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Resonant laser excitation of multiple Rydberg atoms are prohibited, leading to Rydberg block-
ade, when the long-range van der Waals interactions are stronger than the laser-atom coupling.
Rydberg blockade can be violated, i.e. simultaneous excitation of more than one Rydberg atoms,
by off-resonant laser excitation, causing an excitation antiblockade. Rydberg antiblockade gives
rise to strongly correlated many-body dynamics and spin-orbit coupling, and also finds quantum
computation applications. Instead of commonly used van der Waals interactions, we investigate an-
tiblockade dynamics of two Rydberg atoms interacting via dipole-dipole exchange interactions. We
study typical situations in current Rydberg atoms experiments, where different types of dipole-dipole
interactions can be achieved by varying Rydberg state couplings. Effective Hamiltonian governing
underlying antiblockade dynamics is derived. We illustrate that geometric gates can be realized
with the Rydberg antiblockade which is robust against decay of Rydberg states. Our study may
stimulate new experimental and theoretical exploration of quantum optics and strongly interacting
many-body dynamics with Rydberg antiblockade driven by dipole-dipole interactions.

I. INTRODUCTION

Highly excited Rydberg atoms with principal quantum
number n � 1 exhibit strong and long-range van der
Waals (vdW) interactions due to their large polarizibility
(∼ n7) and strong interactions (∼ n11) [1]. When excited
from ground states with resonant laser lights, Rydberg
blockade emerges in which excitation of two neighbor-
ing Rydberg atoms are prohibited due to energy shifts
induced by vdW interactions. Rydberg blockade pro-
vides a mechanism in realizing quantum logic gates [2–
7], which have been demonstrated experimentally [8–17].
In contrast to Rydberg blockade, the interaction-induced
excitation of two Rydberg atoms is referred to Rydberg
antiblockade (RAB) [18]. Subsequently, the relevant ex-
periment has also observed signatures of Rydberg an-
tiblockade [19]. The strict condition for RAB was ana-
lyzed [20, 21]. RAB plays roles in the study of motional
effects [22, 23], dissipative dynamics [24–26], periodically
driving [27], and quantum computation [28, 29]. RAB
was also studied in detection of structural phase transi-
tions [30], Rydberg spin system [31], cold atom ensem-
ble [32], as well as in strongly interacting Rydberg atom
experiment [33].

The vdW and dipole-dipole (DD) interactions exhibit
different features. In Fig, 1(a), we show the strength
and interaction range of DD and vdW interactions, re-
spectively, focusing on one group of specific Rydberg
states. The DD interaction is stronger at short dis-
tances, while the vdW interaction is stronger at long dis-
tances [7]. Most importantly, DD interactions typically
involve two or more Rydberg states in the dynamics. In
Fig. 1(b), we show regimes to realizing Rydberg block-
ade [2–4], conventional RAB with simultaneous driv-
ing [20, 21, 23–28, 30–32] as well as sequential-driving-
based RAB [29], where the excitation conditions can be
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controlled by laser detuning. When using DD interac-
tions, the density-density as well as spin flip-flop interac-
tions co-exist [34, 35], leading to complicated many-body
dynamics [36]. The resonant DD interactions are consid-
ered to construct two- [37] and three-qubit [38] quantum
logic gates by using of experimentally observed Förster
resonance [39]. It has been shown that RAB can be used
to limit the blockade error [40], and to construct the mul-
tiple qubit Toffoli and Fan-out gates in a fast way [41].
Recently, it has been shown that non-adiabatic dynam-
ics around a conical intersection can be studied under the
RAB condition with trapped Rydberg ions [42].

Although there are different level schemes to achieve
DD interactions, it is not clear how to achieve the RAB
condition for the many types of DD interactions between
Rydberg atoms. Moreover existing schemes typically re-
quire two or more Rydberg atoms in the Rydberg state
simultaneously for a period of time [37–39, 41] or to stay
in a dark state [43]. This could reduce coherence of the
system due to, e.g. motional effects [22, 23].

In this work we study RAB driven by different types
of Rydberg DD interactions. We propose new schemes to
realize RAB efficiently for three types of DD interactions
that are typically encountered in various experiments.
The first type is the Förster resonance, such as transitions
given by |d〉|d〉 ↔ |p〉|f〉 + |f〉|p〉 [44–47], and |p〉|p〉 ↔
|s〉|s′〉+ |s′〉|s〉 [48, 49]. The second type is spin-exchange
type RRIs via |s〉|p〉 ↔ |p〉|s〉 [50, 51], |p〉|d〉 ↔ |d〉|p〉 [52]
or |s〉|p′〉 ↔ |p〉|s′〉 [53]. The third type is collective ex-
change interaction, i.e. |s〉|s′〉 ↔ |p〉|p′〉 [37, 41, 49, 54–
57]. Effective Hamiltonians of the different types of DD
interactions are provided. When applying the proposed
schemes in realizing quantum logic gates, the main fea-
ture is that only a one-step Rabi oscillation between the
ground states and the multi-excited Rydberg states is re-
quired, without staying in the Rydberg states for a long
period of time, avoiding disadvantages found in other
schemes. We also discuss impacts of dissipation on the
RAB and propose parameters to probe RAB.

The rest content of the manuscript is organized as fol-
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FIG. 1. (a) Two-body interaction strength for Rb atoms ex-
cited to Rydberg state |100s〉 versus inter-atomic distance d.
Rc denotes the crossover distance between DD and vdW in-
teractions [4]. (b) The dynamics of Rydberg blockade and
antiblockade with vdW-type RRI. Egg, Erg and Err denote
the energies of the two-atom state |gg〉, |gr〉(|rg〉) and |rr〉,
respectively. E′rr denotes the energy when both atoms are ex-
cited in Rydberg states but excluding two-body interactions.
The resonant laser excitation (dotted-dashed line) leads to the
Rydberg blockade [2–4]. The middle excitation process (dot-
ted line) is the conventional Rydberg antiblockade with simul-
taneous driving [20, 21, 23–28, 30–32]. The right one (solid
line) is the RAB with sequential driving [29].

lows: In Sec. II, we show details on how to achieve RAB
regime. The effective Hamiltonian is given, and the re-
spective dynamics influenced by dissipation is studied
with a quantum master equation. We show population
evolution of different models. In Sec. III, the main differ-
ence between the vdW and DD interactions are shown,
which gives distinctive dynamics. In Sec. IV, we show
the potential applications of the proposed RAB in build-
ing two-qubit quantum gates and creating steady state
entanglement. The conclusion is given in Sec. V.

