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ABSTRACT 29 

1. Ancient trees have important ecological, historical and social connections, and are a key source of dead and 30 

decaying wood, a globally declining resource. Wood-pastures, which combine livestock grazing, open spaces and 31 

scattered trees, are significant reservoirs of ancient trees, yet information about their true abundance within wood-32 

pastures is limited. England has extensive databases of both ancient trees and wood-pasture habitat, providing a 33 

unique opportunity for the first large-scale, national case study to address this knowledge gap.  34 

2. We investigated the relationship between the abundance of ancient trees in a large sample of English wood-35 

pastures (5,571) and various unique environmental, historical and anthropogenic predictors, in order to identify 36 

wood-pastures with high numbers of undiscovered ancient trees. A major challenge in many modelling studies is 37 

obtaining independent data for model verification: here we introduce a novel model verification step using series 38 

of historic maps with detailed records of trees to validate our model predictions. This desk-based method enables 39 

rapid verification of model predictions using completely independent data across a large geographical area, 40 

without the need for, or limitations associated with, extensive field surveys.  41 

3. Historic map verification estimates correlated well with model predictions of tree abundance. Model predictions 42 

suggest there are ~101,400 undiscovered ancient trees in all wood-pastures in England, around 10 times the total 43 

current number of ancient tree records. Important predictors of ancient tree abundance included wood-pasture 44 

area, distance to several features including cities, commons, historic Royal forests and Tudor deer parks, and 45 

different types of soil and land classes. 46 

4. Synthesis and Applications: Historical maps and statistical models can be used in combination to produce 47 

accurate predictions of ancient tree abundance in wood-pastures, and inform future targeted surveys of wood-48 

pasture habitat, with a focus on those deemed to have undiscovered ancient trees. This study provides support for 49 

improvements to conservation policy and protection measures for ancient trees and wood-pastures. 50 
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INTRODUCTION 56 

Ancient trees (often referred to as ‘veteran trees’ or ‘large, old trees’) are found worldwide and are important 57 

ecological structures, in particular as a source of dead and decaying wood, in many ecosystems (Read, 2000; 58 

Siitonen, 2001; Butler et al., 2002). The ‘veteran’ characteristics that define an ancient tree, such as a hollowing 59 

trunk and branches, crevices and water-filled pools, enable them to act as ‘keystone elements’, supporting a wide 60 

range of saproxylic and non-saproxylic species, including fungi (Boddy, 2001), invertebrates (Speight, 1989), 61 

epiphytes (Read, 2000; Ranius et al., 2008) and larger vertebrates (Rasey, 2004; Ruczynski & Bogdanowicz, 62 

2008). At a landscape scale, ancient trees provide ecosystem functions and have strong regulatory influences on 63 

local nutrient cycles and microclimate (Rubino & McCarthy, 2003; Lonsdale, 2013), but they are considered most 64 

important in terms of their contribution to the connectivity of deadwood habitat across the landscape, which is 65 

thought to be vital for the conservation and persistence of many endangered species (Lindman et al., 2020). 66 

Additionally, ancient trees are known for their cultural and historical ties, and can inform us of past land 67 

management and use, historical climate and changing social behaviours (Rackham, 1976, 1980; Read, 2000), as 68 

well as providing valuable tourism opportunities (Rackham, 1994; Lonsdale, 2013).  69 

Wood-pastures, royal forests and historic parklands are habitats which often contain an abundance of ancient trees 70 

(Rackham, 1994; Hartel et al., 2013; 2018; Farjon, 2017). These also include deer parks, commons (land on which 71 

local people had some traditional shared grazing or harvesting rights), and chases (private hunting forests) 72 

(Rackham, 1976). These habitats, referred to here collectively as ‘wood-pasture’, usually combine livestock 73 

grazing with scattered trees either in maiden form or actively managed as pollards, where the tree is periodically 74 

cut to avoid livestock browsing, and the trunk and branches are removed for use as animal fodder, or for particular 75 

industrial purposes (Petit & Watkins, 2003). The resulting landscape is productive, open and relatively 76 

undisturbed by development or agriculture, providing an ideal environment for the development and persistence 77 

of ancient trees (Quelch, 2002; Hartel et al., 2018). Wood-pastures also more generally support high densities of 78 

rare flora and fauna (Rosenthal et al., 2012), and their conservation value is recognised throughout Europe 79 

(Dorresteijn et al., 2013; Hartel et al., 2018). Several studies have mapped European wood-pasture (Hartel et al., 80 

2013; Plieninger et al., 2015), and it is estimated that it covers an area of ~203,000 km2 (Plieninger et al., 2015).  81 

Despite their importance, ancient trees are in global decline (Gibbons et al., 2008; Fischer et al., 2010), particularly 82 

due to the spread of disease and pests, urbanisation, and agricultural expansion (Read, 2000, ATF, 2005, 2011; 83 

Lindenmayer et al., 2012). In addition, there is a lack of tree planting and appropriate management to ensure the 84 
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continuity and replacement of ancient tree populations and dead-wood habitats (Read, 2000). To add to this, wood-85 

pasture is also considered an increasingly threatened habitat, particularly across Europe (Hartel & Plieninger, 86 

