after 30 years. Dark blue areas represent hydraulic fractures. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Table 5 
Reservoir and Fracture parameters for the Barnett and New Albany model.  

Parameters Barnett New albany 

Reservoir Temperature, K 314 303 
Porosity 0.029 0.12 
Matrix permeability, nD 0.58 150 
Natural fracture permeability, nD 7120 1000 
Fracture height, ft 330 100 
Fracture half length, ft 100 450 
Fracture conductivity, md-ft 1 100  

Table 6 
Parameters of the Langmuir isotherm model for adsorption of CH4 and CO2 for 
shales taken from the Barnett and New Albany shale reservoir.   

CH4 CO2  

PL(psi) VL(scf/ 
ton) 

bi(1/psi) PL(psi) VL(scf/ 
ton) 

bi(1/psi) 

Barnett 1596  39.2  0.000627 1254 183.6  0.000797 
New 

Albany 
894  119.5  0.001119 1116 510  0.000896  

Table 7 
Change introduced to production increase percentage (PIP) by adding surface diffusion (SD) after 30 years of production, for the CO2 flooding scenario. Surface 
diffusion is estimated via gravimetric experiments (GE) and fractal model (FM), assuming an average pore radius of 0.5 nm, 1 nm, 2 nm.  

Regions PIP (%) 

0.5 nm 1 nm 2 nm 

Change With SD (GE) Change With SD (FM) Change With SD (GE) Change With SD (FM) Change With SD (GE) ChangeWith SD (FM) 

Oatka  1.549  2.996  0.201  0.416  0.040  0.105 
Bedford  0.187  0.387  0.019  0.032  0.002  0.003 
Burlington  0.340  0.688  0.031  0.075  0.013  0.017 
Canoga  1.770  3.167  0.247  0.471  0.048  0.108 
Barnett  0.151  0.268  0.025  0.043  0.006  0.010 
New Albany  0.908  1.422  0.126  0.197  0.065  0.072  
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From Fig. 12d, in the CO2 huff and puff scenario, it can be observed 
that a steep increase of CH4 production occurred once the cycles had 
been completed in the Canoga area. As shown in Fig. 13, this steep in-
crease is probably due to low reservoir pressure which results from the 
spread of CO2 molecules through the reservoir. The CH4 production for 
the remaining areas increases more steadily. The cumulative gas pro-
duction from the Bedford, Canoga, and Burlington areas was 7.7%, 
11.9%, and 3.7%, respectively, higher than for the no CO2 injection case 

at the end of production. 

4.3. Effects of surface diffusivity 

One of the issues yet to be addressed in the literature is that only a 
few studies have implemented, into a reservoir simulator, an apparent 
permeability model that includes additional mass transfer mechanisms 
beyond Darcy flow [26,70,71]. However, even these studies did not 
include all gas transfer mechanisms, especially surface diffusion, which 
may result in overestimating, or underestimating, gas production. To the 
best of our knowledge, this is the first study that extends the established 
model of Wu et al. [39] for gas transport in nanopores of shale gas 
reservoirs to include surface diffusion and has implemented it into a 
reservoir simulator. The basic underlying apparent permeability model 
(Eq. (32)) has already been validated through experimental data and 
molecular simulation [39]. 

Models for the Barnett and New Albany shales have been generated 
to investigate the effect of CO2 surface diffusion on CH4 production 
compared with other areas from the Marcellus shale reservoir. Fig. 14 
shows the geological models of the Barnett and New Albany shale res-
ervoirs used. The models were created based on the reservoir data of 
Kim et al. [30] and Liu et al. [72], respectively (Table 5). Similar to the 
approach of previous researchers, both models are segregated for 
computational efficiency. The parameters of the Langmuir isotherm for 
adsorption of CH4 and CO2 in the two shales implemented in these 
models have been estimated in previous studies (Table 6) [73,74]. Eq. 
(22) was applied in order to estimate the surface diffusion at the 
appropriate temperature of each reservoir. 

