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Echo state networks (ESNs), belonging to the family of recurrent neural networks (RNNs), are suitable for 1

addressing complex nonlinear tasks due to their rich dynamic characteristics and easy implementation. 2

The reservoir of the ESN is composed of a large number of sparsely connected neurons with randomly 3

generated weight matrices. How to set the structural parameters of the ESN becomes a difficult problem in 4

practical applications. Traditionally, the design of the parameters of the ESN structure is performed man- 5

ually. The manual adjustment of the ESN parameters is not convenient since it is an extremely challenging 6

and time consuming task. The present paper proposes an ensemble of five particle swarm optimization 7

(PSO) strategies to design the structure of ESN and then reduce the manual intervention in the design 8

process. An adaptive selection mechanism is used for each particle in the evolution to select a strategy 9

from the strategy candidate pool for evolution. In addition, leaky integration neurons are used as reser- 10

voir internal neurons, which are added within the adaptive mechanism for optimization. The root mean 11

squared error (RMSE) is adopted as the evaluation criterion. The experimental results on Mackey-Glass 12

time series benchmark dataset show that the proposed method outperforms other traditional evolution- 13

ary methods. Furthermore, experimental results on electrocardiogram dataset show that the proposed 14

method on the ensemble of PSO displays an excellent performance on real-world problems. 15

Keywords: Time Series Prediction, Particle Swarm Optimization, Self-adaptive, Echo State Network, ECG. 16

1. Introduction 17

Nature-inspired computing 12; 58 is an established 18

field of computer science where algorithms are de- 19

signed by following the inspiration of natural phe- 20

nomena. Some of the most popular sources of in- 21

spiration are evolution 6; 32 and biological brains 22

47. However, there exist other algorithms inspired 23

by gravitation theory 59, fluid-dynamics 56, music 24

57, spiral phenomena in nature 55, and cell mem- 25

branes 76; 83. These inspired algorithms are used 26

for a number of tasks including for example opti- 27

mization 8; 7, computational modelling 45; 68, and 28

data science problems 71; 70. The present paper pro- 29

poses a nature-inspired approach with reference to 30

time series. 31

Modeling and forecasting of nonlinear time 32

1
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series play an important role in many engineer-33