2014; Forejt et al., 2017), where overgrazing, the decline of old trees, and land-use intensification and conversion 87 

are having major impacts (Kirby, 2015). Additionally, although the connection between wood-pasture and ancient 88 

trees is generally agreed upon, few studies, with the exception of Hartel et al. (2013; 2018) and Moga et al., (2016) 89 

in Romania, have investigated the true abundance or distribution of ancient trees within wood-pastures at an 90 

international or even a national scale. Further investigation and quantification of the links between ancient trees 91 

and wood-pasture at larger scales (i.e. across other regions, countries or continents), would enable more effective 92 

conservation and protection of ancient trees.   93 

Compared to Europe and the rest of the world, both the number of ancient trees and the concentration of wood-94 

pastures in the UK, and particularly in England, is extremely high (Rackham, 1994; Fay, 2004; Lonsdale, 2013). 95 

This is often attributed to the long history of continuous Royal and aristocratic land ownership and management 96 

of forests and parkland (Butler et al., 2002). Additionally, the UK has the most comprehensive ancient tree 97 

database in the world: the Ancient Tree Inventory (ATI). The ATI began as a citizen-science collaboration project 98 

in 2004 between the Woodland Trust (WT), the Ancient Tree Forum (ATF) and The Tree Register of the British 99 

Isles (TROBI), and over 200,000 ancient and other notable trees have been mapped since its beginning (Butler, 100 

2014; Nolan et al., 2020). The extraordinary number of ancient trees recorded in the ATI presents a unique 101 

opportunity to investigate quantitatively the large-scale determinants of ancient tree abundance in wood-pastures, 102 

with the aim of identifying sites likely to contain undiscovered ancient trees across England.  103 

The non-random, ‘ad-hoc’ recording method of the ATI means that the inventory is thought to be far from 104 

complete, and many more ancient trees in the UK, including those at risk from the many factors that threaten their 105 

survival, are likely to have gone unrecorded. This also means the ATI is likely to suffer from high levels of 106 

sampling bias, because certain geographical locations or time periods have been more extensively surveyed than 107 

others (Phillips et al., 2009; Mair & Ruete, 2016). We suspect that there are many partially or completely un-108 

surveyed sites, including wood-pastures, that actually contain ancient trees; currently ~ 44 % of all ATI ancient 109 

trees are located in a wood-pasture, yet these wood-pastures represent only ~ 9 % of the total number of wood-110 

pastures across England. The patchy recorded occurrence of ancient trees means that the data display a high level 111 

of zero-inflation (i.e. there are more wood-pastures with no trees than expected under standard statistical 112 

distributions), which presents a problem when trying to model tree abundance using conventional methods. Hence, 113 

in the present study we use zero-inflated (ZI) models to describe and predict abundance at the national scale.  114 



5 

 

The accuracy of large-scale spatial models of the distribution and abundance of organisms is best assessed by 115 

comparison with independent data collected in the field (Chatfield, 1995). However, such data are seldom 116 

available and model verification typically involves retaining one or more subsets of the original data as pseudo-117 

independent ‘test’ data sets. In our study, we take advantage of the uniquely detailed mapping of trees in England 118 

over the past 200 years to perform a novel form of model verification using completely independent data on the 119 

location of the organisms we are attempting to model. We use of a series of historical Ordnance Survey maps with 120 

detailed records of trees across England, together with the National Tree Map (NTM) (Bluesky National Tree 121 

Map, 2015) which depicts the current location, extent and height of all trees above 3 m across England. By 122 

overlaying these maps across time, abundance estimates were obtained for a randomly selected sample of wood-123 

pastures to verify model accuracy and predictive power.  124 

Species distribution modelling (SDM) typically aims to determine the fundamental niche of a species using a 125 

combination of abiotic and biotic predictors (Phillips et al., 2006; Elith & Leathwick, 2009). Common predictors 126 

are usually based on either climate (e.g. temperature or precipitation), topography (e.g. elevation or slope) or 127 

habitat (e.g. vegetation cover) (Wisz et al., 2013; Hof et al., 2012; Barbet‐Massin and Jetz, 2014). It is less 128 

common to model species using variables that reflect human and socio-cultural influences (Żmihorski et al., 2020), 129 

yet in the modern world the distributions of many species are at least in part determined by humans (Boivin et al., 130 

2016). Modelling the distribution of ancient trees, which have strong human and historical links to the landscape, 131 

presents a unique opportunity in our study to explore the potential of including anthropogenic and historical 132 

predictors in SDMs to provide meaningful and accurate predictions of species locations. We aim to recognise the 133 

important role humans play in determining the contemporary niche of such a long-lived and 134 

economically/culturally important taxon: our models include a variety of unique predictors including those that 135 

capture anthropogenic influences and landscape history, something which is only possible because of the excellent 136 

data available for these predictors across the UK. 137 

This study provides quantitative evidence for the drivers of the important relationship between ancient trees and 138 

wood-pastures in England, and highlights the international need to establish and expand ancient tree inventories 139 

such as the ATI. The study also highlights the high value of wood-pasture habitat, which is wide-spread across 140 

Europe, North America and other areas, in supporting populations of ancient trees. We hope our findings will 141 

assist with conservation efforts, both in the UK and worldwide, to locate and protect our ancient tree populations, 142 

and to ensure their survival into the future.  143 
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MATERIALS AND METHODS 144 

Study area and ancient tree records 145 

Data describing the distribution of 5571 mapped wood-pastures in England were obtained from Natural England 146 

(Wood Pasture and Parkland BAP Priority Habitat Inventory for England, accessed 04/12/17) (Fig. S1). The 147 

digitised wood-pasture polygons cover an area of ~2780 km2 (see supplementary information for additional 148 

description). Ancient tree records in England were obtained from the ATI (Woodland Trust, accessed 17/12/18). 149 