Eq. (32) was applied to determine the apparent permeability, via 
permeability multipliers which are functions of pressure, for the 
different areas of the Marcellus reservoir. Thereafter, evaluation of the 
impact of surface diffusion on methane recovery was investigated for 
models with pores in the micropore region (≤ 2 nm) where surface 
diffusion is more pronounced [39,49]. The variation in typical pore sizes 
for porous matrices studied in this work is 0.5 nm, 1 nm, and 2 nm, and 
the surface diffusivity employed in the models was ultimately deter-
mined from the gravimetric experiments. 

Assuming that the average pore radius is 0.5 nm, in certain regions of 
the Marcellus shale reservoir, such as the Canoga and Oatka areas, and 
in the New Albany reservoir, the cumulative CH4 produced at the end of 
production, as predicted by the new reservoir simulator models pre-
sented here, can range between 0.91% and 1.8% higher than for the 
equivalent CO2 injection model without considering surface diffusion 
(Table 7). However, as the average pore radius increases to 1 nm and 2 
nm (Fig. 15b, c), the cumulative CH4 production declines significantly, 
which results in a smaller percentage of increase of CH4 production due 
to surface diffusion. 

Further, the fractal surface diffusion model, implemented via Eqs. 
(18)–(20), was used to investigate the impact of the particular 
morphology of the specific shale rock in the Marcellus reservoir on CH4 
production. It should be mentioned that the fractal dimension used in all 
the marine reservoirs (Marcellus, Barnett, New Albany) investigated is 
2.9 and was obtained from the Frenkel-Halsey-Hill (FHH) model applied 
to N2 adsorption data [42,75]. For the fractal surface diffusion model in 
all regions, the production with surface diffusion is higher by up to 
1.5%, thereby enhancing further the CH4 production compared with the 
model with the experimental surface diffusivity (Table 7). 

An improvement in cumulative gas production of the order of 1.5% 
could still yield 250 (MSCF) of additional gas. It has been reported that 
250 (MSCF) could bring in additional revenue of up to $500,000 with an 
assumption of a gas price of $5 per thousand cubic feet and a CO2 price 
of $20 per ton [76]. 

While the data are not shown, when, for comparison purposes, sur-
face diffusivity was estimated for a shale surface with a low fractal 
dimension, the results for CH4 production were similar to the models 
without surface diffusion. This is probably because a higher surface 

Fig. 15. Cumulative CH4 production with an average pore radius of a) 0.5 nm, 
b) 1nm, and c) 2 nm for the Canoga area with CO2 flooding scenario. 
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fractal dimension will enhance surface diffusion significantly. It should 
be noted that surface diffusion at similar pore radii was also investigated 
for the huff and puff scenario and the results for the cumulative CH4 
production were similar to those for CO2 flooding. 

From Table 7, it can be seen that the contribution of SD to PIP 

becomes less pronounced with an increase of typical pore radius in all 
the reservoirs examined. This result is reasonable considering that the 
smaller the pore radius, the greater the ratio of surface area per unit 
volume, and, thus the greater adsorbed-gas transfer volume via surface 
diffusion. In addition, it has been observed that the apparent 

Fig. 16. Cumulative CH4 production, assuming an average pore radius of 0.5 nm for (a) Barnett and (b) New Albany shale reservoir, for the CO2 flooding scenario.  

Table 8 
Change introduced to CO2 adsorption increase percentage (AIP) molecules by 
adding surface diffusion (SD) after 30 years of production, for the CO2 injection 
scenarios. Surface diffusion is estimated via fractal model (FM), assuming an 
average pore radius of 0.5 nm, and 1 nm.  

Regions CO2 AIP (%) 

CO2 flooding CO2 huff and puff 

0.5 nm 1 nm 0.5 nm 1 nm 
Change With 
SD (FM) 

Change With 
SD (FM) 

Change With 
SD (FM) 

Change With 
SD (FM) 

Oatka  1.63  0.29  0.63  0.06 
Bedford  0.48  0.47  0.53  0.26 
Burlington  1.32  0.23  1.35  0.55 
Canoga  2.74  1.06  0.73  0.71 
Barnett  0.20  0.02  1.19  0.24 
New 

Albany  
1.22  0.29  2.04  1.41  

Fig. 17. Effect of inclusion of surface diffusion (SD), assuming an average pore 
radius of 0.5 nm, on the amount of adsorbed CO2 molecules for the Canoga area 
with CO2 flooding and CO2 huff and puff scenario. 

