International Journal of Neural Systems, Vol. XX, No. X (2021) 1[–15](#page-11-0) © World Scientific Publishing Company

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

Self-adaptive Particle Swarm Optimization-based Echo State Network for Time Series Prediction

Yu Xue

1. School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China 2. Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China E-mail: xueyu@nuist.edu.cn

Qi Zhang

School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China E-mail: zhangq@nuist.edu.cn

Ferrante Neri[∗]

COL Laboratory, School of Computer Science, University of Nottingham, Nottingham, UK E-mail:ferrante.neri@nottingham.ac.uk

Echo state networks (ESNs), belonging to the family of recurrent neural networks (RNNs), are suitable for addressing complex nonlinear tasks due to their rich dynamic characteristics and easy implementation. The reservoir of the ESN is composed of a large number of sparsely connected neurons with randomly 3 generated weight matrices. How to set the structural parameters of the ESN becomes a difficult problem in ⁴ practical applications. Traditionally, the design of the parameters of the ESN structure is performed man- ⁵ ually. The manual adjustment of the ESN parameters is not convenient since it is an extremely challenging 6 and time consuming task. The present paper proposes an ensemble of five particle swarm optimization $\frac{7}{2}$ (PSO) strategies to design the structure of ESN and then reduce the manual intervention in the design ⁸ process. An adaptive selection mechanism is used for each particle in the evolution to select a strategy ⁹ from the strategy candidate pool for evolution. In addition, leaky integration neurons are used as reser- ¹⁰ voir internal neurons, which are added within the adaptive mechanism for optimization. The root mean 111 squared error (RMSE) is adopted as the evaluation criterion. The experimental results on Mackey-Glass 12 time series benchmark dataset show that the proposed method outperforms other traditional evolutionary methods. Furthermore, experimental results on electrocardiogram dataset show that the proposed 14 method on the ensemble of PSO displays an excellent performance on real-world problems.

Keywords: Time Series Prediction, Particle Swarm Optimization, Self-adaptive, Echo State Network, ECG. ¹⁶

1. Introduction

Nature-inspired computing $12; 58$ $12; 58$ $12; 58$ is an established 18 field of computer science where algorithms are de- ¹⁹ signed by following the inspiration of natural phe- 20 nomena. Some of the most popular sources of in- ²¹ spiration are evolution $6:32$ $6:32$ $6:32$ and biological brains 22 47 . However, there exist other algorithms inspired 23 by gravitation theory 59 , fluid-dynamics 56 , music 24

 57 , spiral phenomena in nature 55 , and cell mem- 25 branes $76, 83$ $76, 83$. These inspired algorithms are used 26 for a number of tasks including for example opti- ²⁷ mization $8; 7$ $8; 7$, computational modelling $45; 68$ $45; 68$, and 28 data science problems $71; 70$ $71; 70$. The present paper proposes a nature-inspired approach with reference to 30 time series. 31

Modeling and forecasting of nonlinear time 32

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

33 series play an important role in many engineer- $_{34}$ ing problems 28 28 28 . For example, time series pre- diction can be used in intelligent fault detection ; 48 ; 51 , weather forecast 18 ; 23 ; 64 , electrical fore- σ cast $\frac{66; 60}{2}$ $\frac{66; 60}{2}$ $\frac{66; 60}{2}$, traffic flow prediction $\frac{49; 61; 81}{2}$ $\frac{49; 61; 81}{2}$, energy $_{\rm 38}$ prediction 21 , civil engineering 24 24 24 , pattern recogni-39 tion $67, 52$ $67, 52$ and medical domain $11, 74, 14$ $11, 74, 14$ $11, 74, 14$ $11, 74, 14$ $11, 74, 14$.

 With the rapid growth of artificial intelligence, 41 artificial neural networks (ANNs) , due to their capability to deal with nonlinear problems, have 43 gradually become important tools for nonlinear ⁴⁴ time series prediction $\overline{53}$ $\overline{53}$ $\overline{53}$; [33](#page-12-11). However, traditional ANNs such as recurrent neural networks (RNNs) ; 75 ; 46 suffer from the problems of vanishing gra- dient and exploding gradient and may not perform well due to problems with the slow convergence speed. Among the various types of ANNs, echo $\frac{1}{20}$ state networks (ESN) $\frac{26}{20}$ $\frac{26}{20}$ $\frac{26}{20}$ are proposed. Unlike the traditional RNNs, the ESN only needs to change the weights of the output layer during the train- ing phase. The weights between the reservoir (hid- den layer) and the input layer are randomly gen- erated and not altered during the network training process. Thus, the training of an ESN is relatively simple and the calculation cost is small in time and space. Notwithstanding the simplicity in training ESNs can have a performance comparable to that of RNNs. This feature makes ESN an attractive alter- native to RNNs for some specific application prob-lems.

 Many researchers have successfully applied ESNs to industrial problems and have achieved ⁶⁵ some promising results in time series prediction. ϵ Jaeger 27 27 27 applied ESN in wireless communication, ⁶⁷ and the signal error rate is reduced by two orders ⁶⁸ of magnitude. Zhang *et al.* ^{[78](#page-13-18)} proposed a method for data-driven artificial intelligence in fault diag- π nosis based on the ESN. Ribeiro *et al.* $\frac{50}{2}$ $\frac{50}{2}$ $\frac{50}{2}$ proposed an approach for water flow forecast of hydropower plant which uses extreme learning machines and ⁷³ ESN. Alizamir *et al*. $\overline{5}$ $\overline{5}$ $\overline{5}$ proposed a deep ESN model for soil temperature prediction, and the experimen- tal results show that the algorithm is superior to the traditional three machine learning models men-tioned in their literature.

 Although ESNs have achieved a considerable success in time series prediction, the fact that the reservoir is randomly initialized causes a certain

81 noise in the ESN performance and may affect it. In 82 order to address this limitation, in the past years, 83 several studies proposed modifications to the ESN s⁴ structure. Georg *et al.* ^{[15](#page-11-11)} proposed an ESN with a simple and yet effective reservoir topology, the result shows that a simple structure of ESN can achieve comparable results to classic ESN. Ma et al. introduced the idea of deep learning into ESN 89 and added convolution and pooling operations for classification problem, the idea is to combine the ⁹¹ advantages of both technologies. Hu *et al.* 22 22 22 pro- posed an ensemble of Bayesian deep ESN models to optimize the parameters of ESN, this approach 94 exhibits a better performance when dealing with ⁹⁵ more complex time series datasets. Han *et al.* 19 proposed a Laplacian ESN, which overcomes the ill-97 posed problem due to the small amount of training data and obtains the output weights of low dimen-sion.

 Another approach, which became popular with the diffusion of computational intelligence, con- sists in optimizing the parameters of the ESN. F_{103} For example, Han *et al.* $\frac{41}{100}$ $\frac{41}{100}$ $\frac{41}{100}$ proposed a modi- fied biogeography-based method to perform the se- lection of feature subset and the optimization of model parameters. Experimental results on rele- vant datasets indicate that the algorithm is supe- rior to other traditional evolutionary algorithms, es- pecially in the prediction of multivariable time series. Zhong *et al.* $\frac{82}{3}$ $\frac{82}{3}$ $\frac{82}{3}$ adopted genetic algorithms to optimize the double-reservoir ESN, and the exper-112 imental results reveal that the accuracy and stabil- ity are excellent in time series datasets compared to other models. Chouikhi *et al.* adopted partithe cle swarm optimization (PSO) to pre-train some fixed weights which are selected in the ESN. Li et al. 34 introduced an approach to pre-train a grow- ing ESN with multiple sub-reservoirs by optimizing singular values, based on PSO and singular value decomposition. Both these studies based on PSO 121 displayed an excellent ESN performance with re- spect to those based on other popular metaheuris- tics. However, for some specific problems, a single strategy may not be sufficient, so it is necessary to develop a mechanism that can automatically adapt to the needs of the application task.

