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Abstract 

Strut-based lattice structures produced by powder bed fusion are prone to characteristic 

manufacturing defects that alter both their form and surface texture. Most studies in the 

literature focus on a subset of commonly observed defects, typically radius variation and 

strut waviness; surface defects remain relatively unexplored. Furthermore, there 

remains a need for the development of a general finite element modelling framework 

that can implement a range of defects into any strut-based lattice design. This paper 

presents a modelling framework for implementing a range of both form and surface 

defects into finite element meshes of strut-based lattices. A signed distance function 

forms the foundation for this framework, upon which surface meshes can be modified 

and converted into tetrahedral meshes via open-source software. The paper 

demonstrates how radius variation, strut waviness, elliptical cross sections and localised 

surface defects can be modelled in lattice struts, for which intuitive mathematical 

definitions are provided. A parametric study is performed to assess the sensitivity of the 

compressive Young’s modulus of BCCZ and octet-truss lattices to upskin and downskin 

surface defects. The results showed higher sensitivity in the octet-truss than in BCCZ; 

both designs were more sensitive to downskin than to upskin defects. 
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1 Introduction 

 

1.1 Lattice structures and defects 

Additive manufacturing (AM) is a popular area of research because it greatly expands the 

existing design space, allowing for significantly more geometric freedom than in more 

established manufacturing methods, such as machining, casting and forming. Within AM, 

a popular area of study is that of lattice structures: a unit cell tessellated in three axes. 

Lattice structures have many desirable properties, such as high specific strength, high 

surface area to volume ratio and high impact energy absorption properties [1]. The 

literature on lattice structures continues to increase, with efforts largely being split 

between increasing the documentation on the general mechanical properties of lattice 

designs (e.g. [2–4]) and developing lattice structures for specific applications, such as 

biomedical implants [5–7], heat exchangers [8,9] and sandwich structures for 

lightweighting of structural engineering components [10,11]. The utility of AM lattice 

structures extends to precision engineering applications, where vibration isolating lattice 

structures have been designed for some low frequency bandwidths [12,13]. Such 

designs could be incorporated into machine frames in an attempt to reduce the noise in 

a measurement system. 

AM lattice structures are defined by their unit cell, the design of which generally falls into 

one of two categories: strut-based and surface-based. Strut-based unit cells consist of a 

network of cylindrical struts connected at nodes. Surface-based unit cells are 

mathematically defined as the surface connecting the set of points for which a given 

function has a constant value, that is, an isosurface. The study of strut-based designs 

dominates the literature, a likely reason being the high level of design control which they 

provide, as their unit cells are created by explicitly specifying the shape and location of 

all the features; conversely surface-based designs are governed by a single 

mathematical equation.  

Within AM, metal powder bed fusion (PBF) is commonly used to manufacture lattice 

structures [14]. There are characteristic defects (i.e. deviations from nominal) that form 

in lattice structures produced by PBF; these defects being a natural by-product of the 

layer-wise, powder based process [14]. Defects can be considered as altering both the 

form and surface texture of lattice structures. For example, form defects include feature 

misalignments and thickness variations in struts and surfaces. An example of a surface 

defect is the increased irregularity of the surface of the underside of overhanging 

features (hereafter described as texture bias). Figure 1.1a shows a common case of 

feature misalignment called “strut waviness”, where the strut’s axis deviates from its 

originally linear design. An example of thickness variations in the radius of struts is 

shown in Figure 1.1b. Figure 1.1c shows texture bias, where the underside of the struts 

(“downskin” surface) contains more irregularities than the upper side (“upskin” surface). 

 

Figure 1.1 – Common defects in lattice structurers. (a) strut waviness [15] (b) radius variation [15] (c) Left: 
original unit cell design, Right: texture bias in the manufactured part [16]. 



1.2 Finite element modelling for lattice structures 

Manufacturing defects can have a significant impact on the mechanical properties of 

lattice structures, with fatigue properties being particularly adversely affected [17–20]. 

Therefore, it is vital that these defects are included in the finite element (FE) models 

which are used to simulate lattice mechanical properties. Several FE studies have shown 

the impact of defects on mechanical properties. For example, Melancon et al. [15] 

predicted the compressive Young’s modulus of the octet-truss lattice and found the error 

between simulations and experiments to decrease from 57% to 12% upon incorporating 

defects into the model. Similarly, Karamooz Ravari et al. [21] found the maximum error 

between simulated and experimental stress-strain response of BCC lattices to reduce 

from 53% to 27% upon incorporating defects into the FE model. Both [15] and [21] 

modelled strut waviness and thickness variations. 

Defect modelling has only been studied in strut-based lattice structures (to the best of 

the authors’ knowledge at the time of writing this paper) and the methods can be 

grouped into two categories, based on element type: 3D continuum element modelling 

and beam element modelling. 3D continuum element methods generally require the 

development of a CAD model into which defects are applied before conversion to an FE 

mesh [15,21,22]. Beam elements are also often used to model struts in lattice 

structures, where defects are modelled by dividing each strut into several beams and 

varying the location and radius of each element [23–26].      

A particularly powerful aspect of FE modelling is the ability to perform parametric studies 

wherein specific defects can be controlled and analysed in depth. Parametric studies for 

defects in lattice structures can help quantify the unique impact of a specific defect (or 

combination of defects) on a given lattice’s function. Several parametric studies have 

been performed for selected defects in lattice structures. Both Liu et al. [23] and Cao et 

al. [24] have used beam element models to isolate strut waviness and radius variation 

and investigate their impact on Young’s modulus and yield strength under compression. 

In addition to isolating strut waviness and radius variation, El Elmi et al. [27] 

investigated the sensitivity of the compressive Young’s modulus of octet-truss lattices to 

mass agglomeration and variations in the local stiffness of the lattice nodes and struts.  

 

 

1.3 Relevance of this work 

The impact of manufacturing defects on lattice structures will vary significantly across 

the large number of potential designs. Furthermore, whether to consider the impact of a 

defect as critical or negligible will depend on the constraints specific to a given 

application. Therefore, developing an FE modelling approach which accommodates 

parametric studies of a wide range of lattice defects would be a valuable tool. Such a 

tool would contribute towards the development of “defect-tolerant” lattice structures, 

where defect sensitivity studies could feed an optimisation process to produce lattice 

structures that perform reliably in the presence of defects. 

This proposed method also has its advantages over image-based approaches, typically 

the conversion of X-ray computed tomography (XCT) data into an FE mesh (e.g. 

[28,29]). Although an image-based method arguably provides the most accurate 

representation of the measured lattice structure, the defects are defined implicitly within 

the XCT data and cannot be easily modified - this is not suitable for parametric studies. 

Furthermore, the process of acquiring XCT data – from sample manufacture through to 

data acquisition and FE mesh conversion – is a highly time-consuming process and not 

favourable for a high number of simulations. 



Although the aforementioned parametric studies (Section 1.2) provide useful insights, 

they focus mainly on modelling only strut waviness and radius variation – due to the use 

of beam elements which can model a very limited range of geometries. It would be 

useful to also study other defects in equal proportion – for example mass agglomeration 

[27]; also texture bias remains unexplored. Furthermore, in the literature there is little 

discussion towards developing a generalised modelling approach for implementing the 

wide range of defects into any strut-based lattice structure. 