In England, an ancient tree is defined generally as any tree that shows ‘veteran’ characteristics (e.g. hollow trunk, 150 

crown retrenchment, crevices and the presence of saproxylic organisms) (ATF, 2008), and that is older than most 151 

individuals of the same species (Nolan et al., 2020). The age of ancient trees is estimated based primarily on girth 152 

(as in White 1998), but also takes into account their environment and growing conditions. The ATI recording 153 

process requires volunteers to use the Woodland Trust’s Ancient Tree Guide No. 4 (ATF, 2008) or their website 154 

(https://ati.woodlandtrust.org.uk/what-we-record-and-why/what-we-record/) to determine accurately whether a 155 

tree is ancient. In addition, approximate age-girth relationships are provided for the most common UK tree species 156 

(Woodland Trust 2008). Each record then receives a second visit from a trained Woodland Trust ancient tree 157 

verifier to check the tree before it is added officially to the ATI.  158 

As a final step, the reliability and validity of each record in the ATI has previously been assessed by the Woodland 159 

Trust using a star rating system between one (least reliable) and five (most reliable) (Table S1) (Nolan et al., 160 

2020). Consequently, we excluded all unverified (one or two star) records, and 185 records with incorrect or 161 

missing grid references. 10,450 records of ancient trees in England were retained, 4,582 (43.8%) of which fall 162 

within a wood-pasture polygon. Ancient tree abundance (number of ancient trees per wood-pasture) was 163 

subsequently calculated. Abundance ranged from 0 to 392, but was right-skewed with 5,092 (91.4%) wood-164 

pastures containing no ancient tree records (Fig. S2) and only 479 (8.6%) wood-pastures containing records. Thus, 165 

the data showed severe zero-inflation (i.e. there were significantly more zeroes than expected when compared to 166 

a standard Poisson distribution) (Van den Broek test 1995: χ²=14,356.69, df = 1, p < 0.001).  167 

Predictor variables 168 

A variety of sources was used to collect data on 21 characteristics for each wood-pasture (Table 1, Table S2). 169 

Wood-pasture area (km2) was square-root transformed due to the large range of values and all 16 numeric 170 

predictors were z-transformed. A variety of anthropogenic factors were considered, including both the locations 171 

of towns (small settlements) and cities (large settlements), as defined by the UK Government (Table S2). There 172 
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are many more towns across England (1,232) than cities (109), so both were included to assess their influence on 173 

ancient tree distributions within wood-pastures. We did not include interactions between environmental variables 174 

as predictors because we had no a-priori hypotheses about particular interactions, there was a very large number 175 

of possible interactions, and the models we created with just main effects already had high complexity. Effect 176 

size/direction and significance was assessed by z-tests of coefficients in a maximal model containing all 177 

predictors; we used a backward stepwise model-reduction approach, and likelihood ratio tests, to provide an 178 

alternative assessment of effect significance, the results of which were broadly similar and are reported in 179 

supplementary materials (Table S8).  180 

Under-represented categories of the three categorical predictors (land classification, countryside type and soil 181 

type) across English wood-pastures were combined to aid model fitting (see Table S3 and S4 for more 182 

information). Two binomial predictors were used: whether the wood-pasture covered agricultural land or not 183 

(4,653 wood-pastures are on agricultural land) (see Table S5 for more information), and whether the wood-pasture 184 

covers land owned by the National Trust (NT). The NT is an environmental and heritage conservation charity and 185 

has the largest number of subscribing members of the public of any organisation across England, Wales and 186 

Northern Ireland. Since its foundation in 1895, the NT has acquired over 350 properties and 2470 km2 of land, 187 

and there are 244 wood-pastures on NT land.  188 

The minimum resolution possible at which to obtain the categoric predictors (including agricultural land) was 1-189 

km2, so the value (or average/ most common value if a wood-pasture covered multiple 1-km2 grid squares) was 190 

extracted for each wood-pasture. As a result, many wood-pastures, which are recorded at a smaller resolution than 191 

the categoric predictors, fell within squares not necessarily designated as specific wood-pasture or parkland type 192 

habitat: some wood-pastures were assigned categories of land use based on squares whose primary designation 193 

was agricultural, urban or woodland. Nevertheless, including these land use predictors provides key information 194 

about the local environment and surroundings of the wood-pastures, which we believe could be important 195 

determinants of ancient tree distributions. Finally, due to the low prevalence of most ancient tree genera (Table 196 

S9) across the wood-pastures, we chose not to model tree genera/species separately. All data processing was 197 

carried out in ArcGIS (ESRI, 2011) and R (R Core Team, 2018).   198 

Statistical modelling 199 

Zero-inflated (ZI) models (Lambert, 1992) have been used effectively in ecology to model species data with excess 200 

zeroes and have been shown to be superior to equivalent Generalised Linear Models (GLMs) (Potts & Elith, 201 
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2006). This is because ZI models have two parts producing two sets of coefficients; a ‘zero’ logistic component 202 

modelling the probability of an observation being an excess zero, and a ‘count’ component generating the count 203 

estimates (see Lambert, 1992 or Welsh et al., 1996 for more information), and thus two different types of model 204 

predictions can be produced (Zeileis et al., 2008; Nolan et al., in prep). If all excess zeros are ‘true absences’ 205 