 Inspired by this observation, in this paper we propose an ESN based on self-adaptive parti-

cle swarm optimization (SaPSO-ESN) for time se- ¹²⁹ ries prediction. An adaptive selection mechanism is 130 used for each particle in the evolution to select a 131 strategy from the strategy candidate pool for evo-
132 lution. In addition, leaky integration neurons are 133 used as reservoir internal neurons, which are added 134 within the adaptive mechanism for optimization. 135 Each individual is assigned an appropriate PSO 136 strategy to make the individual develop towards a 137 lower fitness value. Thus, the convergence speed of 138 the algorithm is accelerated, the optimal solution is 139 found more accurately, and the prediction accuracy ¹⁴⁰ is improved. The optimized parameters are then 141 brought into ESN to boot up the network. The root 142 mean squared error (RMSE) is adopted as evalua- ¹⁴³ tion criterion. To verify the validity of the proposed $_{144}$ algorithm, we performed experiments on Mackey- ¹⁴⁵ Glass time series benchmark dataset $\frac{40}{1}$ $\frac{40}{1}$ $\frac{40}{1}$ and electrocardiogram (ECG) time series dataset.

The reminder of this paper is organized as fol- $_{148}$ lows. Section [2](#page-2-0) elaborates the background knowledge about time series prediction, PSO and ESN. 150 A detailed description of our proposed method 151 SaPSO-ESN is given in Section [3.](#page-4-0) In Section [4,](#page-7-0) 152 the proposed algorithm is tested on Mackey-Glass 153 benchmark dataset and ECG dataset. Finally, Sec- ¹⁵⁴ tion [5](#page-10-0) concludes this paper and future research 155 work is presented.

2. Background 157

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

Time series is a series of data points indexed in time 158 order. Its units can be seconds, minutes, hours, days, ¹⁵⁹ months, years, etc. By analyzing these data to understand past trends and predict future trends. Time 161 series prediction model is mainly based on the ex-
162 isting time series data to make short-term forecasts 163 for the future. This is a kind of complex predictive $_{164}$ modeling problem which depends on the past time 165 sequence. Prediction models can be roughly divided 166 into two categories, one is the traditional statistical- ¹⁶⁷ based learning method, the other is the more popu- ¹⁶⁸ lar machine learning method in recent years. Time 169 series prediction is widely used in stock forecast, 170 weather forecast, agricultural forecast, traffic flow 171 forecast and other fields. Due to the simple and effi- ¹⁷² cient nature, ESN is increasingly used in time series 173 prediction recently.

2.1. *Echo State Network* 175

ESN is a three-layer recurrent neural network con- ¹⁷⁶ sists of three parts: input layer, reservoir and output 177 layer. Each layer is connected to the other layers by 178 neurons. Each connection has a weight value that 179 forms the weight connection matrix. The neurons in 180 the reservoir are randomly sparsely loop connected, 181 and the structure of ESN is given in Fig. [1.](#page-2-1) $1.$

Fig. 1. Structure of a typical ESN

Assuming that ESN with K input neurons, N_{185} reservoir neurons, and L output neurons, then at 186 time *n*, the input $u(n)$, the state of the reservoir $x(n)$ 187 and the output $y(n)$ are shown in the below equa $tions.$ 189

$$
u(n) = [u_1(n), u_2(n), ..., u_K(n)]^T
$$
 (1)

191

$$
x(n) = [x_1(n), x_2(n), ..., x_N(n)]^T
$$
 (2) 192

193

$$
y(n) = [y_1(n), y_2(n), ..., y_L(n)]^T
$$
 (3) 194

Then at time $(n + 1)$, the ESN reservoir state can be 195 updated by Eq. (4) and the output equation is rep- 196 resented as Eq. (5) :

$$
x(n + 1) = f(W^{in}u(n + 1) + Wx(n))
$$
 (4)

199

$$
y(n+1) = f^{out}(W^{out}x(n+1))
$$
 (5)

where W^{in} and W represent the weight matrix of 201 the input layer and the reservoir, respectively. W^{out} 202 is the weight matrix of the output layer. f and f^{out} 203 are the activation functions of the reservoir and the 204 output layer, respectively. In general, the activation ²⁰⁵ function f of the reservoir is a nonlinear function, 206

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

207 such as tanh or sigmoid. In this paper, we adopt the $tanh$ as the activation function for the reservoir. f^{out} 208 209 generally selects the identity function, so the Eq. (5) $_{210}$ can be rephrased as Eq. [\(6\)](#page-3-0).

$$
y(n+1) = W^{out}x(n+1)
$$
 (6)

212 After ESN initialization, only the weights from ²¹³ reservoir to output layer need to be trained by data, ²¹⁴ while the weights from input layer to reservoir and 215 the weights in the reservoir remain unchanged dur-²¹⁶ ing the training process. Therefore, the process of $_{217}$ solving W^{out} is actually a linear regression process 218 according to Eq. [\(6\)](#page-3-0). When W^{out} is solved, the pre-219 dicted value is output according to Eq. (4) and (6) .

²²⁰ The performance of the ESN would be better ²²¹ when the reservoir neurons adopt the leaky integra-₂₂₂ tor neurons 37 . In this paper, reservoir neurons with ²²³ leaky integrator are used, and the state of reservoir 224 can be updated by Eq. [\(7\)](#page-3-1),

$$
x(n+1) = (1-a)x(n) + af(W^{in}u(n+1) + Wx(n))
$$
\n⁽⁷⁾

226 where a is the leaking rate, it can be regarded as the ²²⁷ speed of the reservoir update dynamics discretized 228 in time

 With the purpose of eliminating the impact of the primary state of the reservoir on the net- work, the previous Q samples were discarded. Q is the number of discarded samples in the training 233 set. Starting from $Q + 1$ sample, the correspond- ing internal state matrix M was collected, and the pseudo-inverse method or ridge regression method 236 was used to solve W^{out} . Ridge regression method is $_{237}$ adopted in this paper, Y^{target} is the target output, M is the internal state matrix of ESN, and the solution formulas are shown as follows:

$$
Y^{target} = W^{out}M \tag{8}
$$

241

$$
W^{out} = Y^{target} M^T (M M^T + \lambda I)^{-1}
$$
 (9)

243 where λ is the regularization coefficient in the ridge ²⁴⁴ regression, and *I* is the unit matrix. When W^{out} is ²⁴⁵ trained, the new data will be input into the ESN. Af-²⁴⁶ ter calculation, ESN output the corresponding predicted data.

²⁴⁸ The core of ESN is the dynamic reservoir, and ²⁴⁹ the performance of the reservoir depends on certain parameters, namely size of reservoir N, spectral ra- dius ρ , sparsity of the reservoir SR , and input scal- ing IS. For the reservoir with leaky integrator neu- rons, the leaking rate a also affect ESN performance. Some brief descriptions of these parameters are in-troduced below:

 1) Size of Reservoir (N): It is the size of neurons in the reservoir. A large number of neurons map the input data to the high-dimensional space, and non-linear fit the expected output.

 *2) Spectral Radius (*ρ*):* The spectral radius is the maximum value of the eigenvalue absolute value of the reservoir weight matrix W. ESN exhibits echo 263 state property as long as the ρ is at the range of [0, 1].

²⁶⁴ *3) Sparsity of the Reservoir (SR):* The reservoir ²⁶⁵ sparsity is the ratio of interconnected neurons to the ²⁶⁶ total number of neurons in the reservoir.

²⁶⁷ *4) Input Scaling (IS):* The scaling factor is ²⁶⁸ to scale the input data prior to injection into the 269 reservoir. For W^{in} with different distributions, we 270 should adopt different IS, it usually in the range of 271 [0, 1].

 *5) Leaking Rate (*a*):* The leaking rate (a) of the leaking neurons in the reservoir can be viewed as the velocity of the reservoir update. The smaller the a, the less dynamic the reservoir becomes, which could improve the short-term memory of the ESN.

