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We study a class of multipartite open quantum dynamics for systems of arbitrary number of qubits.
The non-Markovian quantum master equation can involve arbitrary single or multipartite and time-
dependent dissipative coupling mechanisms, expressed in terms of strings of Pauli operators. We
formulate the general constraints that guarantee the complete positivity of this dynamics. We char-
acterize in detail underlying mechanisms that lead to memory effects, together with properties of
the dynamics encoded in the associated system rates. We specifically derive multipartite “eternal”
non-Markovian master equations that we term hyperbolic and trigonometric due to the time de-
pendence of their rates. For these models we identify a transition between positive and periodically
divergent rates. We also study non-Markovian effects through an operational (measurement-based)
memory witness approach.

I. INTRODUCTION

In the theory of open quantum systems, the formu-
lation of quantum Markovian master equations is com-
pletely determined by the theory of quantum semigroups
[1]. In contrast, the study of non-Markovian memory ef-
fects presents two problems. The first one is that the
most general structure of a quantum master equation
that captures memory effects, and at the same time is
consistent with the completely positive (CP) condition
of the solution map [2–4], is not known. The second one
is that different inequivalent memory witnesses can be
used to define and measure non-Markovian effects [5, 6].

The first problem has been known for many years. In
fact, arbitrary non-Markovian quantum master equations
may lead to unphysical solutions [7–10] where the average
state (the density matrix) being not positive definite. For
tackling this issue a broad class of phenomenological and
theoretical approaches has been formulated [3], dealing
with both time-convoluted and convolutionless master
equations [11]. Examples include the dynamics induced
by stochastic Hamiltonians defined by non-white noises
[12], phenomenological single memory kernels [13–16], in-
teraction with incoherent degrees of freedom [17–22] and
arbitrary ancilla systems [23, 24], related quantum colli-
sional models [25–32], quantum generalizations of semi-
Markov processes [33, 34], and random (convex) superpo-
sitions of unitary and unital maps [35–37], together with
some exact derivations from underlying (microscopic or
effective) unitary dynamics [38–46].

Despite these advances [7–46] most studies of non-
Markovian evolutions are restricted in general to single
or bipartite systems. In fact, in general checking the CP
condition of the dynamics is a non trivial task, whose dif-
ficulty in turn increases with the system’s Hilbert space
dimension. However, quantum information intrinsically

requires multipartite processing, and as a consequence
the formulation of multipartite non-Markovian dynamics
is of interest from both theoretical and practical points
of view.

Our main goal in this paper is to formulate and study
a class of solvable multipartite non-Markovian master
equations. The class of systems we consider are defined
in terms an arbitrary number N of qubits, whose inter-
action with the environment can be taken into account
through arbitrary Pauli channels. The evolution of the
system’s density matrix ρt is given by the time-local mas-
ter equation (d/dt)ρt = L[ρt], where the generator of the
evolution has the general structure

L[•] =
∑

i=1,···N
α=x,y,z

Γα
i (t)(σα

i • σα
i − •) (1)

+
∑

i=1,···N
α,β=x,y,z

Γαβ
i (t)(σα

i σ
β
i+1 • σ

β
i+1σ

α
i − •)

+
∑

i=1,···N
α,β,γ=x,y,z

Γαβγ
i (t)(σα

i σ
β
i+1σ

γ
i+2 • σ

γ
i+2σ

β
i+1σ

α
i − •)

+ · · · .

Here, σα
i is the α-th Pauli operator (α = x, y, z) act-

ing on qubit i, while Γα···β
i (t) define local and bipartite

time-dependent (coupling) rates. In general, these rate
functions may take both positive and negative values.
The problem is to characterize which constraints must
be fulfilled by them in order to obtain physically valid
solutions. Interestingly, the resolution of this issue leads
us to consider all possible multipartite interaction terms,
that is, decoherence channels that involve coupling be-
tween an arbitrary number of qubits. We also explore
which rates emerge when the memory effects arise from
different underlying mechanisms based on coupling with
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incoherent degrees of freedom [20, 21]. The explicit for-
mulation of an operational (measurement based) memory
witness [47–50] further provides an alternative character-
ization of non-Markovian effects.

As a specific example we study a family of “hyperbolic”
and “trigonometric” eternal multipartite non-Markovian
master equations where some rates are negative or de-
velop divergences at all times, respectively. These cases
provide a non-trivial extension and generalization of pre-
vious results valid for single systems [51].

The paper is structured as follows. In Sec. II we present
the general class of multipartite dynamics we consider,
characterizing solution of the master equation, resolving
in consequence the constraints that guarantee the CP
condition of the map. General properties are derived for
this class of models. In Sec. III the eternal multipartite
dynamics are characterized. In Sec. IV we study mem-
ory effects through an operational memory witness. In
Sec. V we provide our Conclusions. The Appendixes give
details of derivations and also obtain the rates associated
to different underlying memory mechanisms.

II. MULTIPARTITE DYNAMICS

The system of interest consists of an arbitrary num-
ber N of qubits. For notational convenience we define
a set of Pauli strings Sa ≡ σa1 ⊗ σa2 ⊗ σaN , each one
associated to the vector a = (a1, a2, · · · , aN ). Each com-
ponent ak (k = 1, 2, · · ·N ) assumes the values ak =
(0, 1, 2, 3) ↔ (I, σx, σy, σz), each one being associated to
the (two-dimensional) identity matrix and the standard
three Pauli matrices.

The evolution of the system’s density matrix ρt is writ-
ten in a local-in-time way. Arbitrary multipartite deco-
herence channels are considered,

d

dt
ρt = L[ρt] =

∑

a 6=0

γa
t (SaρtSa − ρt). (2)

The set of functions {γa
t } define the rates associated to

the multipartite Pauli channel. In general, there are 4N−
1 different rate functions, as the vector 0 = (0, 0, · · · , 0)
is associated to the identity operator in the full Hilbert
space. Our goal is to characterize the different aspects of
this general evolution. A time-convoluted formulation of
the above dynamics is provided in Appendix A.

A. Subsystem dynamics

Given the evolution above, we ask about the dynamics
of any particular subsystem. Introducing the splitting
a = (as, ae), where as corresponds to the set of local
operators that define the marginal Pauli string of the
subsystem of interest, and ae that of the rest of qubits
(now considered as part of the environment), from Eq. (2)

the subsystem density matrix ρst = Tre[ρt] (where Tr[•]
is the trace operation) reads

d

dt
ρst =

∑

as

γas
t (Sasρ

s
tSas −ρst), γas

t ≡
∑

ae

γas ,ae
t . (3)

From this equation we conclude that any subsystem, even
when in general is correlated with the complementary
part, has an independent self-evolution. In addition, the
structure of this evolution belongs to the same class as
that of the full system [Eq. (2)]. Consequently, the fol-
lowing results can be particularized for any subsystem of
arbitrary size.