(arising from either unsuitability of the habitat or stochastic ecological processes) then the ‘zero component’ 206 

models causes of biological aggregation. If some or all excess zeroes arise from ‘false absences’ (arising from 207 

sampling, detection or misclassification errors), abundance predictions from the whole ZI model (hereafter known 208 

as ‘model abundance’ predictions) reflect the abundance that would be observed in the presence of the sampling 209 

error in the data. In this case, predictions produced purely from the ‘count’ component of the ZI model (hereafter 210 

known as ‘true abundance’ predictions), will typically be a better reflection of the true ecological or environmental 211 

processes that determine species abundance. As we suspect the excess zeroes arise primarily from the lack of 212 

sampling of wood-pastures, we assume here that the ZI ‘zero’ component will predominantly model the processes 213 

determining the likelihood that a wood-pasture has been sampled, whereas the ‘count’ component will model the 214 

ecological processes determining the suitability of the wood-pastures for ancient trees. 215 

Ancient tree abundance data were modelled using two ZI models with different distributions: a zero-inflated 216 

Poisson model (ZIP) and a zero-inflated negative binomial (NB) model (ZINB), using the ‘pscl’ package in R 217 

(Zeileis et al., 2008) (see supplementary information for additional details). Fitting models using ancient tree 218 

density (taking into account wood-pasture area) was considered, but we concluded that using ZI models with 219 

wood-pasture area as a predictor would better deal with the issue of zero-inflation in our data. An additional 220 

benefit of ZI models is the ability to examine the coefficients from the zero-component, thereby gaining insight 221 

into potential predictors of excess zeroes; this is something which fitting a GLM using tree density as the 222 

dependent variable would not have allowed us to do. Comparative model fit to the data was assessed using 223 

Vuong’s (1989) closeness test for non-nested models, likelihood ratio tests (package: ‘lmtest’: Zeileis & Hothorn, 224 

2002), the significance of the ϴ parameter, and visual analysis of hanging rootograms (package: ‘countreg’, 225 

Kleiber & Zeileis, 2016). 226 

Model predictions from both the ZIP and ZINB models were produced using 10-fold cross validation; the data 227 

were split into 10 equal parts, with each subsample sequentially used as test data, and the other nine subsamples 228 

as the training data. Both ‘true abundance’ and ‘model abundance’ predictions were considered, as well as the 229 

predicted probabilities that each observation is an excess zero (i.e. the probability predictions from the ‘zero’ 230 

component only). Abundance predictions were evaluated against observed ancient tree abundance to assess each 231 
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model’s predictive power using Spearman’s rank correlation coefficient (rs) and root mean square log error 232 

(RMSLE). In addition, the probability of observing the data based on the predictions was calculated for each 233 

model; for every wood-pasture, a Poisson or NB probability distribution function was simulated based on the 234 

mean predicted count from the ZIP or ZINB model respectively. The natural log probability of obtaining the 235 

observed abundance under this simulated distribution was summed for all wood-pastures to produce an overall 236 

probability of obtaining the observed results. Following the evaluation of both model fit and model predictive 237 

power, only the best model (the ZINB model) then was chosen to undergo further verification using historical 238 

mapping. 239 

Model verification 240 

The ideal method for ecological model verification is the evaluation of predictions using an independent dataset, 241 

yet it is often time-consuming and costly to collect extra data from the field; here we propose a more efficient, 242 

novel method of verification using historic maps. Three map series were selected (Table S6), the first two of which 243 

are country-wide historic Ordnance Survey maps with detailed records of mature free-standing trees, designated 244 

as having a ‘very high’ or ‘high’ UK coverage respectively according to the EDINA Historic Digimap Service. 245 

The last map is the National Tree Map (NTM) (Bluesky National Tree Map, 2015), created using aerial 246 

photography, LIDAR data, and colour infrared imagery. The NTM is a digitised polygon-based dataset of the 247 

location, extent and height of all tree canopies over 3 m in height across England and Wales recorded as present 248 

in 2015, which is between 116-169 years after the date of the earliest map series we used. By overlaying all three 249 

map series (between 1846–2015) the persistence of individual trees can be traced over time to provide an estimate 250 

of current ancient tree abundance within wood-pastures.  251 

All wood-pastures were then categorised into four groups based on the observed presence-absence of ancient trees 252 

and the predicted probability of being an excess (‘false’) zero converted into a binary variable (see supplementary 253 

information). Fifteen wood-pastures from each group were randomly selected resulting in 60 wood-pastures 254 

overall that underwent verification. Two volunteers from the Woodland Trust digitised all freestanding (i.e. non-255 

woodland) trees within the wood-pasture polygon boundary for the first two map series by placing a single point 256 

in the middle of each Ordnance Survey tree symbol. Each of these symbols is taken to mean a mature, free-257 

standing tree (at least ~75-100 years old) at the time of mapping (see https://maps.nls.uk/view/128076885). Only 258 

freestanding trees were selected rather than those in woodland patches as these usually were documented using a 259 

https://maps.nls.uk/view/128076885
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generic woodland symbol. The volunteers had no knowledge of the observed or predicted abundance of ancient 260 

trees for each wood-pasture.  261 

NTM Canopy polygons containing a digitised tree from both the first and second Ordnance Survey map series 262 

were retained and considered to be ancient as they represented free-standing trees in 2015 which were probably 263 

already mature 116-169 years previously, meaning that they were at least 191 years old, and likely to be over 200 264 

years old; the majority of trees reach the mature stage (prior to becoming ancient) by 100 years old (White, 1998). 265 