In this paper we present a defect modelling approach that can apply both form and 

surface defects into strut-based lattice structures. This modelling approach uses signed 

distance functions to create triangulated surface meshes of lattice geometries. The 

surface mesh can then be modified to apply localised surface defects. The surface mesh 

is converted into an FE mesh of linear tetrahedral elements via open-source MATLAB 

meshing toolbox, Iso2mesh. This signed distance function approach allows geometries to 

be easily adapted to any strut-based lattice structure. In this method, all lattice defects 

are defined using mathematical functions, which provides an intuitive and efficient 

approach for generating lattice FE meshes with defects – this is also preferable over the 

use of graphical user interfaces in traditional CAD software.  

This work aims to provide a framework for efficient generation of tetrahedral meshes of 

lattice structures suitable for parametric studies of a wide range of manufacturing 

defects. Although the authors’ main objective is to support the development of machine 

frames [12,13], this framework can be applied to many FE strut-based lattice studies.  

1.4 Structure of paper 

The structure of the paper is as follows: Section 2 defines signed distance functions and 

demonstrates how two-dimensional geometries are extracted using this method; Section 

3 extends signed distance functions into three dimensions and explains how lattice struts 

are modelled without defects; Section 4 gives the mathematical definitions for modelling 

waviness, radius variation, elliptical cross sections and texture bias in lattice struts; 

Section 5 describes how the tetrahedral meshes are generated and optimised; Section 6 

provides a summary of how this modelling framework is implemented; Section 7 

provides a brief FE study to serve as an example of applying the modelling framework; 

Section 8 then provides discussion and conclusion for the work in the paper. 

  



2 Signed distance functions 

 

 

Figure 2.1 – Diagrams explaining the basic operation of signed distance functions. Left: Calculation of 
Euclidean distance between all points in the domain and (𝑥0, 𝑦0), the circle of radius 𝑟 is found at 𝜙 = 𝑟. Right: 

Subtraction of constant 𝑟, the circle of radius 𝑟 is found at 𝜙 = 0. 

 

Signed distance functions (SDFs) have already been identified as a means of modelling 

lattice structures [30,31] – this section will explain their operation. 

SDFs operate by calculating the Euclidean distance between a given point in space and a 

predefined boundary. The sign of the distance denotes whether the point lies inside or 

outside of the predefined boundary, where common convention uses negative and 

positive signs, respectively. Thus, SDFs produce scalar fields, more specifically distance 

fields, inside which the predefined boundary is represented by the zero level set. For a 

simple example, we demonstrate how SDFs are used to model a circle. Consider the SDF 

𝜙(�⃗�) which calculates the Euclidean distance between the point (𝑥0, 𝑦0) and all (𝑥, 𝑦) points 

in the domain,  

 𝜙(�⃗�) = √(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2. 2.1 

 

As shown in Figure 2.1a, the arrows at each (𝑥, 𝑦) point in the domain represent the 

Euclidean distance to the point (𝑥0, 𝑦0). The resulting distance field has radially increasing 

values from the origin. Therefore, the circle of radius 𝑟 is found at 𝜙(�⃗�) = 𝑟, the 𝑟th level 

set. 𝜙(�⃗�) = 𝑟 yields the set of points at an equal distance of 𝑟 from (𝑥0, 𝑦0). 𝜙(�⃗�) = 𝑟 is the 

boundary between two regions: one where 𝜙(�⃗�) < 𝑟 and 𝜙(�⃗�) > 𝑟, also shown in Figure 

2.1a. Remembering the aforementioned convention where the zero level set is used to 

create the geometry of interest, the distance field must be manipulated such that the 

circle of radius 𝑟 is the boundary between the regions where 𝜙(�⃗�) < 0 and 𝜙(�⃗�) > 0. In 

this example, the manipulation is straightforward - the SDF is altered as follows: 



 𝜙(�⃗�) = √(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 − 𝑟 = 0. 2.2 

 

The subtraction of the constant 𝑟 causes each value in the distance field to represent the 

Euclidean distance between the (𝑥, 𝑦) point and the circle of radius 𝑟. This is illustrated in 

Figure 2.1b, where the arrows within the circle represent negative distance values and 

are thus facing the opposite direction to the arrows outside of the circle. The circle of 

radius 𝑟 is now the interface between positive and negative regions, 𝜙(�⃗�) = 0 as required. 

Simplifying eq 2.2 into two terms helps to illustrate the general operation of SDFs,   

 𝜙(�⃗�) = 𝑑 − 𝑟 = 0. 2.3 

SDFs can be considered as having two stages of operation. The first stage – boundary 

definition (𝑑) – creates a distance field by calculating the Euclidean distances to a 

predefined boundary. The second stage – distance field manipulation (𝑟) – is where each 

value in the distance field is modified, creating positive and negative regions, such that 

the interface between those regions yields whichever geometry is desired. In the 

previous example, the boundary was defined as the point (𝑥0, 𝑦0); the manipulation of the 

distance field was a subtraction of 𝑟 from all values such that the desired circle is found 

at 𝜙(�⃗�) = 0. 

Exploring the stages of boundary definition and distance field manipulation allows the 

geometric complexity to be increased. For another simple example, the manipulation 

stage in eq. 2.2 can be modified to 

 𝜙(�⃗�) = √(𝑥𝑖 − 𝑥0)
2 + (𝑦𝑖 − 𝑦0)

2 − 𝑟𝑖 = 0 2.4 

 

where 

 𝑟𝑖 = 𝑓(𝜃). 2.5 

 

Figure 2.2 shows an example of a more complex shape, where the SDF for a circle has 

been modified to vary the radius as a function of 𝜃, where the radius increases linearly 

with 𝜃. Note the addition of the subscript 𝑖, indicating that eq 2.4 is computed iteratively 

across the domain. Again, the shape is represented by the boundary 𝜙(�⃗�) = 0. 

 

Figure 2.2 – An example of a more complex signed distance function where the radius  
𝑟𝑖 = 𝑓(𝜃). The boundary of the shape is still defined as 𝜙 = 0. The points inside and outside of the boundary are 

defined as 𝜙 < 0 and 𝜙 > 0, respectively.  



Additionally, combining multiple distance fields can increase geometric complexity. SDFs 

lend themselves to Boolean operations (unions, additions, subtractions, etc.) which are 

used in constructive solid geometry tools. For example, we generate two shapes, 𝜙1 and 

𝜙2, based on the SDF defined in eq 2.4 and produce the union of these two shapes by 

computing min(𝜙1, 𝜙2), as shown in Figure 2.3. Since negative distance values are used 

to define the points bounded within the geometry, computing the minimum gives 

precedence to the negative values and so the result combines the geometries from the 

two input distance fields. 

Geometries are extracted from the distance field by calculating the coordinates where 

the SDF 𝜙(�⃗�) = 0. This calculation is performed by linear interpolation between adjacent 

points where a sign change is detected in the distance field. Naturally, a domain of 

higher resolution is desirable as it reduces the distance over which the interpolation is 

computed and thus produces a more accurate geometry.  