B. Solution map and completely positive condition

We now show that by using the method of damping
bases or spectral decomposition [52], the solution map
ρ0 → ρt corresponding to Eq. (2) can be obtained in
an exact way. In order the apply this technique, first
we establish a set of relations fulfilled by the (two di-
mensional) Pauli operators. Maintaining the notation
(σ0, σ1, σ2, σ3) ↔ (I, σx, σy, σz), it is easy to check that

σaTr[σa•] =
1
2

∑

b

Hab(σb • σb), (4)

where the input [•] is an arbitrary two dimensional op-
erator and b = 0, 1, 2, 3. The inverse relation reads

σa • σa =
1
2

∑

b

Hab σbTr[σb•]. (5)

In these expressions, the coefficients {Hab} define a four
dimensional Hadamard matrix H, which reads

H ≡




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 . (6)

In deriving Eq. (5), we used that its inverse reads H−1 =
H/4. Also notice that H = HT .

Now, we introduce an extra rate γ0
t ,which is associated

to the identity string in the full Hilbert space

γ0
t ≡ −

∑

a 6=0

γa
t . (7)

With this definition, the Lindbladian-like structure of
Eq. (2)] can straightforwardly be written as

L[•] =
∑

a

γa
t (Sa • Sa), (8)

where the sum now includes the (identity) string a = 0.
Written in this way, applying the “vectorial extension” of
Eq. (5) to the Hilbert space of N qubits, it follows that

L[•] =
1

2N

∑

a

SaTr[Sa•]
∑

b

Habγ
b
t , (9)
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where Hab ≡ Ha1b1Ha2b2 · · ·HaNbN can be read as the
matrix elements of the external product of N single
Hadamard matrices, cf. Eq. (6). From this last expres-
sion, by using that Tr[SaSb] = 2Nδa,b, it is straightfor-
ward to determine the eigenvalues and eigenoperators of
L[•]. They read

L[Sa] = µa
t Sa, µa

t =
∑

b

Habγ
b
t . (10)

Consequently, any Pauli string Sa is a right eigenoperator
with eigenvalue µa

t . Given that L[•] also defines the ad-
joint evolution (as the “jump operators” are Hermitian)
[52], Sa is also a left eigenoperator. Notice also that by
using the inverse of the Hadamard matrix, the inverse
relation γa

t =
∑

bHabµ
b
t /4N follows.

From the method of damping bases [52], Eq. (10) al-
lows us to write the solution of Eq. (2) as

ρt =
1

2N

∑

a

exp
[∫ t

0

dt′µa
t′

]
SaTr[Saρ0]. (11)

One can see that the conditions Tr[ρt] = Tr[ρ0] = 1 are
satisfied after noting that Tr[Sa] = 2Nδa,0 and µ0

t′ = 0.
This last equality follows from Eqs. (7) and (10) jointly
with the property H0b = 1 ∀b. By using the vectorial
extension of Eq. (4), we get the density matrix written
in a Kraus representation [1, 2],

ρt =
∑

a

pat (Saρ0Sa). (12)

The weights are pat = 4−N
∑

bHab exp[
∫ t

0
dt′µb

t′ ], which
from Eq. (10) can explicitly be written in terms of the
time-dependent rates as

pat =
1

4N

∑

b

Hab exp

[∑

c

Hbc

∫ t

0

dt′γc
t′

]
. (13)

The final expressions (12) and (13) are the main re-
sults of this section. They completely characterize the
solution map in terms of the set of rates {γa

t } and the
initial condition ρ0. In addition, they naturally provide
a constraint that the rates must to fulfill in order to ob-
tain a CP map, that is, one that gives physical solution.
In fact, the Kraus representation theorem [1, 2] implies
the conditions 0 ≤ pat ≤ 1, which means that {pat } are a
set of normalized probabilities. In the single qubit case
(N = 1), previously obtained constraints are recovered
[35]. In the general case, 4N inequalities must be fulfilled.
We notice that a sufficient, but not necessary, condition
is

∫ t

0
dt′γa

t′ ≥ 0 ∀a 6= 0. In fact, this constraint implies
that all eigenvalues, cf. Eq. (10), satisfy µa

t ≤ 0 (a 6= 0).
Consequently, taking an arbitrary but fixed time t, the
solution (11) of the non-Markovian dynamics, via the as-
sociation

∫ t

0
dt′µa

t′ = tµa
M , is equivalent to the solution

of a (well behaved) Markovian dynamics generated by a
Lindbladian with eigenvalues {µa

M}.

C. Non-Markovianity and time-dependent rates

Different (inequivalent) memory witnesses based only
on the system propagator can be used to define non-
Markovianity [5, 6] such as for example the trace dis-
tance between two different initial conditions [53] or those
based on the k-positivity of the solution map [54]. Here,
as the dynamics is written naturally in a canonical form
[51], memory effects can also be defined by the negativity
of the time-dependent rates {γa

t }. In this way, it is of in-
terest to determine these elements for any well behaved
solution defined by the probabilities {pat } in Eq. (12).

We can invert Eq. (13),

µa
t =

d

dt
ln

[∑

b

Habp
b
t

]
, (14)

and using Eq. (10) we get explicit expressions for the set
of rates {γa

t } in terms of the normalized time-dependent
weights 0 ≤ pct ≤ 1,

γa
t =

1
4N

∑

b

Hab
d

dt
ln

[∑

c

Hbcp
c
t

]
. (15)

The signs of {γa
t } can be taken as a signature of departure

from a Markovian regime [51]. Alternatively, in Sec. V
we study operational measures for non-Markovianity. We
notice that Eqs. (13) and (15) provide a multipartite gen-
eralization of the case N = 1 studied in Ref. [35].