II. ANTIBLOCKADE WITH DIFFERENT
TYPES OF DD INTERACTIONS

A. RAB with the Förster resonance

1. Level scheme and model

To realize Föster resonance we consider the exper-
imental configuration [45] |p〉 ≡ |61P1/2,mJ = 1/2〉,
|d〉 ≡ |59D3/2,mJ = 3/2〉 and |f〉 ≡ |57F5/2,mJ = 5/2〉
of two 87Rb atoms, as shown in Fig. 2. By applying an
electric fields ε = 32 mV cm−1, these Rydberg states can
be brought to exact resonance. One of the states in com-
putational space is chosen as |1〉 ≡ |5S1/2, F = 2,mF =
2〉 [45] and the other state |0〉 in computational subspace
is decoupled with the excitation process and may be cho-
sen as |0〉 ≡ |5S1/2, F = 1,mF = 0〉. The excitation is ac-
complished by a two-photon process with two lasers with
wavelengths 795 nm(π polarization) and 474 nm(σ+ po-
larization) [45]. Bichromatic classical fields are imposed
on these two atoms to off-resonantly drive the transi-
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FIG. 2. (a), Left panel shows two Rydberg atoms with reso-
nant RRI. |0〉 and |1〉 are two ground states. |p〉, |d〉 and |f〉
are three Rydberg states with the Förster resonance interac-
tion Ĥd = Vd(|dd〉〈pf | + |dd〉〈fp| + H.c.). Right panel gives
the effective RAB process in the dressed state basis. (b),
Populations of difference states for RAB scheme in Sec. II A
during one evolution period T = 2π∆/Ω2 with the considera-
tion of practical atomic spontaneous emission γp = 1.89 kHz,
γd = 4.55 kHz and γf = 7.69 kHz. The inset shows that
the dressed state decays to zero at the end of the laser pulse.
Parameters are Ω = 2π × 5 MHz and ∆ is set to satisfy the
antiblockade condition. The initial state is |11〉 and the inter-
atomic distance is 3 µm.

tion |1〉 ↔ |d〉 with an identical Rabi frequency Ω but
opposite detuning ∆. With the rotating-wave approxi-
mation, the Hamiltonian for this system can be written
as Ĥ = ĤΩ + Ĥd (~ ≡ 1), where

ĤΩ =
Ω

2

(
ei∆t + e−i∆t

)
(|1〉1〈d| ⊗ I2 + I1 ⊗ |1〉2〈d|) + H.c.

=
Ω

2

(
ei∆t + e−i∆t

)
(|10〉〈d0|+ |11〉〈d1|+ |1p〉〈dp|

+|1d〉〈dd|+ |1f〉〈df |+ |01〉〈0d|+ |11〉〈1d|

+|p1〉〈pd|+ |d1〉〈dd|+ |f1〉〈fd|) + H.c.

Ĥd =
√

2Vd|dd〉〈rpf |+ H.c. (1)

where Ij denotes the identity matrix of atom j, Vd =
C3/r

3
d denotes the DD interaction strength. Here C3 =

2.54 GHz·µm3 [45, 58] and rd denotes the interatomic
distance. |mn〉 denotes two atom state |m〉1 ⊗ |n〉2 and
will be used throughout this manuscript. We have de-
fined two atom state |rpf 〉 ≡ (|pf〉+ |fp〉)/

√
2.

2. Effective Hamiltonian

To simplify the calculation, we first derive a Hamilto-
nian using the dressed state basis. It should be mentioned
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that the dressing here is different from Rydberg dress-
ing of the ground state, which mainly generates long-
range interactions between ground state atoms [59–84].

One can diagonalize Ĥd as
√

2Vd(|+〉〈+| − |−〉〈−|) with

|±〉 ≡ (|dd〉 ± |rpf 〉)/
√

2 being the dressed states. Then
the Hamiltonian can be written as

ĤΩ =
Ω

2

(
ei∆t + e−i∆t

) [√
2|11〉〈Ψ|+ |Ψ〉(〈+|+ 〈−|)

]
+ H.c.

+
Ω

2

(
ei∆t + e−i∆t

)
(|01〉〈0d|+ |10〉〈d0|) + H.c.

Ĥd =
√

2Vd(|+〉〈+| − |−〉〈−|), (2)

in which |Ψ〉 ≡ (|1d〉 + |d1〉)/
√

2. From Eq. (2), Hamil-

tonian ĤΩ itself describes resonant interactions when
∆ = 0. However, when Vd � Ω, after rotating the to-

tal Hamiltonian Ĥ with respect to Ĥd, one can see that
the two-excitation Rydberg states would be coupled off-
resonantly with large detuning. Thus the Rydberg block-
ade is produced. In the following we would show how to
achieve the RAB even when Vd � Ω.

When the RRI strength is much stronger than Rabi
frequency, the aim is to use the laser detuning to com-
pensate the energy shift induced by the RRI [85]. And
it is precisely from this point that one always rotates
the whole Hamiltonian with respect to the RRI-related
Hamiltonian, which is convenient to get the relation be-
tween laser detuning and RRI strength since Vd is also
moved to the exponential part (i.e. contributing to the
phase) [85, 86]. With this at hand, one can employ the
second-order perturbation theory to obtain the RAB con-
dition. After rotating the whole Hamiltonian ĤΩ + Ĥd

with respect to eiĤdt, this yields [27]

Ĥ =
{Ω

2

[√
2
(
ei∆t + e−i∆t

)
|11〉〈Ψ|+

(
ei(∆−

√
2Vd)t + e−i(∆+

√
2Vd)t

)
|Ψ〉〈+|+

(
ei(∆+

√
2Vd)t + e−i(∆−

√
2Vd)t

)
|Ψ〉〈−|

+
(
ei∆t + e−i∆t

)
(|01〉〈0d|+ |10〉〈d0|)

]
+ H.c.

}
(3)

If the conditions {∆,∆ ±
√

2Vd} � Ω, and Vd =
√

2∆
are satisfied, the effective form of Hamiltonian (3) can be
achieved through the second-order perturbation calcula-
tion [87–90] as [See the Appendix A for details]

Ĥe =
Ω2

2∆
|11〉〈+| − |11〉〈−|+ H.c.

+
Ω2

3∆
(|+〉〈+| − |−〉〈−|). (4)

From Eq. (4), one can see that the collective ground state
|11〉 is resonantly coupled with the two-excitation Ry-
dberg state |rpf 〉 with effective Rabi frequency Ωeff ≡
Ω2/∆, leading to the RAB. Here the Stark shift in Eq. (4)
would no doubt influence the dynamics. One can remove
the Stark shift by modifying the condition Vd =

√
2∆ to

Vd =
√

2∆− Ω2/(3
√

2∆),

the effective Hamiltonian (4) would be changed to

Ĥe =
Ω2

2
√

2∆
|11〉(〈+| − 〈−|) + H.c. (5)

Here we should mention that in Ref. [45], the ground
state |gg〉 (Corresponding to |11〉 in our manuscript) is
excited to Rydberg state |dd〉 firstly via π pulse through
the detuned laser. Then the electric field is tuned to
make state |dd〉 resonant with (|pf〉+ |fp〉)/

√
2. We con-

sider the strong Förser resonant interactions from the
beginning, and designed schemes to achieve the Rabi os-
cillation from collective ground state to two-excitation
Rydberg state (|pf〉 + |fp〉)/

√
2. Meanwhile, the states

|00〉, |01〉 and |10〉 are decoupled with the two-excitation
Rydberg states, which is convenient when applying this
model for quantum information processing.