²⁷⁷ **2.2.** *Particle Swarm Optimization*

 PSO is a global stochastic search algorithm $\frac{6}{278}$ $\frac{6}{278}$ $\frac{6}{278}$ based ²⁷⁹ on swarm intelligence proposed by Kennedy and **Eberhart** 30 , which is simulates the migration and ²⁸¹ clustering behaviors of birds in the foraging process ²⁸² and has been successfully applied in a number of ²⁸³ cases $20; 25$ $20; 25$ $20; 25$. For a population of ps particles, each 284 particle in the search space has a position (x_i) and a 285 velocity (v_i) . The velocity of the particle is updated 286 according to its historical optimal position ($P best$) ²⁸⁷ and the historical optimal position of the population 288 (*Gbest*). In the iterative process, the velocity and po-²⁸⁹ sition of the particle are constantly adjusted until ²⁹⁰ the preset conditions are satisfied. The update for-291 mula of the d-dimensional of the *i*-th particle at $t+1$ ²⁹² iteration are as follows:

$$
v_{i,d}^{t+1} = v_{i,d}^t + c_1 * r_1 * (Pbest_{i,d} - x_{i,d}^t) + c_2 * r_2 * (Gbest_d - x_{i,d}^t)
$$

(10)

$$
x_{i,d}^{t+1} = x_{i,d}^t + v_{i,d}^{t+1} \tag{11}
$$

where c_1 and c_2 are acceleration constants, with c_1 is 296 the self-learning factor and c_2 is the group learning 297 factor for each particle. And r_1 and r_2 are two random numbers distributed over [0, 1], d is the dimen- 299 sion of particles, t is the number of iterations and $\frac{300}{200}$ i denotes the current particle. The main framework 301 of PSO is shown in the Fig. 2.302 2.302

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

	303
Input: Population size ps ; number of fitness evaluations nfe ; current number of fitness evaluation cfe ;	
Output: Position of the approximate global optima <i>Gbest</i> ;	
1: Randomly initialize ps particles, including position $X_i(0)$ and veloc-	
ity $V_i(0)$;	
2: Evaluate the population and set <i>Pbest</i> and <i>Gbest</i> ;	
3: while $cfe < nfe$ do	
4: for $i = 1$ to ps do	
5: Update the velocity by Eq. (10);	
6: Update the position by Eq. (11) ;	
7: Calculate its fitness value of particle $i: f(X_i)$;	
8: if X_i is better than <i>Pbest</i> then	
9: $Pbest = X_i$	
10: if X_i is better than <i>Gbest</i> then	
11: $Gbest = X_i$	
12: end if $13:$ end if	
14: $i = i + 1$;	
$15:$ end for	
16: $cfe = cfe + 1;$	
$17:$ end while	
18: return $Gbest$	304
	305

Fig. 2. Pseudo code of the PSO

3. SaPSO-ESN for Parameter Optimization 306

ESN is characterized by simple training and low 307 computational complexity. However, the setting of ³⁰⁸ reservoir parameters will directly affect the per- ³⁰⁹ formance of ESN. Manual adjustment of parame- ³¹⁰ ters is both time-consuming and does not guaran-
311 tee that the selected parameters are optimal. Adap-
312 tive mechanism has been successfully applied in the 313 field of neural network $\frac{72}{73}$ $\frac{72}{73}$ $\frac{72}{73}$. Therefore, in this sec- $\frac{314}{7}$ tion, we come up with a SaPSO-ESN model for time 315 series prediction, in which an ensemble of PSO is 316 adopted to optimize parameters of ESN. Our goal 317 is to reduce the gap between the target value and ³¹⁸ the predicted value. Different from traditional PSO, 319 five strategies are adopted to form the strategy can- ³²⁰ didate pool, which can further enhance the ability 321 of the model to adapt to different problems. 322

The use of adaptively coordinated multiple 323 search operators/algorithms is a popular strategy in 324 metaheuristic optimization and machine learning. ³²⁵ This idea is present in frameworks such as hyper- ³²⁶ heuristics 9 , memetic algorithms 44 , ensemble al- 327 gorithms $80; 4; 63$ $80; 4; 63$ $80; 4; 63$ $80; 4; 63$. Ensemble algorithms have been 328 successfully implemented in multiple and diverse 329 fields such as traffic speed forecasting $\frac{79}{3}$, rust diag- 330 nosis of steel structures 69 , and indoor environmen- 331 tal quality 31 .

When multiple algorithms are present in a 333 framework, a coordination scheme is necessary. To 334 ensure that the coordination is performed automat-
335 ically at run time, a popular approach is the employment of a self-adaptation logic. In literature 337 many examples are present in both optimization 338 [2](#page-11-18); [3](#page-11-19); [43](#page-12-25); [42](#page-12-26) and machine learning 62 ; [10](#page-11-20); 77

3.1. *Five PSO Implementation Strategies* 340

There are many different PSO strategies in related 341 research, and the general structure of these differ- ³⁴² ent strategies is similar. They use different formu- ³⁴³ las and record the experience information to gen- ³⁴⁴ erate new populations. By examining the study of 345 PSO strategies in the existing literature 72 72 72 65 , we 346 selected the following five strategies for our algo-
 347 rithm, which have been proved to have good perfor- ³⁴⁸ mance in the corresponding literature. Five strate-

₃₄₉ gies are described as follows. 350

3.1.1. *PSO with inertia weight* 351

The original PSO strategies use the position of $P best$ and $Gbest$ to update the velocity and position of the particle. In order to enhance the local search capabil- 354 ity of the PSO, literature 54 proposed a PSO strategy with inertial weight (PSO-w), where w is the inertial weight, usually taking values between 0 and 1. The updating equation is as follows:

$$
v_{i,d}^{t+1} = w * v_{i,d}^t + m_1 * (Pbest_{i,d} - x_{i,d}^t) + m_2 * (Gbest_d - x_{i,d}^t)
$$
\n(12)

where m_1 represents $c_1 * r_1$, m_2 represents $c_2 * r_2$. 360

3.1.2. *PSO with differential idea* 361

Wang *et al.* 65 proposed an update PSO strategy 362 based on the differential idea (PSO-d). Differen- ³⁶³ tial evolution (DE) algorithm is also an efficient ³⁶⁴ global optimization algorithm. PSO-d avoids grad- 365 ual changes in velocity, but completely updates the 366 velocity based on differential information. The updating equations are described as follows:

$$
v_{i,d}^{t+1} = c * (x_{a,d}^t - x_{b,d}^t) + c * (Pbest_{i,d} - x_{i,d}^t) \tag{13}
$$

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

370

$$
c = N(0.5, 0.2) \tag{14}
$$

³⁷² where $x_{a,d}^t$ and $x_{b,d}^t$ are two random particles in the 373 t-th generation population. $N(0.5, 0.2)$ represents a ³⁷⁴ random number that satisfies a Gaussian distribu-³⁷⁵ tion.

³⁷⁶ 3.1.3. *Local estimation of distribution*

377 In order to make better performance for PSO, Wang $_{378}$ *et al.* $\overline{65}$ $\overline{65}$ $\overline{65}$ introduced a PSO strategy with Gaussian 379 and Cauchy distributions (PSO-l). The equations are ³⁸⁰ expressed as follows:

$$
c = \frac{(D-1)N(0,1)}{D} + \frac{C(0,1)}{D} \tag{15}
$$

$$
z = \sqrt{(Pbest_{i,d} - m_{i,d}^t)^2 + (x_{i,d}^t - m_{i,d}^t)^2 + (x_{k,d}^t - m_{i,d}^t)^2}
$$
\n(16)

383

$$
v_{i,d}^{t+1} = (m_{i,d}^t - x_{i,d}^t) + \frac{c}{\sqrt{3}}z \tag{17}
$$

385 where $N(0, 1)$ and $C(0, 1)$ are values generated ran-³⁸⁶ domly from the Gaussian and Cauchy distributions, $x_{k,d}^t$ is a random particle choose from the popula- $\sigma_{\rm 388} \quad$ tion, and $m_{i,d}^t$ is the average of the best 20% of par-³⁸⁹ ticles in the population.