ing problems 28. For example, time series pre-34

diction can be used in intelligent fault detection35

36; 48; 51, weather forecast 18; 23; 64, electrical fore-36

cast 66; 60, traffic flow prediction 49; 61; 81, energy37

prediction21, civil engineering 24, pattern recogni-38

tion 67; 52 and medical domain 11; 74; 14.39

With the rapid growth of artificial intelligence,40

artificial neural networks (ANNs) 29, due to their41

capability to deal with nonlinear problems, have42

gradually become important tools for nonlinear43

time series prediction 53; 33. However, traditional44

ANNs such as recurrent neural networks (RNNs)45

17; 75; 46 suffer from the problems of vanishing gra-46

dient and exploding gradient and may not perform47

well due to problems with the slow convergence48

speed. Among the various types of ANNs, echo49

state networks (ESN) 26 are proposed. Unlike the50

traditional RNNs, the ESN only needs to change51

the weights of the output layer during the train-52

ing phase. The weights between the reservoir (hid-53

den layer) and the input layer are randomly gen-54

erated and not altered during the network training55

process. Thus, the training of an ESN is relatively56

simple and the calculation cost is small in time and57

space. Notwithstanding the simplicity in training58

ESNs can have a performance comparable to that of59

RNNs. This feature makes ESN an attractive alter-60

native to RNNs for some specific application prob-61

lems.62

Many researchers have successfully applied63

ESNs to industrial problems and have achieved64

some promising results in time series prediction.65

Jaeger 27 applied ESN in wireless communication,66

and the signal error rate is reduced by two orders67

of magnitude. Zhang et al. 78 proposed a method68

for data-driven artificial intelligence in fault diag-69

nosis based on the ESN. Ribeiro et al. 50 proposed70

an approach for water flow forecast of hydropower71

plant which uses extreme learning machines and72

ESN. Alizamir et al. 5 proposed a deep ESN model73

for soil temperature prediction, and the experimen-74

tal results show that the algorithm is superior to75

the traditional three machine learning models men-76

tioned in their literature.77

Although ESNs have achieved a considerable78

success in time series prediction, the fact that the79

reservoir is randomly initialized causes a certain80

noise in the ESN performance and may affect it. In81

order to address this limitation, in the past years,82

several studies proposed modifications to the ESN83

structure. Georg et al. 15 proposed an ESN with84

a simple and yet effective reservoir topology, the85

result shows that a simple structure of ESN can86

achieve comparable results to classic ESN. Ma et al.87

38 introduced the idea of deep learning into ESN88

and added convolution and pooling operations for89

classification problem, the idea is to combine the90

advantages of both technologies. Hu et al. 22 pro-91

posed an ensemble of Bayesian deep ESN models92

to optimize the parameters of ESN, this approach93

exhibits a better performance when dealing with94

more complex time series datasets. Han et al. 19
95

proposed a Laplacian ESN, which overcomes the ill-96

posed problem due to the small amount of training97

data and obtains the output weights of low dimen-98

sion.99

Another approach, which became popular with100

the diffusion of computational intelligence, con-101

sists in optimizing the parameters of the ESN.102

For example, Han et al. 41 proposed a modi-103

fied biogeography-based method to perform the se-104

lection of feature subset and the optimization of105

model parameters. Experimental results on rele-106

vant datasets indicate that the algorithm is supe-107

rior to other traditional evolutionary algorithms, es-108

pecially in the prediction of multivariable time se-109

ries. Zhong et al. 82 adopted genetic algorithms to110

optimize the double-reservoir ESN, and the exper-111

imental results reveal that the accuracy and stabil-112

ity are excellent in time series datasets compared113

to other models. Chouikhi et al. 13 adopted parti-114

cle swarm optimization (PSO) 30 to pre-train some115

fixed weights which are selected in the ESN. Li et116

al. 34 introduced an approach to pre-train a grow-117

ing ESN with multiple sub-reservoirs by optimizing118

singular values, based on PSO and singular value119

decomposition. Both these studies based on PSO120

displayed an excellent ESN performance with re-121

spect to those based on other popular metaheuris-122

tics. However, for some specific problems, a single123

strategy may not be sufficient, so it is necessary to124

develop a mechanism that can automatically adapt125

to the needs of the application task.126

Inspired by this observation, in this paper127

we propose an ESN based on self-adaptive parti-128
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cle swarm optimization (SaPSO-ESN) for time se- 129