3. Population dynamics at the RAB regime

The effective Hamiltonian (5) shows that perfect Rabi
oscillation between the ground state and the doulbly ex-
cited Rydberg state can happen. In this section, we check
the validity of the effective Hamiltonian (5) by compar-
ing dynamics obtained from the original Hamiltonian in
the RAB regime. We furthermore take into account of
spontaneous emission of Rydberg states. The dynamics
of the system is governed by the master equation

˙̂ρ = i[ρ̂, Ĥ] +
1

2

∑
k

[2L̂kρ̂L̂†k − L̂
†
kL̂kρ̂− ρ̂L̂

†
kL̂k] (6)

where ρ̂ denote the density matrix of system state, L̂k
is the k-th Lindblad operator describing the dissipation
process, and Ĥ = ĤΩ+V̂d is the original Hamiltonian (1).
The lifetimes for |p〉, |d〉 and |f〉 are about 0.53 ms, 0.22
ms and 0.13 ms, respectively [91, 92]. The Lindblad op-
erators are given explicitly as

L̂1 =
√
γp/2|0〉1〈p|, L̂2 =

√
γp/2|1〉1〈p|,

L̂3 =
√
γd/2|0〉1〈d|, L̂4 =

√
γd/2|1〉1〈d|,

L̂5 =
√
γf/2|0〉1〈f |, L̂6 =

√
γf/2|1〉1〈f |,

L̂7 =
√
γp/2|0〉2〈p|, L̂8 =

√
γp/2|1〉2〈p|,

L̂9 =
√
γd/2|0〉2〈d|, L̂10 =

√
γd/2|1〉2〈d|,

L̂11 =
√
γf/2|0〉2〈f |, L̂12 =

√
γf/2|1〉2〈f |, (7)

where γj denotes the atomic spontaneous emission rate.
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Numerical results by solving the master equation are
shown in Fig. 2(b). The evolution of the state under the
given RAB condition is plotted, where the calculation
takes into account of practical atomic spontaneous emis-
sion rates. It can be seen that the initial state can be
fully converted to the dressed state, as described by the
effective Hamiltonian. Here we should point out that, the
original Hamiltonian rather than the effective Hamilto-
nian is used in evolving the master equation. This means
that ideal RAB can be achieved with the DD interaction
through the Förster resonance.

B. RAB with spin-exchange interaction

1. Level scheme and model
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FIG. 3. (a), Left panel shows two Rydberg atoms with DD
interactions. |0〉 and |1〉 are two ground states. |p〉 and |d〉
are two Rydberg states with the spin-exchange interaction
Ĥd = Vd(|pd〉〈dp| + H.c.). Right panel: The effective RAB
process in the dressed state basis. (b), Populations of the
states for RAB scheme in Sec. II B under one evolution pe-
riod T = 2π∆/Ω2 with the consideration of practical atomic
spontaneous emission γp = 1.69 kHz and γd = 4 kHz. Param-
eters are chosen as Ω = 2π × 5 MHz and ∆ is set to satisfy
the antiblockade condition. The initial state is set as |11〉 and
the inter-atomic distance is set as 3 µm.

As shown in Fig. 3, we consider the experimental
configuration as [52] |d〉 ≡ |62D3/2,mJ = 3/2〉, |p〉 ≡
|63P1/2,mJ = 1/2〉. These two Rydberg states are res-
onant with each other. One of the ground states are
chosen as |1〉 ≡ |5S1/2, F = 2,mF = 2〉 [52] and the rest
computational state can be chosen as |0〉 ≡ |5S1/2, F =
1,mF = 0〉. The excitation process from |1〉 to state |d〉
is accomplished by a two-photon transition with wave-
lengths 795 nm (π polarization) and 474 nm (σ+ polar-
ization), respectively. We also consider the single-photon

excitation process from |1〉 to |p〉 [52]. For left (right)
Rydberg atom in the left panel, bichromatic classical
fields are imposed to off-resonantly drive the transition
|1〉 ↔ |p(d)〉 through single(two)-photon process with an
identical Rabi frequency Ω but opposite detuning ∆. Af-
ter the rotating-wave approximation, the Hamiltonian for
this concrete system can be written as

ĤΩ =
Ω

2

(
ei∆t + e−i∆t

)
(|1〉1〈p| ⊗ I2 + I1 ⊗ |1〉2〈d|) + H.c.

=
Ω

2

(
ei∆t + e−i∆t

)
(|10〉〈p0|+ |11〉〈p1|+ |1p〉〈pp|

+|1d〉〈pd|+ |01〉〈0d|+ |11〉〈1d|+ |p1〉〈pd|

+|d1〉〈dd|) + H.c.

Ĥd = Vd|pd〉〈dp|+ H.c., (8)

in which Vd = C3/r
3
d with C3 being 7.965 GHz·µm3

here [52, 58] and rd that denotes the interatomic dis-
tance. In the following we will show how to achieve the
RAB with this Hamiltonian.

2. Effective Hamiltonian

We first define the dressed states |±̃〉 ≡ (|pd〉 ±
|dp〉)/

√
2 by diagonalizing the RRI Hamiltonian. Using

the dressed states, one can rewrite Eq. (8) as

ĤΩ =
Ω√
2

(
ei∆t + e−i∆t

)
[|11〉〈Φ|+ 1√

2
|Φ〉(〈+̃|+ 〈−̃|)]

+
Ω

2

(
ei∆t + e−i∆t

)
(|01〉〈0d|+ |10〉〈d0|) + H.c.

Ĥd = Vd(|+̃〉〈+̃| − |−̃〉〈−̃|) (9)

with |Φ〉 ≡ (|1d〉 + |p1〉)/
√

2. Follow the similar pro-
cess used in Sec. II A, and considering ∆� Ω and RAB
condition Vd = 2∆ − Ω2/(3∆), we obtain the respective
effective Hamiltonian [See Appendix B for details]

Ĥe =
Ω2

2
√

2∆
|11〉(〈+̃| − 〈−̃|) + H.c., (10)

which means the Rabi oscillation between collective
ground state |11〉 and two-excitation Rydberg state |pf〉
emerges and the RAB can be achieved with an effective
π-pulse, i.e. Ω2t/∆ = π.