The abundance per wood-pasture of probable ancient trees was thus obtained, and we compared this value (using 266 

correlation) to the abundance predicted by the models, to verify those predictions. It is important to note that many 267 

species are only likely to reach ancient status sometime after the age of 200, and hence some of the trees assumed 268 

to be ancient from our mapping exercise may have been misclassified. Nevertheless, we assumed that trees which 269 

were recorded in all map sets were much more likely to be ancient than other trees alive today, and hence we 270 

believe the estimate derived from this analysis is a good proxy for true ancient tree abundance. We aimed to 271 

account for discrepancies and errors between the map series that may have occurred from either the original 272 

mapping methods or the digitising of the paper maps, by allowing an area of uncertainty around each historic tree. 273 

The verification process was therefore carried out for three different levels of accuracy using 1) the digitised tree 274 

point itself, 2) a 5-m buffer around the digitised tree and 3) a 10-m buffer around the digitised tree.  275 

Verification abundance estimates were assessed against the ZINB model predictions (both ‘true abundance’ and 276 

‘model abundance’) using Spearman’s Rank correlation coefficient (rs). Linear regression models were fitted in 277 

R, modelling the predictions in relation to the verification estimates for the 60 wood-pastures across the three 278 

different levels of accuracy (no buffer, 5-km and 10-km). These models were then used to predict total ancient 279 

tree abundance across a) all wood-pastures, b) wood-pastures currently containing ancient tree records and b) 280 

wood-pastures with no records. 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 
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RESULTS 290 

Genera, size and form of ancient trees in wood-pastures 291 

There were 4,582 ancient trees recorded in the ATI across all wood-pastures in England. Of these, the majority 292 

(59.5%) are Oaks (Quercus sp.) (Table S9). The next most frequent genus is Beech (Fagus sp.), comprising 10.7% 293 

of records, followed by Sweet Chestnut (Castanea sp.) with 8.6% of records. Although there are a total of 31 294 

genera noted across all wood-pasture, 23 contribute less than 1% to the total number of ancient tree records. The 295 

mean measured girth of all trees across the wood-pastures was 5.09 m (lower quartile: 3.75 m, upper quartile: 6.39 296 

m), with the majority recorded as being in maiden (free-standing, unmanaged) (43.0%) or pollard form (36.8%).  297 

Model performance, parameter estimates and predictions 298 

Abundance of ancient trees in wood-pastures in England was best modelled with a zero-inflated negative binomial 299 

(ZINB) model, which accounts for biological overdispersion as well as additional zero inflation.  The ZINB model 300 

provided a more appropriate fit to the training data than an equivalent zero-inflated Poisson (ZIP) model, based 301 

on the Vuong AIC-corrected test (z = -5.974, p <0.001) and the likelihood ratio test (χ2= 6,089.3, p < 0.001). 302 

Additionally, the significant ϴ parameter in the ZINB model suggests overdispersion is present in the data, 303 

meaning the ZIP model is not appropriate to use with this dataset (Table S7). Visual analysis of hanging 304 

rootograms for each model suggest the ZIP model highly under-predicted wood-pastures with zero records and 305 

over-predicted wood-pastures with small numbers of records (less than 10) (Fig. 1).   306 

The performance of the ZINB ‘true abundance’ predictions, based on the test data, was significantly better than 307 

that of the ZIP for all three evaluation metrics (predicted probability of obtaining results, rs and RMSLE) (Fig. 2). 308 

There was no difference in the predictive power of ‘model abundance’ for two of the metrics (predicted probability 309 

of obtaining results and RMSLE) but ZINB ‘model abundance’ predictions correlated more strongly with original 310 

ancient tree abundance per wood-pasture than those from ZIP. Based on the best performing model (ZINB), the 311 

‘true abundance’ predictions suggest that there are 13,848 ancient trees across all wood-pastures in England, 312 

which is over 3 times the total number already known (Table 2a).  313 

Parameter estimates of the best-performing model (ZINB) suggest ancient tree abundance is most strongly 314 

influenced by the type of soil or land class within which the wood-pasture is situated (Fig. 3; Table S7), followed 315 

by a strong negative influence of length of minor roads per km2 of wood-pasture and a positive effect of wood-316 

pasture area. Increasing distance to the nearest city and nearest Royal forest, as well as decreasing distance to the 317 

nearest Tudor deer park or common, also have significant but slightly weaker influences on abundance (Table 318 
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S7). Ancient tree abundance is also significantly higher on National Trust and non-agricultural land (Table S7). 319 

The logistic parameter estimates from the ZINB model provide insight into the factors that influence the odds of 320 

a wood-pasture being an excess (‘false’) zero, which is most likely to arise because a wood-pasture has not been 321 

sampled and has undiscovered ancient trees. Such wood-pastures are more likely to be large, have a low coverage 322 

of forest or woodland and are on agricultural land. Nevertheless, it is soil type and land class that have the most 323 

influence on the probability that a wood-pasture is an excess (‘false’) zero (Table S7). 324 

Model Verification 325 

Verification estimates of ancient tree abundance across 60 selected wood-pastures ranged from 0 to 2,108 across 326 

the three levels of spatial accuracy, with mean values ranging from 20 (standard error = ± 4) (no buffer) to 202 327 

(standard error = ± 43) (10-m buffer). All predictions correlated remarkably well with the verification estimates 328 

(rs > 0.5), especially the ‘model abundance’ predictions, all of which produced strong correlations (rs > 0.7). 329 