D. Additivity of non-Markovian master equations

Given two sets of (arbitrary) normalized probabilities
{pat } and {p̃at }, the relation (15) allows us to obtain the
corresponding sets of rates {γa

t } and {γ̃a
t }. From these

we can obtain a new master equation defined by Eq. (2)
with rates {γa

t + γ̃a
t }. In fact, it is always possible to

associate a set of probabilities {qat } to these added rates,
that is,

{pat } ↔ {γa
t }, {p̃at } ↔ {γ̃a

t }, ⇒ ∃{qat } ↔ {γa
t + γ̃a

t }.
(16)

Consequently, as occurs to Markovian Lindblad equa-
tions [2], for our class of models arbitrary well behaved
evolutions (defined by a given set of rates) can be added
in an arbitrary way. The validity of this result fol-
lows from the commutation of two arbitrary propagators,
Eq. (12), a property supported by the relation

SaSb • SbSa = SbSa • SaSb = Sc • S†
c, (17)

which is valid for arbitrary Pauli strings Sa and Sb, and
where Sc = SaSb or equivalently Sc = SbSa. Eq. (17)
can be straightforwardly demonstrated from Eq. (5).
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E. Coupling with incoherent degrees of freedom

Memory effects are induced whenever extra degrees of
freedom are traced out. Here, we consider a general cou-
pling with incoherent degrees of freedom, which define
the environment. Based on Ref. [17], the more general
case can always be described by writing the system den-
sity matrix ρt and the probabilities of the incoherent sys-
tem {qht } [

∑
h q

h
t = 1] as

ρt =
∑

h

ρht , qht = Tr[ρht ], (18)

where the auxiliary states {ρht } correspond to the system
state given that the extra (hidden) incoherent degrees
of freedom are in the particular state h. The evolution
of the states {ρht } may involve coupling between all of
them. Assuming separable initial conditions, the general
coupling structure defined in Ref. [17] guarantees the CP
condition of the solution map ρ0 → ρt.

Given the structure Eq. (2), each auxiliary state ρht
must to assume the form

ρht =
∑

α

ghα(t)(Sαρ0Sα), (19)

where the parameter α runs over a set of Pauli strings
that depends on each specific problem. The functions
ghα(t) in turn obey a classical master equation whose
structure also depends on each specific model.

The (separable) initial conditions read ρh0 = ρ0q
h
0 ,

where ρ0 is the initial system state and qh0 is the ini-
tial probability of the incoherent degrees of freedom. In
fact, at time t, qht =

∑
α g

h
α(t). On the other hand, the

system density matrix evolution [Eq. (12)] is defined by
the probabilities pα

t =
∑

h g
h
α(t).

A general treatment for getting ρt is not possible, nei-
ther it is possible to predict the specific memory proper-
ties of the solution map for a given underlying coupling.
Relevant examples are worked out in Appendix B such
as a mapping with a classical Markovian master equa-
tion, stochastic Hamiltonians, and statistical mixtures of
Markovian evolutions. In all cases, explicit expressions
for the rates [Eq. (15)] can be obtained. A representative
class of dynamics is studied in the next section.

III. MULTIPARTITE ETERNAL
NON-MARKOVIANITY

For a single qubit, N = 1, the system density ma-
trix evolution, Eq. (2), may involve rates that are neg-
ative at all times. This property was called “eternal
non-Markovianity” [20, 51]. The results of Appendix B
[see Eqs. (B8), (B13), and (B19)] and Appendix C [see
Eqs. (C2) and (C4)] guarantee that this property also
emerges in multipartite dynamics, N > 1, which have
4N − 1 rates.

In order to provide simple (multipartite) examples,
here we restrict to the case where the evolution is

L[•] =
{
γ
a
t (Sa • Sa − •) + γ

b
t (Sb • Sb − •)

+γc
t (Sc • S†

c − •)
}
, (20)

where Sa and Sb are two arbitrary multipartite Pauli
strings, while Sc = SaSb. Depending on the time-
dependence of the rates we define what we term “hy-
perbolic” and “trigonometric” cases of eternal non-
Markovianity. Interestingly, these cases emerge by con-
sidering that the environment has only two possible
states.

A. Hyperbolic eternal non-Markovianity

The system density matrix is written as the addition
of two auxiliary states ρt = ρ

(1)
t + ρ

(2)
t [Eq. (18)], whose

evolution reads

dρ
(1)
t

dt
= −γρ(1)

t + γSaρ
(1)
t Sa, (21a)

dρ
(2)
t

dt
= −ϕρ(2)

t + ϕSbρ
(2)
t Sb. (21b)

The initial conditions for the auxiliary states are taken
to be ρ(1)

0 = ρ
(2)
0 = ρ0/2. Given that the auxiliary states

do not couple between them, from Eq. (21) it is simple to
notice that this property is inherited by the incoherent
degrees of freedom, which in turn do not evolve in time,
q
(i)
t = Tr[ρ(i)

t ] = (1/2) (i = 1, 2). Thus, the system dy-
namic is defined by a statistical superposition (with equal
weights) of two different uncoupled Lindblad evolutions
(with rates γ and ϕ).

The rates of the non-Markovian evolution follow
Eq. (15) with probabilities pat = [pa1(t) + pa2(t)]/2, with
the sets {pa1(t)} and {pa2(t)}, via Eq. (13), associated to
ρ
(1)
t and ρ(2)

t , respectively. Taking ϕ = γ, we get [see also
derivation from Eq. (B19) in Appendix C]

γ
a
t = γ

b
t =

1
2
γ, γ

c
t = −1

2
γ tanh(γt). (22)

This result provides a multipartite generalization, (N >
1), of the single qubit case (N = 1) studied in Ref. [51].
Similarly to the results of Ref. [20] we notice that in this
particular case alternative dynamics such as the mapping
to a classical master equation [see Eq. (B8)] and stochas-
tic Hamiltonians [see Eq. (B13)] also lead to the same
rates.
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B. Trigonometric eternal non-Markovianity

Based on Eq. (18), instead of the evolution (21), here
we consider

dρ
(1)
t

dt
= −γρ(1)

t + ϕSbρ
(2)
t Sb, (23a)

dρ
(2)
t

dt
= −ϕρ(2)

t + γSaρ
(1)
t Sa. (23b)

Both auxiliary states are intrinsically coupled. In this
case, it is simple to check that the probabilities q(i)t =
Tr[ρ(i)

t ] (i = 1, 2) of the incoherent degrees of freedom
obey a classical master equation. Notice that the inco-
herent transitions (1) ↔ (2) imply the system transfor-
mations ρ → Sa/bρSa/b.

The initial conditions are taken as ρ(1)
0 = [ϕ/(ϕ+γ)]ρ0

and ρ
(2)
0 = [γ/(ϕ + γ)]ρ0, where ρ0 is the system ini-

tial state, and the weights correspond to the stationary
solution of the (environment) classical master equation.
Thus, q(1)

t = ϕ/(ϕ+ γ) and q(2)
t = γ/(ϕ + γ).