Now we discuss the differences of excitation process be-
tween our scheme and that in Ref. [52]. In Ref. [52], the
atoms are excited step by step. Firstly, one of the Ry-
dberg atoms is excited to |d〉 state through two-photon
process. Then the state of the excited Rydberg atom is
transferred from |d〉 to |p〉 through the microwave field
coupling. Immediately, the rest Rydberg atom is excited
to state |d〉 with Ω ' 5.76Vd and along with this process
the spin-exchange process also happens. The blockade
effect in Ref. [52] does not work because Vd is less than
Ω. In our scheme in Sec. II B, by using the dressed state
and appropriately choosing parameters, RAB can be ac-
complished in one step under condition Vd � Ω.
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3. Population dynamics

The full Hamiltonian of the model in Sec. II B is shown
in Eq. (8). The lifetimes for |p〉 and |d〉 are around 0.59
ms and 0.25 ms, respectively [91, 92]. The resulting mas-
ter equation is similar. Due to the change of Rydberg
levels, the Lindblad operators are changed to

L̂1 =
√
γp/2|0〉1〈p|, L̂2 =

√
γp/2|1〉1〈p|,

L̂3 =
√
γd/2|0〉1〈d|, L̂4 =

√
γd/2|1〉1〈d|,

L̂5 =
√
γp/2|0〉2〈p|, L̂6 =

√
γp/2|1〉2〈p|,

L̂7 =
√
γd/2|0〉2〈d|, L̂8 =

√
γd/2|1〉2〈d|. (11)

In Fig. 3(b), we plot the evolution of the state for the
above RAB regime under the given RAB condition by
taking into account of decay in Rydberg states. When
numerically solving the master equation (6), the original
Hamiltonian (8) rather than the effective Hamiltonian is
used. As shown in Fig. 3(b), we achieve the RAB such
that only the initial and the dressed state participate in
the dynamics.

C. RAB with collective-exchange interaction

1. Level scheme and model

As shown in Fig. 4, we consider two Rydberg atoms,
and each has two ground states |0〉 and |1〉. The
left (right) atom has two Rydberg states |s〉 and |p〉 (|s′〉
and |p′〉). The experimental configuration is considered
as [55], |s〉 ≡ |48S1/2,mJ = 1/2〉, |p〉 ≡ |48P1/2,mJ =
1/2〉, |s′〉 ≡ |50S1/2,mJ = 1/2〉, |p′〉 ≡ |49P1/2,mJ =
1/2〉. These states are resonant with each other when
applying an electric fields ε = 710 mV cm−1 and choos-
ing rd = 2µm with C3 to be 0.6 GHz µm3. Two
ground states in computational subspace can be chosen
as |1〉 ≡ |5S1/2, F = 2,mF = 0〉 and |0〉 ≡ |5S1/2, F =
1,mF = 0〉 [55]. The excitation from |1〉 to |s〉 or |s′〉 can
be implemented by a two-photon process [55].

We consider two bichromatic classical fields are im-
posed to off-resonantly drive the transition |1〉 ↔ |s(s′)〉
with an identical Rabi frequency Ω but opposite detuning
∆. With the rotating-wave approximation, the Hamilto-
nian for this system can be written by Ĥ = ĤΩ + Ĥd,
where

ĤΩ =
Ω

2

(
ei∆t + e−i∆t

)
(|1〉1〈s| ⊗ I2 + I1 ⊗ |1〉2〈s′|) + H.c.

=
Ω

2

(
ei∆t + e−i∆t

)
(|10〉〈s0|+ |11〉〈s1|+ |1s′〉〈ss′|

+|1p′〉〈sp′|+ |01〉〈0s′|+ |11〉〈1s′|+ |s1〉〈ss′|

+|p1〉〈ps′|) + H.c.

Ĥd = Vd|ss′〉〈pp′|+ H.c. (12)
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FIG. 4. (a). Left panel shows level scheme of the two Ry-
dberg atoms. |0〉 and |1〉 are two ground states. |s〉 and |p〉
are two Rydberg states for the left atom, and |s′〉 and |p′〉 are
two Rydberg states for the right atom. These two Rydberg
atoms are interacting each other through the spin-exchange
interaction Ĥd = Vd(|ss′〉〈pp′|+ H.c.). Right panel: the effec-
tive RAB process in the dressed state basis. (b). Population
dynamics for RAB scheme in Sec. II C under one evolution
period T = 2π∆/Ω2 with atomic spontaneous emission rate
γs = 8.33 kHz, γs′ = 7.69 kHz, γp = 4 kHz, γp′ = 3.7 kHz.
Parameters are Ω = 2π × 5 MHz and ∆ is set to satisfy the
antiblockade condition. The initial state is |11〉 and the inter-
atomic distance is 2 µm.

As in previous sections, ĤΩ and Ĥd describe the laser-
atom coupling and the dipole-dipole interaction, respec-
tively.

2. Effective Hamiltonian

To derive the effective Hamiltonian, one can diagonal-
ize the Hamiltonian Ĥd to get the dressed states. Using
the respective dressed state, Hamiltonian (12) can be re-
formulated to be,

ĤΩ =
Ω√
2

(
ei∆t + e−i∆t

)
[|11〉〈Ξ|+ 1√

2
|Ξ〉(〈+′|+ 〈−′|)]

+
Ω

2

(
ei∆t + e−i∆t

)
(|01〉〈0s′|+ |10〉〈s0|) + H.c.

Ĥd = Vd(|+′〉〈+′| − |−′〉〈−′|) (13)

with |Ξ〉 ≡ (|1s′〉+|s1〉)/
√

2 and |±′〉 = (|ss′〉±|pp′〉)/
√

2.
We find that the RAB condition Vd = 2∆−Ω2/(3∆) can
be obtained when ∆ � Ω. This leads to the effective
Hamiltonian [See Appendix B for details]

Ĥe =
Ω2

2
√

2∆
|11〉(〈+′| − 〈−′|) + H.c., (14)
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which indicates the Rabi oscillation between collective
ground state |11〉 and two-excitation Rydberg state |pp′〉.
The ground state is completed transferred to the dressed
state when Ω2t/∆ = π is fulfilled. In addition to the
cases discussed here, the RAB with the resonant DD in-
teraction discussed in Ref. [93, 94] can also be realized in
the similar way.

In Ref. [55], optically trapped cloud of 2 × 104 87Rb
gate and source atoms are used for studying the enhance-
ment of single-photon nonlinearity. At zero electric field,
the interaction between the |ss′〉 pair which is of vdW
type and much less than the DD interaction. Thus the
collective ground state can be excited to |ss′〉 and the
single-photon nonlinearity was observed to be enhanced
by electrically tuning |ss′〉 and |pp′〉 pair states into res-
onant interactions [55]. In this subsection, the resonant
DD interaction is an initial consideration and on that ba-
sis we design the pulse to achieve the RAB in one step
with the condition Vd � Ω.

3. Population dynamics

For the model considered in Sec. II C, the full Hamilto-
nian is shown in Eq. (12). When including the lifetimes
for |s〉, |s′〉, |p〉 and |p′〉, which are 0.12 ms, 0.13 ms, 0.25
ms and 0.27 ms, respectively [91, 92], the dynamics of the
system can be obtained by solving the master equation
with the following modified Lindblad operators

L̂1 =
√
γs/2|0〉1〈s|, L̂2 =

√
γs/2|1〉1〈s|,

L̂3 =
√
γp/2|0〉1〈p|, L̂4 =

√
γp/2|1〉1〈p|,

L̂5 =
√
γs′/2|0〉2〈s′|, L̂6 =

√
γs′/2|1〉2〈s′|,

L̂7 =
√
γp′/2|0〉2〈p′|, L̂8 =

√
γp′/2|1〉2〈p′|. (15)

In Fig. 4(b), we plot the evolution of the state for the
RAB regime realized with the collective exchange inter-
action. The finite lifetime in the Rydberg state is taken
into account in the simulation. The numerical simula-
tion agrees with the prediction by the effective Hamilto-
nian nicely, indicating that an ideal RAB regime can be
achieved with this type of DD interaction.