 

 

Figure 2.3 – Two distance fields (𝜙1, 𝜙2) are combined by computing 𝑚𝑖𝑛 (𝜙1, 𝜙2) which performs a Boolean 

union. 

  



3 SDFs for ideal lattice structures 

The surface of a lattice strut is defined by the set of points at a distance 𝑟 from the 

strut’s medial axis – a line segment, as shown in Figure 3.1a. This surface can be 

modelled as the zero level set of the SDF that calculates the Euclidean distance between 

the line segment and each point in a 3D Cartesian grid. The SDF, in this case, is an 

extension of eq 2.2, where the boundary definition is modified from a single point to a 

line segment. As shown in Figure 3.1a, the similarity to eq 2.2 can be visualised in the 

cross-section of the strut, where 𝜙 < 0 inside the circle and 𝜙 > 0 outside. The SDF 𝜙(�⃗�) 

for the strut is given by 

 𝜙(�⃗�) = |�⃗�𝑖 − 𝜈𝑖| − 𝑟 = 0            𝑖 = 1,2, … ,𝑀 3.1 

where 𝑀 is the total number of points in the grid. All arrow notation (e.g. 𝜈𝑖) denotes 

coordinates in three axes, for example 

 𝜈𝑖 = (𝑥�⃗⃗⃗�𝑖
, 𝑦�⃗⃗⃗�𝑖

, 𝑧�⃗⃗⃗�𝑖
). 3.2 

To further explain the SDF, consider an arbitrary point �⃗�𝑖 in the Cartesian grid. The 

Euclidean distance between �⃗�𝑖 and the line segment (𝑙2 − 𝑙1) is given by |�⃗�𝑖 − 𝜈𝑖|, where 𝜈𝑖 

is the point on the line segment closest to �⃗�𝑖. 𝜈𝑖 is calculated using 

and 𝑡𝑖  is termed as the intersection ratio. The intersection ratio describes where 𝜈𝑖 is 

located within the line segment, as a ratio of the vector (𝑙2 − 𝑙1). Thus, 0 ≤ 𝑡𝑖 ≤ 1 for all 

points on the line segment. The intersection ratio is calculated using 

 𝑡𝑖 =
(𝑙2 − �⃗�𝑖) ∙ (𝑙2 − 𝑙1)

|𝑙2 − 𝑙1|
2 . 3.4 

 

In eq 3.4 𝑙2 and 𝑙1 define a line of infinite length, therefore, there are some iterations of 

�⃗�𝑖 where 𝑡𝑖 > 1 or 𝑡𝑖 < 0 , as shown in Figure 3.1b. Such cases identify when the point 𝜈𝑖 

extends beyond the line segment – to prevent this, the following condition is added 

 

Once the distance between a given point and the line segment has been calculated, 𝑟 is 

subtracted in order for the desired surface to be represented by 𝜙 = 0.  

The presented modelling approach for individual struts can be extended to unit cells and 

full lattice structures. One of the most direct approaches would be to compute the SDF 

over all the line segments in the geometry. However, if appropriate for an application, 

the distance field of one strut can be duplicated and recombined to build unit cells and 

full lattice structures. As shown in Figure 3.2, the BCC unit cell is modelled by computing 

the minimum of four distance fields, each of which represents an individual strut and is a 

rotated duplicate of the other. In this paper, lattice structures are then modelled by 

duplicating the unit cell and concatenating the distance fields. Note that the distance 

fields must be cropped at the points at which they should overlap, as illustrated in Figure 

3.3. 

 

 𝜈𝑖 = [𝑙1 + (𝑙2 − 𝑙1)𝑡𝑖] 3.3 

 𝑡𝑖 = {
0, for 𝑡𝑖 < 0
1, for 𝑡𝑖 > 1

 . 3.5 



 

Figure 3.1 – (a) illustration of a lattice strut modelled as the points at distance 𝑟 from the line segment. (b) 

illustration of how the intersection ratio is used in the distance calculation. At 𝑥1, 𝜈1 is located in between 𝑙2 and 

𝑙1 and therefore 0 < 𝑡1 < 1. At 𝑥2, a case is shown where the Euclidean distance would naturally cause 𝜈2 to 

extend beyond the line segment, 𝑡2 is therefore adjusted. 

 

 

 

 

Figure 3.2 – Boolean union performed to create BCC unit cell. The distance for the first strut (𝜙1) is duplicated 

and rotated to create three additional struts, 𝜙2, 𝜙3, 𝜙4. The unit cell (𝜙5) is created by 

computing 𝑚𝑖𝑛 (𝜙1,, 𝜙2, 𝜙3, 𝜙4). 

  



 

Figure 3.3 – (a) the distance field of the unit cell is duplicated and (b) appropriate gaps are cropped. 

  



4 SDFs for defects 

We now consider how to extend SDFs to model defects in lattice structures. Firstly, form 

defects (waviness, radius variation and elliptical cross sections) are considered, followed 

by localised surface defects (texture bias). 

4.1 Waviness 

To model waviness, the distance calculation and manipulation remain similar to that 

required for eq 3.1, however, the boundary definition is modified. As shown in Figure 

4.1, the line segment is now partitioned, creating additional vertices used to modify the 

strut’s medial axis. The vertices of the line segments are now defined as 

 𝑙𝑗 = (𝑥𝑙𝑗
, 𝑦𝑙𝑗

, 𝑧𝑙𝑗
)              𝑗 = 1,2, … , 𝑁 + 1 4.1 

where 𝑁 is the number of line segments. The line segments are stored in the matrix 𝑳, 

where 

 

𝑳 = [

𝐿1

𝐿2

⋮
𝐿𝑁

] =

[
 
 
 
 𝑙2 − 𝑙1

𝑙3 − 𝑙2
⋮

𝑙𝑁+1 − 𝑙𝑁]
 
 
 
 

. 

4.2 

 

The SDF must now compute the Euclidean distance between a given point and the 

closest line segment in 𝑳. This SDF is given by 

 𝜙(�⃗�) = min(𝑫𝑥𝑖
) − 𝑟 = 0 4.3 

where min(𝑫𝑥𝑖
) is the minimum of the distances between a given point  �⃗�𝑖 and all the line 

segments in 𝑳. To clarify, consider again an arbitrary point  �⃗�𝑖  in the Cartesian grid 

(Figure 4.1). We calculate the distance between �⃗�𝑖 and all the line segments, which is 

stored in the vector  

 𝑫𝑥𝑖
= [𝑑1, 𝑑2, … , 𝑑𝑁]. 4.4 

Computing the min(𝑫𝑥𝑖
) gives the Euclidean distance to the closest line segment. Once 

this distance is found, a subtraction of 𝑟 is applied, for the same reasons as previously 

described in Section 2. 

 

Figure 4.1 – Illustration of the signed distance function used for modelling waviness. The strut’s medial axis 
has been modified. 



 

4.2 Radius variation 

To apply radius variation, the SDF will be similar to eq 4.3, but the 𝑟 term must be 

modified; in other words, the manipulation stage of the SDF must be changed. We 

require the radius of the strut to vary along the strut’s medial axis. Therefore, eq 4.3 is 

modified to  

 𝜙(�⃗�) = min(𝑫𝑥𝑖
) − 𝑟𝑖 = 0 4.5 

where 

    𝑟𝑖 = 𝑓(𝑡𝑖). 4.6 

The value of 𝑟𝑖 depends on the intersection ratio of the line segment closest to �⃗�𝑖. 