Taking into account Eq. (19), in order to solve Eq. (23)
each auxiliary state is written as (h = 1, 2)

ρ
(h)
t = g

(h)
0 ρ0 + g(h)

a Saρ0Sa + g
(h)
b Sbρ0Sb + g(h)

c Scρ0S
†
c ,

(24)
where as before Sc = SaSb, and g(h)

α are time-dependent
functions. Using Eq. (17), it is possible to derive a clas-
sical master equation for the (eight) g-functions which
involves coupling between pairs of them. The cor-
responding solutions allow to obtain the probabilities
pat =

∑
h g

(h)
a (t). Finally, the rates associated to the non-

Markovian evolution follow from Eq. (15)

γ
a
t = γ

b
t =

ϕγ(ϕ + γ)
et(ϕ+γ)(ϕ − γ)2 + 4ϕγ

. (25)

Furthermore,

γ
c
t = ϕγ{δ+Υ2(1 − etΥ) − δ2−[Υ(1 + etΥ)

+etδ+ [(δ+ − Υ) − etΥ(δ+ + Υ)]]}
×{(etδ+δ2− + 4ϕγ)[(1 + etΥ)Υδ+
−(1 − etΥ)δ2−]}−1, (26)

where the coefficients are

Υ ≡ (ϕ2 − 6ϕγ + γ2)1/2, δ± ≡ ϕ ± γ. (27)

Depending on the ratio ϕ/γ, different characteristic
behaviors are obtained. In Fig. 1 we plot both rates.
Consistent with Eq. (25), γa

t and γ
b
t are always positive

functions. However, this is not the case for γc
t , Eq. (26),

which depending on ϕ/γ develops a transition between
positivity [Figs. 5(a) and 5(d)] and a periodic divergent
behavior [Figs. 5(b) and 5(c)]. From Eq. (27) we deduce
that this change occurs in the boundaries of the interval

FIG. 1: Renormalized time-dependent rates [Eqs. (25) and
(26)] corresponding to the multipartite trigonometric eternal
non-Markovian evolution [Eq. (23)] for different values of the
rate ratio ϕ/γ.

3−
√

8 < (ϕ/γ) < 3+
√

8, with γc
t developing divergences

in this interval, while being positive outside it. Notice
that this interval defines the regime where the system
dynamics is CP indivisible.

From the plots it is also evident that γa
t and γ

b
t ap-

proach a constant when ϕ ≈ γ. In fact, when ϕ = γ, the
previous expressions reduce to

γ
a
t = γ

b
t =

1
2
γ, γ

c
t =

1
2
γ tan(γt). (28)

Based on Eq. (22), we name this case as a trigonometric
eternal non-Markovian. The probabilities {pat } [Eq. (12)]
also assume a simple form,

p0t =
1
2
e−γt[cosh(γt) + cos(γt)], (29a)

p
a
t = p

b
t =

1
4
[1 − e−2γt], (29b)

p
c
t =

1
2
e−γt[cosh(γt) − cos(γt)]. (29c)

These solutions apply to arbitrary multipartite Pauli
strings a and b.

C. Adding non-Markovian evolutions

Added to the previous examples (see also Appendix
C), the possibility of adding arbitrary (well defined) rates
[Eq. (16)] gives us a procedure for constructing a large
family of well behaved dynamics. Consistently with the
goal of studying master equations with the structure de-
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fined by Eq. (1), as an example we write

L[•] =
N∑

i=1

γi

2

{
(σx

i σ
x
i+1 • σx

i+1σ
x
i − •)

+(σy
i σ

y
i+1 • σ

y
i+1σ

y
i − •) (30)

+fi(t)(σz
i σ

z
i+1 • σz

i+1σ
z
i − •)

}
.

In this traslational invariant generator (say with peri-
odic boundaries in one dimension), we may chose fi(t) =
− tanh(γit) or alternatively fi(t) = tan(γit) [see Eqs. (22)
and (28) respectively].

One interesting aspect of using additivity for con-
structing multipartite evolutions is that, even when the
underlying evolutions have a clear memory mechanism
(see also Appendix B), the resulting dynamics does not
necessarily. For example, while our approach guarantees
that Eq. (30) leads to a completely positive dynamics
[with solution defined by Eqs. (12) and (13)] it is not ev-
ident which underlying processes may lead to this mas-
ter equation. In addition, in general there may be sub-
systems that are coupled between then, one part being
Markovian and the other non-Markovian. For example,
take fi(t) = γi/2 for i ≤ N0, and fi(t) = tan(γit) for
i > N0.

IV. OPERATIONAL MEMORY WITNESS

An alternative and deeper characterization of quan-
tum non-Markovianity can be obtained by defining mem-
ory effects via measurement based approaches [47–49].
Here, we study a conditional past-future (CPF) corre-
lation [48]. This object relies on performing three suc-
cessive measurement of arbitrary system observables and
calculating the correlation between the last (future) and
first (past) outcomes conditioned to a given intermedi-
ate (present) outcome. For Markovian dynamics it van-
ishes identically, while memory effects leads to a non null
CPF correlation. The method was experimentally imple-
mented in different quantum optical arrangements [50].

The measurements, denoted in successive order by x,

y, and z, correspond to observations of three Hermi-
tian operators Sm with eigenvectors {|m〉} and eigen-
values {m},

Sm|m〉 = m|m〉, m = x,y, z. (31)

The CPF correlation then reads [48]

Cpf (t, τ )|y =
∑

z,x

zx[P (z, x|y)− P (z|y)P (x|y)], (32)

where {x}, {y}, and {z} denotes the three sets of suc-
cessive outcomes (operators eigenvalues, assumed dimen-
sionless), while t and τ are the (first and second) time
intervals between the successive measurements. With
P (u|v) we denote the conditional probability of u given
v.

All probabilities appearing in Eq. (32) can be deter-
mine from the (outcomes) joint probability P (z, y, x) ↔
P (z, t+τ, y, t;x, 0), which in turn can be calculated after
knowing the underlying system-environment dynamics.
In Appendix D we show that P (z, y, x) and Cpf (t, τ )|y
can be calculated exactly assuming that memory effects
emerge due to the coupling with incoherent degrees of
freedom [Eqs. (18) and (19)].