ries prediction. An adaptive selection mechanism is 130

used for each particle in the evolution to select a 131

strategy from the strategy candidate pool for evo- 132

lution. In addition, leaky integration neurons are 133

used as reservoir internal neurons, which are added 134

within the adaptive mechanism for optimization. 135

Each individual is assigned an appropriate PSO 136

strategy to make the individual develop towards a 137

lower fitness value. Thus, the convergence speed of 138

the algorithm is accelerated, the optimal solution is 139

found more accurately, and the prediction accuracy 140

is improved. The optimized parameters are then 141

brought into ESN to boot up the network. The root 142

mean squared error (RMSE) is adopted as evalua- 143

tion criterion. To verify the validity of the proposed 144

algorithm, we performed experiments on Mackey- 145

Glass time series benchmark dataset 40 and electro- 146

cardiogram (ECG) time series dataset. 147

The reminder of this paper is organized as fol- 148

lows. Section 2 elaborates the background knowl- 149

edge about time series prediction, PSO and ESN. 150

A detailed description of our proposed method 151

SaPSO-ESN is given in Section 3. In Section 4, 152

the proposed algorithm is tested on Mackey-Glass 153

benchmark dataset and ECG dataset. Finally, Sec- 154

tion 5 concludes this paper and future research 155

work is presented. 156

2. Background 157

Time series is a series of data points indexed in time 158

order. Its units can be seconds, minutes, hours, days, 159

months, years, etc. By analyzing these data to un- 160

derstand past trends and predict future trends. Time 161

series prediction model is mainly based on the ex- 162

isting time series data to make short-term forecasts 163

for the future. This is a kind of complex predictive 164

modeling problem which depends on the past time 165

sequence. Prediction models can be roughly divided 166

into two categories, one is the traditional statistical- 167

based learning method, the other is the more popu- 168

lar machine learning method in recent years. Time 169

series prediction is widely used in stock forecast, 170

weather forecast, agricultural forecast, traffic flow 171

forecast and other fields. Due to the simple and effi- 172

cient nature, ESN is increasingly used in time series 173

prediction recently. 174

2.1. Echo State Network 175

ESN is a three-layer recurrent neural network con- 176

sists of three parts: input layer, reservoir and output 177

layer. Each layer is connected to the other layers by 178

neurons. Each connection has a weight value that 179

forms the weight connection matrix. The neurons in 180

the reservoir are randomly sparsely loop connected, 181

and the structure of ESN is given in Fig. 1. 182

183

184

Fig. 1. Structure of a typical ESN

Assuming that ESN with K input neurons, N 185

reservoir neurons, and L output neurons, then at 186

time n, the input u(n), the state of the reservoir x(n) 187

and the output y(n) are shown in the below equa- 188

tions. 189

u(n) = [u1(n), u2(n), ..., uK(n)]T (1) 190

191

x(n) = [x1(n), x2(n), ..., xN (n)]T (2) 192

193

y(n) = [y1(n), y2(n), ..., yL(n)]
T (3) 194

Then at time (n + 1), the ESN reservoir state can be 195

updated by Eq. (4) and the output equation is rep- 196

resented as Eq. (5) : 197

x(n+ 1) = f(W inu(n+ 1) +Wx(n)) (4) 198

199

y(n+ 1) = fout(W outx(n+ 1)) (5) 200

where W in and W represent the weight matrix of 201

the input layer and the reservoir, respectively. W out
202

is the weight matrix of the output layer. f and fout 203

are the activation functions of the reservoir and the 204

output layer, respectively. In general, the activation 205

function f of the reservoir is a nonlinear function, 206
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such as tanh or sigmoid. In this paper, we adopt the207

tanh as the activation function for the reservoir. fout208

generally selects the identity function, so the Eq. (5)209

can be rephrased as Eq. (6).210

y(n+ 1) =W outx(n+ 1) (6)211

After ESN initialization, only the weights from212

reservoir to output layer need to be trained by data,213

while the weights from input layer to reservoir and214

the weights in the reservoir remain unchanged dur-215

ing the training process. Therefore, the process of216

solving W out is actually a linear regression process217

according to Eq. (6). When W out is solved, the pre-218

dicted value is output according to Eq. (4) and (6).219

The performance of the ESN would be better220

when the reservoir neurons adopt the leaky integra-221

tor neurons 37. In this paper, reservoir neurons with222

leaky integrator are used, and the state of reservoir223

can be updated by Eq. (7),224

x(n+ 1) = (1− a)x(n) + af(W inu(n+ 1) +Wx(n))

(7)225

where a is the leaking rate, it can be regarded as the226

speed of the reservoir update dynamics discretized227

in time.228

With the purpose of eliminating the impact229

of the primary state of the reservoir on the net-230

work, the previous Q samples were discarded. Q231

is the number of discarded samples in the training232

set. Starting from Q + 1 sample, the correspond-233

ing internal state matrix M was collected, and the234

pseudo-inverse method or ridge regression method235

was used to solve W out. Ridge regression method is236

adopted in this paper, Y target is the target output,M237

is the internal state matrix of ESN, and the solution238

formulas are shown as follows:239

Y target =W outM (8)240

241

W out = Y targetMT (MMT + λI)−1 (9)242

where λ is the regularization coefficient in the ridge243

regression, and I is the unit matrix. When W out is244

trained, the new data will be input into the ESN. Af-245

ter calculation, ESN output the corresponding pre-246

dicted data.247

The core of ESN is the dynamic reservoir, and248

the performance of the reservoir depends on certain249

parameters, namely size of reservoir N , spectral ra-250

dius ρ, sparsity of the reservoir SR, and input scal-251

ing IS. For the reservoir with leaky integrator neu-252

rons, the leaking rate a also affect ESN performance.253

Some brief descriptions of these parameters are in-254

troduced below:255

1) Size of Reservoir (N): It is the size of neurons256

in the reservoir. A large number of neurons map the257

input data to the high-dimensional space, and non-258

linear fit the expected output.259

2) Spectral Radius (ρ): The spectral radius is the260

maximum value of the eigenvalue absolute value of261

the reservoir weight matrix W . ESN exhibits echo262

state property as long as the ρ is at the range of [0, 1].263

3) Sparsity of the Reservoir (SR): The reservoir264

sparsity is the ratio of interconnected neurons to the265

total number of neurons in the reservoir.266

4) Input Scaling (IS): The scaling factor is267

to scale the input data prior to injection into the268

reservoir. For W in with different distributions, we269

should adopt different IS, it usually in the range of270

[0, 1].271

5) Leaking Rate (a): The leaking rate (a) of the272

leaking neurons in the reservoir can be viewed as273

the velocity of the reservoir update. The smaller the274

a, the less dynamic the reservoir becomes, which275

could improve the short-term memory of the ESN.276

2.2. Particle Swarm Optimization277

PSO is a global stochastic search algorithm 6 based278

on swarm intelligence proposed by Kennedy and279

Eberhart 30, which is simulates the migration and280

clustering behaviors of birds in the foraging process281

and has been successfully applied in a number of282

cases 20; 25. For a population of ps particles, each283

particle in the search space has a position (xi) and a284

velocity (vi). The velocity of the particle is updated285

according to its historical optimal position (Pbest)286

and the historical optimal position of the population287

(Gbest). In the iterative process, the velocity and po-288

sition of the particle are constantly adjusted until289

the preset conditions are satisfied. The update for-290

mula of the d-dimensional of the i-th particle at t+1291

iteration are as follows:292

vt+1
i,d = vti,d+c1∗r1∗(Pbesti,d−x

t
i,d)+c2∗r2∗(Gbestd−x

t
i,d)