Continuing with the notation from Section 4.1, we create a vector 𝑹 that describes the 

radius variation in the strut by assigning a radius value to each vertex 𝑙𝑗 of the line 

segments 

 𝑹 = [𝑅1, 𝑅2, … , 𝑅𝑁+1]. 4.7 

For every point �⃗�𝑖 in the domain, we find the closest line segment 𝐿𝑗 and apply the 

following condition 

 

𝑟𝑖 = {

𝑅𝑗, 𝑖𝑓 𝑡𝑖 = 0

𝑅𝑗+1, 𝑖𝑓 𝑡𝑖 = 1

interpolate within 𝑹, 𝑖𝑓 0 <  𝑡𝑖 < 1

. 

4.8 

 

Recalling the definition of 𝜈𝑖 from eq 3.3, if 𝜈𝑖 is coincident with any of the vertices 𝑙𝑗, 

then either 𝑡𝑖 = 0 or 𝑡𝑖 = 1 will be true and thus the 𝑟𝑖 value will equal the value in 𝑹 

assigned to 𝑙𝑗. In all other cases, we interpolate within 𝑹. An example of eq. 4.8 is shown 

in Figure 4.2, where cubic interpolation is used. Lastly, because 0 ≤ 𝑡𝑖 ≤ 1 for all �⃗�𝑖, there 

is currently no way of identifying the line segment to which 𝑡𝑖 is associated. Therefore, 

the following condition is added 

 𝑡𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑗 − 1 + 𝑡𝑖 4.9 

where 𝑗 is the line segment closest to �⃗�𝑖. 𝑡𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 is used in eq 4.8 instead of 𝑡𝑖, as shown 

in Figure 4.2. 

  

Figure 4.2 – Illustration of how radius variation is applied to the signed distance function. Left: Radius values 
are assigned to the vertices of the line segments. Right: An example of 𝑟𝑖 = 𝑓(𝑡𝑖). 
 



 

Although not a defect, the equations in this section could be used to apply a fillet 

between struts and nodes. Eq 4.6 could be defined such that the radii of the struts 

increase near lattice nodes. Applying fillets can improve the fatigue strength of lattice 

structures [32].  



4.3 Elliptical cross sections 

The versatility of SDFs can be further demonstrated by adapting them to model struts 

using elliptical cross sections (Figure 4.3a); the need for doing so being first identified by 

Lozanovski et al [22]. An ellipse with major axis 𝑎 can be defined as the set of points 

which satisfy the following equation  

 𝑟1 + 𝑟2 = 𝑎 4.10 

where 𝑟1 and 𝑟2 are the distances between the two fixed points in Figure 4.3b. Eq 4.10 is 

used to build an SDF which models struts with elliptical cross sections: 

 𝜙(�⃗�) = min (𝑫𝟏𝑥𝑖
) + min (𝑫𝟐𝑥𝑖

) − 𝑎𝑖 = 0. 4.11 

Note the similarities between eq 4.10 and eq 4.11. For every point in the domain �⃗�𝑖, the 

distance between all the line segments in the two unconnected paths (blue and red lines) 

is determined and stored in 𝑫𝟏𝑥𝑖
 and 𝑫𝟐𝑥𝑖

. Computing the minimum of 𝑫𝟏𝑥𝑖
 and 𝑫𝟐𝑥𝑖

 gives 

the Euclidean distance between �⃗�𝑖 and the closest line segment in each path - 

corresponding to 𝑟1 and 𝑟2 in eq 4.10. 

Combinations of defects can also be applied to these struts. For example, the positions 

of the line segments can be varied to model waviness in the struts (as shown in Figure 

4.3a) and the value of 𝑎𝑖 can be varied in a similar way to the method described for 𝑟𝑖 in 

Section 4.2, allowing the major axis of the ellipses to vary along the strut. 

 

 

 

Figure 4.3 – (a) Modelling struts with elliptical cross sections. (b) A diagram of an ellipse with major axis 𝑎. 

 

  



4.4 Texture bias 

Surface defects can be applied to the model by modifying the surface mesh produced 

from the SDF. A triangulated surface of the strut geometry is extracted from the 

distance field using the MATLAB function isosurface.m; this function uses the 

interpolation method described in Section 2. To model localised surface defects, 

displacements can be applied to specific points on the surface that meet a given criteria. 

Figure 4.4 shows a triangulated surface of a BCCZ unit cell where displacements have 

been applied to the downskin surface of the inclined struts. To apply these 

displacements, two characteristics must be defined for each point on the surface – the 

overhang angle of the strut and the up/downskin nature of the point; these 

characteristics are defined as 𝜃 and 𝛼 respectively, as illustrated in Figure 4.5. To 

calculate the overhang angle 𝜃 of a strut, we find the angle between the line segment 

and the positive z-axis (Figure 4.5a). Note that in cases where the strut has waviness, 

the waviness is ignored for the calculation of 𝜃. To characterise a point as up/downskin, 

we calculate the angle 𝛼 between the surface normal and the reference vector shown in 

Figure 4.5b - this reference vector can be considered as pointing in the upskin direction. 

Each point on the surface can, therefore, be calculated as up/downskin using the 

following angular ranges: 

where 𝛼 is calculated clockwise from the reference vector for surface normals on the 

right, and vice versa – thus 𝛼 does not exceed 180°. After characterising each point, 

localised surface defects can be modelled by building a function that applies 

displacements 𝛿 only to the points on the surface that meet a given criteria defined using 

𝜃 and 𝛼.  

Two methods for applying displacements have been considered, as shown in Figure 4.6. 

Firstly, pseudorandom displacements (Figure 4.6a-b). A displacement 𝛿 is applied to 

each point on the surface, where 

 

The displacement is randomly selected from a normal distribution with a mean 𝜇 = 0 and 

standard deviation 𝜎, where 

 

An example of eq. 4.14  is shown in Figure 4.6b; this function sets 𝜎 = 0 for all vertical 

struts (𝜃 = 0) and causes 𝜎 to increase linearly with 𝛼. Note that the example BCCZ unit 

cell contains struts with two overhang angles: 0° and ~55°. This approach is useful for 

fast generation of texture bias in strut surfaces, as eq. 4.14 allows for a simple definition 

of the surface texture, without having to define any specific displacements on the 

surface – the values are selected randomly. One drawback, however, is that having no 

control over the exact values of the displacements can result in highly different 

displacements being applied to adjacent points – this can adversely affect the quality of 

the surface and present tetrahedral meshing issues. Note that the likelihood of this 

problem occurring reduces at lower 𝜎 values and can become negligible. 