III. COMPARISON WITH VDW
INTERACTION BASED RAB

A. Characteristic interatomic distance

For a given Rydberg state, the DD interaction dom-
inates at shorter distances compared to the vdW inter-
action. Roughly one can separate the two interactions
with a characteristic distance Rc = [4(C3)2/δ2]1/6 [95],
where C3 is the dispersion coefficient, and δ is the de-
tuning of the relevant Rydberg pair states participating
the DD interaction [4, 95]. The vdW interaction plays

dominant roles when the interatomic distance r is larger
than Rc. As a result, one should consider alternative the-
ories to analyze RAB and related dynamics [20, 21, 23–
28, 30–32]. The present work focuses on the regime where
interatomic distance r is less than Rc. As an exam-
ple, we show the characteristic interatomic distance for
|nS1/2, mJ = 1/2〉 versus principle quantum number n in
Fig. 5(a). By fitting the numerical data, it is found that
the characteristic distance Rc ∝ n3.655, agreeing with the
scaling analysis in Ref. [95]. It should be noted that here
we suppose the channel 2|nS1/2〉 → |nP1/2〉+|(n−1)P1/2〉
is the dominate channel for simplicity and make numeri-
cal calculations. In practice, one might have to consider
contributions from all the transition channels for evalu-
ating the characteristic distance.

B. Dependence on laser parameters

So far we have assumed that the laser parameters (Rabi
frequency and detuning) are constant in deriving the
Hamiltonian. In many experiments, fluctuations of the
laser parameters can not be neglected. Importantly, the
RAB based on DD and vdW interactions exhibits dif-
ferent responses to the parameter fluctuation. We illus-
trate the dependence of the two types of interactions by
constructing a RAB-based controlled-Z gate. To qualify
the fidelity of the gate, we consider the initial state as
|ψ(0)〉 = (|00〉 + |01〉 + |10〉 + |11〉)/4 and the ideal out-
put state is |ψ(t)〉 = (|00〉 + |01〉 + |10〉 − |11〉)/4. The
fidelity is then defined as F = 〈ψ(t)|ρ(t)|ψ(t)〉 through-
out this manuscript. The fidelity of the controlled-Z gate
versus the fluctuations of Ω(∆) is shown in Fig. 5(b)[(c)].
The gate fidelity based on the DD interaction decreases
slower than the vdW interaction when increasing the am-
plitudes of the fluctuations. This example shows that
DD-interaction-based RAB has stronger robustness on
the parameter fluctuations than vdW-based counterparts
in construction of quantum logic gates.

When deriving the effective Hamiltonian via the
second-order perturbation theory, the laser detuning
should be larger than Rabi frequency. Meanwhile, the
RAB condition sets the relation between the RRI and
laser detuning (V ∼ ∆). For given Rydberg states, the
DD interaction is stronger than the vdW interaction [see
Fig. 1a], where the range of the allowed Rabi frequency
is larger when using the DD interaction than the vdW
interaction. To illustrate this, we again examine the per-
formance of the controlled-Z gate by using the DD and
vdW interaction. As shown in Fig. 6(a), the gate fidelity
drops apparently when increasing Ω in case of the vdW
interaction. In contrast the fidelity decreases slowly with
increasing Ω [Fig. 6(b)]. In fact, the fidelity in the latter
case is greater than 0.9 for a large range of Ω. This indi-
cates that one can achieve robust controlled Z-gate not
only with flexible laser parameters, but can achieve high
gate speed using the DD interaction.
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FIG. 5. (a) Characteristic interatomic distance Rc for the
state |nS1/2, mJ = 1/2〉 [95]. Fidelities of the controlled-Z
gate versus fluctuations of the laser parameters, i.e. devi-
ations dΩ (b) and d∆ (c). For DD interaction, the energy
level are same with that in Fig. 2 with Ω = 2π×9.9 MHz,
γp = 1.89 kHz, γd = 4.55 kHz and γf = 7.69 kHz. The
interatomic distance is 3 µm, and ∆ is determined through
the RAB condition given in Sec. II A. For vdW interaction,
the energy levels are the same with that in Fig. 2 without
considering |p〉 and |f〉 states. The vdW interaction is given
by the Hamiltonian HvdW = C6/r

6|d〉〈d| ⊗ |d〉〈d| with C6=
1700 GHz ·µm6 [58] with interatomic distance 6.6 µm. Be-
sides, Ω = 2π × 2.2 MHz, γd = 4.55 kHz and the RAB con-
dition in Ref. [86] are considered. For panels (b) and (c), the
gate time is determined by T = 2π∆/Ω2.

C. Dependence on fluctuations of the interatomic
distance

In this subsection, we discuss the influence of the devi-
ation of atom-atom distance on the RAB without setting
concrete energy level. The DD and vdW interactions are
given by [4]

Vd =
C3

r3
d

and VvdW =
C6

r6
vdW

, (16)

where C3 and C6 denote the coefficients of the DD and
vdW interactions, respectively. As the vdW and DD in-
teraction have different length scales, we use rd and rvdW

to denote the interatomic distance. When there is a small
deviation in the distance, one can find that the change
of the interaction energy are,

dVd = −3Vd
rd

drd and dVvdW = −6VvdW

rvdW
drvdW, (17)

where drd and drvdW are the small deviation with respect
to the interatomic distance. Recently it has been shown

0.4

0.6

0.8

1.0

vdW interaction

0 5 10 15 20 25 30

/2 (MHz)

0.2

0.4

0.6

0.8

1.0

F
id

e
lit

y 
o

f 
th

e
 R

A
B

-b
a

se
d

 g
a

te
s

dipole-dipole interaction

Ω π

0.9

0.9

FIG. 6. Fidelities of the controlled-Z gate versus Rabi fre-
quency at the gate time T = 2π∆/Ω2. For DD interactions,
the energy level and parameters are chosen as that in Fig. 5,
except that the Rabi frequency are varied from 2π × 0.5 to
2π × 30 MHz. The detuning is chosen to satisfy the RAB
condition given in Sec. II A. For vdW interactions, the energy
level is the same as that in Fig. 2 without considering |p〉 and
|f〉 and the RAB condition in given in Ref. [86]. In both cases,
the arrow indicates the range of Rabi frequencies where the
gate fidelity is larger than 0.9.

that this deviation can lead to interesting many-body
phases [42, 96–98].