(10)293

294

xt+1
i,d = xti,d + vt+1

i,d (11)295
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where c1 and c2 are acceleration constants, with c1 is 296

the self-learning factor and c2 is the group learning 297

factor for each particle. And r1 and r2 are two ran- 298

dom numbers distributed over [0, 1], d is the dimen- 299

sion of particles, t is the number of iterations and 300

i denotes the current particle. The main framework 301

of PSO is shown in the Fig. 2. 302

303

Input: Population size ps; number of fitness evaluations nfe; current
number of fitness evaluation cfe;
Output: Position of the approximate global optimaGbest;

1: Randomly initialize ps particles, including positionXi(0) and veloc-
ity Vi(0);

2: Evaluate the population and set Pbest andGbest;
3: while cfe < nfe do
4: for i = 1 to ps do
5: Update the velocity by Eq. (10);
6: Update the position by Eq. (11);
7: Calculate its fitness value of particle i : f(Xi);
8: ifXi is better than Pbest then
9: Pbest = Xi;
10: ifXi is better thanGbest then
11: Gbest = Xi;
12: end if
13: end if
14: i = i+ 1;
15: end for
16: cfe = cfe+ 1;
17: end while
18: return Gbest 304

305

Fig. 2. Pseudo code of the PSO

3. SaPSO-ESN for Parameter Optimization 306

ESN is characterized by simple training and low 307

computational complexity. However, the setting of 308

reservoir parameters will directly affect the per- 309

formance of ESN. Manual adjustment of parame- 310

ters is both time-consuming and does not guaran- 311

tee that the selected parameters are optimal. Adap- 312

tive mechanism has been successfully applied in the 313

field of neural network 72; 73. Therefore, in this sec- 314

tion, we come up with a SaPSO-ESN model for time 315

series prediction, in which an ensemble of PSO is 316

adopted to optimize parameters of ESN. Our goal 317

is to reduce the gap between the target value and 318

the predicted value. Different from traditional PSO, 319

five strategies are adopted to form the strategy can- 320

didate pool, which can further enhance the ability 321

of the model to adapt to different problems. 322

The use of adaptively coordinated multiple 323

search operators/algorithms is a popular strategy in 324

metaheuristic optimization and machine learning. 325

This idea is present in frameworks such as hyper- 326

heuristics 9, memetic algorithms 44, ensemble al- 327

gorithms 80; 4; 63. Ensemble algorithms have been 328

successfully implemented in multiple and diverse 329

fields such as traffic speed forecasting 79, rust diag- 330

nosis of steel structures 69, and indoor environmen- 331

tal quality 31. 332

When multiple algorithms are present in a 333

framework, a coordination scheme is necessary. To 334

ensure that the coordination is performed automat- 335

ically at run time, a popular approach is the em- 336

ployment of a self-adaptation logic. In literature 337

many examples are present in both optimization 338

2; 3; 43; 42 and machine learning 62; 10; 77. 339

3.1. Five PSO Implementation Strategies 340

There are many different PSO strategies in related 341

research, and the general structure of these differ- 342

ent strategies is similar. They use different formu- 343

las and record the experience information to gen- 344

erate new populations. By examining the study of 345

PSO strategies in the existing literature 72 65, we 346

selected the following five strategies for our algo- 347

rithm, which have been proved to have good perfor- 348

mance in the corresponding literature. Five strate- 349

gies are described as follows. 350

3.1.1. PSO with inertia weight 351

The original PSO strategies use the position of Pbest 352

and Gbest to update the velocity and position of the 353

particle. In order to enhance the local search capabil- 354

ity of the PSO, literature 54 proposed a PSO strategy 355

with inertial weight (PSO-w), where w is the inertial 356

weight, usually taking values between 0 and 1. The 357

updating equation is as follows: 358

vt+1
i,d = w∗vti,d+m1∗(Pbesti,d−xti,d)+m2∗(Gbestd−xti,d)

(12) 359

where m1 represents c1 ∗ r1, m2 represents c2 ∗ r2. 360

3.1.2. PSO with differential idea 361

Wang et al. 65 proposed an update PSO strategy 362

based on the differential idea (PSO-d). Differen- 363

tial evolution (DE) algorithm is also an efficient 364

global optimization algorithm. PSO-d avoids grad- 365

ual changes in velocity, but completely updates the 366

velocity based on differential information. The up- 367

dating equations are described as follows: 368

vt+1
i,d = c ∗ (xta,d − xtb,d) + c ∗ (Pbesti,d − xti,d) (13) 369
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370

c = N(0.5, 0.2) (14)371

where xta,d and xtb,d are two random particles in the372

t-th generation population. N(0.5, 0.2) represents a373

random number that satisfies a Gaussian distribu-374

tion.375

3.1.3. Local estimation of distribution376

In order to make better performance for PSO, Wang377

et al. 65 introduced a PSO strategy with Gaussian378

and Cauchy distributions (PSO-l). The equations are379

expressed as follows:380

c =
(D − 1)N(0, 1)