³⁹⁰ 3.1.4. *Comprehensive learning PSO*

 $\frac{391}{2}$ Liang *et al.* $\frac{35}{2}$ $\frac{35}{2}$ $\frac{35}{2}$ proposed a deformation of the PSO, ³⁹² called comprehensive learning particle swarm op-³⁹³ timizer (CLPSO). Unlike the traditional PSO algo-394 rithms that only use the own Pbest and Gbest of the 395 particle as directions to guide the flight of the parti- $\frac{396}{2}$ cle, the *Pbests* of all particles in the proposed algo-397 rithm can potentially be the guiding direction of the 398 particles. The equation is expressed as follows:

$$
v_{i,d}^{t+1} = w * v_{i,d}^t + c * rand_{i,d} * (Pbest_{fi(d)} - x_{i,d}^t)
$$
 (18)

400 where $Pbest_{f_i(d)}$ can be the value of Pbest for any ⁴⁰¹ particle.

⁴⁰² 3.1.5. *An improved CLPSO*

 $\frac{403}{403}$ Wang *et al.* $\frac{65}{403}$ $\frac{65}{403}$ $\frac{65}{403}$ improved CLPSO, and an algorithm ⁴⁰⁴ called PSO-CL-pbest was proposed. The equations ⁴⁰⁵ are expressed as follows:

$$
v_{i,d}^{t+1} = w * v_{i,d}^t + q * (Pbest_{f_i(d)} - x_{i,d}^t + Pbest_{i,d} - x_{i,d}^t)
$$

(19)

$$
407
$$

 417

$$
q = 0.5 * c * randi \tag{20}
$$

 where $rand_i$ represents an identical random num- ber for update the velocity vector. That is to say, for each dimension of the particle, the same random $_{412}$ number $rand_i$ is used to update the velocity.

 These strategies have different advantages, and the important parameters setting for the five PSO strategies POS-w, PSO-d, PSO-l, CLPSO and PSO-CL-pbest are shown in the Table [1.](#page-5-0)

Table 1. Parameters settings for the five PSO strategies

Algorithm	Parameters Setting
$PSO-w$	$w = 0.9 - \frac{0.5 * cfe}{nfe}$, $c_1 = c_2 = 1.49618$
PSO-d	$c = N(0.5, 0.2)$
PSO-1	$c = \frac{(D-1)N(0,1)}{D} + \frac{C(0,1)}{D}$
CLPSO	$w = 0.9 - \frac{0.5 * cfe}{nfe}$, $c = 1.49445$
PSO-CL-pbest	$w = 0.9 - \frac{0.5 * cfe}{nfe}$, $c = 1.49445$

⁴¹⁸ **3.2.** *Strategies Self-adaptive Mechanism*

 In traditional PSO algorithms, there is only one evo-420 lutionary strategy, meaning that the same strategy is used for the whole population. However, in prac- tical application, different problems have different characteristics, which leads to poor generalization of using only one strategy. In this paper, an adap- tive method is used to select strategies in the strat- egy candidate pool during the population evolution ⁴²⁷ process.

⁴²⁸ Assuming that the number of strategies in the 429 candidate pool is P, at the beginning of the al-430 gorithm, the probability of each strategy being se-431 lected in the strategy candidate pool is the same, 432 which is $1/P$, the initialized strategy probability 433 matrix (Pro) is shown in the Eq. (21) .

$$
Pro = (1/P, 1/P, ..., 1/P)_{1*P}
$$
 (21)

435 We set a probability update parameter called LP , 436 which means that the probability matrix Pro is up- 437 dated once after evolution of LP generations. Ac-⁴³⁸ cording to the relevant theoretical analysis and ex-439 perimental results, LP is set to 5 in this paper. Sup-440 pose the j -th strategy is selected for the i -th particle ⁴⁴¹ (*x_i*), if the newly generated particle (x_i^{new}) is better

 $\overline{A}A3$

than the x_i , the evolution of x_i with the *j*-th strategy is successful. If the x_i^{new} is worse than the x_i the particle is failed to evolve into the next genera- ⁴⁴⁴ tion. In the LP generations, the number of particles 445 which successfully evolved into the next generation 446 through the *m*-th strategy is denoted as NS_m , and 447 the number of particles which failed to evolve into 448 the next generation is denoted as NF_m . After LP iterations, the probability of the m-th strategy S_m is 450 updated as follows: 451

 \overline{Q} , \overline{Q} ,

$$
S_m = \frac{NS_m}{NS_m + NF_m} + \varepsilon \tag{22}
$$

To avoid zero probability for the strategy, we 453 set a very small number $\varepsilon = 0.001$, so that we can 454 avoid the situation where $S = 0$. In order to ensure 455 that the sum of the probabilities of all strategies be- ⁴⁵⁶ ing selected in the strategy pool is 1, we need to nor- 457 malize all the S obtained, so as to obtain the proba- 458 bility of the selection of the m-th strategy. The final 459 probability of the *m*-th strategy is shown in the Eq. $_{460}$ (23) . 461

$$
P_m = \frac{S_m}{\sum_{i=1}^P S_i} \tag{23}
$$

According to probability matrices Pro after LP 463 generation, the roulette wheel method 16 is used to 464 select the strategy for particles in population. 465

3.3. *Optimized Parameters* ⁴⁶⁶

There are some parameters in ESN that impinge 467 on the network performance. The performance of ⁴⁶⁸ the ESN would be better when the reservoir neurons adopt the leaky integrator neurons $37'$. The parameter of leaky integrator neurons is added to the 471 adaptive mechanism. The method in this paper op- 472 timizes five parameters, which are size of reservoir 473 (N), spectral radius (ρ), sparsity of the reservoir 474 (SR) , input scaling (IS) , and leaking rate (a) . These 475 parameters are treated as a particle with five dimen- ⁴⁷⁶ sions. The particles of the candidate solution can be 477 expressed as Eq. (24) : 478

$$
x_i = [N, \rho, SR, IS, a] \tag{24}
$$

where $i = 1, 2, ..., ps.$ 480

3.4. *The Framework of SaPSO-ESN* 481

In this paper, the proposed SaPSO-ESN algorithm, ⁴⁸² which integrates five pso strategies to search the parameters of ESN, is used to practice sequence pre- ⁴⁸⁴ diction research, and the pseudo code of SaPSO- ⁴⁸⁵ ESN is shown in the Fig. 3.486 3.486

Fig. 3. Pseudo code of the SaPSO-ESN

Firstly, the ESN is encoded into a particle and 490 each particle contains five dimensions, which are 491 [N, ρ, SR, IS, a]. Then initializing the population, 492 and the position (x) and velocity (v) of the population in PSO are randomly initialized. The x is 494 in the interval $[x_{min}, x_{max}]$ and v is in the interval $[-v_{max}, v_{max}]$. Before the stop condition is satis- 496 fied, a selected strategy is returned to each particle 497 in the population according to the strategy probability matrix Pro and roulette wheel method dur- 499 ing the iteration process. According to the selected 500 strategy, population evolve into the next genera- 501 tion. Then create ESNs following the particles in the 502 evolved population, and each individual in popu- $\frac{1}{503}$ lation is evaluated and the corresponding fitness 504 value is calculated according to the evaluation cri- 505 terion. Update the particle of PSO and the records 506 of the success and failure of the evolutionary pro- ⁵⁰⁷ cess (NS_m and NF_m) according to the fitness val-

 ues. The strategy selection matrix Pro is updated when the LP generations of particles evolve follow- ing NS_m and NF_m . Finally, output the optimal in- dividual Gbest and the corresponding results. This output Gbest is the individual that records the opti- mal ESN searched for. The flowchart of SaPSO-ESN is shown in the Fig. [4.](#page-7-1)

Fig. 4. Flowchart of SaPSO-ESN

4. Experiment

 In this section, we evaluate SaPSO-ESN in the benchmark chaotic time series and an ECG datasets. To test the effectiveness of the proposed method in this paper, we select some relevant algorithms for comparison, such as canonical ESN, PSO and DE. In order to demonstrate the effectiveness of the pro- posed self-adaptive mechanism, we add the com- parison results between SaPSO-ESN and the algo- rithm where five PSO strategies are selected ran-domly (named RPSO-ESN) in the evolution pro cess. Moreover, SaPSO-ESN is also compared with $_{529}$ MTLBO 39 proposed in recent years.