In order to achieve the RAB, the laser detuning has
to satisfy the condition Vd =

√
2∆− Ω2/(3

√
2∆) in this

work, and VvdW = 2∆− 2Ω2/3∆ in the vdW interaction
discussed in Ref. [86]. Thus, large interaction energy shift
dVd and dVvdW will invalidate the RAB condition. To
determine the effect of drd and drvdW quantitatively, we
consider the following situation. When (i) Vd = VvdW we
consider identical deviations of the interatomic distance,
i.e., drd = drvdW. For the vdW interaction, the detun-
ing ∆ has to be adjusted by 0.50167dVvdW to achieve
the RAB. For the DD interaction, ∆ need to be ad-
justed by 0.70818dVd. Now if we force 0.50167dVvdW =
0.70818dVd, one can derive the relation between the
atomic distance, rvdW ' 1.41679rd. This means that
dVvdW is greater than dVd if rvdW < 1.41679rd, and vice
versa. When one builds a controlled-Z gate, the DD
(vdW) interaction based RAB leads to higher gate fi-
delity when rvdW < 1.41679rd (rvdW> 1.41679rd), as
depicted in Fig. 7(a). In the second case (ii) we consider
Vd � VvdW, and rd ∼ rvdW. In this case, one can see
that dVd � dVvdW is achieved with the same deviation
of interatomic distance (drd = drvdW). This means the
vdW-based RAB is more robust than the DD interaction
case. As depicted in Fig. 7(b), the gate fidelity decreases
relatively slow when using the vdW interaction.
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FIG. 7. Fidelity of the RAB-based gates with respect to devi-
ation of interatomic distances at the gate time T = 2π∆/Ω2.
Panel (a)[(b)] corresponds to case (i)[(ii)] in Sec. III C. Here,
Ω = 2π×6.663 MHz, ∆ = 10Ω, rd = 3µm. Vd = 2π×94 MHz.
For panel (a) Vvdw = Vd, while for panel (b) Vvdw is shown in
the legend of the figure.

IV. APPLICATIONS OF THE DD
INTERACTION INDUCED RAB

Applications of Rydberg antiblockade have been dis-
cussed extensively recently [18–21, 23–33, 37–41, 43, 99].
Here we will illustrate the DD-interaction-based RAB
can be applied in geometric quantum computation and
dissipative dynamics. To be concrete, we will focus on
the RAB scheme discussed in Sec. II A. It is possible to
realize similar applications through other schemes.

A. Two-qubit geometric quantum gate

We first consider how to construct the controlled-
arbitrary-phase geometric gate given by the following
matrix

ÛCP =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

 . (18)

in the computational space {|00〉, |01〉, |10〉, |11〉}. By
modulating the Rabi frequencies of the initial Hamilto-
nian at the half evolution time (T/2) appropriately, one
can achieve the effective Hamiltonian in the time interval
[T/2, T ] [87–90]

Ĥe = − e
iθΩ2

2
√

2∆
|11〉(〈+| − 〈−|) + H.c., (19)

where the phase is controlled by the laser.
The fidelity of the gate is shown in Fig. 8(a) by nu-

merically solving the master equation with the origi-
nal Hamiltonian, in which the initial state is |ψ(0)〉 =
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FIG. 8. (a) Evolution of the fidelity of the geometric
controlled-arbitrary-phase gate. The parameters are the same
as that in Fig. 2. (b) Bloch sphere representation of the geo-
metric quantum operation. The coupling to the dressed state
via RAB gives rise to the desired phase shift to the computa-
tional basis at the end of the gate operation.

(|00〉+ |01〉+ |10〉+ |11〉)/4 and the ideal output state is

|ψ(t)〉 = Û |ψ(0)〉. The definition of the fidelity is the
same as that in Sec. III B. With the consideration of
dissipation, the gate fidelity is 0.9969, 0.9962, 0.9949,
0.9938 and 0.9936 when θ equals to π, 3π/4, π/2, π/4
and π/6, respectively. The geometric feature of the
phase can be easily verified since |11〉 → |rpf 〉 → eiθ|11〉
is achieved and 〈Ψj |Ĥe|Ψk〉 = 0 [100–104] is satis-
fied, where |Ψj〉 (|Ψk〉) is any one of the four states in
{|00〉, |01〉, |10〉, |11〉}. Thus, θ is the non-adiabatic geo-
metric phase, which is half of the solid angle enclosed by
the evolution path [105], as shown in Fig. 8(b).

B. Steady entanglement
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FIG. 9. (a) Dynamical processes to generate the steady en-
tangled state through combining the unitary and dissipa-
tive dynamics. (b) Infidelity of the steady entangled state
(|01〉 − |10〉)/

√
2 versus ω/Ω′eff . The inter-atomic distance is

3 µm, and the Rabi frequency is s Ω = 2π × 1 MHz. ∆ is
determined through Vd =

√
2∆.

Steady-state entanglement can be created via dissi-
pation in the strongly interacting Rydberg systems [24,
106]. Following similar ideas, a weak microwave field
drives resonantly the transition between two ground
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states |0〉 and |1〉 [Fig. 9(a)],

Ĥmw =

√
2ω

2
(|00〉+ |11〉)〈T |+ H.c., (20)

where |T 〉 ≡ (|01〉+ |10〉)/
√

2 is a triplet Bell state. The

singlet state |S〉 ≡ (|01〉−|10〉)/
√

2 is decoupled to Hamil-
tonian (20) and is the desired steady entangled state. We
can learn from Eq. (20) that the microwave shuffles the
states |00〉, |T 〉, and |11〉, but keeps |S〉 invariant. Since
the stark shifts do not influence the dissipative dynam-
ics, we thus consider to turn the red-detuned laser off and
modify the RAB condition as Vd =

√
2∆. The effective

Hamiltonian that control unitary dynamics can be writ-
ten as the form Ĥ ′e = (Ω′eff/2)(|11〉〈+|+ H.c.) + Ŝ, where

Ω′eff =
√

2Ω2/(2∆) and Ŝ denotes the stark shift.

Combining the effective Hamiltonian Ĥ ′e with the mi-

crowave Hamiltonian Ĥmw in Eq. (20), and the dissipa-
tive dynamics as depicted in Fig. 9(a), the desired state
|S〉 would be prepared as the steady state of the system.
In other words, once |S〉 is occupied through the dissi-
pative dynamics, the entangled state is created success-
fully. Otherwise, if the other three states are occupied,
the unitary dynamics will excite the two-atom state to
|rpf 〉, which would decay to the ground subspace again.
In Fig. 9(b), we plot the infidelity 1−F of the steady state
via numerically solving the master equation (6) with the
full Hamiltonian, and the practical parameters of RRI
and atomic spontaneous emission rate. We find that the
fidelity of achieving the desired state can be higher than
0.999.

V. CONCLUSION

In conclusion, we have proposed three schemes to con-
struct the RAB dynamics with different types of DD in-
teractions that are commonly realized in current Rydberg
atom experiments. Based on the dressed state picture,
we have derived the effective Hamiltonian that governs
the two-atom dynamics. We have verified the validity
of the effective Hamiltonian by numerically solving the

master equation by taking into account of Rydberg state
decay. In contrast to the vdW-based RAB due to pure en-
ergy shifts by the density-density interaction, our study
is valid when the inter-atomic distance is relatively small,
where the DD interaction dominates. In this regime, we
have shown that the DD induced RAB leads to robust dy-
namics against laser parameter and interatomic distance
fluctuations.