Each specific model [see examples (21) and (23)]
is completely defined by the set of functions {ghα(t)}
[Eq. (19)]. Given that they obey a (linear) classical mas-
ter equation, they can be written as

ghα(t) =
∑

h′

fhh′

α (t)qh
′

0 ≡ (h|Fα(t)|q0), (33)

where the set of functions {fhh′

α (t)} are independent
of the initial conditions {qh0 }. Furthermore, for nota-
tional simplicity, we introduced a vectorial orthogonal
base {|h)} for the incoherent degrees of freedom, such
that fhh′

α (t) ↔ (h|Fα(t)|h′) and qh0 ↔ (h|q0).
The observables Sm [Eq. (31)] may in principle be de-

fined by arbitrary linear combinations of Pauli strings
{Sa}. Here, for simplicity they are defined by a unique
Pauli string. In this case, the general expression for the
CPF correlation [Eq. (D9)] reduces to (see Appendix D)

Cpf (t, τ )|y = δz,yδy,x
(1 − 〈x〉2)
[2NP (y)]2

∑

α,β

HyαHyβ [(1|Fα(τ )Fβ(t)|q0) − (1|Fα(τ )|qt)(1|Fβ(t)|q0)]. (34)

In here, |qt) =
∑

α Fα(t)|q0) define the probabilities of
the incoherent degrees of freedom at time t, while (1| ≡∑

h(h|. Furthermore, 〈x〉 ≡
∑

x xP (x) where P (x) =
〈x|ρ0|x〉. Finally, P (y) is the probability for the outcomes

of the second measurement. It is

P (y) =
1

2N

[
1 + y〈x〉δy,x

∑

α

Hyα(1|Fα(t)|q0)
]
. (35)

The term δz,yδy,x in Eq. (34) implies that, for observ-
ables defined by unique Pauli strings, memory effects are

Adrian
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detected only when the three observables are the same
Sx = Sy = Sz. This constraint does not emerge when
the observables correspond to other basis of operators
(see for example Ref. [49]).

The general solution Eq. (34) can be specified for the
trigonometric eternal model [Eq. (23)]. Stationary initial
conditions are assumed, |qt) = |q0), with q(1)

0 = ϕ/(ϕ+γ)
and q(2)

0 = γ/(ϕ+γ). For simplicity, first we consider the
case N = 1.When the three measurements are performed
in direction a or b we get

Cpf (t, τ )|y = − (1 − 〈x〉2)
[2NP (y)]2

exp [−(t+ τ )(γ + ϕ)/2]

× 42γ2ϕ2

(γ + ϕ)2Υ2
sinh

(
Υt
2

)
sinh

(
Υτ
2

)
. (36)

When the three measurements are performed in direction
c, we get

Cpf (t, τ )|y =
(1 − 〈x〉2)
[2NP (y)]2

4γϕ(γ − ϕ)2

(γ + ϕ)4
(37)

×[1 − e−τ(γ+ϕ) ][1− e−t(γ+ϕ)].

These results allow us to analyze the transition to di-
vergent rates [Eq. (26)] in a complementary way. In
Fig. 2 we plot the CPF correlation Eq. (36). We ob-
serve that when the rate γc

t does not develop divergences
and is positive [Fig. 2(a)], the CPF correlation is neg-
ative for any value of the time intervals t and τ. Thus,
even when criteria based on CP divisibility lead us to
consider the dynamics as “Markovian,” the CPF method
detects the presence of memory effects. In fact, they are
induced by the underlying fluctuations of the incoherent
degrees of freedom. On the other hand, in the interval
3−

√
8 < (ϕ/γ) < 3 +

√
8 where the rate γc

t develops di-
vergences [Fig. 2(b)], the CPF correlation only presents
oscillations between positive an negative values. In this
case, both memory criteria (negative rates and a non-
vanishing CPF correlation) coincides.

For the model (23), the generalization to N > 1, in-
dependently of the chosen observables, always lead to
Eq. (36) or Eq. (37). This results follows by noting that in
Eq. (34) the coefficients α and β only assume the four val-
ues α, β = (0,a,b, c) [see Eq. (24)]. Furthermore, using
that HyαHyβ = Hyγ , where γ corresponds to the string
Sγ = SαSβ , for a fixed y (y = a, or y = b, or y = c) the
four matrix elements Hyγ , similarly to the case N = 1,
can only assume the values (±1), which always lead to
Eq. (36) or Eq. (37). On the other hand, for N > 1 ac-
cidentally it may also happen that the CPF correlation
vanishes. This occur because we assumed that the inco-
herent degrees of freedom are stationary, which implies∑

α,β[(1|Fα(τ )Fβ(t)|q0) − (1|Fα(τ )|qt)(1|Fβ(t)|q0)] = 0.
Thus, when Hyγ = 1, it follows that Cpf (t, τ )|y = 0 [see
Eq. (34)]. These accidental cases can always be surpassed
by considering arbitrary measurement operators written
as linear combinations of the Pauli strings.

FIG. 2: (Dimensionless) CPF correlation [Eq. (36)] corre-
sponding to the eternal non-Markovian trigonometric model
[Eq. (23)], for different values of ϕ/γ and measurement time-
interval relations τ/t. In all cases, the system initial condition
is such that 〈x〉 = 0.

As an example, we consider a bipartite case where Sa =
σx

1σ
x
2 , Sb = σy

1σ
y
2 , and Sc = σz

1σ
z
2 . The CPF correlation

Eq. (36) is obtained when the three measurement are
defined by any of the bipartite operators Sm = (σx

1σ
z
2),

(σy
1σ

z
2), (σz

1σ
x
2 ), (σz

1σ
y
2), Eq. (37) is obtained when Sm =

(σx
1σ

y
2), (σy

1σ
x
2 ), while Cpf (t, τ )|y = 0 when Sm = (σx

1σ
x
2 ),

(σy
1σ

y
2), (σz

1σ
z
2).

V. SUMMARY AND CONCLUSIONS

We studied a class of solvable multipartite non-
Markovian master equations where the system consists
of an arbitrary number of qubits and whose structure is
written in terms of arbitrary multipartite Pauli coupling
terms. Starting from a local-in-time representation of the
evolution, we found the explicit solution for the system
density matrix, which in turn allowed us to formulate the
constraints that time-dependent rates must obey in or-
der to guarantee the completely positive condition of the
solution map.