Predictions performed better as we allowed for greater levels of inaccuracy in the exact location of trees in the 330 

historic maps (i.e. as buffer size increased) (Table 2c). 331 

Additionally, 100 % of wood-pastures categorised as true positives based on data partitioning (predicted to contain 332 

records when they actually do) and 13 out of 15 wood-pastures (87 %) categorised as false negatives (predicted 333 

to contain records but currently there are none) were verified as having ancient trees using the historic maps. 334 

Results for the other two categories were more ambiguous, with 8 out of 15 (53 %) ‘true negative’ wood-pastures 335 

(correctly predicted by the model to contain no records) and 9 out of 15 (60 %) ‘false positive’ wood-pastures 336 

(predicted to not contain records when there are some) having verified ancient trees.  337 

Based on the linear regression models of the ZI model predictions and verification estimates, the total ‘true 338 

abundance’ estimates of ancient trees in English wood-pastures ranged from 101,402 (ZINB with no buffer) to 339 

701,925 (ZINB with 10-m buffer) (Table 2b). It is most likely the true number falls closer to the lower, more 340 

conservative estimates from the ZINB model. This estimate is 22 times the number of ancient tree records 341 

currently in English wood-pastures, and almost 10 times the total number of ancient tree records in England.  342 

 343 

 344 

 345 
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DISCUSSION 346 

Ancient trees are keystone organisms in the landscape, and it is important to understand where they are and how 347 

they might best be protected and managed for long-term conservation. The value of these trees in terms of their 348 

ability to support and facilitate the dispersal and survival of endangered saproxylic species, particularly in the face 349 

of our rapidly changing climate, is often underemphasised (Miklín et al., 2018; Lindman et al., 2020). It is crucial 350 

that future research focuses on understanding the distribution of large, old trees and their connectivity across the 351 

landscape, to better inform the conservation of their dependent species. Our study identified important 352 

environmental and anthropogenic factors that influence ancient tree abundance in English wood-pastures. As seen 353 

in previous studies (Moga et al., 2016; Hartel et al., 2018), wood-pasture area is a strong predictor of ancient tree 354 

abundance. This is to be expected, since larger areas by definition can contain more trees, but it may also be the 355 

result of historical management and land-ownership: many of the larger wood-pastures are either royal forests or 356 

former aristocratic estates, which have actively managed trees over the centuries in ways to continuously sustain 357 

and benefit from them (Quelch, 2002). Wood-pasture habitat is an important resource for the development and 358 

persistence of ancient tree populations, yet is not considered to be self-sustaining (Quelch, 2013). Constant, active 359 

management of both land and trees is needed in the form of sustainable grazing and continuation of traditional 360 

pollarding techniques (ATF, 2009; Lonsdale, 2013).  361 

Abundance was also influenced by three anthropogenic factors, distance to a city, length of minor roads and 362 

agricultural land. In all cases, true ancient tree abundance is higher when further away from human activity. There 363 

are many threats to the future survival of ancient trees, especially agricultural intensification (Read, 2000; Fay, 364 

2004; ATF, 2005) and urbanisation (Le Roux et al., 2014). It is important to mitigate these threats, and implement 365 

protection measures such as Tree Preservation Orders (TPOs) or scrub planting (Read, 2000; ATF, 2009) and 366 

policy changes (Lindenmayer et al., 2014). There are substantial efforts currently being undertaken by the IUCN 367 

to include the issue of the conservation of ancient trees in the post-2020 Aichi targets, and the European Union 368 

(EU) is being urged to include them in its post-2020 biodiversity strategy. There is also a push to establish an 369 

IUCN task force for ancient trees to encourage the EU to insert their conservation into the Natura 2000 plan. 370 

Studies like ours could provide important evidence testifying to the value of these trees across the landscape in 371 

order to support their inclusion in global conservation targets and policy. 372 

Sampling bias is a common artefact in many large species databases (Phillips et al., 2009) and is thought to be 373 

present also in the ATI. Verification of the abundance estimates confirmed that the majority (almost 90%) of 374 
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wood-pastures predicted to be false absences (i.e. wood-pastures that do contain undiscovered ancient trees) did 375 

in fact contain at least one ancient tree. Model coefficients from the ‘zero’ component of a ZI model provide 376 

insight into the factors that influence the probability of an excess zero (Lambert, 1992), and thus inform us about 377 

predictors of sampling bias in the ATI. One such factor is the occurrence of wood-pastures on agricultural land, 378 

or land not covered by ancient woodland or forests. Citizen-science recorders are known to favour interesting 379 

areas or species (Kramer-Schadt et al., 2013); for example we found ancient tree abundance to be much higher on 380 

NT land. Agricultural land is generally less appealing for ancient tree surveys, and is also is likely to be less 381 

accessible and have fewer public rights of way. As ancient trees on agricultural land are likely to be at increased 382 

risk of mortality from increasing field sizes, soil compaction, over-grazing and fertiliser applications (Read, 2000; 383 

Fay, 2004; ATF, 2005), these areas should be a priority for future surveys which aim to identify ancient trees in 384 

need of conservation intervention.  385 

Historic maps are an incredibly useful source of information about past land use, management and socio-cultural 386 

factors, yet they are often undervalued in scientific research (Roper, 2003). In the UK the extensive collection of 387 

Ordnance Survey maps dating as far back as 1801 provides a unique, unrivalled source of historical landscape 388 

characterisation, and has been used successfully in geographical and ecological studies (Sutherland, 2012; Visser, 389 