D
+
C(0, 1)

D
(15)381

z =
√

(Pbesti,d −mt
i,d)

2 + (xti,d −mt
i,d)

2 + (xtk,d −mt
i,d)

2

(16)382

383

vt+1
i,d = (mt

i,d − xti,d) +
c√
3
z (17)384

where N(0, 1) and C(0, 1) are values generated ran-385

domly from the Gaussian and Cauchy distributions,386

xtk,d is a random particle choose from the popula-387

tion, and mt
i,d is the average of the best 20% of par-388

ticles in the population.389

3.1.4. Comprehensive learning PSO390

Liang et al. 35 proposed a deformation of the PSO,391

called comprehensive learning particle swarm op-392

timizer (CLPSO). Unlike the traditional PSO algo-393

rithms that only use the own Pbest and Gbest of the394

particle as directions to guide the flight of the parti-395

cle, the Pbests of all particles in the proposed algo-396

rithm can potentially be the guiding direction of the397

particles. The equation is expressed as follows:398

vt+1
i,d = w ∗vti,d+ c∗ randi,d ∗ (Pbestfi(d)−x

t
i,d) (18)399

where Pbestfi(d) can be the value of Pbest for any400

particle.401

3.1.5. An improved CLPSO402

Wang et al. 65 improved CLPSO, and an algorithm403

called PSO-CL-pbest was proposed. The equations404

are expressed as follows:405

vt+1
i,d = w ∗ vti,d + q ∗ (Pbestfi(d) − xti,d + Pbesti,d − xti,d)

(19)406

407

q = 0.5 ∗ c ∗ randi (20)408

where randi represents an identical random num-409

ber for update the velocity vector. That is to say, for410

each dimension of the particle, the same random411

number randi is used to update the velocity.412

These strategies have different advantages, and413

the important parameters setting for the five PSO414

strategies POS-w, PSO-d, PSO-l, CLPSO and PSO-415

CL-pbest are shown in the Table 1.416

417

Table 1. Parameters settings for the five PSO strategies

Algorithm Parameters Setting
PSO-w w = 0.9− 0.5∗cfe

nfe , c1 = c2 = 1.49618

PSO-d c = N(0.5, 0.2)

PSO-l c =
(D−1)N(0,1)

D +
C(0,1)
D

CLPSO w = 0.9− 0.5∗cfe
nfe , c = 1.49445

PSO-CL-pbest w = 0.9− 0.5∗cfe
nfe , c = 1.49445

3.2. Strategies Self-adaptive Mechanism418

In traditional PSO algorithms, there is only one evo-419

lutionary strategy, meaning that the same strategy420

is used for the whole population. However, in prac-421

tical application, different problems have different422

characteristics, which leads to poor generalization423

of using only one strategy. In this paper, an adap-424

tive method is used to select strategies in the strat-425

egy candidate pool during the population evolution426

process.427

Assuming that the number of strategies in the428

candidate pool is P , at the beginning of the al-429

gorithm, the probability of each strategy being se-430

lected in the strategy candidate pool is the same,431

which is 1/P , the initialized strategy probability432

matrix (Pro) is shown in the Eq. (21).433

Pro = (1/P, 1/P, ..., 1/P )1∗P (21)434

We set a probability update parameter called LP ,435

which means that the probability matrix Pro is up-436

dated once after evolution of LP generations. Ac-437

cording to the relevant theoretical analysis and ex-438

perimental results, LP is set to 5 in this paper. Sup-439

pose the j-th strategy is selected for the i-th particle440

(xi), if the newly generated particle (xnewi ) is better441



August 24, 2021 9:5 output

Self-adaptive Particle Swarm Optimization-based Echo State Network for Time Series Prediction 7