The DD induced RAB can be applied to realize various
quantum information tasks [18–21, 23–33, 37–41, 43, 99],
due to the selective, two-body excitation process in the
underlying dynamics. As examples, we have shown the
proposed RAB can be used in geometric quantum com-
putation, and state entanglement preparation. Along
with the rapid development in optical trapping [107],
and microwave [47, 53, 108–111] and electric field con-
trol [3, 37, 41, 44–46, 48–50, 54–57, 93, 94, 112–114] of the
resonant DD RRI, our schemes and the related applica-
tions could be tested and realized in future experiments.
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Appendix A: Derivation of Eq. (4)

We now show the derivation process of the effective
Hamiltonian (4).

We start from the rotated Hamiltonian in Eq. (3),

Ĥ =
{Ω

2

[√
2
(
ei∆t + e−i∆t

)
|11〉〈Ψ|+

(
ei(∆−

√
2Vd)t + e−i(∆+

√
2Vd)t

)
|Ψ〉〈+|+

(
ei(∆+

√
2Vd)t + e−i(∆−

√
2Vd)t

)
|Ψ〉〈−|

+
(
ei∆t + e−i∆t

)
(|01〉〈0d|+ |10〉〈d0|)

]
+ H.c.

}
. (A1)

From Eq. (3), it can be seen that |11〉 couple with
|Ψ〉 through two channels with detuning ∆ and −∆, re-
spectively. Meanwhile, |Ψ〉 couple with |±〉 through two

channels with detuning ∆∓
√

2Vd and−∆∓
√

2Vd, respec-
tively. To be more clearly, in the left panel of Fig. A1, we

plot the dynamics of Eq. (3) with the initial state being
|11〉. It can be readily get that if one want to achieve
the coupling between |11〉 and |+〉(|−〉), as shown in the
right panel in Fig. A1, via second-order perturbation the-
ory,

√
2Vd − ∆ = ∆ should be satisfied. On that basis,

Eq. (A1) is simplified as
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Ĥ =
{Ω

2

[√
2
(
ei∆t + e−i∆t

)
|11〉〈Ψ|+

(
e−i∆t + e−i3∆t

)
|Ψ〉〈+|+

(
ei3∆t + ei∆t

)
|Ψ〉〈−|

+
(
ei∆t + e−i∆t

)
(|01〉〈0d|+ |10〉〈d0|)

]
+ H.c.

}
. (A2)

ۧ|11

ۧ|− ۧ|+

2𝑉𝑑 − ∆Δ
Δ 2𝑉𝑑 − ∆

ۧ|Ψ

ۧ|11

ۧ|− ۧ|+

2∆

2Δ

FIG. A1. Left panel: Dynamical process of Eq. (3) when
the initial state is |11〉. Right panel: Dynamical process of
Eq. (4). The right panel is the effective process of the left
one if the antiblockade condition

√
2Vd −∆ = ∆ is satisfied,

which is similar to the ”two-photon process”.

We now show the derivation process of Eq. (4). Based

on Fig. A1, Eqs. A1 and A2, one can see that |+〉 and |−〉
can not couple with each other through the intermediate
state |Ψ〉 via the second-order perturbation theory. That
is because the coupling between |+〉 and |−〉 are oscillat-
ing with high frequency ei2∆t that should be discarded.
The Rabi frequency corresponding to the transition be-
tween state |+〉 and state |11〉 are calculated as

〈+|Ĥ|Ψ〉〈Ψ|Ĥ|11〉
∆

=

√
2Ω2

4∆

〈11|Ĥ|Ψ〉〈Ψ|Ĥ|+〉
∆

=

√
2Ω2

4∆
(A3)

Similarly, the Rabi frequency corresponding to the tran-
sition frequency between state|−〉 and state |11〉 can be
calculated as

〈−|Ĥ|Ψ〉〈Ψ|Ĥ|11〉
−∆

=

√
2Ω2

−4∆

〈11|Ĥ|Ψ〉〈Ψ|Ĥ|−〉
−∆

=

√
2Ω2

−4∆
(A4)

The stark shifts of state |+〉, |−〉, |10〉 and |01〉 are

〈+|(Ω
2 e

i∆t|+〉〈Ψ|)|Ψ〉〈Ψ|(Ω
2 e
−i∆t|Ψ〉〈+|)|+〉

∆
+
〈+|(Ω

2 e
i3∆t|+〉〈Ψ|)|Ψ〉〈Ψ|(Ω

2 e
−i3∆t|Ψ〉〈+|)|+〉

3∆
=

Ω2

3∆
,

〈−|(Ω
2 e
−i∆t|−〉〈Ψ|)|Ψ〉〈Ψ|(Ω

2 e
i∆t|Ψ〉〈+|)|+〉

−∆
+
〈+|(Ω

2 e
−i3∆t|−〉〈Ψ|)|Ψ〉〈Ψ|(Ω

2 e
i3∆t|Ψ〉〈−|)|−〉

−3∆
=

Ω2

−3∆
,

〈10|(Ω
2 e

i∆t|10〉〈d0|)|d0〉〈d0|(Ω
2 e
−i∆t|d0〉〈10|)|10〉

∆
+
〈10|(Ω

2 e
−i∆t|10〉〈d0|)|d0〉〈d0|(Ω

2 e
i∆t|d0〉〈10|)|10〉

−∆
= 0

and

〈01|(Ω
2 e

i∆t|01〉〈0d|)|0d〉〈0d|(Ω
2 e
−i∆t|0d〉〈01|)|01〉

∆
+
〈01|(Ω

2 e
−i∆t|01〉〈0d|)|0d〉〈0d|(Ω

2 e
i∆t|0d〉〈01|)|01〉

−∆
= 0, (A5)

respectively.

Besides, the coupling between |10〉 (|01〉) and single-
excited state are large detuned and should be discarded.
Besides, it should be noted that it is needless to calculate
the stark shift of |Ψ〉 since it is also discarded due to the
large detuning condition. So the effective Hamiltonian of
the system can be written as

Ĥe =

√
2Ω2

4∆
(|11〉〈+| − |11〉〈−|+ H.c.)