 For the traditional ESN, we initialize 30 ESN networks randomly to take the average value as a comparison. To guarantee a fair comparison, we set the number of function evaluations (NFE) as the stopping criterion for every algorithm. In this pa- per, we set the population size to 100, the number of iterations is 100, which means the NFE is 10000. The 537 reservoir size N is set to [20, 100], spectral radius $ρ$ 538 is set to [0.1, 1], sparsity of the reservoir SR is set 539 to [0.01,0.5], input scaling IS is set to $[0.001, 1]$, and leaking rate a is set to [0.1, 1]. In order to eliminate randomness, our experiment is repeated 30 times to take the average.

4.1. *Performance Evaluation Index*

 In this paper, we use RMSE to evaluate the perfor- mance of the algorithm. The related formula is ex-pressed in Eq. [\(25\)](#page-7-2).

$$
RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (y^{target}(t) - y(t))^2}
$$
 (25)

 \mathbf{A} s⁴⁸ where $y^{target}(t)$ and $y(t)$ represent target values and $_{549}$ network output values at time t, respectively. *n* rep-resents the size of sample points in the test set.

4.2. *Mackey-Glass Time Series*

 $_{552}$ Mackey-Glass chaotic system (MGS) $\frac{40}{10}$ $\frac{40}{10}$ $\frac{40}{10}$ is a kind of typical chaotic system, and the model is described by the following equation:

$$
\frac{dy(t)}{d(t)} = \frac{ay(t-\tau)}{1+y^c(t-\tau)} - by(t) \tag{26}
$$

 where the value of a, b, c are set to 0.2, 0.1, and 10 in many cases. MGS exhibits some sort of period-558 icity (τ < 16.8) and chaos (τ > 16.8) depends on 559 the value of τ . The most used τ in the literature are 560 $\tau = 17$ and $\tau = 30$.

 In the experimental results of the MGS, we set $\tau = 17$ and $\tau = 30$, in other words, the MGS exhibits chaotic characteristics at these situations. We use the Eq. [\(26\)](#page-7-3) to activate 1000 sample points, of which 500 samples are used as the training set of ESN and 500 samples make up the test set. A graph of MGS with $\tau = 17$ is given in Fig. [5,](#page-8-0) and $\tau = 30$ is given in Fig. [6.](#page-8-1) To offset the effect of the initial state reservoir on

the results, we discarded the first 50 input data to 569 $clean the reservoir.$ 570

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

MGS-17 is less than MGS-30, which indicates that 589 the prediction task is more difficult for MGS-30. $\frac{590}{200}$

Table 2. Parameters of ESN selected by SaPSO-ESN on 592
MGS MGS 593 Parameters $\tau = 17$ $\tau = 30$ Size of reservoir 97 84 Spectral radius 0.9912 0.8132 Sparsity of reservoir 0.2828 0.3602 Input scaling 0.6343 0.3213

Fig. 5. Mackey-Glass time series ($\tau = 17$)

Fig. 6. Mackey-Glass time series ($\tau = 30$)

Fig. [7](#page-8-2) and Fig. [8](#page-9-0) show the gap between the target signal and the network outputs signal in MGS 574 time series. As the data is small, it can be seen from 575 the figure that the predicted value is close to the tar-get value. Table [2](#page-8-3) gives the best parameters of ESN 577 selected by SaPSO-ESN for the MGS time series. Ta- 578 ble [3](#page-8-4) presents the prediction results of MGS time se- 579 ries in different algorithms, with the evaluation cri- ⁵⁸⁰ terion RMSE. It can be seen from the table 3 that the 581 RMSE of the three methods is smaller than that of $\frac{582}{2}$ the traditional ESN, and the RMSE of our proposed 583 method is the smallest. The RMSE of SaPSO-ESN is 584 smaller than that of RPSO-ESN in the MGS, proving 585 that our adaptive mechanism is effective. DE-ESN 586 performs better than PSO-ESN, and MTLBO-ESN 587 performs almost the same as DE-ESN. The RMSE of 588

Leaking rate 0.9913 0.9999

Table 3. The prediction results on MGS (RMSE)

571

572

Fig. 7. The target signals VS SaPSO-ESN generated signals (Mackey-Glass time series with $\tau = 17$)

Fig. [9](#page-9-1) and [10](#page-9-2) are the fitness curves of differ- ⁵⁹⁶ ent models. Compared with the single strategy PSO 597 algorithm PSO-ESN, in Fig. 9 , SaPSO-ESN has a $_{598}$ slower convergence speed but better prediction re- ⁵⁹⁹ sult. In Fig. 10 , the results are slightly different. 600 As SaPSO-ESN not only has the same convergence 601 speed as PSO-ESN, but also has the least predic- 602 tion accuracy. MTLBO-ESN converges fastest as is $\frac{603}{200}$

594

595

 \overline{Q} and \overline{Q} and

Yu Xue et al.

604 shown in Fig. [10.](#page-9-2) In other words, for more complex tasks, SaPSO-ESN may have better performance.

Fig. 8. The target signals VS SaPSO-ESN generated signals (Mackey-Glass time series with $\tau = 30$)

Fig. 9. Fitness curves of different models (Mackey-Glass time series with $\tau = 17$)

Fig. 10. Fitness curves of different models (Mackey-

Glass time series with $\tau = 30$)

4.3. *ECG Datasets*

 The human body is a mixed whole containing a large number of linear and nonlinear systems, and ⁶¹² the heart is one of the most complex nonlinear sys- tems. Many studies have shown that the physiology of the heart is neither periodic nor completely ran- dom, but chaotic. ECG signals are composed of a se- ries of characteristic waves, which contain a wealth 617 of pathological knowledge. ECG signals can be used to detect arrhythmias, myocardial infarction, abnor- mal heart rate, electrolyte disturbance, heart failure and other conditions. If we can predict the move- ment trend of ECG, we can predict the disease in advance and achieve early intervention treatment, and avoid many tragedies. With the proliferation of wearable devices, ECG signals have become easier to gather, so this gives us a lot of space for future research.

627 The ECG datasets used in this paper is collected by a hospital sleep monitoring center, with a total of 10 channels of data, and ECG signals are also col- lected. The sampling rate is 512 Hz, which means that there are 512 sample points in one second. The 632 ECG signal is shown in Fig. [11](#page-10-1) with 1000 sample points, 500 samples for training, 500 samples for testing, and 50 samples for washing the reservoir. In order to eliminate the randomness, we repeat the test 30 times, and then take the average value as the test result. Table [4](#page-9-3) gives the best parameters of ESN selected by SaPSO-ESN for the ECG datasets. Table [5](#page-9-4) gives the one-step prediction results of different models on ECG datasets. So the model proposed in this paper is better than other models of comparison in RMSE.