 𝑈𝑝𝑠𝑘𝑖𝑛: 0° ≤ 𝛼 ≤ 90° 4.12 

 𝐷𝑜𝑤𝑛𝑠𝑘𝑖𝑛: 90° < 𝛼 ≤ 180°  

 𝛿 = 𝜇 ± 𝜎. 4.13 

 𝜎 =  𝑓(𝛼, 𝜃). 4.14 



The second approach for applying displacements uses a function to predefine all the 

displacement values (Figure 4.6c-d). Predefining the displacements provides greater 

control and allows for texture bias which is locally smooth, thus preventing large 

changes in adjacent points. The predefined approach is a two-step process. Firstly, a 

simulated surface (𝜓) is generated to describe the general distribution of the texture bias 

in a given strut, where 

 

where 𝑡 is the intersection ratio, as defined in Section 3 (note that 𝑡 is not required in eq 

4.14 because the random selection inherently applies variation along the strut’s length). 

An example of 𝜓 in shown in Figure 4.6c, where 

 

The frequency coefficients 𝜔𝛼 , 𝜔𝑡 in the sine terms control the number of peaks in the 𝛼 

and 𝑡 axes, respectively – their amplitudes being given by 𝐵. Texture bias can then be 

modelled using the exponential term (a Gaussian function), which applies damping in the 

𝛼 axis. The Gaussian reduces the function to zero at upskin angles (0° ≤ 𝛼 ≤ 90°). Lastly, 

𝜓 is multiplied by a scaling factor Δ which calculates the displacements 𝛿 applied to 

specific struts, depending on overhang angle:   

An example of 𝑓(𝜃) is shown in Figure 4.6d which is a ramp function that sets all 

displacements to zero for 𝜃 < 45° and linearly increases the scaling factor for increasing 

𝜃 > 45°, thus increasing the downskin texture bias of the struts with greater overhang 

angles. Note that the applied displacements are symmetric about the reference vector 

show in Figure 4.5b, as 𝛼 does not exceed 180°.  

 

 𝜓 =  𝑓(𝛼, 𝑡) 4.15 

 𝜓 =  𝑓(𝛼, 𝑡) = 𝐵 sin(𝜔𝛼𝛼) sin(𝜔𝑡𝑡) exp (−
(𝛼−𝛼0)2

2𝜎𝑦
2 ). 

4.16 

 𝛿 =  𝜓 × Δ 4.17 

 Δ =  𝑓(𝜃). 4.18 



 

Figure 4.4 – Triangulated surface of BCCZ unit cell. Displacements have been applied to the downskin points. 

 

 

 

 

Figure 4.5 – Illustrations explaining the calculation of (a) overhang angle 𝜃 and (b) up/downskin angle 𝛼.  



 

Figure 4.6 – Methods for applying displacements to the strut surface. Left: pseudorandom displacements are 
selected from normal distribution (a) with standard deviation 𝜎 where 𝜎 =  𝑓(𝛼, 𝜃), as shown in (b). Right: 
simulated surface 𝜓 (c) is generated and multiplied by a scaling factor 𝛥 (d). 
 

 

  



5 FE mesh generation 

 

The surface mesh must be converted into a tetrahedral mesh in order to be used for FE 

modelling. This conversion is performed using open-source MATLAB meshing toolbox, 

Iso2mesh [33]. Iso2mesh communicates directly with MATLAB’s isosurface.m function. 

Isosurface.m outputs a three-column matrix of (𝑥, 𝑦, 𝑧) coordinates and a three-column 

triangulation matrix which indexes the triangular faces of the surface mesh – these are 

the inputs for Iso2mesh. We use the Iso2mesh function ‘cgals2m’ that operates using 

embedded CGAL meshing algorithms to create the output mesh [34]. The output mesh is 

created using a restricted Delaunay tetrahedralisation (RDT). 

To create the tetrahedral mesh, the RDT first computes a set of sample points on the 

input surface and creates a 3D triangulation of these sample points. Additional points are 

then iteratively created and refined until a given criteria on the size and shape of the 

mesh elements is satisfied [34]. The output mesh is defined by a new three-column 

matrix that includes the new (𝑥, 𝑦, 𝑧) points in the tetrahedral mesh, and a four-column 

matrix that indexes the individual tetrahedra. An example of the conversion from surface 

mesh to tetrahedral mesh is shown in Figure 5.1. 

To constrain the output mesh, we modify two parameters. The first parameter controls 

the size of the triangular faces on the surface, therefore, controlling how well the input 

surface is preserved in the tetrahedralisation. This surface constraint is termed 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 

(short for radius boundary) and it is the upper bound on the radius of the circumcircle 

for each of the faces on the surface of the output mesh. The second parameter 𝑚𝑎𝑥𝑣𝑜𝑙 

(short for maximum volume) controls the size of all the elements in the mesh and is the 

upper bound on the volume of the circumsphere for each of the elements. Using 

𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and 𝑚𝑎𝑥𝑣𝑜𝑙 allow for a graded mesh, where smaller elements are on the 

surface to better approximate the geometry, and large elements are within the body. 

To demonstrate how appropriate meshing parameters are selected, we will use an 

example of the BCCZ unit cell. To select a suitable 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 value, a comparison is 

performed between the volumes enclosed by the input surface mesh and the output 

mesh. The percentage error 𝜖 between these two volumes is given by 

 

where 𝑉𝑚 and 𝑉𝑠 are the volumes of the output tetrahedral mesh and the input surface 

mesh, respectively. Table 1 illustrates the effect of selected 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 values on the error 

𝜖, where 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 has been normalised with the strut’s radius (𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑/𝑟). Ten meshes 

were created for each 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 value, and the mean and standard deviations of the 

errors are calculated. Averaging is required because the RDT does not provide a single 

unique solution, therefore, some variance exists between output meshes with the same 

input parameters. As shown in Table 1, the mean error reduces to below 1% at a 

normalised 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 of 0.2, showing good agreement between the input and output 

meshes. The low standard deviation values confirm relatively high repeatability in the 

output meshes. 

Consideration must also be given to the shape of the mesh elements. Reducing 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 

may result in a steep gradient between the sizes of the surface and body elements. A 

steep gradient may have a detrimental effect on the shape of some tetrahedra, creating 

low quality elements. To prevent low quality elements, the 𝑚𝑎𝑥𝑣𝑜𝑙 parameter is used to 

reduce the overall size of the elements, thus reducing the gradient between the size of 

 
𝜖 = (1 −

𝑉𝑚
𝑉𝑠

) × 100 
5.1 



the surface and body elements. The shape quality of each element is quantified by 

comparing each element to the equilateral tetrahedron derived from the element’s 

circumsphere. The quality value is then calculated as the quotient of these two volumes, 

as shown in Figure 5.2. This quality value will be between 0 and 1, where 1 indicates the 

highest quality i.e. the tetrahedral element is an equilateral tetrahedron. 

To investigate mesh quality, the 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑/𝑟 parameter is fixed at 0.2, and 𝑚𝑎𝑥𝑣𝑜𝑙 is 

varied. The 𝑚𝑎𝑥𝑣𝑜𝑙 values have been normalised using the volume of the sphere with 

radius equal to the strut’s radius. To aid in visualising the effect of 𝑚𝑎𝑥𝑣𝑜𝑙 on mesh 

quality, we calculate the distance between each element’s centroid and the closest line 

segment. This distance value can be used to indicate whether the element is at the 

surface of the mesh (high distance value) or deep within the body (low distance value). 