We also found explicit analytical expressions for the
time-dependent rates associated to a given evolution.
Their sign (positive or negative) can be used as an in-
dicator of non-Markovianity. Memory effects were also
characterized by operational methods, where a CPF cor-
relation defined by a set of three consecutive system mea-
surements becomes a memory witness. We showed that
this quantity can be obtained in an exact way for ar-
bitrary measurement processes and arbitrary interaction
with incoherent degrees of freedom.

As application of the previous results, we presented
simple underlying dynamics that lead to the phenomenon
of eternal non-Markovianity, that is, multipartite dynam-
ics where some rates depart at all times from that of
a Markovian regime. Both hyperbolic and trigonomet-
ric cases were established, characterized by a rate that
is negative at all times or that develops periodical di-
vergences. Even when these features develop, the CPF
correlation is always a smooth function.

In the Appendices we found the rates associated to dif-
ferent underlying memory mechanisms such as a mapping
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with a classical master equation, stochastic Hamiltoni-
ans and statistical superpositions of Markovian dynam-
ics. We showed that under particular conditions different
mechanisms may lead to the same time-dependent rates.
Nevertheless, these accidental degeneracies do not occur
in general. We also found that the phenomenon of eternal
non-Markovianity becomes quite common in multipartite
dynamics.

The class of models we studied here provides a
useful solvable framework for studying quantum non-
Markovianity in multipartite settings. This allows to
formulate a wide range of well-behaved multipartite non-
Markovian master equations. The study of diverse mem-
ory witness can be tackled starting from here. Our re-
sults also lead to interesting questions such as determin-
ing which kind of underlying dynamics can be associated
to an arbitrary non-Markovian multipartite Pauli evolu-
tion. Finally, our approach could be the starting point
to studying other system operator algebras with more
complex commutation relations.
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APPENDIX A: TIME-CONVOLUTED
APPROACH

Instead of the local-in-time formulation defined by
Eq. (2), alternatively one may start with a time con-
voluted evolution

d

dt
ρt = L[ρt] =

∑

a
a 6=0

∫ t

0

dt′ka(t− t′)(Saρt′Sa−ρt′ ), (A1)

where the set of time-dependent kernels {ka(t)} must
to be constrained such that the solution map is CP.
Similarly to Sec. II, by defining the kernel k0(t) ≡
−

∑
a (a 6=0) ka(t), here the weights of the solution (12)

can be written as

pat =
1

4N

∑

b

Habλb(t), (A2)

where the coefficients λb(t) obey the evolution

d

dt
λb(t) =

∫ t

0

dt′kb(t− t′)λb(t′). (A3)

The inverse relations for determining the kernels {ka(t)}
a function of probabilities {pa(t)} can be written in a
Laplace domain [f(z) =

∫ ∞
0
dte−ztf(t)] as

ka(z) =
zλa(z) − 1
λa(z)

, λa(z) =
∑

b

Habpb(z). (A4)

APPENDIX B: NON-MARKOVIAN
UNDERLYING MECHANISMS

Here, we consider different mechanisms that lead to
memory effects. The present analysis provides nontriv-
ial multipartite extensions of some results developed in
Ref. [20] for the case N = 1.

1. Mapping with a classical Markovian master
equation

The solution map [Eq. (12)] is defined by a set of nor-
malized probabilities {pat }. It is possible to formulate an
underlying mechanism such that {pat } correspond to the
solution of an arbitrary Markovian classical master equa-
tion with 4N different states.

We assume that the system density matrix interacts
with an incoherent system whose states, in contrast to
Eq. (18), can be put in one-to-one correspondence with
the Pauli string vectors {a}. Therefore, the system den-
sity matrix ρt can be written in terms of a set of auxiliary
states {ρat } [17] such that

ρt =
∑

a

ρat . (B1)

The evolution of the auxiliary states is Markovian and
involves coupling between all of them. We write

d

dt
ρat = −

∑

b
b6=a

φbaρ
a
t +

∑

b
b6=a

φabSaSbρ
b
t SbSa. (B2)

Here, {φba} are arbitrary rates. The stochastic inter-
pretation of this equation is quite simple. Whenever
the incoherent system undergoes the transition b → a,
the quantum system undergoes the transformation ρ →
SaSbρSbSa. Between transition the system is frozen.
The average system dynamics is given by Eq. (B2), where
ρat corresponds to the conditional system state given that
the incoherent one is in the state associated to a.

It is simple to check that the solutions {ρat } of Eq. (B2)
can be written as

ρat = pat (Saρ0Sa), (B3)

where the weights pat must to fulfill the classical master
equation

d

dt
pat = −

∑

b
b6=a

φbap
a
t +

∑

b
b6=a

φabp
b
t . (B4)

Consequently, from Eqs. (B1) and (B3) we recover the
solution Eq. (12) [ρt =

∑
a p

a
t (Saρ0Sa)], where the prob-

abilities {pat } fulfill a the classical master equation (B4).
For consistence, its initial condition must be pa0 = δa,0.

Particular case: Given that Eq. (B4) is arbitrary, it
is not possible to find a general expression for the rates
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{γa
t } [Eq. (15)] in terms of the underlying ones {φba}.

Nevertheless, this mapping can be performed, for exam-
ple, when Eq. (B4) assumes the form

d

dt
p0t = −φp0t +ϕ

∑

a
a 6=0

pat ,
d

dt
pat = −ϕpat +xaφp

0
t , (B5)

where φ and ϕ are arbitrary rates and the weights {xa}
satisfies

∑
a(a 6=0) xa = 1. The probabilities, with initial

condition pa0 = δa,0, can be written as

pat = pa∞[1 − exp(−Φt)] + δa,0 exp(−Φt), (B6)

where Φ ≡ (φ+ ϕ), and the stationary values are

p0∞ =
ϕ

φ+ ϕ
, pa∞ =

xaφ

φ+ ϕ
. (B7)

From the solutions (B6), the general expression (15), af-
ter some calculations steps [55], lead to

γa
t =

1
4N

∑

b

Φ
2
Hab

[
tanh

(
tΦ
2

+ ζb

)
− 1

]
, (B8)

where the parameters are

ζb ≡ 1
2

ln
(

hb
∞

1 − hb
∞

)
, hb

∞ ≡
∑

c

Hbcp
c
∞. (B9)

It is simple to check that, due to probability normal-
ization, h0

∞ = 1. Hence, in Eq. (B8) the term with
b = 0 cancels out. Furthermore if hb

∞ = 0, it follows
tanh(tΦ/2+ζb) → −1. In general, the time dependence of
the rate γa

t arise from a linear combination of hyperbolic
tangent functions with coefficient that are ±1. Thus, in
general some rates can be negative at any time.