+
Ω2

3∆
(|+〉〈+| − |−〉〈−|), (A6)

which is exactly Eq. (4).
Appendix B: Derivation of Eq. (10)

Following the similar process, Eqs. (10) and (14)
can also be achieved with the corresponding given an-
tiblockade conditions. Alternatively, here we use another
method [87–90] based on time-averaging to calculate the
effective Hamiltonian (10). Firstly, we rotate the whole

Hamiltonian with respect to Û = ei2∆(|+̃〉〈+̃|−|−̃〉〈−̃|)t.
The total Hamiltonian in the rotated frame is then
changed to
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Ĥrotate =
Ω√
2

(
ei∆t + e−i∆t

)
|11〉〈Φ|+ Ω

2

(
e−i∆t + e−i3∆t

)
|Φ〉〈+̃|+ Ω

2

(
ei3∆t + ei∆t

)
|Φ〉〈−̃|

+
Ω

2

(
ei∆t + e−i∆t

)
(|01〉〈0d|+ |10〉〈d0|) + H.c.+ (Vd − 2∆)(|+̃〉〈+̃| − |−̃〉〈−̃|). (B1)

We now briefly review the effective Hamiltonian formula
in Refs. [87–90]. For a Hamiltonian in the interaction
picture

Ĥ =

N∑
n=1

ĥ†ne
iωnt + ĥne

−iωnt, (B2)

if the large-detuning condition is satisfied, the effective
Hamiltonian would be

Ĥeff =

N∑
m,n=1

1

~ωmn

[
ĥ†m, ĥn

]
ei(ωm−ωn)t, (B3)

where ωmn = 2ωmωn/(ωm + ωn). After using Eq. (B2),
the processes to calculate the effective form of Eq. (B1)
are listed as follows

Ω2

2
√

2∆
[|11〉〈Φ|ei∆t, |Φ〉〈+̃|e−i∆t]ei(∆−∆)t =

Ω2

2
√

2∆
|11〉〈+̃|, Ω2

2
√

2∆
[|Φ〉〈11|ei∆t, |−̃〉〈Φ|e−i∆t]ei(∆−∆)t = − Ω2

2
√

2∆
|−̃〉〈11|,

Ω2

2
√

2∆
[|+̃〉〈Φ|ei∆t, |Φ〉〈11|e−i∆t]ei(∆−∆)t =

Ω2

2
√

2∆
|+̃〉〈11|, Ω2

2
√

2∆
[|Φ〉〈−̃|ei∆t, |11〉〈Φ|e−i∆t]ei(∆−∆)t = − Ω2

2
√

2∆
|11〉〈−̃|,

Ω2

2∆
[|11〉〈Φ|ei∆t, |Φ〉〈11|e−i∆t]ei(∆−∆)t =

Ω2

2∆
(|11〉〈11| − |Φ〉〈Φ|),

Ω2

2∆
[|Φ〉〈11|ei∆t, |11〉〈Φ|e−i∆t]ei(∆−∆)t =

Ω2

2∆
(|Φ〉〈Φ| − |11〉〈11|),

Ω2

4∆
[|+̃〉〈Φ|ei∆t, |Φ〉|〈+̃|e−i∆t]ei(∆−∆)t =

Ω2

4∆
(|+̃〉〈+̃| − |Φ〉〈Φ|),

Ω2

12∆
[|+̃〉〈Φ|ei3∆t, |Φ〉|+̃〉|e−i3∆t]ei(3∆−3∆)t =

Ω2

12∆
(|+̃〉〈+̃| − |Φ〉〈Φ|),

Ω2

12∆
[|Φ〉〈−̃|ei3∆t, |−̃〉〈Φ|e−i3∆t]ei(3∆−3∆)t =

Ω2

12∆
(|Φ〉〈Φ| − |−̃〉〈−̃|),

Ω2

4∆
[|Φ〉〈−̃|ei∆t, |−̃〉〈Φ|e−i∆t]ei(∆−∆)t =

Ω2

4∆
(|Φ〉〈Φ| − |−̃〉〈−̃|),

Ω2

4∆
[(|01〉〈0d|+ |10〉〈d0|)ei∆t, (|0d〉〈01|+ |d0〉〈10|)e−i∆t]ei(∆−∆)t =

Ω2

4∆
(|01〉〈01| − |0d〉〈0d|),

Ω2

4∆
[(|0d〉〈01|+ |d0〉〈10|)ei∆t, (|01〉〈0d|+ |10〉〈d0|)e−i∆t]ei(∆−∆)t =

Ω2

4∆
(|0d〉〈0d| − |01〉〈01|). (B4)

It should be noted that the high-frequency oscillation terms are discarded and were not shown in Eq. (B4). The sum
of the terms in Eq. (B4) induces the effective Hamiltonian as

Ĥe =
Ω2

2
√

2∆

(
|11〉〈+̃| − |11〉〈−̃|+ H.c.

)
+

Ω2

3∆
(|+̃〉〈+̃| − |−̃〉〈−̃|) + (Vd − 2∆)(|+̃〉〈+̃| − |−̃〉〈−̃|). (B5)

In which, the stark shift terms of state |+̃〉 and state |−̃〉
exactly cancels out (Vd−2∆)(|+̃〉〈+̃|− |−̃〉〈−̃|) when the
antiblockade condition Vd = 2∆−Ω2/(3∆) are satisfied.

After using |±̃〉 ≡ (|pd〉 ± |dp〉)/
√

2 the total effective

Hamiltonian of the system in the rotated frame becomes

Ĥe =
Ω2

2∆
|11〉〈dp|+ H.c., (B6)

which means Eq. (10) is achieved. Similarly, to deviate
Eq. (14), either one of the above two methods are feasible.
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12

and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
[3] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan,

D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
87, 037901 (2001).

[4] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod.
Phys. 82, 2313 (2010).

[5] D. Comparat and P. Pillet, J. Opt. Soc. Am. B 27, A208
(2010).

[6] W. Li and I. Lesanovsky, Appl. Phys. B 114, 37 (2014).
[7] M. Saffman, J. Phys. B: Atom. Mol. Opt. Phys. 49,

202001 (2016).
[8] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill,

T. Henage, T. A. Johnson, T. G. Walker, and
M. Saffman, Phys. Rev. Lett. 104, 010503 (2010).

[9] X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker,
and M. Saffman, Phys. Rev. A 82, 030306(R) (2010).
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[109] S. Sevinçli and T. Pohl, New J. Phys. 16, 123036 (2014).
[110] M. Marcuzzi, E. Levi, W. Li, J. P. Garrahan, B. Olmos,

and I. Lesanovsky, New J. Phys. 17, 072003 (2015).

[111] F. M. Gambetta, W. Li, F. Schmidt-Kaler, and
I. Lesanovsky, Phys. Rev. Lett. 124, 043402 (2020).

[112] T. G. Walker and M. Saffman, J. Phys. B 38, S309
(2005).

[113] T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat,
and P. Pillet, Phys. Rev. Lett. 99, 073002 (2007).

[114] I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M.
Entin, Phys. Rev. Lett. 104, 073003 (2010).

http://dx.doi.org/10.1103/PhysRevLett.119.053202
http://dx.doi.org/10.1103/PhysRevLett.93.233001
http://dx.doi.org/10.1103/PhysRevLett.93.233001
http://dx.doi.org/10.1088/1367-2630/16/12/123036
http://dx.doi.org/ 10.1088/1367-2630/17/7/072003
http://dx.doi.org/10.1103/PhysRevLett.124.043402
http://dx.doi.org/10.1088/0953-4075/38/2/022
http://dx.doi.org/10.1088/0953-4075/38/2/022
http://dx.doi.org/ 10.1103/PhysRevLett.99.073002
http://dx.doi.org/10.1103/PhysRevLett.104.073003