The histograms in Figure 5.3 show the effect of 𝑚𝑎𝑥𝑣𝑜𝑙 on the distribution of mesh 

quality. At higher 𝑚𝑎𝑥𝑣𝑜𝑙 values, low quality surface elements dominate the distribution 

(Figure 5.3a-b). As 𝑚𝑎𝑥𝑣𝑜𝑙 is decreased, more elements of lower volume are used and 

the distribution improves (Figure 5.3c-d). 

 

 

Figure 5.1 – Left: triangulated surface mesh; the output of isosurface.m. Right: tetrahedral mesh; the output 
of Iso2mesh. 

 

 

 

Radbound/r 1 0.5 0.2 0.1 

Mean error (%) 15.8 4.18 0.68 0.17 

Std dev (%) 1.2 0.7 0.52 0.21 

 

Table 1 – Mean percentage error between the volumes of the input surface mesh and output tetrahedral mesh. 
Standard deviation taken from 10 repeats for each radbound/r value (percentage of the mean). 

 



 

Figure 5.2 – Mesh quality calculation. 

  



 

 

 

Figure 5.3 – Effect of 𝑚𝑎𝑥𝑣𝑜𝑙 on the quality of mesh elements. 

  



6 Implementation 

 

This section provides a summary of the method presented in this paper for modelling 

both form and surface defects in strut-based lattice structures using tetrahedral meshes. 

The following points follow the information shown in Figure 6.1. 

• The first step is the signed distance function, which outputs a 3D distance field based 

on a calculation of the Euclidean distance between all points in the domain and the 

line segments used to define the strut’s medial axis. 

• The distance field is input into isosurface.m, which determines the coordinates at 

which the SDF = 0. Isosurface.m outputs a surface mesh and indexing matrix. 

• If surface defects are to be applied, the coordinates of the surface mesh are input 

into the surface defects function, which modifies the position of points in a given 

area. 

• The coordinates of the surface mesh and the indexing matrix are input into 

Iso2mesh, using appropriate 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and 𝑚𝑎𝑥𝑣𝑜𝑙 values. Iso2mesh outputs the 

coordinates of the new tetrahedral mesh and an element indexing matrix. 

• Lastly, the outputs from Iso2mesh are used to check the quality of the individual 

elements. 

These modelling functions provide full control over the definition of defects within the 

lattice geometry and are therefore suitable for conducting parametric studies of lattice 

behaviour in the presence of defects. Additionally, these functions are compatible with 

any measurement process (e.g. XCT, focus variation) which can quantify the geometry 

of a lattice structure – the selection of the modelling parameters can be informed by 

measurement data, enabling a more realistic representation of the defects in the lattice 

struts. 

 

 

Figure 6.1 – Flow chart of the modelling process. 

 

  



7 FE study: texture bias 

 

As a demonstration, we perform an FE parametric study to investigate the impact of 

texture bias on the compressive Young’s modulus of two popular lattice structures: BCCZ 

and octet-truss. Figure 7.1 shows the two lattice structures and their dimensions. 

Texture bias is modelled using the method from Section 4.4, where a simulated surface 

is used to apply displacements to the strut surfaces. We simulate the texture bias by 

defining a simulated surface 𝜓 which applies peaks and troughs to one side of the lattice 

strut, thus replicating the general discrepancy between upskin and downskin surfaces. 

The simulated surface 𝜓 is defined using eq 4.16 where 𝜔𝛼 = 𝜔𝑡 = 8, 𝜎𝑦 = 𝜋/5 and 𝛼0 = 0 

for upskin bias, and 𝛼0 = 𝜋 for downskin bias. 𝜓 has a form similar to that in Figure 4.6c. 

In this parametric study, the amplitude 𝐵 of 𝜓 is the parameter being investigated, 

where 𝐵 is increased through seven states for this study, 𝐵 = 0.1, 0.2, … , 0.7. The 

displacements 𝛿 applied to the struts are then calculated using 

 

where 

 
𝛾 = {

0.1, if 𝜓 > 0
1, if 𝜓 ≤ 0

; 7.2 

 

 Δ = {
1, if 𝜃 > 0
0, if 𝜃 = 0

. 7.3 

 

𝛾 reduces the values of the positive displacements so that the function predominantly 

applies negative displacements that reduce the radius of the strut surfaces. Δ excludes 

the vertical struts (𝜃 = 0) from the texture bias. For each value of 𝐵, five meshes are 

created, to be used for averaging the results. Iso2mesh parameters 𝑟𝑎𝑑𝑏𝑜𝑢𝑛𝑑 and 𝑚𝑎𝑥𝑣𝑜𝑙 

were both set to 0.2. 

Commercial FE software, Abaqus, was used to perform the simulations. A script was 

developed in MATLAB to create the FE meshes, and to create and run the Abaqus input 

files. As shown in Figure 7.1, the upper and lower faces are flattened in order to apply 

boundary conditions. The nodes on the bottom face (red) are constrained in all degrees 

of freedom. Compression is applied by displacing the nodes on the top face (yellow) a 

tenth of the lattice height (~2 mm) in the negative z-direction. The material used is 

Ti6Al4V with Young’s modulus 126 GPa and Poisson ratio 0.32. We extract the reaction 

force 𝐹 from the top face (yellow) and calculate the Young’s modulus 𝐸 with the following 

equation 

where 𝐿 is the original length (height) of the lattice structure, 𝐴 is the cross-sectional 

area of the lattice and 𝑈 is the displacement applied to the nodes on the top face. 

Figure 7.2 shows the relationship between the predicted Young’s modulus of the lattices 

and the amplitude of the texture bias. Both plots show lower Young’s modulus for 

downskin bias, with some divergence between upskin and downskin upon increasing 

amplitude. The results show the octet-truss structure to be more sensitive than BCCZ to 

the texture bias, as shown in Table 2, which lists the percentage change in Young’s 

modulus between the lowest and highest amplitudes applied to the surfaces.  

 𝛿 = 𝜓 × 𝛾 × Δ, 7.1 

 𝐸 =  𝐹𝐿/𝐴𝑈 7.4 



 

 

 

 

Figure 7.1 – Tetrahedral meshes of BCCZ and octet-truss lattices. (a) Downskin texture bias has been applied 
to the BCCZ lattice; (b) upskin texture bias has been applied to the octet-truss. 

 



 

Figure 7.2 – Simulation results showing the effect of texture bias on the Young’s modulus of (a) BCCZ and (b) 
octet-truss lattices. Error bars are the standard deviations from five repeats. 

 

 

 BCCZ Octet 

Downskin 2.31 8.50 

Upskin 2.09 7.92 
Table 2 - Percentage reduction in compressive Young's modulus. 

 

  



8 Discussion and conclusion 

 

This paper has presented an FE framework for modelling form and surface defects in 

strut-based lattice structures. Intuitive mathematical definitions have been provided for 

modelling strut waviness, radius variation, elliptical cross-sections and texture bias. 

Conversion from surface mesh to tetrahedral mesh was performed via open-source 

MATLAB toolbox, Iso2mesh. Simple mesh quality tools were developed to aid in 

optimising Iso2mesh parameters. A parametric FE study was performed to simulate the 

impact of texture bias on the compressive Young’s modulus of the BCCZ lattice and 

octet-truss lattice. 