2. Stochastic Hamiltonians

We consider a stochastic evolution, where the system
wave vector |ψt〉 is driven by a stochastic Hamiltonian,

d|ψt〉
dt

= −iHst|ψt〉 = −i1
2
ξα
t Sα|ψt〉. (B10)

The Hamiltonian Hst is characterized by a noise with
an arbitrary statistics but null average 〈〈ξα

t 〉〉 = 0. The
index α↔ αt run overs all possible Pauli strings. Its time
variation is very slow such that over a single realization
it can be considered as a frozen parameter. Thus, the
average state ρα

t = 〈〈|ψt〉〈ψt|〉〉 for a given α reads ρα
t =

(1/2)[1 + Gα
t ]ρ0 + (1/2)[1− Gα

t ](Sαρ0Sα), where

Gα
t ≡

〈〈
exp

(
i

∫ t

0

dt′ξα
t′

)〉〉
, (B11)

is the characteristic noise function for a given α. After
averaging this parameter, the system state can be written

as ρt =
∑

α,(α 6=0) xαρ
α
t , where

∑
α,(α 6=0) xα = 1. The

parameters {xα} correspond to the statistical weight of
each Pauli string during the variation of the coefficient α.
It is straightforward to check that ρt =

∑
a p

a
t (Saρ0Sa),

which recovers Eq. (12) with

p0t =
1
2
(1 +

∑

a
a 6=0

xaG
a
t ), pat =

xa

2
(1 − Ga

t ). (B12)

Similarly to the previous model, it is not possible to find
a general simple expression for the rates γa

t in terms of
these probabilities. Manageable expressions arise in the
following situations.

Particular cases: If the noise is the same for all “di-
rections” Ga

t = Gt, from Eqs. (15) and (B12), after some
algebra [55], we get the rates

γa
t =

1
4N

∑

b

ġt

2
Hab

[
tanh

(gt

2
+ ζb

)
− 1

]
, (B13)

where the scalar functions read

gt = ln(1/Gt), ġt = − 1
Gt

dGt

dt
, (B14)

and where ζb is defined by Eq. (B9) with, instead of
Eq. (B7), with p0∞ = 1/2, and pa∞ = xa/2.

For a stationary Gaussian white noise, where
〈〈ξtξt′〉〉 = Φδ(t − t′), Eq. (B11) becomes G(t) =
exp(−Φt). It is simple to check that in this situation
Eq. (B13) recovers the solution (B8) of the previous
model with ϕ = φ. This results show that there are differ-
ent underlying models that may lead to the same system
density matrix evolution. This degeneracy is not univer-
sal and clearly depends on the underlying parameters.

For a stationary symmetric dichotomic noise with am-
plitude A and switching rate η, the characteristic noise
function [Eq. (B11)] is

Gt = e−ηt[cosh(χt) +
η

χ
sinh(χt)], χ ≡

√
η2 −A2.

(B15)
In contrast to the previous cases, here the rates defined by
Eq. (B13) may develop divergences. In fact, the functions
(B14) become

gt = ln(1/Gt), ġt =
A2

η + χ[1/ tanh(χt)]
. (B16)

Hence, divergent rates are found whenever η < A.

3. Statistical mixtures of Markovian evolutions

Departures with respect to a Markovian regime emerge
whenever the system evolution is written as the statistical
superposition of different Markovian propagators. Hence,
we write

pat =
n∑

k=1

qkp
a
k(t), (B17)
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where {qk} are normalized positive weights (
∑n

k=1 qk =
1), and each set of probabilities {pak(t)} is associated to
a Markovian solution of Eq. (2) with time-independent
positive rates {γa

k}.
From Eq. (15), the non-Markovian evolution is charac-

terized by the rates

γa
t =

1
4N

∑

b

Hab

∑n
k=1 qkµ

b
k exp(tµb

k )∑n
k′=1 qk′ exp(tµb

k′)
. (B18)

where µb
k are eigenvalues of the k-Markovian dynamics,

µb
k =

∑
cHbcγ

c
k. The specific properties of these rates

strongly depend on the considered Markovian evolutions
and statistic weights.

Particular cases: In the two-state case, n = 2, the
probabilities are pat = q1p

a
1(t) + q2p

a
2(t), where each solu-

tion is associated to the rates γa
1 and γa

2 , and q1+q2 = 1.
From Eq. (B18), after some algebra [55], we get

γa
t =

1
2
(γa

1 +γa
2 )+

1
4N

∑

b

Hab∆b tanh(t∆b +ζ), (B19)

where the parameters are

∆b ≡ 1
2

∑

c

Hbc(γc
1 − γc

2 ), ζ ≡ 1
2

ln(
q1
q2

). (B20)

In this case, many rates may also be negative at all times
(see next section).

In the other extreme, a continuos-state case can be
considered. Thus, Eq. (B17) is rewritten as

pat =
1

4N

∑

b

Hab

〈 ∏

c

exp(tHbcγ
c)

〉
, (B21)

where we used the explicit expression (13) and the re-
placement

∑n
k=1 qk → 〈· · · 〉 . The symbol 〈· · · 〉 denotes

an average over the set of random rates {γc}, each “re-
alization” defining a Markov solution. Assuming that all
rates are independent random variables it follows that
〈· · · 〉 →

∫ ∞
0
dγc · · ·P (γc), where P (γc) is the corre-

sponding probability density. By assuming an exponen-
tial probability density P (γc) = τc exp(−γcτc), by using
that γ0 = −

∑
c(c 6=0) γ

c, [see Eq. (7)] we get

pat =
1

4N

∑

b

Hab

∏

c
c 6=0

τc
τc + (1 −Hbc)t

, (B22)

where we have used thatHb0 = 1. From Eq. (15), the cor-
responding rates associated to the non-Markovian evolu-
tion are

γa
t = − 1

4N

∑

b

Hab

∑

c
c 6=0

(1 −Hbc)
τc + (1 −Hbc)t

. (B23)

We notice that both {pat } and {γa
t } develop a power-

law behavior. In spite of this feature the rates are positive
at all times, γa

t > 0 (a 6= 0). While most of the memory
witnesses [5, 6] associate this property to a Markovian
regime, from operational approaches it is possible to de-
tect and infer the presence of memory effects [48, 49].