Table 9 
Change introduced to CH4 desorption increase percentage (DIP)) molecules by 
adding surface diffusion (SD) after 30 years of production, for the CO2 injection 
scenarios. Surface diffusion is estimated via fractal model (FM), assuming an 
average pore radius of 0.5 nm, and 1 nm.  

Regions CH4 DIP (%) 

CO2 flooding CO2 huff and puff 

0.5 nm 1 nm 0.5 nm 1 nm 
Change With 
SD (FM) 

Change With 
SD (FM) 

Change With 
SD (FM) 

Change With 
SD (FM) 

Oatka  2.37  0.33  3.31  0.48 
Bedford  0.51  0.05  0.77  0.04 
Burlington  0.57  0.06  1.13  0.17 
Canoga  2.29  0.33  2.61  0.36 
Barnett  0.71  0.20  2.05  0.26 
New 

Albany  
1.46  0.21  1.32  0.19  

Fig. 18. Effect of surface diffusion (SD), assuming an average pore radius of 
0.5 nm, on comparison of remaining adsorbed CH4 molecules for the Canoga 
area with a) CO2 flooding and b) CO2 huff and puff scenario. 
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permeability of surface diffusion decreases with an increase in pressure. 
From Eq. (35), the apparent permeability of surface diffusion is related 
not only to the surface-diffusion coefficient but also to the ratio of the 
adsorbed-gas concentration to the square of reciprocal pressure Cs/p2. 
This means that, the ratio of the adsorbed-gas concentration to the 
square of reciprocal pressure is greater than the increase of the surface 
diffusion coefficient which results in a low surface diffusion flux. 

Comparing the findings for the Bedford area of the Marcellus reser-
voir, and for the Barnett shale (Fig. 16a) reservoir, to the corresponding 
findings for New Albany (Fig. 16b) and the remaining areas of Marcellus 
shale reservoir (i.e. Canoga, Burlington, Oatka), it can be seen that 
surface diffusion does not make an important contribution to gas 
transfer, and, thus to CH4 production (Table 7). The reason for this 
insignificant contribution of surface diffusion to CH4 production in 
certain areas, is that the surface capacity in those areas is lower. Surface 
diffusion becomes more pronounced when the surface capacity is higher 
since this means a greater amount of adsorbed gas molecules. Hence, the 
values of the Langmuir capacity parameter play a critical role in deter-
mining the effectiveness of CO2 injection and should be considered in 
shale gas reservoirs. 

Table 8 shows the variation in the amount of adsorbed CO2 mole-
cules, for each of the CO2 injection scenarios, when compared to the 
equivalent CO2 injection models without considering surface diffusion. 

The results indicate that the effect of surface diffusion on the CO2 
amount adsorbed is not significant for the regions that have low surface 
capacity. The Canoga region of the Marcellus shale reservoir has the 
highest surface capacity and, in the flooding scenario, the amount of 
adsorbed CO2 molecules may increase by up to 2.74% when surface 
diffusion is included and the average pore radius is 0.5 nm (Fig. 17). 

Fig. 17 also shows the variation in the amount of adsorbed CO2 for 
the huff and puff scenario. The results indicate that the relative increase 
in the amount of adsorbed CO2 molecules for the models with surface 
diffusion compared to no surface diffusion, is similar to those for the CO2 
flooding scenario. It should be mentioned that, in the case of the CO2 
huff and puff scenario, the total amount of CO2 molecules trapped in the 
reservoir is roughly half the amount of CO2 molecules trapped in the 
flooding scenario. The reason for the observed difference between the 
two injection scenarios is that the CO2 molecules cannot spread as far 
within the reservoir during the huff and puff method, since CO2 is 
produced during the puff cycles. 