8.1 Defect modelling 

The modelling framework presented in this paper provides a high level of control over 

the form and surface of lattice struts. The mathematical definitions for the defects are 

well suited for FE parametric studies – individual variables from the underlying functions 

can be isolated and studied, as demonstrated in this paper. This modelling framework 

could be easily adapted to other types of defects not considered in this paper, such as 

notched or completely broken struts. The high geometric control of this approach could 

also be used to improve lattice designs, for example by applying fillets, which can 

improve fatigue strength.  

8.2 FE study 

The texture bias study showed the octet-truss to demonstrate a higher sensitivity to 

texture bias, with a greater reduction in compressive Young’s modulus than the BCCZ 

lattice. These results are expected, because all the struts in the octet-truss are inclined 

and experience a bending load, whereas the BCCZ is reinforced with axially loaded 

vertical struts. The divergence between the upskin and downskin plots in Figure 7.2 

suggests that downskin defects impact the Young’s modulus more strongly in both lattice 

structures. However, the maximum difference between the upskin and downskin plots is 

less than 1%, which may be negligible, depending on the application. Nevertheless, this 

texture bias study is useful for quantifying how much more sensitive the octet-truss is to 

texture bias than the BCCZ lattice. Visual inspection of Figure 7.2 suggests a linear 

Young’s modulus response of the octet-truss, in contrast to the BCCZ response which is 

notably less linear – the source of this behaviour is unclear and may be due to the 

number of repeat measurements. 

8.3 Limitations 

Regarding the SDF, increasing the domain resolution and/or the number of line 

segments in the strut can cause the SDF to become computationally expensive. 

Replicating the real AM process, where multiple discontinuities are applied in each sub-

millimetre layer, may be unfeasible. Therefore, as the computational load increases, it 

becomes increasingly important to utilise the design’s symmetry and duplicate/transform 

the underlying distance fields where possible – defects may also need duplicating, which 

undermines the model’s representation of the as-built lattice. 

Considering the FE modelling stage, the use of tetrahedral elements allows for greater 

control over the geometry, however, they are significantly more computationally 

expensive than beam elements. Increasing the tessellation further may require 

homogenisation techniques (as demonstrated elsewhere, [15] for example). Increasing 

the tessellation is an important step in determining whether the results from the study in 

Section 7 have converged – additionally, the seemingly non-linear BCCZ response may 

not manifest at higher tessellations. 



8.4 Future work 

This work can be continued in several ways. Further parametric studies can be 

conducted to investigate the impact of different defects on specific lattice behaviour. The 

modelling of defects could be improved by using measurement data to inform the 

selection of parameters in the underlying functions. Note that the simulated surface used 

in the FE study (eq 7.1) was built using an arbitrary function sufficient for the generation 

of graded peaks and valleys on the surface. Future modelling of texture bias could use a 

simulated surface possessing statistical properties obtained from focus variation 

measurement data of lattice struts, for example. Mechanical testing of BCCZ and octet-

truss lattices will be crucial for validating the accuracy of this model. Higher tessellation 

lattice structure models will be tested, to investigate the convergence of mechanical 

properties - homogenisation techniques may also be investigated. 

This modelling framework can also be extended beyond the study of defects on 

compressive properties, for example, the impact of texture bias on heat transfer or fluid 

flow could be investigated using this approach. The presented modelling framework is 

versatile and will hopefully be used for improving the understanding of AM lattice 

structures in a range of applications. 

 

 

 

Acknowledgements 

This work was supported by the Engineering and Physical Sciences Research Council 

[grant numbers EP/M008983/1, EP/L01534X/1] 

  



9 References 

[1] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and properties, 2nd ed., 

Cambridge University Press, Cambridge, 1997. 

[2] P. Köhnen, C. Haase, J. Bültmann, S. Ziegler, J.H. Schleifenbaum, W. Bleck, 

Mechanical properties and deformation behavior of additively manufactured lattice 

structures of stainless steel, Mater. Des. 145 (2018) 205–217. 

doi:10.1016/j.matdes.2018.02.062. 

[3] T. Tancogne-Dejean, D. Mohr, Stiffness and specific energy absorption of 

additively-manufactured metallic BCC metamaterials composed of tapered beams, 

Int. J. Mech. Sci. 141 (2018) 101–116. doi:10.1016/j.ijmecsci.2018.03.027. 

[4] I. Maskery, A. Hussey, A. Panesar, A. Aremu, C. Tuck, I. Ashcroft, R. Hague, An 

investigation into reinforced and functionally graded lattice structures, J. Cell. 

Plast. 53 (2017) 151–165. doi:10.1177/0021955X16639035. 

[5] S. Ma, Q. Tang, X. Han, Q. Feng, J. Song, R. Setchi, Y. Liu, Y. Liu, A. Goulas, D.S. 

Engstrøm, Y.Y. Tse, N. Zhen, Manufacturability, Mechanical Properties, Mass-

Transport Properties and Biocompatibility of Triply Periodic Minimal Surface 

(TPMS) Porous Scaffolds Fabricated by Selective Laser Melting, Mater. Des. 195 

(2020) 1–15. doi:10.1016/j.matdes.2020.109034. 

[6] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. 

Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into 

porous titanium implants fabricated by additive manufacturing: An in vivo 

experiment, Mater. Sci. Eng. C. 59 (2016) 690–701. 

doi:10.1016/j.msec.2015.10.069. 

[7] D. Carluccio, C. Xu, J. Venezuela, Y. Cao, D. Kent, M. Bermingham, A.G. Demir, B. 

Previtali, Q. Ye, M. Dargusch, Additively manufactured iron-manganese for 

biodegradable porous load-bearing bone scaffold applications, Acta Biomater. 103 

(2020) 346–360. doi:10.1016/j.actbio.2019.12.018. 

[8] S. Catchpole-Smith, R.R.J. Sélo, A.W. Davis, I.A. Ashcroft, C.J. Tuck, A. Clare, 

Thermal conductivity of TPMS lattice structures manufactured via laser powder bed 

fusion, Addit. Manuf. 30 (2019) 100846. doi:10.1016/j.addma.2019.100846. 

[9] A. Chaudhari, P. Ekade, S. Krishnan, Experimental investigation of heat transfer 

and fluid flow in octet-truss lattice geometry, Int. J. Therm. Sci. 143 (2019) 64–

75. doi:10.1016/j.ijthermalsci.2019.05.003. 

[10] A. Beharic, R. Rodriguez Egui, L. Yang, Drop-weight impact characteristics of 

additively manufactured sandwich structures with different cellular designs, Mater. 

Des. 145 (2018) 122–134. doi:10.1016/j.matdes.2018.02.066. 

[11] R.A.W. Mines, S. Tsopanos, Y. Shen, R. Hasan, S.T. McKown, Drop weight impact 

behaviour of sandwich panels with metallic micro lattice cores, Int. J. Impact Eng. 

60 (2013) 120–132. doi:10.1016/j.ijimpeng.2013.04.007. 