than the xi, the evolution of xi with the j-th strat- 442

egy is successful. If the xnewi is worse than the xi, 443

the particle is failed to evolve into the next genera- 444

tion. In the LP generations, the number of particles 445

which successfully evolved into the next generation 446

through the m-th strategy is denoted as NSm, and 447

the number of particles which failed to evolve into 448

the next generation is denoted as NFm. After LP it- 449

erations, the probability of the m-th strategy Sm is 450

updated as follows: 451

Sm =
NSm

NSm +NFm
+ ε (22) 452

To avoid zero probability for the strategy, we 453

set a very small number ε = 0.001, so that we can 454

avoid the situation where S = 0. In order to ensure 455

that the sum of the probabilities of all strategies be- 456

ing selected in the strategy pool is 1, we need to nor- 457

malize all the S obtained, so as to obtain the proba- 458

bility of the selection of the m-th strategy. The final 459

probability of the m-th strategy is shown in the Eq. 460

(23). 461

Pm =
Sm∑P
i=1 Si

(23) 462

According to probability matrices Pro after LP 463

generation, the roulette wheel method 16 is used to 464

select the strategy for particles in population. 465

3.3. Optimized Parameters 466

There are some parameters in ESN that impinge 467

on the network performance. The performance of 468

the ESN would be better when the reservoir neu- 469

rons adopt the leaky integrator neurons 37. The pa- 470

rameter of leaky integrator neurons is added to the 471

adaptive mechanism. The method in this paper op- 472

timizes five parameters, which are size of reservoir 473

(N ), spectral radius (ρ), sparsity of the reservoir 474

(SR), input scaling (IS), and leaking rate (a). These 475

parameters are treated as a particle with five dimen- 476

sions. The particles of the candidate solution can be 477

expressed as Eq. (24) : 478

xi = [N, ρ, SR, IS, a] (24) 479

where i = 1, 2, ..., ps. 480

3.4. The Framework of SaPSO-ESN 481

In this paper, the proposed SaPSO-ESN algorithm, 482

which integrates five pso strategies to search the pa- 483

rameters of ESN, is used to practice sequence pre- 484

diction research, and the pseudo code of SaPSO- 485

ESN is shown in the Fig. 3. 486

487

Input: Population size ps; number of fitness evaluations nfe; current
number of fitness evaluation (cfe = 0); LP ; strategy probability ma-
trix Pro;
Output:Gbest;

1: InitialN, ρ, SR, IS, a, and population (x1, x2, ..., xps)

2: while cfe < nfe do
3: for i = 1 to ps do
4: Select the PSO strategym based on the Pro;
5: Generate new velocity (vnew

i ) and update positions (xnew
i );

6: Create an ESN following xnew
i ;

7: Evaluate the fitness value f(xnew
i ) in ESN;

8: if xnew is better than xi then
9: NSm = NSm + 1;
10: if xnew

i is better than Pbesti then
11: Pbesti = xnew

i ;
12: if xnew

i is better thanGbest then
13: Gbest = xnew

i ;
14: end if
15: end if
16: else
17: NFm = NFm + 1;
18: end if
19: i = i+ 1;
20: vi = vnew

i ;
21: xi = xnew

i ;
22: cfe = cfe+ 1;
23: end for
24: if Iterative LP generation then
25: Update Pro based on Eq. (22) and (23);
26: end if
27: end while
28: return Gbest 488

489

Fig. 3. Pseudo code of the SaPSO-ESN

Firstly, the ESN is encoded into a particle and 490

each particle contains five dimensions, which are 491

[N, ρ, SR, IS, a]. Then initializing the population, 492

and the position (x) and velocity (v) of the pop- 493

ulation in PSO are randomly initialized. The x is 494

in the interval [xmin, xmax] and v is in the inter- 495

val [−vmax, vmax]. Before the stop condition is satis- 496

fied, a selected strategy is returned to each particle 497

in the population according to the strategy proba- 498

bility matrix Pro and roulette wheel method dur- 499

ing the iteration process. According to the selected 500

strategy, population evolve into the next genera- 501

tion. Then create ESNs following the particles in the 502

evolved population, and each individual in popu- 503

lation is evaluated and the corresponding fitness 504

value is calculated according to the evaluation cri- 505

terion. Update the particle of PSO and the records 506

of the success and failure of the evolutionary pro- 507

cess (NSm and NFm) according to the fitness val- 508
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ues. The strategy selection matrix Pro is updated509