Table 5. The prediction results on ECG 647 $datasets$ 648

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

Fig. 11. 1000 samples of ECG datasets

Fig. [12](#page-10-2) shows the predictive curve of SaPSO- 650 ESN to EEG datasets, and Fig. 13 shows the error 651 curves of different algorithms. In order to make the 652 contrast more obvious, we enlarge the key parts in 653 Fig. [12.](#page-10-2) As can be seen in the figure, the prediction 654 effect will get worse when it is at the boundary point 655 of the curve. As is shown in Fig. 12 , SaPSO-ESN in 656 this paper can fit ECG data well. Moreover, from 657 Fig. 13 , all the three algorithms converged before 658 50 generations. The convergence speed of SaPSO- ⁶⁵⁹ ESN is the fastest, about 17 generations, while that 660 of DE-ESN is the slowest, about 30 generations, and 661 that of PSO-ESN is between the two method, about 662 25 generations. Although the convergence speed of $\frac{663}{663}$ PSO-ESN is faster than that of DE-ESN, the predic- 664 tion performance is not as good as that of DE-ESN. 665 It also shows that the SaPSO-ESN proposed by us 666 has better convergence speed and prediction perfor- 667 mance in complex real applications.

Fig. 12. The prediction curve of SaPSO-ESN on ECG datasets

Fig. 13. Fitness curves of different models on ECG datasets

5. Conclusion 671

649

In this paper, we use an adaptive PSO-based algo- ⁶⁷² rithm to dynamically adjust the parameters of ESN 673 for different time series prediction application, so 674 as to improve the prediction accuracy and enhance 675 the generalization. There are two main improve- ⁶⁷⁶ ments in our algorithm. One is that we adopt the 677 leaky integrator neurons with adaptive parameters 678 in the ESN, and the leaking rate changes accord- ⁶⁷⁹ ing to the training process. The other is the adap- 680 tive PSO strategy. Experimental results on Mackey- 681 Glass time series and ECG signals show that the $\frac{682}{2}$ proposed algorithm has considerable improvement 683 and has a fast convergence rate. For future work, 684 we intend to mix different evolutionary computing 685 methods on the basis of adaptive frameworks, not 686 just PSO. This work can also be used in the pre- 687

670

 $_{ccc}$

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

 diction of electroencephalogram and electromyog- raphy, which play an key role in the prevention of diseases and reducing the labor intensity of medical workers.

Acknowledgment

 This work was partially supported by the National Natural Science Foundation of China (61876089, 61876185, 61902281), the Opening Project of Jiangsu Key Laboratory of Data Science and Smart Software (No.2019DS301), the Natural Science Foundation of Jiangsu Province (BK20141005), the Natural Science Foundation of the Jiangsu Higher Education Institu- tions of China (14KJB520025), and the Priority Aca- demic Program Development of Jiangsu Higher Ed-ucation Institutions.

References

- 1. *Proceedings of the IEEE Congress on Evolutionary Com- putation, CEC 2013, Cancun, Mexico, June 20-23, 2013* (IEEE, 2013).
- 2. H. Adeli and S. Hung, An adaptive conjugate gradi- ent learning algorithm for efficient training of neu- ral networks, *Applied Mathematics and Computation* **62** (April 1994) 81–102.
- 3. H. Adeli and A. Saleh, Integrated structural/control optimization of large adaptive/smart structures, *In- ternational Journal of Solids and Structures* **35** (October 1998) 3815–3830.
- 4. K. M. R. Alam, N. Siddique and H. Adeli, A dy- namic ensemble learning algorithm for neural net- works, *Neural Computing and Applications* **32** (June 2020) 8675–8690.
- 5. M. Alizamir, S. Kim, M. Zounemat-Kermani, S. Hed- dam, A. H. Shahrabadi and B. Gharabaghi, Modelling daily soil temperature by hydro-meteorological data at different depths using a novel data-intelligence model: deep echo state network model, *Artificial In-telligence Review* (2020) 1–28.
- 6. C. Blum, R. Chiong, M. Clerc, K. A. D. Jong, Z. Michalewicz, F. Neri and T. Weise, Evolutionary optimization, *Variants of Evolutionary Algorithms for Real-World Applications*, eds. R. Chiong, T. Weise and Z. Michalewicz (Springer, 2012), pp. 1–29.
- 7. F. Caraffini, G. Iacca, F. Neri, L. Picinali and E. Mininno, A CMA-ES super-fit scheme for the re- sampled inheritance search, *Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013, Can- cun, Mexico, June 20-23, 2013*, (IEEE, 2013), pp. 1123– 1130.
- 8. F. Caraffini, F. Neri, J. Cheng, G. Zhang, L. Pici- nali, G. Iacca and E. Mininno, Super-fit multicriteria adaptive differential evolution, *Proceedings of the IEEE*

 Congress on Evolutionary Computation, CEC 2013, Can- cun, Mexico, June 20-23, 2013, (IEEE, 2013), pp. 1678– 1685.

- 9. F. Caraffini, F. Neri and M. G. Epitropakis, Hy- perspam: A study on hyper-heuristic coordination strategies in the continuous domain, *Inf. Sci.* **477** (2019) 186–202.
- 746 10. M. Chiachío, J. Chiachío, D. Prescott and J. Andrews, Plausible Petri nets as self-adaptive expert systems: A tool for infrastructure asset monitoring, *Computer- Aided Civil and Infrastructure Engineering* (December 2018) p. mice.12427.
- 11. A. M. Chiarelli, P. Croce, G. Assenza, A. Merla, G. Granata, N. M. Giannantoni, V. Pizzella, F. Tecchio and F. Zappasodi, Electroencephalography-derived prognosis of functional recovery in acute stroke through machine learning approaches, *International Journal of Neural Systems* (2020) 2050067–2050067.
- 12. R. Chiong, F. Neri and R. I. McKay, Nature that breeds solutions, *Int. J. Signs Semiot. Syst.* **2**(2) (2012) 23–44.
- 13. N. Chouikhi, B. Ammar, N. Rokbani and A. M. Alimi, Pso-based analysis of echo state network parameters for time series forecasting, *Applied Soft Computing* **55** (2017) 211–225.
- 14. B. Direito, C. A. Teixeira, F. Sales, M. Castelo-Branco and A. Dourado, A realistic seizure prediction study based on multiclass svm, *International Journal of Neu-ral Systems* **27**(03) (2017) p. 1750006.
- 15. G. Fette and J. Eggert, Short term memory and pat- tern matching with simple echo state networks, *Inter- national Conference on Artificial Neural Networks*, 2005, pp. 13–18.
- 16. D. B. Fogel, An introduction to simulated evolution- ary optimization, *IEEE transactions on neural networks* **5**(1) (1994) 3–14.
- 17. A. Graves, Supervised sequence labelling with recur- rent neural networks, *Studies in Computational Intelli-gence* **385** (2012).
- 18. A. Haidar and B. Verma, A novel approach for op- timizing climate features and network parameters in rainfall forecasting, *Soft Computing* **22**(24) (2018) 8119–8130.
- 19. M. Han and M. Xu, Laplacian echo state network for multivariate time series prediction, *IEEE Transactions on Neural Networks and Learning Systems* **29**(1) (2018) 238–244.
- 20. S. I. Hossain, M. A. H. Akhand, M. I. R. Shuvo, N. H. Siddique and H. Adeli, Optimization of university course scheduling problem using particle swarm op- timization with selective search, *Expert Systems with Applications* **127** (2019) 9–24.
- 21. H. Hu, L. Wang and S.-X. Lv, Forecasting energy con- sumption and wind power generation using deep echo state network, *Renewable Energy* **154** (2020) 598– 793 613.
794 22 R.F
- 22. R. Hu, Z. R. Tang, X. Song, J. Luo and S. Chang, En- semble echo network with deep architecture for time-series modeling, *Neural Computing and Applications*