APPENDIX C: BIPARTITE AND TRIPARTITE
ETERNAL NON-MARKOVIAN EVOLUTIONS

Besides the previous examples, the developed approach
allow us to show that master equations characterized by
eternal non-Markovian effects are quite common for mul-
tipartite systems. As an example, we consider the statis-
tical superposition of two different Markovian dynamics
characterized by the rates γa

1 and γa
2 and equal weights

[q1 = q2 in Eq. (B19)]. Taking γa
1 = γ(δa,a − δa,0), and

γa
2 = γ(δa,b − δa,0), and using that (Hαa − Hαb)/2 =

(±1, 0), and HαaHαb = Hαc, from Eq. (B19) we recover
the rates defined in Eq. (22). When each (vectorial) rate
involves different Pauli channels more complex expres-
sions are obtained.

As a first example, take a bipartite system (N = 2)
with

γa
1 = γ(δa,10 + δa,01 − 2δa,00), (C1a)
γa
2 = γ(δa,20 + δa,02 − 2δa,00). (C1b)

Thus, each dynamics is defined by a local (single) de-
phasing local mechanism acting alternatively in x- and
y-directions. From Eq. (B19) we obtain

γa0
t =

1
2
γ, γ

a±
t = ±1

4
γ tanh(2γt), (C2)

where a0 and a± correspond to the following Pauli
strings, a0 = (10), (01), (20), (02), and a+ = (11), (22),
while a− = (30), (03), (12), (21). Furthermore,

γ33
t = −γ

4
[2 tanh(γt) − tanh(2γt)] = −2γ

sinh4(γt)
sinh(4γt)

,

while γa
t = 0 if a 6= (a0, a+, a−). There are eleven non-

null rates out of the fifteen possible ones, five of them
being negative at all times.

As a second example we consider a tripartite system
(N = 3), where

γa
1 = γ(δa,110 + δa,101 + δa,011 − 3δa,000), (C3a)
γa
2 = γ(δa,220 + δa,202 + δa,022 − 3δa,000). (C3b)

Hence, each Markovian evolution correspond to dephas-
ing in x- and y-directions but now considering all pairs
of bipartite dephasing operators. From Eq. (B19) we get

γ
a+
t =

1
4
γ[2 + tanh(2γt)], (C4a)

γ
a−
t = −1

4
γ tanh(2γt), (C4b)

where a± correspond to the following Pauli strings,
a+ = (110), (101), (011), (220), (202), (022), while
a− = (330), (303), (033), (123), (132), (213), (231), (312),
(321), and γa

t = 0 if a 6= a+, a−. In this case, out of sixty-
three possible rates, fifteen are non-null, nine of them
being negative at all times.
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APPENDIX D: CPF CORRELATION CALCULUS

For a system coupled to incoherent degrees of free-
dom [Eq. (18)], the (bipartite) system-environment state
ρse

t =
∑

h ρ
h
t |h), from Eqs. (19) and (33), reads

ρse
t =

∑

α

(Sαρ0Sα) Fα(t)|q0). (D5)

This evolution defines the system-environment dy-
namics between measurements. The measurement
of operator Sm [Eq. (31)] leads to the transforma-
tion ρse =

∑
h ρ

h|h) → |m〉〈m||qm), where |qm) =∑
h 〈m|ρht |m〉/Tr[〈m|ρht |m〉]|h). With these ingredients,

the calculation of the joint probability can be performed
in a standard way. We get,

P (z, y, x)
P (x)

=
∑

α,β

|〈z|σα|y〉|2|〈y|Sβ |x〉|2(1|Fα(τ )Fβ(t)|q0),

(D6)
where P (x) = 〈x|ρ0|x〉 and (1| ≡

∑
h(h|. This result is

valid for arbitrary Hermitian system observables.
Using Bayes rule, the conditional probabilities that

define the CPF correlation [Eq. (32)] can be writ-
ten as P (z, x|y) = P (z, y, x)/P (y), where P (y) =∑

z,x P (z, y, x). Furthermore, P (z|y) =
∑

x P (z, x|y),
and P (x|y) =

∑
z P (z, x|y). From Eq. (D6), and using

∑

z

z|〈z|Sα|y〉|2 = 〈y|SαSzSα|y〉, (D7a)

∑

x

x|〈y|Sβ|x〉|2P (x) = 〈y|SβSxρxSβ|y〉, (D7b)

∑

x

|〈y|Sβ |x〉|2P (x) = 〈y|SβρxSβ |y〉, (D7c)

where the system state ρx is

ρx ≡
∑

x

P (x) |x〉〈x| =
∑

x

〈x|ρ0|x〉 |x〉〈x|, (D8)

the CPF correlation can be written as

Cpf (t, τ )|y =
1

P (y)2
∑

α,β,γ

Θαβγ |yΛαβγ(t, τ ). (D9)

The coefficients Θαβγ |y are

Θαβγ |y = 〈y|SαSzSα|y〉〈y|SβSxρxSβ |y〉〈y|σγρxSγ |y〉,

while the time-dependence follows from

Λαβγ(t, τ ) = +(1|Fα(τ )Fβ(t)|q0)(1|Fγ(t)|q0)
−(1|Fα(τ )Fγ (t)|q0)(1|Fβ(t)|q0),

where |qt) =
∑

α Fα(t)|q0), and the probability P (y) is

P (y) =
∑

α

(1|Fα(t)|q0)〈y|SαρxSα|y〉. (D10)

The expression (D9) is valid for arbitrary observables
σm [Eq. (31)]. In general, they can be written as linear
combinations of Pauli strings Sa. Assuming, for simplic-
ity, that each Sm correspond to a unique Pauli string
operator, from Eq. (5) it follows the relations

〈y|SαSzσα|y〉 = Hαyδz,yay, (D11a)

〈y|SβSxρxSβ |y〉 =
1

2N
(Hβyδy,xay + 〈x〉), (D11b)

〈y|Sγρxσγ |y〉 =
1

2N
(1 +Hγyδy,xay〈x〉), (D11c)

where 〈x〉 ≡ Tr[Sxρx]. By introducing these equalities in
Eq. (D9), after some algebra we get Eq. (34). General-
ization to arbitrary observables can be worked out in a
similar way from Eq. (D9).
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[54] D. Chruściński and S. Maniscalco, Degree of Non-
Markovianity of Quantum Evolution, Phys. Rev. Lett.
112, 120404 (2014).

[55] We used the equality (d/dt) ln[peat + qebt] = (a +
b)/2 + ∆ tanh[t∆ + ζ], where ∆ = (a − b)/2 and ζ =
(1/2) ln(p/q).

Adrian
Resaltado