when the LP generations of particles evolve follow-510

ing NSm and NFm. Finally, output the optimal in-511

dividual Gbest and the corresponding results. This512

output Gbest is the individual that records the opti-513

mal ESN searched for. The flowchart of SaPSO-ESN514

is shown in the Fig. 4.515

516

Fig. 4. Flowchart of SaPSO-ESN

4. Experiment517

In this section, we evaluate SaPSO-ESN in the518

benchmark chaotic time series and an ECG datasets.519

To test the effectiveness of the proposed method in520

this paper, we select some relevant algorithms for521

comparison, such as canonical ESN, PSO and DE.522

In order to demonstrate the effectiveness of the pro-523

posed self-adaptive mechanism, we add the com-524

parison results between SaPSO-ESN and the algo-525

rithm where five PSO strategies are selected ran-526

domly (named RPSO-ESN) in the evolution pro-527

cess. Moreover, SaPSO-ESN is also compared with528

MTLBO 39 proposed in recent years.529

For the traditional ESN, we initialize 30 ESN530

networks randomly to take the average value as a531

comparison. To guarantee a fair comparison, we set532

the number of function evaluations (NFE) as the533

stopping criterion for every algorithm. In this pa-534

per, we set the population size to 100, the number of535

iterations is 100, which means the NFE is 10000. The536

reservoir size N is set to [20, 100], spectral radius ρ537

is set to [0.1, 1], sparsity of the reservoir SR is set538

to [0.01,0.5], input scaling IS is set to [0.001, 1], and539

leaking rate a is set to [0.1, 1]. In order to eliminate540

randomness, our experiment is repeated 30 times to541

take the average.542

4.1. Performance Evaluation Index543

In this paper, we use RMSE to evaluate the perfor-544

mance of the algorithm. The related formula is ex-545

pressed in Eq. (25).546

RMSE =

√√√√ 1

n

n∑
t=1

(ytarget(t)− y(t))2 (25)547

where ytarget(t) and y(t) represent target values and548

network output values at time t, respectively. n rep-549

resents the size of sample points in the test set.550

4.2. Mackey-Glass Time Series551

Mackey-Glass chaotic system (MGS) 40 is a kind of552

typical chaotic system, and the model is described553

by the following equation:554

dy(t)

d(t)
=

ay(t− τ)
1 + yc(t− τ)

− by(t) (26)555

where the value of a, b, c are set to 0.2, 0.1, and 10556

in many cases. MGS exhibits some sort of period-557

icity (τ < 16.8) and chaos (τ > 16.8) depends on558

the value of τ . The most used τ in the literature are559

τ = 17 and τ = 30.560

In the experimental results of the MGS, we set561

τ = 17 and τ = 30, in other words, the MGS exhibits562

chaotic characteristics at these situations. We use the563

Eq. (26) to activate 1000 sample points, of which 500564

samples are used as the training set of ESN and 500565

samples make up the test set. A graph of MGS with566

τ = 17 is given in Fig. 5, and τ = 30 is given in Fig.567

6. To offset the effect of the initial state reservoir on568



August 24, 2021 9:5 output

Self-adaptive Particle Swarm Optimization-based Echo State Network for Time Series Prediction 9

the results, we discarded the first 50 input data to 569

clean the reservoir. 570

571

Fig. 5. Mackey-Glass time series (τ = 17)

572

Fig. 6. Mackey-Glass time series (τ = 30)

Fig. 7 and Fig. 8 show the gap between the tar- 573

get signal and the network outputs signal in MGS 574

time series. As the data is small, it can be seen from 575

the figure that the predicted value is close to the tar- 576

get value. Table 2 gives the best parameters of ESN 577

selected by SaPSO-ESN for the MGS time series. Ta- 578

ble 3 presents the prediction results of MGS time se- 579

ries in different algorithms, with the evaluation cri- 580

terion RMSE. It can be seen from the table 3 that the 581

RMSE of the three methods is smaller than that of 582

the traditional ESN, and the RMSE of our proposed 583

method is the smallest. The RMSE of SaPSO-ESN is 584

smaller than that of RPSO-ESN in the MGS, proving 585

that our adaptive mechanism is effective. DE-ESN 586

performs better than PSO-ESN, and MTLBO-ESN 587

performs almost the same as DE-ESN. The RMSE of 588

MGS-17 is less than MGS-30, which indicates that 589

the prediction task is more difficult for MGS-30. 590

591

Table 2. Parameters of ESN selected by SaPSO-ESN on 592

MGS 593

Parameters τ = 17 τ = 30

Size of reservoir 97 84

Spectral radius 0.9912 0.8132

Sparsity of reservoir 0.2828 0.3602

Input scaling 0.6343 0.3213

Leaking rate 0.9913 0.9999

594

Table 3. The prediction results on MGS (RMSE)

Method τ = 17 τ = 30

Traditional ESN 6.72e-04 2.05e-03

PSO-ESN 8.26e-05 2.27e-04

DE-ESN 6.84e-05 2.11e-04

MTLBO-ESN 6.88e-05 2.15e-04

RPSO-ESN 6.18e-05 1.99e-04
SaPSO-ESN 5.94e-05 1.92e-04

595

Fig. 7. The target signals VS SaPSO-ESN generated sig-
nals (Mackey-Glass time series with τ = 17)

Fig. 9 and 10 are the fitness curves of differ- 596

ent models. Compared with the single strategy PSO 597

algorithm PSO-ESN, in Fig. 9, SaPSO-ESN has a 598

slower convergence speed but better prediction re- 599

sult. In Fig. 10, the results are slightly different. 600

As SaPSO-ESN not only has the same convergence 601

speed as PSO-ESN, but also has the least predic- 602

tion accuracy. MTLBO-ESN converges fastest as is 603
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shown in Fig. 10. In other words, for more complex604

tasks, SaPSO-ESN may have better performance.605

606

Fig. 8. The target signals VS SaPSO-ESN generated sig-
nals (Mackey-Glass time series with τ = 30)