[12] W. Elmadih, W.P. Syam, I. Maskery, R.K. Leach, Designing low frequency 

bandgaps in additively manufactured parts using internal resonators, Proc. ASPE, 

Las Vegas, USA. (2018). 

[13] W. Elmadih, D. Chronopoulos, W.P. Syam, I. Maskery, H. Meng, R.K. Leach, 

Three-dimensional resonating metamaterials for low-frequency vibration 

attenuation, Sci. Rep. 9 (2019) 1–8. doi:10.1038/s41598-019-47644-0. 

[14] I. Echeta, X. Feng, B. Dutton, R.K. Leach, S. Piano, Review of defects in lattice 

structures manufactured by powder bed fusion, Int. J. Adv. Manuf. Technol. 106 

(2020) 2649–2668. doi:10.1007/s00170-019-04753-4. 



[15] D. Melancon, Z.S. Bagheri, R.B. Johnston, L. Liu, M. Tanzer, D. Pasini, Mechanical 

characterization of structurally porous biomaterials built via additive 

manufacturing: experiments, predictive models, and design maps for load-bearing 

bone replacement implants, Acta Biomater. 63 (2017) 350–368. 

doi:10.1016/j.actbio.2017.09.013. 

[16] T.B. Sercombe, X. Xu, V.J. Challis, R. Green, S. Yue, Z. Zhang, P.D. Lee, Failure 

modes in high strength and stiffness to weight scaffolds produced by Selective 

Laser Melting, Mater. Des. 67 (2015) 501–508. 

doi:10.1016/j.matdes.2014.10.063. 

[17] G. Dong, Y. Tang, Y.F. Zhao, A Survey of Modeling of Lattice Structures Fabricated 

by Additive Manufacturing, J. Mech. Des. 139 (2017) 100906. 

doi:10.1115/1.4037305. 

[18] L. Boniotti, S. Beretta, L. Patriarca, L. Rigoni, S. Foletti, Experimental and 

numerical investigation on compressive fatigue strength of lattice structures of 

AlSi7Mg manufactured by SLM, Int. J. Fatigue. 128 (2019) 105181. 

doi:10.1016/j.ijfatigue.2019.06.041. 

[19] M. Dallago, B. Winiarski, F. Zanini, S. Carmignato, M. Benedetti, On the effect of 

geometrical imperfections and defects on the fatigue strength of cellular lattice 

structures additively manufactured via Selective Laser Melting, Int. J. Fatigue. 124 

(2019) 348–360. doi:10.1016/j.ijfatigue.2019.03.019. 

[20] M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto, 

Architected cellular materials: A review on their mechanical properties towards 

fatigue-tolerant design and fabrication, Mater. Sci. Eng. R Reports. 144 (2021) 

100606. doi:10.1016/j.mser.2021.100606. 

[21] M.R. Karamooz Ravari, S. Nasr Esfahani, M. Taheri Andani, M. Kadkhodaei, A. 

Ghaei, H. Karaca, M. Elahinia, On the effects of geometry, defects, and material 

asymmetry on the mechanical response of shape memory alloy cellular lattice 

structures, Smart Mater. Struct. 25 (2016). doi:10.1088/0964-1726/25/2/025008. 

[22] B. Lozanovski, M. Leary, P. Tran, D. Shidid, M. Qian, P. Choong, M. Brandt, 

Computational modelling of strut defects in SLM manufactured lattice structures, 

Mater. Des. 171 (2019). doi:10.1016/j.matdes.2019.107671. 

[23] L. Liu, P. Kamm, F. García-Moreno, J. Banhart, D. Pasini, Elastic and failure 

response of imperfect three-dimensional metallic lattices: the role of geometric 

defects induced by Selective Laser Melting, J. Mech. Phys. Solids. 107 (2017) 160–

184. doi:10.1016/j.jmps.2017.07.003. 

[24] X. Cao, Y. Jiang, T. Zhao, P. Wang, Y. Wang, Z. Chen, Y. Li, D. Xiao, D. Fang, 

Compression experiment and numerical evaluation on mechanical responses of the 

lattice structures with stochastic geometric defects originated from additive-

manufacturing, Compos. Part B Eng. 194 (2020) 108030. 

doi:10.1016/j.compositesb.2020.108030. 

[25] H. Lei, C. Li, J. Meng, H. Zhou, Y. Liu, X. Zhang, P. Wang, D. Fang, Evaluation of 

compressive properties of SLM-fabricated multi-layer lattice structures by 

experimental test and μ-CT-based finite element analysis, Mater. Des. 169 (2019) 

107685. doi:10.1016/j.matdes.2019.107685. 

[26] B. Lozanovski, D. Downing, P. Tran, D. Shidid, M. Qian, P. Choong, M. Brandt, M. 

Leary, A Monte Carlo simulation-based approach to realistic modelling of additively 

manufactured lattice structures, Addit. Manuf. 32 (2020) 101092. 

doi:10.1016/j.addma.2020.101092. 

[27] A. El Elmi, D. Melancon, M. Asgari, L. Liu, D. Pasini, Experimental and numerical 



investigation of selective laser melting-induced defects in Ti-6Al-4V octet truss 

lattice material: The role of material microstructure and morphological variations, 

J. Mater. Res. (2020) 1–13. doi:10.1557/jmr.2020.75. 

[28] A. du Plessis, I. Yadroitsava, I. Yadroitsev, Ti6Al4V lightweight lattice structures 

manufactured by laser powder bed fusion for load-bearing applications, Opt. Laser 

Technol. 108 (2018) 521–528. doi:10.1016/j.optlastec.2018.07.050. 

[29] N. Korshunova, G. Alaimo, S.B. Hosseini, M. Carraturo, A. Reali, J. Niiranen, F. 

Auricchio, E. Rank, S. Kollmannsberger, Image-based numerical characterization 

and experimental validation of tensile behavior of octet-truss lattice structures, 

Addit. Manuf. 41 (2021) 101949. doi:10.1016/j.addma.2021.101949. 

[30] A. Panesar, M. Abdi, D. Hickman, I. Ashcroft, Strategies for functionally graded 

lattice structures derived using topology optimisation for Additive Manufacturing, 

Addit. Manuf. 19 (2018) 81–94. doi:10.1016/J.ADDMA.2017.11.008. 

[31] D.J. Yoo, Heterogeneous porous scaffold design for tissue engineering using triply 

periodic minimal surfaces, Int. J. Precis. Eng. Manuf. 13 (2012) 527–537. 

doi:10.1007/s12541-012-0068-5. 

[32] M. Dallago, S. Raghavendra, V. Luchin, G. Zappini, D. Pasini, M. Benedetti, The 

role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-

6Al-4V lattice materials additively manufactured via laser powder bed fusion, Int. 

J. Fatigue. 142 (2021) 105946. doi:10.1016/j.ijfatigue.2020.105946. 

[33] Q. Fang, D.A. Boas, Tetrahedral mesh generation from volumetric binary and 

grayscale images, 2009 IEEE Int. Symp. Biomed. Imaging. (2009) 1142–1145. 

doi:10.1109/ISBI.2009.5193259. 

[34] The CGAL Project, CGAL, Computational Geometry Algorithms Library, (2020). 

https://www.cgal.org (accessed March 16, 2020). 

 