2014; Cowley et al., 1999). The high level of detail included in these maps, such as the specific locations of 390 

individual trees and different types of woodland patches, presents a rare opportunity to address ecological research 391 

questions such as ours, where we are using environmental, historical and anthropological factors to model a unique 392 

type of organism that can reach an age of several hundred, or even a 1000 years.  393 

Abundance estimates from the verification work correlated highly with the model predictions, providing strong 394 

support for a) the predictive power of the model, b) the hypothesis that many wood-pastures are ‘false absences’ 395 

and actually do contain ancient trees and c) the benefits of historic maps for addressing landscape-scale scientific 396 

questions. The most conservative estimate of ancient tree abundance in English wood-pastures came from the 397 

initial raw models (13,848 trees), but when calibrated against the field data, the best model (the ZINB model) with 398 

the lowest level of uncertainty (no buffer) produced an estimate of 101,402 trees. Although at first glance this 399 

may seem an overestimate, as it represents a 2112 % increase on the known number of ancient trees in wood-400 

pastures, it is not implausible. Because only 9% of wood-pastures contain 10,450 (43%) ATI ancient tree records, 401 

a figure close to 100,000 ancient trees (i.e. a 10 times increase) is possible, depending on the completeness of 402 

sampling across all wood-pastures. Other estimates of ancient tree totals have suggested figures close to nine 403 

million ancient or “veteran” trees (the latter being trees that are starting to show ‘veteran’ characteristics but are 404 
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still younger than ancient trees) across the whole UK (Fay, 2004). Therefore, our value of ~100,000 in wood-405 

pastures seems if anything conservative. Either way, our predictions highlight the fact that, even in the UK, where 406 

sampling is relatively good, most ancient trees in the landscape are yet to be recorded.  407 

 408 

Limitations to the methodology and use of the historic maps 409 

It is important to consider the accuracy of the Ordnance Survey maps used to verify our model predictions, 410 

especially as the early historic maps are thought to have the most inconsistencies (Harley, 1968; Visser, 2014) 411 

and there are likely to be a variety of caveats with using the historic maps, resulting in both under- and 412 

overestimation of ancient tree abundance. Our decision to map only free-standing ancient trees and exclude 413 

woodland patches is likely to have contributed to under-estimation of true abundance: although frequently less 414 

common, ancient trees can be found in woodland (Rackham, 1980). Additionally, inconsistencies and the 415 

misplacement of the historic tree symbols would also result in underestimation if the tree is still around today but 416 

did not fall within an NTM canopy polygon. This risk could be relatively high, particularly as there was no 417 

standardised key for the tree symbols in the first Ordnance Survey map. Alternatively, overestimation of 418 

abundance may have occurred where the locations of trees we recorded during verification actually reflected 419 

places in which more than one individual had been recorded over time. This may be one explanation for the 420 

discrepancy between the low model estimates of total abundance and the higher estimates produced when 421 

calibrated against the field data. For example, a mature tree recorded on an early map may have been felled and 422 

another immediately planted in its place. Although we deemed this unlikely to happen, given that the interval 423 

between any two map series was around 50-100 years, barely sufficient time for many species, especially free-424 

standing Oaks, to reach maturity (White, 1998), it could have resulted in some immature or mature trees being 425 

labelled as ancient.  426 

Finally, both under- and overestimation of abundance could have occurred owing to the interspecific differences 427 

in the age at which a tree reaches maturity and then becomes ancient (White, 1998; ATF, 2008; Lonsdale, 2013). 428 

By assuming that a mature or ancient tree, minimally 40 years old (White, 1989) in the first County series map, 429 

will now be at least 200 years old, this time period may be too long for the shorter-lived species to survive until 430 

the present day. Many fruit trees such as plum or pear, for example, will rarely reach 100 years old. Conversely, 431 

for some species such as Yew, which is generally only ancient after 800 years, this time period may not be long 432 
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enough to classify it now as ancient. However, the majority of records were Oak and Ash, both of which often 433 

survive beyond 200 years, but are very likely to show ancient characteristics by this age or soon thereafter.   434 

Despite the apparent high level of accuracy of our model predictions, validated using the historic mapping data, 435 

we should exercise caution when considering their precision (i.e. how realistic are our estimates of total tree 436 

abundance). Caveats related to the methodology used for the creation of the original historic maps means we 437 

should be careful in our interpretation of our estimates: total estimates of tree numbers from the verification 438 

exercise are more likely to represent ‘relative’ rather than ‘absolute’ abundance. We assume that trees recorded 439 

originally in the maps were mature or large (but not necessarily veteran or ancient), and therefore it is much more 440 

likely that trees are ancient today if they appear in the maps, than if they do not. But it is nevertheless likely that 441 

some trees classified as ancient were actually not yet old enough, whilst other mature trees which were not 442 

recorded on the historic maps have survived to this day and are now ancient. At the very least the historic mapping 443 

estimates are likely to be a good proxy for the true density of ancient trees on the ground: density of trees in the 444 

map is likely to be correlated with the true value (with some error) and can therefore provide a valid dataset for 445 

model verification. A precise estimate of current ancient tree density can really only be made by validating models 446 

with independent, ground-truthing surveys. However, the uncertainty regarding the precision of our population 447 

size estimate does not diminish the value of our conclusions about both the general abundance of ancient trees in 448 

wood pastures, and the environmental and human/historical factors which predict that abundance: these predictors 449 