607

Fig. 9. Fitness curves of different models (Mackey-Glass
time series with τ = 17)

608

Fig. 10. Fitness curves of different models (Mackey-

Glass time series with τ = 30)

4.3. ECG Datasets609

The human body is a mixed whole containing a610

large number of linear and nonlinear systems, and611

the heart is one of the most complex nonlinear sys-612

tems. Many studies have shown that the physiology613

of the heart is neither periodic nor completely ran-614

dom, but chaotic. ECG signals are composed of a se-615

ries of characteristic waves, which contain a wealth616

of pathological knowledge. ECG signals can be used617

to detect arrhythmias, myocardial infarction, abnor-618

mal heart rate, electrolyte disturbance, heart failure619

and other conditions. If we can predict the move-620

ment trend of ECG, we can predict the disease in621

advance and achieve early intervention treatment,622

and avoid many tragedies. With the proliferation of623

wearable devices, ECG signals have become easier624

to gather, so this gives us a lot of space for future625

research.626

The ECG datasets used in this paper is collected627

by a hospital sleep monitoring center, with a total of628

10 channels of data, and ECG signals are also col-629

lected. The sampling rate is 512 Hz, which means630

that there are 512 sample points in one second. The631

ECG signal is shown in Fig. 11 with 1000 sample632

points, 500 samples for training, 500 samples for633

testing, and 50 samples for washing the reservoir.634

In order to eliminate the randomness, we repeat the635

test 30 times, and then take the average value as the636

test result. Table 4 gives the best parameters of ESN637

selected by SaPSO-ESN for the ECG datasets. Table638

5 gives the one-step prediction results of different639

models on ECG datasets. So the model proposed in640

this paper is better than other models of comparison641

in RMSE.642

643

Table 4. The best parameters of ESN se-644

lected by SaPSO-ESN on ECG datasets645

Parameters Value
Size of reservoir 76

Spectral radius 0.6129

Sparsity of reservoir 0.2509

Input scaling 0.8290

Leaking rate 0.8669

646
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Table 5. The prediction results on ECG 647

datasets 648

Method RMSE
Traditional ESN 5.85e-03

PSO-ESN 3.30e-03

DE-ESN 3.20e-03

MTLBO-ESN 3.29e-03

RPSO-ESN 2.91e-03

SaPSO-ESN 2.84e-03

649

Fig. 11. 1000 samples of ECG datasets

Fig. 12 shows the predictive curve of SaPSO- 650

ESN to EEG datasets, and Fig. 13 shows the error 651

curves of different algorithms. In order to make the 652

contrast more obvious, we enlarge the key parts in 653

Fig. 12. As can be seen in the figure, the prediction 654

effect will get worse when it is at the boundary point 655

of the curve. As is shown in Fig. 12, SaPSO-ESN in 656

this paper can fit ECG data well. Moreover, from 657

Fig. 13, all the three algorithms converged before 658

50 generations. The convergence speed of SaPSO- 659

ESN is the fastest, about 17 generations, while that 660

of DE-ESN is the slowest, about 30 generations, and 661

that of PSO-ESN is between the two method, about 662

25 generations. Although the convergence speed of 663

PSO-ESN is faster than that of DE-ESN, the predic- 664

tion performance is not as good as that of DE-ESN. 665

It also shows that the SaPSO-ESN proposed by us 666

has better convergence speed and prediction perfor- 667

mance in complex real applications. 668

669

Fig. 12. The prediction curve of SaPSO-ESN on ECG
datasets

670

Fig. 13. Fitness curves of different models on ECG
datasets

5. Conclusion 671

In this paper, we use an adaptive PSO-based algo- 672

rithm to dynamically adjust the parameters of ESN 673

for different time series prediction application, so 674

as to improve the prediction accuracy and enhance 675

the generalization. There are two main improve- 676

ments in our algorithm. One is that we adopt the 677

leaky integrator neurons with adaptive parameters 678

in the ESN, and the leaking rate changes accord- 679

ing to the training process. The other is the adap- 680

tive PSO strategy. Experimental results on Mackey- 681

Glass time series and ECG signals show that the 682

proposed algorithm has considerable improvement 683

and has a fast convergence rate. For future work, 684

we intend to mix different evolutionary computing 685

methods on the basis of adaptive frameworks, not 686

just PSO. This work can also be used in the pre- 687
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diction of electroencephalogram and electromyog-688

raphy, which play an key role in the prevention of689

diseases and reducing the labor intensity of medical690

workers.691
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