Table 9 shows the variation in the amount of desorbed CH4 mole-
cules for the various CO2 injection scenarios compared to the equivalent 
CO2 injection models without considering surface diffusion. In areas 
with high surface capacity, such as Canoga (Fig. 18) and Oatka, when 
surface diffusion is applied, the amount of desorbed CH4 molecules may 
increase by up to 2.3% in the flooding scenario. In the remaining areas, 
the effect of surface diffusion on the amount of CH4 desorbed molecules 
is not significant. This result is similar to the effect of surface diffusion 
on the amount of CO2 adsorbed molecules. 

Fig. 18 also shows the variation over time of the adsorbed amount of 
CH4 for the Canoga area of the Marcellus shale reservoir during CO2 huff 
and puff. In all reservoirs investigated, the difference between the cor-
responding amounts of CH4 desorbed for the models with surface 
diffusion and without surface diffusion is similar to found for the CO2 
flooding scenario. 

The results indicate that the amount of CH4 desorbed is always 
higher in the case of the CO2 flooding technique when compared to huff 
and puff, except for the case of the New Albany reservoir. A reason for 
the higher amount of CH4 desorbed in the huff and puff scenario is the 
high fracture conductivity of the New Albany reservoir (Table 9) which 
exhibits a wider-spread of CH4 molecules within the reservoir. In 
particular, the model that has the lowest fracture conductivity (Oatka) 
shows the largest difference in CH4 amount desorbed amongst the 
various CO2 injection techniques (i.e. CO2 flooding and huff and puff). 

4.4. Effect of reservoir heterogeneity 

Geostatistics is defined as a technique which takes into consideration 
spatial relationships of variables in estimating values of the variables at 
unsampled locations. Geostatistical modelling assumes that reservoir 
properties (i.e. porosity, permeability) are more similar at two nearby 
locations than for two locations distant from each other. In this work, a 
geostatistical approach was used for stochastically generating multiple 
permeability realizations to assess the effect of reservoir heterogeneity 
on gas production. 

The observed statistical data on permeability, namely the variance 
and mean, are utilised in the stochastic method, in conjunction with 
correlation lengths representing model anisotropy in various directions. 
This means that this approach generated a relationship between 
permeability and distance, from a given site, and thus was capable of 
representing the natural variability of permeability. In addition, the 
geostatistical approach helps in quantifying uncertainty when 
describing the reservoir. 

Hereafter, semivariogram modelling is used, which is mathemati-
cally defined as a measure of dissimilarity over distance. A semivario-
gram model expresses the generated permeability data and captures the 
correlation between the spatial variation of the permeability with dis-
tance. In particular, the spherical semivariogram is applied to describe 
the generated heterogeneity, since it has been shown to be the best fit to 

Fig. 19. Spherical model (dashed line) with a nugget value of 0.5 fitted to the 
generated permeability data (symbols) for a semivariogram model. The semi-
variogram model represents the Canoga area of Marcellus shale reservoir. 

Fig. 20. Effect of spatial heterogeneities in reservoir permeability on CH4 
production over time in cases with and without CO2 injection for the area of 
Bedford (Homo:Homogeneous case, Hete:Heterogeneous case). 
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experimental variograms for shales [15,77]. From Fig. 19 it can be seen 
that the semivariance (γ) increases as a function of separation distance 
(lag). For instance, γ shows smaller permeability values for paired 
samples which are closer together in space. However, the difference 
between permeability data increases with lag. 

Discontinuities in the spatial distribution of permeability data within 
the reservoir are generated using the nugget effect. The nugget effect 
adds an amount of short-wavelength randomness to the solution from 
Geostatistics. In particular, a nugget is the vertical jump from the value 
of zero at the origin (0 lag) to the value of the variogram. More het-
erogeneity and increased discontinuities are caused by a larger value of 

the nugget. 
Fig. 20 shows the comparison between methane gas production, with 

and without CO2 injection, for cases of heterogeneous and homogeneous 
reservoir models for the Bedford area. Different nugget values of 0.001, 
0.01 and 0.5 were used in this work to represent minimum, medium and 
maximum heterogeneity respectively (as shown in Fig. 21). In the three 
heterogeneous reservoir model with different nugget values, the average 
permeability is similar to the base case of each reservoir. 