33(10) (2021) 4997–5010. 797

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

- 23. B. Huang, G. Qin, R. Zhao, Q. Wu and A. Shahri- ⁷⁹⁸ ari, Recursive bayesian echo state network with an ⁷⁹⁹ adaptive inflation factor for temperature prediction, 800 *Neural Computing and Applications* 29(12) (2018) 1535– 801 1543. 802
- 24. C. S. Huang, Q. T. Le, W. C. Su and C. H. Chen, ⁸⁰³ Wavelet-based approach of time series model for 804 modal identification of a bridge with incomplete in- ⁸⁰⁵ put, *Computer-Aided Civil and Infrastructure Engineer-* 806 *ing* 35 (September 2020) 947–964.
- 25. G. Iacca, F. Caraffini and F. Neri, Multi-strategy co- 808 evolving aging particle optimization, *International* 809 *Journal of Neural Systems* **24**(1) (2014). 810
- 26. H. Jaeger, Adaptive nonlinear system identification 811 with echo state networks, *Advances in Neural Informa-* 812 *tion Processing Systems* **15** (2002) 609–616. 813
- 27. H. Jaeger and H. Haas, Harnessing nonlinearity: Pre- 814 dicting chaotic systems and saving energy in wireless 815 communication, *Science* **304**(5667) (2004) 78–80. ⁸¹⁶
- 28. X. Jiang and H. Adeli, Fuzzy clustering approach 817 for accurate embedding dimension identification in 818 chaotic time series, *Integrated Computer-Aided Engi-* ⁸¹⁹ *neering* **10**(3) (2003) 287–302. 820
- 29. Y. Kara, M. Boyacioglu and O. Baykan, Predicting di- 821 rection of stock price index movement using artificial 822 neural networks and support vector machines: The 823 sample of the istanbul stock exchange, *Expert Systems* 824 *with Applications* **38**(5) (2011) 5311–5319. 825
- 30. J. Kennedy and R. Eberhart, Particle swarm optimiza- ⁸²⁶ tion, Proceedings of International Conference on Neural 827 *Networks*, **4** 1995, pp. 1942–1948.
- 31. J. Kim, H. Kim and T. Hong, Automated classifica- ⁸²⁹ tion of indoor environmental quality control using 830 stacked ensembles based on electroencephalograms, 831 *Computer-Aided Civil and Infrastructure Engineering* 35 832 (May 2020) 448–464. 833
- 32. M. Kociecki and H. Adeli, Shape optimization of free- ⁸³⁴ form steel space-frame roof structures with complex 835 geometries using evolutionary computing, *Engineer-* ⁸³⁶ *ing Applications of Artificial Intelligence* 38 (February 837 2015) 168–182. 838
- 33. P. Lara-Benítez, M. Carranza-García and J. C. 839 Riquelme, An experimental review on deep learn- ⁸⁴⁰ ing architectures for time series forecasting, *Interna-* ⁸⁴¹ *tional Journal of Neural Systems* **31**(3) (2021) 2130001:1– ⁸⁴² 2130001.28
- 34. Y. Li and F. Li, Pso-based growing echo state network, 844 *Applied Soft Computing* **85** (2019) p. 105774.
- 35. J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, ⁸⁴⁶ Comprehensive learning particle swarm optimizer 847 for global optimization of multimodal functions, ⁸⁴⁸ *IEEE Transactions on Evolutionary Computation* **10**(3) ⁸⁴⁹ (2006) 281–295. 850
- 36. J. Long, S. Zhang and C. Li, Evolving deep echo state 851 networks for intelligent fault diagnosis, *IEEE Transac-* ⁸⁵² *tions on Industrial Informatics* **16**(7) (2020) 4928–4937. ⁸⁵³
- 37. M. Lukovsevivcius, A practical guide to applying 854

echo state networks, *Neural Networks: Tricks of the* 855 *Trade: Second Edition* (2012) 659–686. 856

- 38. Q. Ma, E. Chen, Z. Lin, J. Yan, Z. Yu and W. Y. W. Ng, 857 Convolutional multitimescale echo state network, 858 *IEEE transactions on cybernetics* (2019) 1–13.
- 39. Y. Ma, X. Zhang, J. Song and L. Chen, A modified 860 teaching–learning-based optimization algorithm for 861 solving optimization problem, *Knowledge-Based Sys-* 862 *tems* 212 (2021) p. 106599.
- 40. M. C. Mackey and L. Glass, Oscillation and chaos 864 in physiological control systems, *Science* **197**(4300) 865 (1977) 287–289. (1977) 866
- 41. X. Na, M. Han, W. Ren and K. Zhong, Modified 867 bbo-based multivariate time-series prediction system 868 with feature subset selection and model parameter 869 optimization, *IEEE Transactions on Cybernetics* (2020) 870 $1-11.$ 871
- 42. F. Neri, Adaptive covariance pattern search, *Appli-* ⁸⁷² *cations of Evolutionary Computation - 24th Interna-* ⁸⁷³ *tional Conference, EvoApplications 2021, Held as Part of* ⁸⁷⁴ *EvoStar 2021, Virtual Event, April 7-9, 2021, Proceed-* ⁸⁷⁵ *ings*, eds. P. A. Castillo and J. L. J. Laredo *Lecture Notes* 876 *in Computer Science* **12694**, (Springer, 2021), pp. 178– 877 $193.$ 878
- 43. F. Neri and S. Rostami, Generalised pattern search 879 based on covariance matrix diagonalisation, *SN Com-* ⁸⁸⁰ *put. Sci.* **2**(3) (2021) p. 171. ⁸⁸¹
- 44. F. Neri, V. Tirronen, T. Kärkkäinen and T. Rossi, Fit- 882 ness diversity based adaptation in multimeme algo- ⁸⁸³ rithms: A comparative study, *Proceedings of the IEEE* 884 *Congress on Evolutionary Computation, CEC 2007, 25-* ⁸⁸⁵ *28 September 2007, Singapore*, (IEEE, 2007), pp. 2374– ⁸⁸⁶ $2381.$ 887
- 45. L. Pan, G. Paun, G. Zhang and F. Neri, Spiking neu- 888 ral *P* systems with communication on request, *Int.* J. 889 *Neural Syst.* **27(8)** (2017) 1750042:1-1750042:13. 890
- 46. A. Panakkat and H. Adeli, Recurrent Neural Net- ⁸⁹¹ work for Approximate Earthquake Time and Loca- ⁸⁹² tion Prediction Using Multiple Seismicity Indicators, 893 *Computer-Aided Civil and Infrastructure Engineering* **24** ⁸⁹⁴ (May 2009) 280–292. 895
- 47. H. S. Park and H. Adeli, Distributed Neural Dynam- ⁸⁹⁶ ics Algorithms for Optimization of Large Steel Structures, *Journal of Structural Engineering* **123** (July 1997) ⁸⁹⁸ $880 - 888.$
- 48. Z. Pu, C. Li, S. Zhang and Y. Bai, Fault diagnosis 900 for wind turbine gearboxes by using deep enhanced 901 fusion network, *IEEE Transactions on Instrumentation* 902 *and Measurement* **70** (2020) 1–11. ⁹⁰³
- 49. L. Qin, W. Li and S. Li, Effective passenger flow fore- ⁹⁰⁴ casting using stl and esn based on two improvement 905 strategies, *Neurocomputing* 356 (2019) 244–256.
- 50. V. H. A. Ribeiro, G. Reynoso-Meza and H. V. Siqueira, 907 Multi-objective ensembles of echo state networks and 908 extreme learning machines for streamflow series fore-
909 casting, *Engineering Applications of Artificial Intelli-* ⁹¹⁰ *gence* **95** (2020) p. 103910. ⁹¹¹
- 51. M. Rigamonti, P. Baraldi, E. Zio, I. Roychoudhury, ⁹¹²