are of obvious value to conservation planning. 450 

We believe the potential use and benefits of historical maps for ecological studies is high, and we aim to draw 451 

attention to the possibilities that these often underused resources offer for research at a landscape scale. Our 452 

findings provide important insight into a key habitat for ancient trees, wood-pasture, that is present in many 453 

countries across the world, and is a crucial resource for the conservation of these trees. However, it is important 454 

to note that wood pasture is largely absent, or substantially differs in structure and form in many other areas, and 455 

this, combined with a much poorer documentation of the distribution of ancient trees in such areas, suggests that 456 

further work is required to understand the extent to which we can generalise our results globally. Nevertheless, 457 

we hope that our study will not only assist with the conservation and protection of valuable UK ancient trees and 458 

wood-pasture habitat, but that it also provides evidence for the high value of wood-pastures internationally to 459 

support ancient trees, and the urgent need for more large scale research into key environmental determinants and 460 

suitable locations for these trees.   461 
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TABLES 607 

Table 1. The 21 variables describing wood-pasture characteristics used as predictors in statistical models of 608 

ancient tree abundance (see Table S2 for the source and date the data were accessed). 609 

610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

Type Predictor (unit) 

Numeric 

Wood-pasture area (km2) 

Distance from nearest town center (km) 

Distance from nearest major city (km) 

Distance from a royal forest (km) 

Distance from a moated site (km) 

Distance from a medieval deer park (km) 

Distance from a Tudor deer park (km) 

Distance from a commons (km) 

Cover of ancient woodland (%) 

Cover of traditional orchard (%) 

Cover of forest or woodland (%) 

Cover of buildings (%) 

Distance from a major road (km) 

Length of minor roads per km2 of wood-pasture (km) 

Mean altitude across wood-pasture (m) 

Distance from a water course (km) 

Binomial 
National Trust owned land  

Agricultural Land  

Categoric 

Type of countryside  

Most common soil type across wood-pasture 

Most common land classification  
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Table 2a. Estimates of the abundance of ancient trees for the zero-inflated negative binomial model (ZINB) based 630 

on predictions from either the ‘count’ component of the ZI model (‘true abundance’) or the whole model (‘model 631 

abundance). Three wood-pastures deemed to be outliers due to extreme predictions (all 1011 times greater than 632 

the next highest predicted abundances) were removed. 2b. Estimates of abundance of ancient trees for the zero-633 

inflated negative binomial model (ZINB) based on the historical verification estimates. Estimates were obtained 634 

across the three levels of accuracy (no buffer, 5-m buffer and 10-m buffer). 2c. Spearman’s rank correlations (rs) 635 

between the predicted ancient tree abundance from the zero-inflated negative binomial model (ZINB), and the 636 

verification estimates for 60 selected wood-pastures in England. Coefficients are shown also across the three 637 

levels of accuracy, with p values representing test significance (p < 0.05:*, p < 0.01:**, p < 0.001:***). 638 

  

Model 

Estimates 

(a) 

Verification Estimates (b) Spearman’s Rank Coefficient (rs) (c) 

No buffer 5-m 10-m No buffer 5-m 10-m 

True abundance 

predictions 

(‘count’ 

component) 

All wood-

pastures 
13,848 101,402 368,411 701,925 

0.553*** 0.582*** 0.594*** 
Wood-pastures 

with records 
7,118 29,900 108,649 207,021 

Wood-pastures 

without records 
6,729 71,516 259,836 495,067 

Model 

abundance 

predictions 

(‘count’ and 

‘zero’ component) 

All wood-

pastures 
11,306 70,284 266,208 511,783 

0.701*** 0.710*** 0.720*** 
Wood-pastures 

with records 
6,909 43,120 163,330 314,008 

Wood-pastures 

without records 
4,397 27,177 102,949 197,931 

 639 

 640 

 641 

 642 

 643 

 644 

 645 
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FIGURES 646 

 647 

Fig 1. Hanging rootograms to visualise the fit of the zero-inflated Poisson (ZIP) and negative binomial (ZINB) 648 

models to the ancient tree abundance data in English wood-pastures. The (square root) expected number of wood-649 

pastures containing a certain ancient tree abundance is represented by the red line, and the observed number of 650 

wood-pastures by the grey bars. Therefore, bars that fall below a count frequency of zero are being under-651 

predicted in a particular count bin, and bars that do not reach a count frequency of zero are being over-predicted 652 

by the model.  653 

 654 

 655 

 656 

 657 

 658 
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 663 

Fig 2. Evaluation of abundance predictions from the zero-inflated Poisson (ZIP) and negative binomial model 664 

(ZINB). Two types of abundance predictions are evaluated: ‘true abundance’ predictions from the ‘count’ 665 

component of the ZI models and ‘model abundance’ predictions from the whole ZI model. Values shown represent 666 

the median, quartiles and range across all 10 cross-validation folds. See Materials and Methods for explanation 667 

of the evaluation metrics. Significance levels are represented by p < 0.05 = *, p < 0.01 = **, p < 0.001 = *** 668 

and were calculated using a two-samples Wilcoxon Rank Sum test.  669 
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 679 

Fig 3. Mean number of ancient trees per wood-pasture across each categorical predictor. Error bars = ± 1 SE. 680 

Significantly different categories are shown using brackets (Dunn’s Test of Multiple Comparisons using Rank 681 

Sums: *** = p < 0.001, ** = p < 0.01, * = p < 0.05). Categories with no brackets associated with one or more 682 

* are significantly different from all other categories.   683 
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