After a production period of 30 years, the incremental CH4 produc-
tion, for all the areas in the Marcellus shale reservoir considered in the 
heterogeneous case, is less than for the homogeneous base case. The 
overall percentages produced of original CH4 in-place for minimum, 
medium and maximum levels of heterogeneity are lower compared to 
the homogeneous base case by approximately 0.8%, 1.2% and 1.5% 
respectively. Similarly to Marcellus shale reservoir, the CH4 production 
from the New Albany shale for minimum, medium and maximum levels 
of heterogeneity are lower compared to the homogeneous base case by 
approximately 0.01%, 0.05% and 0.07% respectively. A reason for the 
reduction in the produced CH4 in-place in the heterogeneous case, may 
be because of the slower mass transport rates than for the homogeneous 
case. This results in a greater amount of CO2 trapped in the matrix which 
inhibits gas migration. 

In contrast, the results for the Barnett shale reservoir shown in 
Fig. 22 exhibit a small increase in CH4 production in the case of het-
erogeneity in permeability. The data in Fig. 22 shows that the CH4 
production values for minimum, medium and maximum degrees of 
heterogeneity in permeability are relatively higher than for the homo-
geneous base case by approximately 0.02%, 0.05% and 0.1% respec-
tively. In contrast to the homogeneous base case model for the Barnett 
reservoir, adding heterogeneity enhances the CO2 flow to the production 
well. It should be noted that Barnett shale has a lower overall perme-
ability compared to the New Albany and Marcellus shale reservoirs. The 

Fig. 21. Maps of 2D sections through reservoir models with heterogeneity in the spatial distribution of permeability exhibiting either (a) minimum heterogeneity or 
(b) medium heterogeneity or (c) maximum heterogeneity along with the movement of gas (shown by The flowlines) with CO2 flooding at the end of simulation. The 
scale bar is the permeability (mD). 

Fig. 22. Effect of reservoir permeability on comparison on CH4 production 
with and without CO2 injection for Barnet shale reservoir (Homo:Homogeneous 
case, Hete:Heterogeneous case). 
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new higher permeability sites introduced by the heterogeneous model 
assist mass transport relative to the uniformly low permeability in the 
homogeneous case thereby enhancing CH4 production. The corre-
sponding results for simulations of the impact of spatial heterogeneities 
in permeability on the performance of the huff and puff technique are 
similar to those for CO2 flooding. 

5. Conclusion 

In the areas of Bedford, Canoga, and Burlington of the Marcellus 
shale reservoir, there is an increase of CH4 production by CO2 injection 
compared to no injection scenario due to high fracture conductivity. It 
has been shown that the surface diffusivity estimated from gravimetric 
experiments makes an important contribution to CH4 production when 
the average pore radius is less than 2 nm and should not be ignored. It 
has also been found that a high fractal dimension (2.9) may enhance CH4 
production when the average pore radius is less than 1 nm. For example, 
when the average pore size is 0.5 nm, areas with high surface capacity 
show an increase up to 3.2% of cumulative gas production when surface 
diffusion is applied. This increase could bring a revenue by up to $1 
million with an assumption of gas price $5 per thousand cubic feet and 
CO2 price $20 per ton. In the remaining reservoirs, surface diffusion is 
not pronounced since the ratio of the adsorbed-gas concentration to the 
square of pressure is greater than the increase of surface diffusion 
coefficient. 

The effect of surface diffusion on the amount of CO2 molecules 
adsorbed and CH4 molecules desorbed is not significant for the regions 
that have low surface capacity. However, for areas with high surface 
capacity, such as Canoga, adsorption of CO2 and desorption of CH4 
molecules may increase by up to 2.74% and 2.3%, respectively, when 
compared to the models with no surface diffusion. 

In all the areas investigated, geostatistical simulations showed that 
reservoir heterogeneity is not favourable for the CO2 injection tech-
niques, except the Barnett shale reservoir. The reason for this exception 
is probably due to the impact of high permeability heterogeneities in an 
otherwise low permeability of the reservoir (0.58 nD) which results in 
the CO2 diffusion being more pronounced, and, thus enhancing CH4 
production. 
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