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

- K. Goebel and S. Poll, Ensemble of optimized echo state networks for remaining useful life prediction, *Neurocomputing* **281** (2018) 121–138.
- 916 52. J. L. Rosselló, M. L. Alomar, A. Morro, A. Oliver and V. Canals, High-density liquid-state machine cir- cuitry for time-series forecasting, *International Journal of Neural Systems* **26**(05) (2016) p. 1550036.
- 920 53. F. Saâdaoui and O. B. Messaoud, Multiscaled neu- ral autoregressive distributed lag: A new empirical mode decomposition model for nonlinear time se- ries forecasting, *International Journal of Neural Systems* **30**(8) (2020) 2050039:1–2050039:15.
- 54. Y. Shi, A modified particle swarm optimizer, *1998 IEEE International Conference on Evolutionary Compu-tation Proceedings*, 1998.
- 55. N. Siddique and H. Adeli, Spiral Dynamics Algo- rithm, *International Journal on Artificial Intelligence Tools* **23** (December 2014) p. 1430001.
- 931 56. N. Siddique and H. Adeli, Water Drop Algorithms, *International Journal on Artificial Intelligence Tools* **23** (December 2014) p. 1430002.
- 57. N. Siddique and H. Adeli, Harmony Search Algo- rithm and its Variants, *International Journal of Pat- tern Recognition and Artificial Intelligence* **29** (December 2015) p. 1539001.
- 58. N. Siddique and H. Adeli, Nature Inspired Comput- ing: An Overview and Some Future Directions, *Cog-nitive Computation* **7** (December 2015) 706–714.
- 59. N. Siddique and H. Adeli, Gravitational Search Al- gorithm and Its Variants, *International Journal of Pat- tern Recognition and Artificial Intelligence* **30** (Septem-ber 2016) p. 1639001.
- 60. H. Siqueira, L. Boccato, R. Attux and C. Lyra, Unorga- nized machines for seasonal streamflow series fore- casting, *International Journal of Neural Systems* **24**(03) $_{948}$ (2014) p. 1430009.
- 61. Z. Song, K. Wu and J. Shao, Destination prediction using deep echo state network, *Neurocomputing* **406** 951 (2020) 343-353.
- 62. Y. Su, Y. Wu, G. Qiao and S. Shen, Self-adaptive form generation method for reciprocal grid struc- tures, *Computer-Aided Civil and Infrastructure Engi-neering* **34** (May 2019) 444–454.
- 63. J. Sun, H. Li and H. Adeli, Concept Drift-Oriented 957 Adaptive and Dynamic Support Vector Machine En- semble With Time Window in Corporate Financial Risk Prediction, *IEEE Transactions on Systems, Man, and Cybernetics: Systems* **43** (July 2013) 801–813.
- 64. Z. Tang, G. Zhao and T. Ouyang, Two-phase deep learning model for short-term wind direction fore-casting, *Renewable Energy* **173** (2021) 1005–1016.
- 65. Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan and Q. Tian, Self-adaptive learning based particle swarm opti- mization, *Information Sciences* **181**(20) (2011) 4515– 4538.
- 66. L. Wei and L. Haitian, Electrical load forecasting us- ing echo state network and optimizing by pso algo-rithm, *2017 10th International Conference on Intelligent*

 Computation Technology and Automation, 2017, pp. 394– 397.

973 67. A. J. Wootton, S. L. Taylor, C. R. Day and P. W. Hay- cock, Optimizing echo state networks for static pat-tern recognition, *Cognitive Computation* **9**(3) (2017) 1–

- 977 68. T. Wu, F. Bîlbîe, A. Paun, L. Pan and F. Neri, Simpli- fied and yet turing universal spiking neural P sys- tems with communication on request, *Int. J. Neural Syst.* **28**(8) (2018) 1850013:1–1850013:19.
- 69. J. Xu, C. Gui and Q. Han, Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network, *Computer-Aided Civil and Infrastructure Engineering* **35** (October 2020) 1160– 985 1174.
- 70. Y. Xue, P. Jiang, F. Neri and J. Liang, A multiobjec- tive evolutionary approach based on graph-in-graph for neural architecture search of convolutional neu- ral networks, *International Journal of Neural Systems* **31** 990 (2021) .
- 991 71. Y. Xue, Y. Tang, X. Xu, J. Liang and F. Neri, Multi- objective feature selection with missing data in classi- fication, *IEEE Transactions on Emerging Topics in Com-putational Intelligence* (2021) 1–10, to appear.
- 72. Y. Xue, B. Xue and M. Zhang, Self-adaptive particle swarm optimization for large-scale feature selection in classification, *ACM Transactions on Knowledge Dis-covery from Data* **13**(5) (2019) 1–27.
- 73. Y. Xue, H. Zhu, J. Liang and A. Słowik, Adaptive crossover operator based multi-objective binary ge- netic algorithm for feature selection in classification, *Knowledge-Based Systems* (2021) p. 107218.
- 74. S. Yuan, W. Zhou and L. Chen, Epileptic seizure pre- diction using diffusion distance and bayesian linear discriminate analysis on intracranial eeg, *International Journal of Neural Systems* **28**(01) (2018) p. 1750043.
- 75. A. Zhang, K. C. P. Wang, Y. Fei, Y. Liu, C. Chen, G. Yang, J. Q. Li, E. Yang and S. Qiu, Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces with a Recurrent Neural Network: Auto- mated pixel-level pavement crack detection on 3D asphalt surfaces using CrackNet-R, *Computer-Aided Civil and Infrastructure Engineering* **34** (March 2019) 213–229.
- 76. G. Zhang, H. Rong, P. Paul, Y. He, F. Neri and M. J. 1016 Pérez-Jiménez, A complete arithmetic calculator con- structed from spiking neural P systems and its appli- cation to information fusion, *Int. J. Neural Syst.* **31**(1) (2021) 2050055:1–2050055:17.
- 77. J. Zhang, M. Xiao, L. Gao and S. Chu, Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using sup- port vector machine, *Computer-Aided Civil and Infras-tructure Engineering* **34** (November 2019) 991–1009.
- 78. S. Zhang, X. Duan, C. Li and M. Liang, Pre-classified reservoir computing for the fault diagnosis of 3d printers, *Mechanical Systems and Signal Processing* **146** (2021) p. 106961.

79. S. Zhang, L. Zhou, X. M. Chen, L. Zhang, L. Li and ¹⁰²⁹ M. Li, Network-wide traffic speed forecasting: 3D 1030 convolutional neural network with ensemble empiri- ¹⁰³¹ cal mode decomposition, *Computer-Aided Civil and In-* ¹⁰³² *frastructure Engineering* **35** (October 2020) 1132–1147. ¹⁰³³

 \overline{Q} , 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 24, 2021 9:5 output 25, 2021 9:5 output 26, 2021 9:5 o

- 80. X. Zhang, S. T. Waller and P. Jiang, An ensemble ma- ¹⁰³⁴ chine learning-based modeling framework for analy- ¹⁰³⁵ sis of traffic crash frequency, *Computer-Aided Civil and* ¹⁰³⁶ *Infrastructure Engineering* **35** (March 2020) 258–276. ¹⁰³⁷
- 81. Y. Zhang, T. Cheng and Y. Ren, A graph deep learn- 1038 ing method for short-term traffic forecasting on large 1039

road networks, *Computer-Aided Civil and Infrastruc-* ¹⁰⁴⁰ *ture Engineering* 34(10) (2019) 877–896.

- 82. S. Zhong, X. Xie, L. Lin and F. Wang, Genetic algo- ¹⁰⁴² rithm optimized double-reservoir echo state network ¹⁰⁴³ for multi-regime time series prediction, *Neurocomput-* ¹⁰⁴⁴ *ing* 238 (2017) 191–204. 1045
- 83. M. Zhu, Q. Yang, J. Dong, G. Zhang, X. Gou, H. Rong, ¹⁰⁴⁶ P. Paul and F. Neri, An adaptive optimization spik- ¹⁰⁴⁷ ing neural P system for binary problems, *Int. J. Neural* ¹⁰⁴⁸ *Syst.* **31**(1) (2021) 2050054:1–2050054:17. ¹⁰⁴⁹